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A B S T R A C T

Plant functional diversity (FD) is an important component of biodiversity that characterizes the variability of functional
traits within a community, landscape, or even large spatial scales. It can influence ecosystem processes and stability.
Hence, it is important to understand how and why FD varies within and between ecosystems, along resources avail-
ability gradients and climate gradients, and across vegetation successional stages. Usually, FD is assessed through labor-
intensive field measurements, while assessing FD from space may provide a way to monitor global FD changes in a
consistent, time and resource efficient way. The potential of operational satellites for inferring FD, however, remains to
be demonstrated. Here we studied the relationships between FD and spectral reflectance measurements taken by ESA's
Sentinel-2 satellite over 117 field plots located in 6 European countries, with 46 plots having in-situ sampled leaf traits
and the other 71 using traits from the TRY database. These field plots represent major European forest types, from
boreal forests in Finland to Mediterranean mixed forests in Spain. Based on in-situ data collected in 2013 we computed
functional dispersion (FDis), a measure of FD, using foliar and whole-plant traits of known ecological significance.
These included five foliar traits: leaf nitrogen concentration (N%), leaf carbon concentration (%C), specific leaf area
(SLA), leaf dry matter content (LDMC), leaf area (LA). In addition they included three whole-plant traits: tree height
(H), crown cross-sectional area (CCSA), and diameter-at-breast-height (DBH). We applied partial least squares re-
gression using Sentinel-2 surface reflectance measured in 2015 as predictive variables to model in-situ FDis mea-
surements. We predicted, in cross-validation, 55% of the variation in the observed FDis. We also showed that the red-
edge, near infrared and shortwave infrared regions of Sentinel-2 are more important than the visible region for pre-
dicting FDis. An initial 30-m resolution mapping of FDis revealed large local FDis variation within each forest type. The
novelty of this study is the effective integration of spaceborne and in-situ measurements at a continental scale, and
hence represents a key step towards achieving rapid global biodiversity monitoring schemes.
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1. Introduction

Plant functional diversity (FD hereafter), defined as the range and
dispersion of those plant traits within a community, landscape, or even
larger spatial scales that are functionally relevant for growth, re-
production, and survival, is an important component of biodiversity
(Tilman, 2001; Petchey and Gaston, 2006; Villéger et al., 2008;
Laliberté and Legendre, 2010). Evidence is showing that FD strongly
determines ecosystem functioning and stability (Tilman et al., 1997;
Díaz and Cabido, 2001; Hooper et al., 2005; Paquette and Messier,
2011; Ruiz-Benito et al., 2014), and also regulates various ecosystem
services (e.g., fodder production and maintenance of soil fertility) that
underpin human well-being (Díaz et al., 2007a).

Given the importance of FD for ecosystem functioning, it is pivotal
to understand its variation across space and time with high accuracy.
FD can vary with a large number of drivers, including climatic or
geographic gradients (de Bello et al., 2006; Lamanna et al., 2014),
successional stages (Purschke et al., 2013), disturbance and land use
change (Trejo et al., 2016), climate variability (Gherardi and Sala,
2015), and also topography and soil types (Schneider et al., 2017),
making it challenging to extrapolate findings from one site to another
without having adequate reference data about spatial and temporal FD
variation. Being able to characterize spatiotemporal variation in FD is
not only crucial for achieving global biodiversity monitoring (Díaz
et al., 2007b; Jetz et al., 2016), but also for improving predictions on
how future climate change will affect ecosystem functioning and eco-
system services (Scheiter et al., 2013; Fisher et al., 2018). However,
ground-based measurement of plant traits is labor intensive, and it is
logistically challenging to perform these measurements spatially con-
tinuously over a large area or to repeat these measurements through
time. Available regional data on FD are rare and, due to the lack of
repeated measurements, not suitable for addressing long-term trends of
large-scale patterns (Scholes et al., 2008). As such, there is an urgent
need for an integrated system that can effectively and consistently
monitor FD globally (Turner, 2014; Pettorelli et al., 2016; Jetz et al.,
2016; Anderson-Teixeira et al., 2015).

Recently there have been several efforts made to infer FD over local,
regional or global scales using either ground-based or airborne hyper-
spectral remote sensing measurements (e.g., Schweiger et al., 2018;
Asner et al., 2014; Schneider et al., 2017; Asner et al., 2017), or other
(e.g., climate and soil) data inputs (e.g., Butler et al., 2017). The ra-
tionale underlying the use of remote sensing measurements for esti-
mating plant FD is that phylogenetic differences and resources limita-
tions can affect plant traits (leaf and structural) and these in turn can
affect spectral reflectance measured by optical remote sensing (Wang
et al., 2018). Schneider et al., 2017 mapped three forest leaf bio-
chemical traits, including leaf chlorophyll, leaf carotenoids, and
equivalent water thickness, in a forest study area using airborne hy-
perspectral measurements and computed several functional diversity
measures based on these traits. Asner et al. (2017) mapped seven forest
canopy traits, including leaf nitrogen, phosphorus, calcium, phenols,
lignin, water, and leaf mass per area, over Peruvian Andes-to-Amazon
region and then used these traits to classify forests into different func-
tional groups. Using field hyperspectral measurements at a grassland
site, Schweiger et al. (2018) showed that spectral diversity is highly
associated with functional diversity computed using 14 foliar traits
(including the contents of leaf carbon, nitrogen, carbon fractions,
chlorophylls, xanthophylls and carotenoids) and hence demonstrated
the potential of using remote sensing measurements to directly infer FD
instead of retrieving each individual trait first. Butler et al. (2017)
generated global maps of three key functional traits, specific leaf area,
leaf nitrogen content, and leaf phosphors content, and then computed
their statistical dispersion within any 50 km × 50 km grid, with a
Bayesian modeling framework driven by climate and soil data. Other
recent studies that have attempted to map individual functional traits
using remote sensing, with either statistical approach or radiative-

transfer modeling, also showed success in mapping leaf mass per area
(Mohammed Ali et al., 2017; Singh et al., 2015), leaf nitrogen con-
centration (Asner et al., 2015; Knyazikhin et al., 2013), and leaf
chlorophyll content (Inoue et al., 2016; Gitelson and Merzlyak, 1997).
These studies have provided important methodological advances in
mapping FD across space and their results provide an efficient basis for
investigating biodiversity-ecosystem functioning relationships across
large environmental gradients.

