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Abstract

The representation theory of rational Cherednik algebras of type A at t = 0 gives rise, by
considering supports, to a natural family of smooth Lagrangian subvarieties of the Calogero-
Moser space. The goal of this article is to make precise the relationship between these
Lagrangian families and Schubert cells in the adelic Grassmannian. In order to do this we
show that the isomorphism, as constructed by Etingof and Ginzburg, from the spectrum
of the centre of the rational Cherednik algebra to the Calogero-Moser space is compatible
with the factorization property of both of these spaces. As a consequence, the space of
homomorphisms between certain representations of the rational Cherednik algebra can be
identified with functions on the intersection of some Schubert cells.
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1 Introduction

In this article we explore certain aspects of the close relationship between rational Chered-
nik algebras and the Calogero-Moser integrable system. It was shown in the original paper
[4], where rational Cherednik algebras were first defined by Etingof and Ginzburg, that the
centre of the rational Cherednik algebra of type A, at + = 0, is isomorphic to the coordi-
nate ring of Wilson’s completion of the Calogero-Moser phase space. The Calogero-Moser
space is also closely related to the adelic Grassmannian and rational solutions of the KdV
hierarchy. As such, natural objects of study of the KdV hierarchy, such as the t and Baker
functions and Schubert cells, appear naturally in the setting of the Calogero-Moser space.
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1534 G. Bellamy

The purpose of this article is to try and understand how these objects manifest themselves
in terms of the representation theory of rational Cherednik algebras.
In the remainder of the introduction, we outline the main results of the paper.

1.1 The Rational Cherednik Algebra

The rational Cherednik algebra H, associated to the symmetric group S,, at ¢+ = 0 and non-
zero c¢ is a finite module over its centre Z,. The spectrum X, of the affine domain Z, is
a symplectic manifold. For each p € h* and A € Irr(&,,), there exists a natural induced
H,-module A(p, L), a Verma module. In [1] it was shown that the support €2p 3, which
depends only on the image b of p in h*/&,,, of these Verma modules is a smooth Lagrangian
subvariety of X,,. It is these Lagrangians that we aim to study in this paper.

1.2 The Calogero-Moser Space

Wilson’s completion of the Calogero-Moser space can be described as follows; see Section 2
for details. Let CM,, be the set of all pairs of n x n, complex matrices (X, Y) such that the
rank of [X, Y] + I, is one. The group PGL, (C) acts on the space CM,, and the Calogero-
Moser space CM,, is defined to be the categorical quotient CM,, //PGL,,. It is a smooth,
2n-dimensional affine variety. As noted above, Etingof and Ginzburg constructed an iso-

morphism X, = CM,,. On the other hand, Wilson showed that the union over all n of
the Calogero-Moser spaces CM,, can be identified with a certain infinite dimensional space,
the adelic Grassmannian. Thus, there is an embedding of the space X, into this adelic
Grassmannian. In order to be able to describe the image of the subspaces 2 3 in the adelic
Grassmannian, it is more convenient to describe the adelic Grassmannian in terms of certain
spaces of quasi-exponentials.

A holomorphic function f on the complex plane that can be expressed as

f) = e g1(x) 4 - + P g (x),

where b; € C and g; (x) is a polynomial, is called a quasi-exponential function. Let Q denote
the space of all quasi-exponential functions. A finite dimensional subspace C of Q is called
homogeneous if C = @ Cp, where Cp, is spanned by functions of the form eP* g (x) for
some polynomial g(x). The set of all finite dimensional, homogeneous subspaces of Q is
denoted QGr. Using the Wronskian, one can pick out certain distinguished spaces in QGr
called canonical spaces. The set of all canonical spaces is denoted Q&. Wilson showed that
each point in the Calogero-Moser space CM,, can be labeled by a canonical space C € QF.
As a consequence we have bijections

Xn CM, &,

where Q&, is the set of all n-dimensional spaces in Q& . One of the main goals of this paper
is to describe the image of the Lagrangians €25 3 under v,,.
Forb =Y *_ nib; € h*/&,, we define

