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Abstract. We calculate the shape of the large-scale anisotropy of TeV–PeV cosmic-rays (CR)
in different models of the interstellar turbulence. In general, the large-scale CR anisotropy
(CRA) is not a dipole, and its shape can be used as a new probe of the turbulence. The
400TeV and 2PeV data sets of IceTop can be fitted with Goldreich-Sridhar turbulence and
a broad resonance function, but other possibilities are not excluded. We then present our
first numerical calculations of the CRA down to 3TeV energies in 3D isotropic Kolmogorov
turbulence. At these low energies, the large-scale CRA aligns well with the direction of local
magnetic field lines around the observer. In this type of turbulence, the CR intensity is flat
in a broad region perpendicular to field lines. Even though the CRA is quite gyrotropic, we
show that the local configuration of the turbulence around the observer does result in the
appearance of weak, “non-gyrotropic” small-scale anisotropies, which contain information on
the local turbulence level.

1. Introduction

The flux of TeV–PeV cosmic-rays (CR) at Earth is anisotropic at a level of ∼ 10−3. See e.g. [1, 2]
for reviews. The direction of the large-scale CR anisotropy (CRA) is broadly consistent with
that of the local interstellar magnetic field [3], and its shape cannot be described by a pure
dipole [4]. For instance, IceCube and IceTop data at ≥ 100TeV energies hint at a flattening of
the CR intensity in directions perpendicular to local magnetic field lines [5]. In the present work,
we first report on how the shape of the large-scale CRA depends on the properties of the local
interstellar turbulence within about a CR mean free path from Earth. We then illustrate and
test the main assumptions of our theory [5] by extending the numerical simulations of Ref. [6]
down to TeV energies: we calculate the CRA in different realizations of 3D isotropic Kolmogorov
turbulence for a realistic ratio of the CR gyroradius to the turbulence coherence length.

2. Large-scale CRA and local interstellar turbulence

The gyroradius of TeV–PeV CR (∼ 10−4 − 10−1 pc) is substantially smaller than the typical
coherence length of the interstellar turbulence lc ∼ 1− 10 pc [7], and CR are expected to diffuse
preferentially along magnetic field lines. The fact that the observed CRA points in the direction
of the local magnetic field [3] corroborates this expectation. Assuming that CR undergo pitch-
angle diffusion in a 1D magnetic flux tube of length d ≤ lc, which contains the Earth, and
assuming that the problem is stationary, we have shown in Ref. [5] that the CRA at Earth is
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proportional to:

g(µ) =

∫ µ
0
dµ′

(

1− µ′2
)

/Dµ′µ′

∫

1

0
dµ′ (1− µ′2) /Dµ′µ′

, (1)

where µ = cos θ, θ is the pitch-angle (angle between the direction of the ordered magnetic
field and the CR momentum), and Dµµ is the pitch-angle diffusion coefficient, assumed to be
homogeneous in the flux tube. Eq. (1) is valid as long as the CR mean free path is smaller
than a few times d, see [5] for more details. The amplitude of the CRA depends on the a priori

unknown value of the CR flux in the magnetic flux tube, but its shape does not. Therefore, we
work with g(µ) which corresponds to the CRA with its amplitude renormalized to 1. Eq. (20)
of Ref. [5] expresses Dµµ as a function of a resonance function Rn, for which we try the two
following functions. One with a narrow, “N”, and one with a broad, “B”, resonance:

RN
n =

τ−1

(k‖v‖ − ω + nΩ)2 + τ−2
, and RB

n =

√
π

∣

∣

∣k‖

∣

∣

∣ v⊥δM1/2
A

exp

(

−
(k‖v‖ − ω + nΩ)2

k2‖v
2
⊥δMA

)

, (2)

where k‖ is the parallel component of the wavevector, v‖ = cµ, v⊥ = c
√

1− µ2, ω is the
angular frequency of the waves, Ω the CR gyrofrequency, and n = 0,±1 in our calculations.
For RN

n , the broadening of the resonance is assumed to be dominated by the Lagrangian
correlation time of the turbulence, τ , and for RB

n , by fluctuations of the parallel magnetic field
strength, which is encapsulated in the parameter δMA < 1. We test two models of turbulence:
Fast magnetosonic mode turbulence with an isotropic power spectrum IF(k) ∝ k−3/2 [8] and
Goldreich-Sridhar turbulence whose Alfvén and pseudo-Alfvén modes have the power spectrum

IA,S(k) ∝ k
−10/3
⊥ exp(−k‖l

1/3/k
2/3
⊥ ) [9], where l denotes the outer scale of the turbulence.