Despite recent progress, critical data and knowledge gaps in map-
ping global FD pattern remain. First, while airborne hyperspectral in-
struments can yield high-resolution maps of spatial FD variation across
small spatial and/or temporal scales (e.g., Wang et al., 2018), acquiring
airborne data repeatedly over larger extents is often too costly. Second,
while modeling studies based on climate and soil data can provide
large-scale predictions of FD (dispersion and range in plant traits)
patterns, the accuracy and resolution of the modeled maps are limited
by large uncertainties in the input meteorology and soil data inter-
polated from point measurements (Harris et al., 2014; Wu et al., 2017;
Batjes, 2016), and limited knowledge on the relations between climate,
soil, and FD (Bruelheide et al., 2018). Satellite RS data are spatially
continuous but their resolutions are often too coarse to detect fine scale
soil and vegetation processes, and currently discoverable in-situ eco-
logical data are not spatially representative for large scale ecological
gradients. As such, a dedicated global Earth Observation network with
multiple spaceborne platforms (e.g., hyperspectral, LiDAR, radar), in
conjunction with high-quality ground reference data from established
ecological networks (e.g., NEON, TERN, NutNet, ForestNet etc.) for RS
model calibration and validation, would be critical to achieve the ob-
jective of tracking spatial and temporal changers in multiple facets of
functional biodiversity globally (Turner, 2014; Stavros et al., 2017;
Schimel et al., 2019). Thus, current approaches focus either on high-
resolution mapping of FD over a small spatial extent or on a global
mapping of FD at a much lower resolution. Here, we propose that recent
developments in multispectral spaceborne remote sensing can con-
tribute to overcoming this trade-off between a high spatial resolution
and a high spatial extent and may additionally allow for tracking
temporal FD changes. These new satellite measurements, if coupled
with in-situ plant FD data collected systematically over large scales, can
greatly facilitate the remote sensing of FD.

Spaceborne remote sensing can scan the entire Earth surface re-
peatedly, providing a unique data stream that can be exploited to
monitor global FD variation across space and time (Jetz et al., 2016;
Lausch et al., 2016; Rocchini et al., 2016, 2018). In recognizing the
potential offered by satellite data, the ecology and the remote sensing
communities, supported by the Group on Earth Observation Biodi-
versity Observation Network (GEO-BON), have agreed on a list of Es-
sential Biodiversity Variables (EBVs), including functional diversity,
that can be measured from the ground and can be tracked from space
(Scholes et al., 2008; Pereira et al., 2013; Turner, 2014; Skidmore and
Pettorelli, 2015; Rocchini et al., 2016, 2018; Kuenzel et al., 2014).

Recent developments in spaceborne remote sensing technologies
enable promising opportunities to link satellite measurements to FD
measured on the ground. Sentinel-2, a new satellite constellation of the
European Copernicus programme, offers improved spatial (up to 10 m),
spectral (13 bands in visible, red-edge, near infrared and shortwave
infrared), and temporal resolutions (3–5 days revisit) from previous
satellites (Drusch et al., 2012). Sentinel-2 provides a good compromise
between the spatial resolution, which is needed to link with field plot
measurements, and spectral resolution, which is required to infer FD
computed with multiple functional traits. For instance, Sentinel-2 has
three bands between the red and NIR regions, known as the red-edge,
which are sensitive to important leaf biochemical traits such as leaf
nitrogen concentration (Papale et al., 2008; Clevers and Gitelson, 2013;
Pérez-Priego et al., 2015). Nevertheless, challenges still exist, as Sen-
tinel-2 cannot be compared to hyperspectral instruments that usually
carry hundreds of spectral bands, something that may be termed as the
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spectral scale challenge (Wang et al., 2018). Besides, due to the still
limited spatial resolution (relative to individual tree crown size), it
would be challenging to use Sentinel-2 measurements to detect species
diversity as each pixel can consist of multiple individuals from different
species, or more precisely being described as the spatial scale problem
(Wang and Gamon, 2019) as well as the presence of soil background
(Gholizadeh et al., 2018; Wang et al., 2018).

Here we performed a study to statistically link spectral reflectance
measurements taken by ESA's Sentinel-2 satellite directly to FD derived
from in-situ measurements in plot networks spanning tree species di-
versity gradients in six representative European forest types. Our
overarching aim is to use spaceborne measurements to track changes in
FD across space. Specifically, our objectives are: 1) to investigate the
statistical relationship between FD and spectral reflectance measure-
ments taken by Sentinel-2 and to quantify relative importance of the
different Sentinel-2 bands for predicting FD; 2) to explore the potential
of using compiled trait database to complement in-situ trait measure-
ments; and 3) to calibrate and validate a statistical model to quantify FD
at high spatial resolution (30 × 30 m).

2. Data and method

2.1. FunDivEUROPE plot network

We used field data collected from 117 plots of 30 × 30 m that were
set up in mature forest plots in six regions across Europe as part of the
FunDivEUROPE project (http://www.fundiveurope.eu) (Fig. 1; Table 1)
(Baeten et al., 2013). The regions represent six of common but con-
trasted forest types in Europe. Forest types covered include boreal
(Finland, 9 plots); hemiboreal (Poland, 34 plots), mixed beech (Ger-
many, 26 plots), mountainous mixed beech (Romania, 19 plots), ther-
mophilous deciduous (Italy, 10 plots), and Mediterranean mixed
(Spain, 19 plots). Detailed information about all plots used in this study,
such as coordinates, dominant species, and in-situ trait sampling date is
provided in Table S3 in the Supplementary file. Within each forest re-
gion, the plots were established to span diversity gradients of the re-
gional pool of dominant tree species (with a maximum of five species
mixtures). In addition, the design ensured that (i) within each richness
level, multiple different species compositions were represented, (ii)
each species was represented at more or less the same relative fre-
quency at each diversity level (Baeten et al., 2013). This resulting tree

species gradient is therefore ideally suited to calibrate and assess
taxonomic and functional diversity and identity using remote sensing
imagery.

Across all plots we selected, species with traits measured from in-
situ account for > 95% of cumulative abundance of each plot. This
minimizes the influence of the presence of other species which their
traits were not measured on our results. In each plot, all trees with
diameter at breast height (DBH) ≥ 7.5 cm were identified to species
level and measured for tree height (H), DBH, and crown cross-sectional
area (CCSA). Fig. 2 illustrates the general plot design and a ground-level
photograph of one of the Mediterranean mixed forest plots in Spain.