Grp(QGr) = Gry, (eh‘x(C[x]znl) X - x Gry, (eb"'x(C[x]znk> ,

a projective subvariety of QGr, where C[x]y is the space of all polynomials of degree less
that k and Gr, (e”*C[x]p,) is the Grassmannian of n-dimensional planes in e"*C[x]y,.
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qe

b A
which are labeled by all those partitions A() that fit into a square with sides of length 2n;;
see Section 6 for the precise definition. Thus, if A = (A", ..., A®) with A®) + n;, then

Each Grassmannian Gr,,, (eb" X(C[x]g,,l.) has a natural stratification by Schubert cells €2

®© ._ o
Qpy = le,,\m X b A ®

is a locally closed subvariety of Grp(QGr).
Theorem 1.1 Let p € b* and A an irreducible & ,-module. Then, the map v, restricts to an

isomorphism of varieties

qe

Vp i Qpy —> Qb,x”

where b is the image of p in b* /S, and A" denotes componentwise transpose.

The proof of Theorem 1.1 is given in Section 6.5. The essential fact that we shall repeat-
edly use in the proof of Theorem 1.1 is that each of the spaces X,,, CM,, and Q&, satisfies
a certain factorization property. Namely, there is a map from each of the spaces to h*/S,,,

~ ~

Xn CM, Q&,
h*/G,

such that the fiber of each map over b can be factorized as the product of the fibers over
n; - b;, where i runs over 1, ..., k, for instance

g ') =7y b)) x o x g - by,

where 7~ 1(n; - b;) is a closed subvariety of X,,,. The key step in our work is to show

that each of the isomorphisms X, = CM,, and CM,, = QE&, is compatible with these
factorizations, in the obvious sense. A closely related result [15] appeared whilst this paper
was in preparation. The second key fact that we shall repeatedly use is that each of the spaces
X, CM, and QE&, is equipped with a canonical C*-action such that the isomorphisms
between them is C* -equivariant.

1.3

Dual to the space €25 3 is a space Ugq, 4, where a = Zi:l nja; € h/G,. Itis

the support of a dual Verma module, V(g, p), where ¢ € h with ¢ = a and p =
(u®, ..., M(Z)) is an irreducible &,-module. We show, Theorem 8.2, that the image of
Og,u under the map v, is the set Ua‘?’ﬂ of all spaces C of quasi-exponentials in QE such
that the singularities of C, counted with multiplicity, are encoded by a, and u encodes the
exponents of C at each singular point. See Definition 8.1 for details.

The space Hompy, (V(q, p), A(p, X)) is a Z,-module, supported on the intersection of
Qp and Uy . We consider the case p = 0 so that v,(20,; N Og,y) is contained in
Gr,, (Clx]2,). Set-theoretically, the intersection Gr,, (C[x]2,) N v, (U4, ) is the intersection

Qu(g) =Q,m(@) N~ N2,w(gk)
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1536 G. Bellamy

of a certain collection of Schubert cells in Gr,(C[x]z,), where the numbers ¢; are spec-
ifying complete flags in C[x]s,. Under the assumption! that we have an equality of
(non-reduced) subschemes

Gr, (Clx]on) Nvy (Ua,u) = Q[L(q)
of Gr, (C[x]2,,), we show in Theorem 8.5 that

Corollary 1.2 We have an isomorphism of zero-dimensional, Gorenstein schemes
Va2 Q05 N Bap —> Q50 N Qulg)

such that Hompy, (V(q, p,0), A0, A, @)) is the coregular (= regular) representation of
C[0,, N Va,pl.

We show, independent of the assumption, that
dimHomp, (V(q, 1, 0), A0, &, @)) = dim C[Q’,, N Q2u(9)] = (o3, 00 -+ 0,00),

where o. is the cohomology class in H*(Gr,(C[x]2,)) defined by the closure of a given
cell and (—, —) is the usual pairing on H*(Gr, (C[x]2,))-

14

The results of this article were motivated by recent work of Mukhin, Tarasov and Varchenko.
They showed in [13], that there is an intriguing relationship between the rational Cherednik
algebra and the Bethe algebra associated to the Gaudin integrable system. Many of the
results of this paper were inspired by analogous results of Mukhin, Tarasov and Varchenko
on the representation theory of the Bethe algebra.

2 Rational Cherednik Algebras and the Calogero-Moser Space

In this section, we recall some of the basic properties of the Wilson’s completion of the
Calogero-Moser phase space and the rational Cherednik algebra.