In Fig. 1, we present our calculations of the dimensionless pitch-angle scattering rate
ν(µ) = 2Dµµ/(1 − µ2) × (l/c) (upper left panel), and normalized large-scale CRA, g(µ) (lower
left panel), for these models. The dashed lines are for fast mode turbulence, and the solid
ones for Goldreich-Sridhar turbulence. In the middle column of Fig. 1, we plot the relative CR
intensity versus right ascension in the field of view of IceTop experiment, which observes part of
the Southern hemisphere, and compare with its 2PeV (top, green boxes) and 400TeV (bottom,
blue boxes) data [4]. The dashed purple lines correspond to fast mode turbulence with the narrow
resonance function RN

n , and with τ calculated for an Alfvén velocity equal to uA = 10 km/s —
see [5] for more details. We set here the dimensionless CR rigidity to ǫ = c/(lΩ) = 10−3. For this
turbulence, ǫ only changes the normalization of ν(µ), and not the shape of the CRA, g(µ). As
can be seen in the upper left panel, ν has a very narrow peak around µ = 0, which means that
pitch-angle scattering is strongly enhanced for CR whose momenta are almost perpendicular to
the local coherent field. This peak is due to the n = 0 term in the expression for Dµµ. At small
|µ|, and on both sides of the peak, ν goes through a minimum and recovers at µ → ±1. Since
the derivative of g(µ) is proportional to 1/ν (cf. Eq. (1)), this results in a CRA that strongly
varies at small values of |µ|, and has broad, almost flat minima and maxima at |µ| ≥ 0.5, see the
lower left panel. For comparison, the thin black dotted line shows g(µ) = µ which corresponds
to a dipole anisotropy. The anisotropy for the purple line is clearly not a dipole. For a better
visualisation, we plot it in equatorial coordinates in the upper right panel of Fig. 1, assuming
that its direction is given by that of the local coherent field measured by [10, 11]. By comparing
with Fig. 6 of Ref. [4], one can see by eye that the shape of the CRA in the Southern hemisphere
is very different from that measured by IceTop. This can also be seen in the upper middle panel,
where we compare the resulting CR intensity with IceTop 2PeV data. In general, we find that
models with RN

n provide a bad match to the observations, which apparently require a flattening
of g in a moderately broad region around µ = 0, and hence a broad “bump” in ν around µ = 0.
RB

n gives a better fit to the data: we show with dashed blue lines the results for fast modes
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Figure 1. Pitch-angle scattering rate ν(µ) (upper left), anisotropy g(µ) (lower left), and relative
CR intensity versus right ascension in the field of view of IceTop (middle column), for three
models of the interstellar turbulence: Fast mode turbulence with ǫ = 10−3 and with either RN

n

and uA = 10 km/s (dashed purple lines) or RB
n and δMA = 0.1 (dashed blue lines); Goldreich-

Sridhar turbulence with RB
n , δMA = 0.33, and ǫ = 10−2 (solid red lines) or ǫ = 10−3 (solid

orange lines). Also shown are the 2PeV (upper middle) and 400TeV (lower middle) data taken
from Ref. [4]. Right column: CRA in equatorial coordinates for the dashed purple lines (upper
panel), and the solid orange ones (lower panel).

with RB
n and δMA = 0.1. ν has a broad bump at |µ| < 0.5 and minima at µ ≃ ±0.5. This

results in a CRA with a broad flat region at |µ| < 0.5 and with two extrema whose angular
half-widths are smaller than those of a dipole, see the lower left panel. This model provides a
good fit to the 2PeV IceTop data, with a flat CR intensity at RA ≥ 160◦, and a small cold spot
around RA ≃ 80 − 90◦. However, the smaller angular size of the cold spot in the 400TeV data
set cannot be well fitted with this model. If this change in the size of the cold spot with CR
energy is real, this may point at an anisotropy in the power spectrum of the turbulence: If the
anisotropy in Fourier space varies with |k|, then CR with different energies interact with modes
whose level of anisotropy is different. Goldreich-Sridhar turbulence is anisotropic, and the level
of anisotropy of its modes in k-space varies with |k|. Solid lines show results for this turbulence
with RB