2.2. In-situ leaf trait measurement

Leaf biochemical (leaf nitrogen concentration, %N; leaf carbon
concentration, %C), morphological (leaf area, LA, mm2), and leaf
anatomical traits (specific leaf area, SLA, mm2 mg− > 1; leaf dry matter
content, LDMC, mg g− > 1) of well-known significance to plant growth
and functioning such as carbon fixation (Cornelissen et al. 2003) were
measured on the dominant tree species growing in all plots located in
three of the six FunDivEUROPE regions, namely in the boreal forest
(Finland), in the mountainous beech forest (Romania), and in the
Mediterranean mixed forest (Spain) (Table 2).

Ten trees per species were randomly selected in each plot. From
each target tree, a branch from the top part of the crown facing south
was cut and leaves/needles were collected for trait measurements. A
total of 1763 trees were sampled. To achieve phenological standardi-
zation, fieldwork was carried out once leaves were completely devel-
oped within the growing season, thus it took place in August 2013 in
Finland, July 2013 in Romania, and June 2013 in Spain.

The aim of selecting traits for assessing FD is that the traits selected
should be significantly important for the ecosystem process of interest.
It is not practical to sample all traits and hence a strategy needs to be
implemented to focus on several important traits and then sample them
consistently across all species and all plots. In our case, we are parti-
cularly interested in ecosystem C and H20 cycling, which can be ap-
proximated by primary productivity and evapotranspiration. Among
the five foliar traits we selected, three of them (%N, SLA, and LA) have
been identified as critical to performance and fitness of vascular plant
species including growth, survival and reproduction (Diaz et al., 2016).

It is well known that leaf %N is closely related with leaf maximum

Fig. 1. FunDivEUROPE plot network. (left) The location of six FunDivEUROPE regions in Europe; (right) the locations of field plots in each FunDivEUROPE regions.
Each red dot on the right-hand side maps represents a field plot of 30 m × 30 m in size. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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carbon fixation rate and community aggregated %N also scales linearly
with ecosystem carbon fixation capacity (Ollinger et al., 2008; Musavi
et al., 2016). Furthermore, SLA is often positively related to potential
relative growth rate across species and negatively with leaf longevity,
and exerts influences on ecosystem-level productivity (Diaz et al.,
2016). Leaf %C is essential for converting estimates of forest above-
ground biomass into forest carbon stocks (Thomas and Martin, 2012).
LDMC has been shown to correlate negatively with potential relative
growth rate and positively with leaf lifespan. Lastly, LA has been shown
to be related to climate variation and site disturbance regimes (Pérez-
Harguindeguy et al., 2011).

We randomly selected ten (when present) individuals per dominant

species in each plot. From each target tree, a branch from the top part of
the crown facing south was harvested and leaves/needles were col-
lected for trait measurements. A total of 1137 trees were sampled.

To assess the morphological traits (LA, SLA, and LDMC), five re-
hydrated leaves were weighed and scanned to measure their area using
WinFOLIA and WinSEEDLE for broadleaves and needles, respectively
(Regent Instruments Inc., Canada). Then, leaf samples were dried in an
oven at 60 °C for 72 h and their dry mass was weighed. Additional
leaves were also dried and ground in order to estimate the N and C leaf
content (in %) using a dry combustion method (Vario EL cube,
Elementar Analysensysteme GmbH, Hanau, Germany). Leaf collection,
storage, processing, and trait measurement followed the protocols

Table 1
Summary of the six FunDivEUROPE regions.

Finland Poland Germany Romania Italy Spain

Region name North Karelia Białowieża Hainich Râsca Colline Metallifere Alto Tajo
Forest type Boreal Hemiboreal Beech Mountainous beech Thermophilous

deciduous
Mediterranean mixed

Mean annual T
and P

2.1 °C, 700 mm 6.9 °C, 627 mm 6.8 °C, 775 mm 6.8 °C, 800 mm 13 °C, 850 mm 10.2 °C, 499 mm

Study area size 150 km × 150 km 30 km × 40 km 15 km × 10 km 5 km × 5 km 50 km × 50 km 50 km × 50 km
Number of plots 9 34 26 19 10 19
Species pool Picea abies, (L.) H. Karst

Pinus sylvestris, L.
Betula pendula, ROTH
Betula pubescens, Ehrh.

Picea abies, (L.) H. Karst
Pinus sylvestris, L.
Betula pendula, ROTH
Betula pubescens, Ehrh.
Carpinus betulus, L.
Quercus robur, L. quercus
petraea, (Matt.) Liebl.

Picea abie, (L.) H. Karst
Acer pseudoplatanus, L.
Fagus sylvatica, L.
Fraxinus excelsior, L.
Quercus robur, L.
Quercus petraea, (Matt.)
Liebl.

Abies alba, Mill.
Picea abies, (L.) H.
Karst
Acer pseudoplatanus, L.
Fagus sylvatica, L.

Castanea sativa, Mill.
Ostrya carpinifolia,
Scop.
Quercus robur, L.
Quercus petraea, (Matt.)
Liebl.
Quercus cerris, L.
Quercus ilex, L.

Pinus nigra, J.F.
Arnold
Pinus sylvestris, L.
Quercus faginea, Lam.
Quercus ilex, L.

Fig. 2. Example of a FunDivEUROPE plot measuring 30x30m. Photograph of a four species mixture (left) in Spain and schematic of the same plot (right). Species are
indicated by colored dots and are QUEILE: Quercus ilex; QUEFAG: Quercus faginea; PINNIG: Pinus nigra; PINSYL: Pinus sylvestris. Photo courtesy: Teresa Gimeno.

Table 2
List of in-situ foliar and whole-plant traits measured in this study.

Trait name Abbreviation Unit # of samples Regions

Foliar traits
Leaf nitrogen concentration %N % 10 trees per species per plot Finland, Romania, Spain
Leaf carbon concentration %C % 10 trees per species per plot Finland, Romania, Spain
Specific leaf area SLA mm2 mg− > 1 10 trees per species per plot Finland, Romania, Spain
Leaf dry matter content LDMC mg g− > 1 10 trees per species per plot Finland, Romania, Spain
Leaf area LA mm2 10 trees per species per plot Finland, Romania, Spain

Whole-plant traits
Tree height H m All trees (DBH > 7.5 cm) per species per plot Finland, Romania, Spain, Poland, Italy, Germany
Crown cross-sectional area CCSA m2 All trees (DBH > 7.5 cm) per species per plot Finland, Romania, Spain, Poland, Italy, Germany
Diameter at breast height DBH cm All trees (DBH > 7.5 cm) per species per plot Finland, Romania, Spain, Poland, Italy, Germany
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defined in Garnier et al. (2001) and Pérez-Harguindeguy et al. (2011).
Detailed description of in-situ trait sampling procedures can be found in
Benavides et al. (2019) and in Sec. 1.1 in the Supplementary file. An
exploratory analysis of in-situ traits across FunDivEUROPE plots is
provided in Sec. 1.5 in Supplementary file.

For the other 3 regions (Poland, Germany, and Italy) with no in-situ
data for leaf traits, we tested the potential of filling these gaps using the
TRY plant trait database (www.try-db.org) (Kattge et al., 2011). We
used data from the TRY-database version 3.0 (first released in 2015).
We computed global average of each trait for each species. An ex-
amination of the TRY database indicates that these European tree
species have a fairly large number of entries submitted to the TRY
database. Trait data were quality checked and filtered as described on
the TRY website (https://www.try-db.org/TryWeb/Database.php).
Missing data in the TRY trait-species matrix were filled based on the
method described in Schrodt et al. (2015). After gap-filling, we com-
puted global average of each trait for each species. We then compared
species mean values of each trait from TRY with species mean value
from in-situ measurements for the three FunDivEUROPE regions where
we have in-situ trait sampling.

2.3. Sentinel-2 spectral reflectance measurements

We used spectral reflectance measurements taken by the first
Sentinel-2 satellite (Sentinel-2A) launched by the European Space
Agency. Sentinel-2A is a wide-swath, high-resolution (10–20 m), multi-
spectral (13 bands), and multi-temporal (5–10 days revisit) imaging
mission (Drusch et al., 2012). The Sentinel-2A sensor was launched in
June 2015 and started collecting measurements in July 2015. A total of
10 spectral bands were included in this study, four bands at 10-m re-
solution, and six bands at 20-m resolution (Table 3). Detailed band
configuration could be found from ESA's official website: https://earth.
esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial.
The 20-m bands were down-scaled to 10-m using a band sharpening
algorithm proposed by Brodu (2017) (refer to Sec. 1.2 in Supplemen-
tary file for more details about the band-sharpening algorithm). We did
not use the three bands at 60-m spatial resolution (B01, B09, B10),
which were designed for atmospheric correction and cirrus cloud de-
tection (B01 for aerosol retrieval, B09 for water vapor correction, and
B10 for cirrus detection) (Drusch et al., 2012).

We processed Sentinel-2 data for the same phenological period as
when in-situ measurements were conducted (August 2015 for Finland,
July 2015 for Romania, Spain, Poland, Germany, and Italy respec-
tively). Sentinel-2 was accessed from ESA's SciHub online data re-
pository. Here we summarize the main steps involved in data pre-
processing (more detailed documentation of data processing can be
found in Sec. 1.2 Detailed description of Sentinel-2 data processing
procedures in the Supplementary file):

1) applied the atmospheric correction to convert Level-1C top-of-at-
mosphere (TOA) reflectance into Level-2A top-of-canopy (TOC)
surface reflectance using the atmospheric correction module in
ESA's Sen2Cor toolbox;

2) classified images into different scene classifications (e.g., cloud,
snow, soil, vegetation etc.) using the Sen2Cor's built-in scene clas-
sification algorithm;

3) applied quality control to remove cloud or cirrus contaminated
observations based on scene classification results;

4) down-scaled the 20 m bands (B05-07, B8A, and B11-12) to 10 m
resolution using the Sen2Res band-sharpening algorithm;

5) extract all Sentinel-2 pixels for each image falling within each plot
using the plot boundary shapefile (on average, 9 pixels were ex-
tracted for each plot).

There was a two-year gap between the in-situ (2013) and Sentinel-2
(2015) measurements. However, since the plots from FunDivEUROPE

network were selected to be neither in the early successional stage (so
that the community composition is not very dynamic) nor in the re-
generation phase (so that the stand is not dominated by very old dying
trees). As a result, the changes in community composition are expected
to be very limited during a period of two years apart (2013–2015). To
further confirm steadiness in community composition between 2013
and 2015, we checked both in-situ and Landsat data, on a plot-by-plot
basis and results indicate high stability in community composition and
a lack of disturbance or shift in phenology. Detailed results are reported
in Sec. 1.4 in Supplementary file.

2.4. Computing functional diversity from in-situ measurements

We used a distance-based multivariate FD measure, termed as
functional dispersion (FDis), using multiple traits weighted by species
relative abundance (Laliberté and Legendre, 2010). FDis was computed
using a different combination of plant traits: 1) using only five leaf
traits (%N, %C, SLA, LDMC, LA), termed as FDislea; 2) using only three
whole-plant traits (DBH, tree height, CCSA) termed as FDisstr, and 3)
using both foliar and whole-plant traits, termed as FDisall. We first
computed all three FDis measures for the three FunDivEUROPE regions
where both in-situ leaf and whole-plant traits are available, namely
Finland, Romania, and Spain. For the other three FunDivEUROPE re-
gions where in-situ foliar trait data is not available, we explored the
potential of using data from the TRY database to fill the gaps.

While FDislea (FDis computed using only leaf traits) only considers
leaf biochemical and morphological traits, FDisstr (FDis computed using
whole-plant traits) is a measure of tree structure heterogeneity within a
plant community. This component of biodiversity has been shown to be
of functional significance (Chapin III et al., 2011; Dänescu et al., 2016;
Lausch et al., 2016). The structural difference in tree crown height at
the top of the canopy, or canopy height heterogeneity within a com-
munity, can affect surface roughness, and thereby the efficiency of
water and energy exchange between the ecosystems and the atmo-
sphere (Chapin III et al., 2011). A higher structural heterogeneity can
also create more habitat niches and lead to a greater species diversity
for other taxa (Goetz et al., 2007). As both leaf traits and tree structure
can affect optical signals, we thereby expect that Sentinel-2 multi-
spectral measurements will be better linked to FDisall than either FDislea

or FDisstr alone.
We applied z-transformation to standardize the traits by subtracting

the mean of each trait and then dividing by their standard deviations
across all plots. We then applied a Principal Components Analysis
(PCA) to statistically eliminate redundant information existing in the
multiple selected traits. To avoid the loss of information, we used all
principle components (PCs) from the PCA analysis. The proportion of
variance that is explained by each PC for computing FDisall is: PC1

Table 3
Spectral configuration of the 10 Sentinel-2A bands used in this study.