n and δMA = 0.33. The red lines are for ǫ = 10−2, and the orange ones are for ǫ = 10−3.
The ratio of these two values of ǫ is similar to the ratio of the energies of the two IceTop data
sets — the factor 2 difference does not affect our conclusions and is only due to the binninig in
energy we chose for our scan of the parameter space. The scattering rate (upper left) is lower
than for fast mode turbulence, but also presents broad maxima around µ = 0. The maximum
is broader for ǫ = 10−3 than for ǫ = 10−2, and the CRA (lower left) flattens at |µ| < 0.7 for
ǫ = 10−3 and at |µ| < 0.5 for ǫ = 10−2. The lower right panel shows the CRA for ǫ = 10−3

in equatorial coordinates. A small hot spot and a small cold spot are visible in the direction
of the coherent magnetic field (µ = ±1). They are separated by a wide magenta region, where
the CR intensity is very flat. The two data sets from IceTop can be well fitted with this model
of turbulence: The calculations for ǫ = 10−2 are compatible with the shape of the measured
CR intensity at 2PeV (see the red line in the upper middle panel), and ǫ = 10−3 fits well the
400TeV data (see the orange line in the lower middle panel).
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Figure 2. Numerical calculations of the relative CR flux at 3TeV in two different realizations
of 3D isotropic Kolmogorov turbulence with Brms = 4µG and l = 150 pc. The CR intensity in
these maps is averaged over 10◦-radius circles.

3. Numerical simulations

In the above analytical calculations, we made the assumption of gyrotropy. In this section,
we investigate numerically the validity of this assumption. We propagate individual CR in
different realizations of 3D isotropic Kolmogorov turbulence and calculate the CRA, using the
backtracking method described in Ref. [6]. We consider here, for the first time, CR with energies
as low as 3TeV. This is more than 3 orders of magnitude smaller than the energies probed in
Ref. [6], and, therefore, requires substantially longer calculation times. This value of 3TeV is in
the relevant range for a direct comparison with the low energy measurements of the CRA at TeV
energies. We note that, at even lower CR energies, time variations of the local turbulence would
start to make small-scale features of the CRA vary on time scales smaller than the typical lifetime
of an experiment, assuming local fluid and Alfén velocities of a few tens of km/s. We do not
investigate this regime here. We use turbulence with root-mean-square strength Brms = 4µG,
and outer scale l = 150 pc, which corresponds to lc = 30 pc. The only difference between our
numerical technique here and that of Ref. [6] is that we propagate here CR on finite distances
ct (as in Ref. [12]), instead of stopping the trajectories on a sphere with a fixed radius. This
difference is unimportant for the purpose of the present study. We propagate CR on distances
of a few hundreds of pc, until the CRA converges. The angular shape of the CRA converges
quickly, after about a CR mean free path. However, its absolute amplitude converges only
after the CR have probed distances greater than a few coherence lengths of the turbulence. For
shorter distances, the centre of mass of a set of initially nearby trajectories still strongly depends
on the bending of local magnetic field lines around the observer.

In Fig. 2, we show two sky maps of the relative CR flux (normalized to the angle-averaged
flux) at 3TeV in two different realizations of the turbulence, and averaged over 10◦-radius circles.
As expected, the direction of the large-scale anisotropy is found to point in the direction of local
magnetic field lines around the observer in both simulations. We do not add any regular field to
the turbulence: the local coherent field is provided by the modes whose wavelengths are much
larger than the CR gyroradius. The two panels in Fig. 2 show two limiting cases. In the left
panel, the local turbulence level on the scale of a 3TeV CR gyroradius, and within a CR mean
free path from the observer, is quite small in this realization. The anisotropy looks very smooth
and almost perfectly gyrotropic. In the right panel, the local turbulence level happens to be
higher in that realization. The anisotropy looks less regular, with non-gyrotropic small-scale
fluctuations that are well above the numerical noise level. This confirms that the mechanism
suggested in [6] for creating small-scale anisotropies also works at energies of a few TeV. In
all these simulations, the amplitude of “non-gyrotropic” small-scale anisotropies is substantially



smaller than that of the large-scale anisotropy. This is in line with observations, which suggest
that the amplitude of small-scale anisotropies is about an order of magnitude smaller than that
of the large-scale anisotropy. This also justifies the assumption of gyrotropy in the calculations
of g(µ) in the previous section.
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Figure 3. Numerical calculation
of the gyrophase-averaged relative
CR flux F (µ), at 3TeV, for an
observer in a given realization of 3D
isotropic Kolmogorov turbulence
with Brms = 4µG and l = 150 pc.