Spectral band Center wavelength
(nm)

Band
name

Band
width
(nm)

Spatial resolution
(m)

B02 490 Blue 65 10
B03 560 Green 35 10
B04 665 Red 30 10
B05 705 Red-edge

1
15 20

B06 740 Red-edge
2

15 20

B07 783 Red-edge
3

20 20

B08 842 NIR 1 115 10
B8A 865 NIR 2 20 20
B11 1610 SWIR 1 90 20
B12 2190 SWIR 2 180 20
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(42%), PC2 (28%), PC3 (11%), PC4 (8%), PC5 (6%), PC6 (3%), PC7
(1%) and PC8 (1%), while for computing FDisstr is: PC1 (71%), PC2
(24%), PC3 (5%), and for computing FDislea is: PC1 (66%), PC2 (15%),
PC3 (11%), PC4 (6%), PC5 (2%). A script for computing FDis, following
the original mathematical formulation in Laliberté and Legendre
(2010), was written in R programming language (R Core Team, 2017)
by us with the use of prcomp() function for dimensionality reduction,
the use of output PC axes as new traits, and the use of Euclidian dis-
tance as the dissimilarity measure.

2.5. Partial Least Squares Regression (PLSR)

To predict in-situ functional and other diversity measures using
Sentinel-2 spectral measurements we used Partial Least Squares
Regression (PLSR). PLSR is a regression technique that reduces the
number of predictors to a smaller set of uncorrelated variables and then
performs a least squares regression on the subset of variables (Wold
et al., 2001). The PLSR method has been used widely in remote sensing
studies for predicting plant biophysical and biochemical properties
from spectral measurements (e.g., Asner et al., 2015; Vaglio Laurin
et al., 2014a, 2014b). The variables we used for predicting diversity
metrics included band-wise mean and band-wise mean absolute de-
viation (MAD) of surface reflectance computed using all nine pixels
within each 30 m × 30 m plot. We performed PLSR using the PLS
package in R (Mevik and Wehrens, 2007).

To evaluate model performance, we conducted a stratified 10-fold
cross-validation. we split our data into 10 folds (using the function
createFolds in R package caret), with each fold consists of a roughly
equal proportion of sample from each study region. We then performed
PLSR for predicting three different types of FDis (FDislea, FDisstr, and
FDisall) and evaluated model performance using the stratified 10-fold
cross-validation. To minimize statistical overfitting, we determined the
optimal number of components used in the final PLSR model by mini-
mizing the prediction residual error sum of squares (PRESS) statistics
(Chen et al., 2004). We evaluated model performance against the cross-
validation dataset using two statistical measures: 1) coefficient of de-
termination (R2

CV); and 2) normalized root mean squared error
(nRMSECV, RMSE divided by sample mean), wherein both cases the
subscript CV indicates that we obtained these measures from validation
datasets. For model performance obtained from calibration dataset, we
used the subscript “Cal”. We used R package plsVarSel (Mehmood et al.,
2012) to compute the variable importance of projection (VIP) score
associated with each spectral band to quantify the statistical

contribution of each individual variable to the fitted PLSR model across
all model components.

3. Results

3.1. Investigate statistical relationship between FDis and Sentinel-2
measurements

We linked FDis to 20 predictive variables from Sentinel-2 (band-
wise mean and band-wise MAD for 10 spectral bands) using PLSR in the
three study regions with in-situ trait measurements (Finland, Romania,
Spain) (Fig. 3). Among the three FDis measures (FDisstr, FDislea, FDisall),
we found that the predictive power using Sentinel-2 is the best for
FDisall (FDis computed using both leaf and whole-plant traits) (cross-
validation R2

CV = 0.55, nRMSECV = 31%, # of PLSR components = 8,
N = 46) (Fig. 3). An additional test based on Moran's I confirms that the
model performance is not biased by spatial autocorrelation (Sec. 1.5 in
Supplementary file). Our PLSR model can also predict FDislea (FDis
computed using leaf traits) in a good confidence (cross-validation
R2

CV = 0.43, nRMSECV = 36%, number of PLSR components = 4,
N = 46), and to a less degree for FDisstr (FDis computed using whole-
plant traits) (cross-validation R2

CV = 0.19, nRMSECV = 71%, number of
PLSR components = 4, N = 46) (Fig. 3). As we stated before, FDisall

integrated both foliar and whole-plant traits that are both functionally
important, so in following analyses we will focus only on FDisall.

3.2. Quantify relative importance of different Sentinel-2 bands in predicting
functional dispersion

Sentinel-2 visible bands (blue, green, red) only explained a small
percentage of variance in FDis across sites (R2

CV = 0.08,
nRMSECV = 45%, N = 46) (Table 4). Model performance was sig-
nificantly improved by including NIR (R2

CV = 0.20, nRMSE = 41%,
N = 46) and SWIR bands (R2

CV = 0.51, nRMSE = 33%, N = 46)
(Table 4). The best model performance was achieved by further adding
the three red-edge bands (R2

CV = 0.55, nRMSE = 31%, N = 46)
(Table 4). The red-edge, NIR, and SWIR spectral regions provided the
most important information in predicting FDis according to the VIP
statistical measure (see Methods) (Fig. 4).

We also tested the relative role of band-wise mean (10 predictive
variables, hereafter mean spectra) and band-wise MAD (10 predictive
variables, hereafter MAD spectra), representing between-site difference
(e.g., different forest types) and within-site spatial heterogeneity (e.g.,
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Fig. 3. PLSR model cross-validation results for predicting functional dispersion computed using (A) whole-plant traits (FDisstr), (B) foliar traits (FDislea); and (C) both
foliar and whole-plant traits (FDisall) using Sentinel-2 spectral measurements across plots from three FunDivEUROPE sites (Boreal forests in Finland, Mountainous
beech forests in Romania, and Mediterranean mixed forests in Spain). The subscripts Cal and CV indicate results from calibration and cross-validation dataset
respectively.
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variation in forest structure within a plot) respectively, for predicting
FDisall. Fig. 5 shows that mean spectra contributed more to the model
performance (R2

CV = 0.44, nRMSECV = 35%, N = 46) than the MAD
spectra (R2

CV = 0.16, nRMSECV = 43%, N = 46) (Fig. 5). Both mean and
MAD spectra provided complementary information as the model using
both the mean and MAD spectra performed the best (Fig. 3C).

3.3. Exploring the potential of using compiled trait database to complement
in-situ trait data

To calibrate the PLSR model for more forest types, we tested the
potential of filling in-situ foliar trait gaps with trait data from TRY.
Comparison between species average values for each trait between in-
situ data and TRY data showed very good agreement (Fig. 6). Corre-
lation coefficients vary from 0.78 for LDMC to 0.88 for leaf %N, 0.96 for
SLA, 0.97 for leaf %C, and 0.99 for LA (Fig. 6). Table S4 and S5 in
Supplementary file give the statistical summary of species-mean trait
and TRY trait for all targeted species across the FunDivEUROPE plots.
As such, we proceeded and attempted to link FDis computed with a
fusion of in-situ whole-plant traits, TRY foliar traits, and in-situ species
abundance data across all six FunDivEUROPE sites (117 plots).

The PLSR model predicting FDisall over all six FunDivEUROPE re-
gions using Sentinel-2 measurements explained 22% of variance in the
cross-validation dataset (R2

CV = 0.22, nRMSECV = 44%, # of PLSR
components = 6, N = 117) (Fig. 7A). There is an increasing trend from
the lowest FDis found in Finnish boreal forests, to thermophilous de-
ciduous forests in Italy, Mediterranean mixed forests in Spain, beech
forests in Germany, mountainous beech in Romania, and to the highest
FDis found in hemiboreal forests in Poland (Fig. 7B). Overall, the be-
tween site (forest type) variations in FDis was captured by the PLSR
model results (Fig. 7B).

We then attempted an initial mapping of FDis at high spatial

resolution (30 m) over the six regions. We found strong local, within-
forest type, variation in FDis (Fig. 8). The beech forests in Germany
appear to be much more homogenous (coefficient of variance or
CV = 19%) in terms of FDis across space as compared to other forest
types, and the thermophilous deciduous forests in Italy (CV = 54%) and
boreal forests in Finland (CV = 39%) are the most heterogeneous in
terms of the local variations in FDis.

4. Discussion

4.1. Integrating in-situ and high-resolution satellite data for mapping FD
across space

This study demonstrated the potential of integrating high-resolution
satellite data and in-situ measurements to explain spatial variation in
FD of leaf and whole-plant traits at a regional scale, and hence is a
significant step towards tracking in the future global FD variations
using Earth observations. To our knowledge, this study is the first at-
tempt to link functional diversity directly to spaceborne measurements,
representing a major advancement compared to previous attempts at
site-level based on airborne data.

Compared with mapping FD using airborne remote sensing mea-
surements (e.g., Schneider et al., 2017; Asner et al., 2017), our ap-
proach using spaceborne measurements can be applied to a greater
geographic extent and can be repeated through time, which offers two
important possibilities for future studies. First, we can apply our sta-
tistical models to map FD along an environmental gradient and then
investigate how FD varies with environmental factors. Second, although
we acknowledge that the ability of our model to resolve temporal dy-
namics in FD remains to be validated, once this is done, future studies
could possibly track seasonal and inter-annual FD variation, thereby
allowing to study how FD responds to weather, climate or land-use

Table 4
Statistical model performance in predicting FDisall with different combination of Sentinel-2 spectral bands.

Number of samples Number of PLSR components R2
Cal nRMSECal R2

CV nRMSECV

VIS 46 1 0.19 42% 0.08 45%
VIS + NIR 46 2 0.36 37% 0.20 41%
VIS + NIR + SWIR 46 6 0.70 25% 0.51 33%
NIR + SWIR 46 4 0.66 27% 0.53 32%
VIS + NIR + SWIR + RedEdge 46 8 0.82 20% 0.55 31%
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Fig. 4. Statistical quantification of the relative im-
portance of 20 predictors (mean and MAD, the mean
absolute deviation, of 10 spectral bands) from Sentinel-2
in predicting FDisall. On x-axis of Panel (a), ‘VIPmean’ and
VIPMAD refer to the VIP score for mean and mean abso-
lute deviation of spectral reflectance for a given band
within a plot respectively. Please refer to Table 3 for
band definitions.
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change.
Our approach offers two major advantages to recent studies that

model global FD patterns using climate and soil data (e.g., Butler et al.,
2017). First, the accuracy of predictions based on global modeling
studies might be compromised by uncertainties in the input dataset,
especially when mapping FD over regions where networks of meteor-
ological stations or soil sampling sites are sparse. By contrast, our ap-
proach that effectively integrates ground measurements and satellite
observations can provide more accurate estimates of FDis than global
models driven by interpolated meteorology and soil properties. In ad-
dition, using Sentinel-2 we can generate FD maps at 30 m resolution,
which is also a big step forward as compared to the half-degree re-
solution of current global maps (e.g., Butler et al., 2017).

Being able to predict FD using Sentinel-2 measurements offers

opportunities for monitoring FD over a global scale, with high spatial
resolution, and repeated over time. The upscaled FD maps from this
study can be used to study the links between FD and ecosystem func-
tioning and stability over broad scale, which has a direct implication in
addressing the challenge in scaling up and testing the theories drawn
from plot- level analysis to landscape or even continental levels (Isbell
et al. 2017; Thompson et al. 2018). In addition, the FD maps generated
from Sentinel-2 can also be used to provide a rapid biodiversity change
assessment and reporting, which is usually difficult to be done using
labor-intensive field surveys.