In Fig. 3, we plot our calculation of the gyrophase-averaged relative CR flux, F , versus µ
for one of our simulations. The shape of g(µ) (∝ F (µ) − 1) shows some variations from one
realization of the turbulence to another, but all cases we tested show a flattening of g(µ) at
|µ| < 0.25 − 0.5. This tends to suggest that the CR pitch-angle scattering rate in 3D isotropic
Kolmogorov turbulence may too have a broad bump around µ = 0.

4. Discussion

Both IceCube [13] and HAWC [14] have provided measurements of the angular power spectrum of
the CRA. We have shown in Section 2 that the large-scale CRA g(µ) is not a pure dipole, except
in the unphysical case of isotropic CR pitch-angle scattering where Dµµ ∝ 1 − µ2. Therefore,
a fraction of the power in the Cℓ’s, including those with ℓ ≥ 2, should be due to multipoles
pointing roughly in the direction of local magnetic field lines. Among the several small-scale
anisotropies detected by HAWC, one of them does not seem to vary substantially with CR
energy: A small hot spot, located roughly in the direction of RA ∼ 60◦ and slightly below
dec = 0◦, remains at almost the same place on the sky from 2.0TeV to 72.8 TeV, see Figs. 10
and 9 in Ref. [14]. When comparing with the Figs. 4 and 5 of Ref. [14], it seems that the
direction of this hot spot is quite roughly compatible with that of the large-scale anisotropy.
We suggest here that this hot spot may be an additional sign that the “large-scale” anisotropy
pointing in the direction of magnetic field lines deviates from a dipole and contains high-order
multipoles. This would naturally account for the apparent stability of this spot with energy.
From a conceptual point of view, this suggestion and our study in Section 2 contain similarities
with the suggestion of Ref. [15] for the origin of one of Milagro’s hotspots, “Region A”. However,
our study differs in particular by the fact that we have used here the full general solution of
the CR transport equation. We also note that the maximum significance of Milagro’s Region A
is around dec ≃ 10◦ − 20◦ (see Fig. 1 of Ref. [16]), which is ≃ 20◦ away from the centre of
HAWC’s hot spot, and that Region A does not coincide with the direction of the maximum of
the large-scale anisotropy as is visible in Fig. 2 of Ref. [16]. Some of these apparent differences
may just be due to the different exposures of these experiments and data analysis techniques. A
deeper study of these points would nonetheless be necessary in order to reach a firm conclusion
on the origin of this particular hot spot in HAWC data.

The other small-scale anisotropies detected by HAWC, as well as those detected by IceCube,
are not aligned with the large-scale anisotropy and require another explanation. They imply that



the CR distribution at Earth is not perfectly gyrotropic. The mechanism discussed in Section 3,
and initially presented in Ref. [6], provides a natural explanation for them. Below a few TeV,
heliospheric magnetic fields may too generate small-scale anisotropies for similar reasons, see
e.g. Ref. [17]. In any case, the fact that “non-gyrotropic” small-scale anisotropies have been
detected at 20TeV energy by IceCube [13] suggests that the mechanism of Ref. [6] should be at
work, at least above several TeV.

5. Conclusions

Assuming pitch-angle diffusion of TeV–PeV CR in our local interstellar medium, we show
that their large-scale anisotropy at Earth, g(µ), is in general not a dipole, see Section 2.
g(µ) contains information on the local interstellar turbulence and CR propagation properties.
Moderately broad resonance functions are favoured, and the 2PeV data set of IceTop can be
fitted with isotropic fast modes or Goldreich-Sridhar turbulence. Thanks to its |k|-dependent
power spectrum, the latter type of turbulence can also explain the change in shape of the CRA
between the 400TeV and the 2PeV data sets of IceTop. In Section 3, we present our first
numerical calculations of the CRA in 3D isotropic Kolmogorov turbulence down to 3TeV. We
find that g(µ) has a flattening in directions around µ = 0 in this type of turbulence too. At
these low energies, the CRA aligns well with the direction of local magnetic field lines around the
observer and is quite gyrotropic. Weak, “non-gyrotropic” small-scale anisotropies do nonetheless
appear due to the local configuration of the turbulence around the observer at the time of the
observations, as initially suggested in Ref. [6]. Their amplitude, which is always much smaller
than that of the large-scale anisotropy g(µ), is connected to the turbulence level on resonant
scales in our local magnetic flux tube.
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