4.2. Interpretations of the observed link between FDis and Sentinel-2

We could use multispectral measurements from Sentinel-2 to
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Fig. 5. PLSR model cross-validation results for predicting FDisall using band-wise mean reflectance and band-wise MAD reflectance respectively across the three
FunDivEUROPE regions.
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Fig. 8. High-resolution (30 m) map of FDis predicted using Sentinel-2 measurements for six FunDivEUROPE regions. These maps represent an average condition as
they were computed using mean reflectance value across the 2015–2017 time period. Non-forest areas, defined as when percent tree cover of a pixel is < 30% based
on a high-resolution global forest cover map (Hansen et al. 2013), are excluded.
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predict, in cross-validation, 55% of the variance in plant functional
diversity derived from 5 leaf trait (%C, %N, SLA, LDMC, LA) and 3
whole-plant traits (H, CCSA, DBH). To gain insight into the observed
link between FDis and Sentinel-2, we ran additional analyses for pre-
dicting individual foliar traits using Sentinel-2 (Fig. S13 in
Supplementary file). Our results showed that multispectral measure-
ments from Sentinel-2 showed a good predictive power for leaf che-
mical composition including leaf %N (R2

CV = 0.37) and %C
(R2

CV = 0.47), and leaf morphological trait such as SLA (R2
CV = 0.63)

(Fig. S13). The model for LDMC and LA showed a moderate predictive
power (R2

CV = 0.25 and 0.37 respectively) (Fig. S13 in the
Supplementary file). Our findings here, therefore, align well with pre-
vious studies that used multispectral measurements from Landsat and
Sentinel-2 for estimating leaf biochemical and morphological traits. For
instance, Ollinger et al. (2008) found a strong correlation between NIR
reflectance and canopy nitrogen concentration (R2 = 0.79), while
Clevers and Gitelson (2013) found that with simulated Sentinel-2 re-
flectance, the nitrogen content in grass and potato crops is strongly
correlated to spectral indices that has a red-edge band (R2 > 0.80).
Over sites in Australia that contain forests, woodland, and shrubland,
Lymburner et al. (2006) found that the canopy average SLA can be well
related to several spectral indices computed from Landsat TM bands.
Similar results were also reported by Mohammed Ali et al. (2017) for
predicting SLA using Landsat-8 over German forests. With the use of
airborne hyperspectral measurements, a strong correlation was re-
ported between LDMC and SLA and canopy spectra in the NIR and
SWIR region (R2 value of 0.87 for LDMC and 0.85 for SLA). Noticed that
the R2 value reported in these studies are higher than what we reported
here since we reported the R2 in cross-validation only here. If con-
sidering calibration data, our results are actually close to what have
been reported in previous studies, with R2 ranging from 0.55 for LDMC
to 0.78 for SLA (Fig. S13 in supplementary file).

The predictive power of the plant traits we selected using Sentinel-2
data are expected as optical remote sensing measurements in the visible
and infrared regions are aggregated signals reflecting leaf biochemical
and leaf morphological traits and canopy structure from top layers of
the canopy (Ustin and Gamon, 2010). The leaf traits we selected are not
only ecologically important (Pérez-Harguindeguy et al., 2011) as they
capture the trade-off between resource acquisition and conservation
(Diaz et al., 2016; Westoby et al., 2002; Wright et al., 2004), but also
have a major role in the optical signal response. We found leaf %N and
SLA dominate the first principal component that accounts for 65%
variance of the traits we selected. Our study and previous studies have
found that leaf %N and SLA can be predicted by multispectral or hy-
perspectral measurements (e.g., Ollinger et al., 2008; Clevers and
Gitelson, 2013; Schlerf et al., 2010; Townsend et al., 2003; Loozen
et al., 2018; Pérez-Priego et al., 2015; Mohammed Ali et al., 2017;
Lymburner et al., 2006). From the variable importance analysis, we
found that the most important Sentinel-2 spectral bands in predicting
functional diversity are located in the red-edge, near-infrared, and
SWIR region (Fig. 4), which aligns well with the known importance of
these spectral regions based on other studies in upscaling leaf %N and
SLA (Ollinger et al., 2008; Clevers and Gitelson, 2013; Mohammed Ali
et al., 2017; Lymburner et al., 2006). Indeed, the correlation between
leaf %N and SLA and Sentinel-2 spectral reflectance, which have been
frequently reported in previous studies (Ollinger et al., 2008; Asner and
Martin 2008; Townsend et al., 2003) can be caused by a structure effect
(Knyazikhin et al., 2013). This means that the correlation between
spectral reflectance and leaf %N and SLA can be resulted from indirect
mechanisms manifested by co-variation in leaf and canopy structural
properties instead of a direct physical mechanism between these traits
and reflectance. Nonetheless, as Townsend et al. (2003) has pointed
out, ample evidence showed that canopy architecture and leaf struc-
tural and chemical and optical properties tend to covary among plant
functional types (Kokaly et al., 2009; Ollinger et al., 2008; Wright et al.,
2004) and such tendency may be exploited for the purpose of diagnostic

mapping of traits and plant functional diversity.
Sentinel-2 is a multispectral instrument equipped with much less

spectral bands than hyperspectral instruments. A lower spectral re-
solution means that potentially many spectral reflectance features re-
sulted from varying leaf and canopy traits can be obscured (Asner and
Martin, 2009; Wang et al., 2018). The upcoming spaceborne hyper-
spectral missions such as German EnMAP and NASA's SBG (Surface
Biology and Geology) offer great potential to improve this situation
(Guanter et al., 2015; Lee et al., 2015), as it has been demonstrated on
the ground that spectral diversity proxies derived from ground-based
hyperspectral measurements are highly relevant for inferring plant
functional diversity (Schweiger et al., 2018). As a multi-temporal in-
strument, Sentinel-2, as well as Sentinel-1, can characterize seasonal
and inter-annual variations in vegetation dynamics and phenology.
Species situated in different ecological niches within a plant community
can have different phenological characteristics (so-called temporal
niche differentiation), and therefore phenological metrics for each in-
dividual pixel derived from Sentinel-2 and other high-resolution sa-
tellites can be included as additional variables for inferring biodi-
versity. Beyond the spectral regions covered by Sentinel-2 towards
longer wavelength, there are thermal infrared bands that can inform
forest canopy temperature and hence provide additional information
for inferring functional diversity, as species with different functional
traits (e.g., leaf size and angle) can have different canopy temperatures
under the same environmental conditions (Leuzinger and Körner,
2007). In addition, to better bridge the field plot data with satellite
measurements and understand the scaling effect, intermediate scale
measurements taken by field spectrometers, drones and aircraft can be
collected in tandem with biodiversity measurements (Wang & Gamon,
2019). Above discussions suggest that the rich information content in
the constellation of the satellite missions, including optical, thermal,
microwave, and multi-temporal (phenology-related), should be
exploited in a joint and complementary manner to achieve a better
inference of plant functional diversity and other facets of plant diversity
from space (Fassnacht et al., 2016).

Optical measurements from Sentinel-2 are not the best information
source for resolving tree structural variability within a forest plot as
compared to more direct radar or LiDAR measurements (Bergen et al.,
2009). Nonetheless, we found that Sentinel-2 can still explain ~20%
variance in FDis computed using three tree structural traits (H, CCSA,
DBH) (Fig. 3). This is likely related to the fact that tree structure can
also affect Sentinel-2 spectral reflectance (Asner, 1998; Xiao et al.,
2014), especially over the NIR region, as NIR radiation can penetrate
deeper into forest canopy and hence provide information about vertical
profile of foliage within a canopy. This is in turn related to canopy
structural and architectural properties such as canopy height and leaf
angle (Colwell, 1974; Huete, 2004). As variability in whole-plant traits
(tree-structure) is an important component of functional diversity, it is
worth to explore the opportunity of integrating optical and radar and
LiDAR measurements for upscaling FD (e.g., Goetz et al., 2007; Mura
et al., 2015; Zhao et al., 2018). For instance, measurements from
spaceborne radar instruments (e.g., Sentinel-1 C-band SAR, PALSAR2 L-
band SAR, BIOMASS P-band SAR), or even spaceborne LiDAR (e.g.,
GEDI), can be complementary to Sentinel-2 as SAR or LiDAR mea-
surements are more sensitive to tree structure, which may improve the
estimation of FD measured that integrates both leaf and whole plant
traits (Lausch et al., 2016). Remote sensing measurements integrate
multiple plant including leaf traits, canopy architecture, and vegetation
structure (Ustin and Gamon, 2010), and hence FD derived from a
combined leaf and whole-plant traits can potentially be better related to
spectral variability than using any individual trait alone. The data fu-
sion approach that can effectively integrate multi-source remote sen-
sing measurements, therefore, needs to be explored in the future in the
context of global FD monitoring.
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4.3. Current limitations and future opportunities

We acknowledge a few important limitations of our methodology
and identify also a few future opportunities to address these limitations.
First, there might be a few remaining uncertainties due to the temporal
mismatch between in-situ and Sentinel-2 measurements that cannot be
completely eliminated from our additional checks of the steadiness in
community composition. For any given forest stand, inter-annual var-
iations in trait value for any given species can still have some influences
on the computed FDis, though our analysis on TRY and field measured
traits at species-average level suggested that at least for those traits we
selected in this study, the trait value for any given species remains to be
conservative. Trees have likely grown in the 2-year period between in
situ trait and community measurements and RS observations, although
this growth was likely moderate in the mature forests we selected. In
addition, there was a summer heat wave over much of Europe (except
Finland) that can cause uncertainties to our results as forest growth can
be affected by this heatwave. To overcome such limitations in future
studies, we suggest that a more reliable upscaling of plant FD, than the
present one, using remote sensing can be achieved having collocated
measurements, in space and time, between field trait and satellite
measurements.

Second, our results based on leaf traits from the TRY database were
promising and hence these compiled traits can fill data gaps, where in-
situ trait measurements are not available, for calibrating and validating
remote sensing measurements. However, uncertainty still remains, as
even for the European tree species the number of trait records per
species in the TRY database is limited and therefore it is often im-
possible to resolve the potential between-community variation of trait
values for any given species. In addition, while the focal European tree
species in this study are well represented in TRY database, this may not
necessarily be the case for other global regions, such as hyper-diverse
tropical regions (Kattge et al., 2011). Much effort is thus needed to
improve the spatial and species representativeness of the TRY database
to be able to extend the remote sensing of FD study to global scale.
Indeed, for the purpose of remote sensing upscaling, new trait sampling
that can match satellite measurements in space and time would be
particularly desired. However, new sampling would demand much re-
sources that might not be available to every group or researcher. In this
case, repeated sampling for any given species along an environmental
gradient and across time would be highly appreciated to understand the
degree of uncertainty that might be caused by spatio-temporal mis-
match between field and satellite measurements. In any case, ancillary
information about the geographic location, environmental background,
and exact time of measurement would be essential to make the best use
of the trait database for remote sensing.

Third, we suggest that a network with a similar design like
FunDivEURUOPE, but potentially larger plots (e.g. 30–90 m size), ex-
tended across Europe to cover more species and a wider environmental
space is needed to serve the purpose of both calibrating remote sensing
data with in-situ measurements and for carrying our functional biodi-
versity research. Only with a joint effort from ecology and remote
sensing communities, can we achieve eventually global monitoring of
plant functional diversity not only across space but also across time.

5. Conclusion

In this study, we showed that measurements from a high-resolution
spaceborne multispectral radiometer (Sentinel-2) can explain 55% of
the variability in functional diversity across major European forest
types. Among the spectral regions of Sentinel-2, we found red-edge and
infrared bands to be more important than visible bands in predicting
functional traits dispersion. We also tested the possibility of extending
our analysis to sites where in-situ traits measurements are not available
by using compiled traits from global trait databases and demonstrated
the potential of combining in-situ species abundance sampling with the

TRY data for quantifying functional dispersion over a wider geographic
and climatic extent. Being able to predict functional diversity using
Sentinel-2 measurements offers opportunities for monitoring functional
diversity potentially over a global scale, with high spatial resolution,
and repeated over time at every few days, over a decade or even longer
periods of time. Our study also opens the opportunity for studying the
links between FD and ecosystem functioning across space and time. We
expect that with the data from upcoming next-generation spaceborne
hyperspectral or even dedicated biodiversity monitoring missions there
is potential to achieve a better spatial and temporal remote sensing of
functional diversity. Meanwhile, the multi-temporal capability of the
new generation spaceborne hyperspectral missions would allow a better
temporal match with field measurement, which is critical to reduce the
uncertainty that can come from temporal trait variability. Though
challenges such as reduced spatial resolution of the new hyperspectral
missions will need to be addressed by establishing field plots with much
larger size to bridge the scale gap. From a remote sensing perspective,
spatial resolution of future hyperspectral missions needs to be much
improved to be able to better link to field plot measurements. Only
through a coordinated effort between the ecology and remote sensing
communities can we achieve the global plant functional diversity
monitoring goal.
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