2.1 The Calogero-Moser Space

The Calogero-Moser space CM,, is a completion of the phase space associated to the
Calogero-Moser integrable system, which was introduced by Wilson in the seminal paper
[19]. It is a smooth affine variety of dimension 2n and a symplectic manifold. Denote by g
the space of all n x n matrices over C and define CM,, C g x g to be the set of all pairs
(X, Y) such that the rank of [X, Y]+ I,, equals one, where I,, € g is the identity matrix. The
group PGL,, acts on CM,, by simultaneous conjugation, g - (X, Y) = (Adg(X), Adg(Y)). It
is shown in [19, Corollary 1.5] that this action is free.

Definition 2.1 The Calogero-Moser space CM, is defined to be the categorical (=
geometric) quotient CM,, //PGL,,.

The space CM,, is an affine symplectic manifold.

ISee Assumption 8.3 for details.
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2.2 Rational Cherednik Algebras of Type A

In this section we recall the definition of the rational Cherednik algebra at r = 0 associated
to the symmetric group &,, . Let yq, ..., y, be a basis of the n-dimensional space h and
X1, ..., X, dual basis of h*. The symmetric group S, acts on h by permuting the y;’s. The
rational Cherednik algebra H, is the algebra generated by &,, h and b*, satisfying the
defining relations

OXi =Xg-1n0, 0Yi =Yoi)0s [Xi,xj1=1yi,yj1=0, V1=<i#j<n, o€y,

n
i, xj1 = sij,  Lyi,xi] =— Z Sik, Y1=<i#j<n. (2.A)
k=1,ksi

The centre of H, is denoted Z, and the corresponding affine variety is X,,. Let p € h*
and denote by &, the stabilizer of p in &,. The algebra C[h*] x &, is a subalgebra of
H,.Each L € Irr(&,) can be considered a module over C[h*] x &, where C[h*] acts by
evaluation at p. Then the Verma module A(p, A) is the induced module H, ®c[p*|x& , A
The annihilator  in Z,, of A(p, L) depends only on the image b of p in h*/S,. We denote
by p. the closed subvariety of X,, defined by /. It is shown in [1] that Q2p 3 ~ A" is a
Lagrangian subvariety of X,,.

2.3 The Etingof-Ginzburg Isomorphism

The algebra H, is Azumaya, hence there is, up to isomorphism, a unique simple H,,-module
supported at each closed point of X,. For each such L, denote by x; the corresponding
character of Z, so that

z-l=xr()1l, VlelL, z€Z,.

The map L +— xj, defines a bijection between Irr(H,) and the closed points of X,. Each
simple module L is isomorphic to the regular representation as an &, -module. Therefore, if
&,,—1 is the subgroup of G,, fixing x1, then the subspace LSn-1 is n-dimensional and x1, V1
act on this subspace. It can be shown that the endomorphism

(il e yilpe, |+ 1n

has rank one, and that:

Proposition 2.2 ([4], Theorem 11.16) The map L — (xi|; s, ,,¥1l; s, ,) defines an

isomorphism of affine varieties Y, : X, —> CM,.

3 Factorization
3.1 Factorization of the Calogero-Moser Space

Let h be the subalgebra of diagonal matrices in g. By Chevalley’s isomorphism, we identify
9//GL, = b/5,. Let @ : CM,, — h/G,, be the map that sends the pair (X, Y) onto the
G L,-orbit of X. Similarly, let 7 : CM,, — b*/S,, be the map that sends (X, Y) to the
GL,,-orbit of Y.

The subalgebras (C[h]e" and (C[h*]G” of H, are contained in Z,. The inclusions
C[h]®" < Z, and C[h*]®" < Z, define surjective morphisms @ : X, — /S, and
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1538 G. Bellamy

X, - bh*/6,. It follows from the proof of [3, Theorem 10.21] that the following
diagram commutes

X, Y cM, G.A)

w X w X

bh/6n x b*/6,

For b € h*/S,, the fiber 7~ (b) is denoted CM(b). Write b = Zf:l n;b; with b; € C
pairwise distinctand ) ; n; = n. If (X, Y) € CM(b), then we can decompose ¥ = @f»;l Yi,
with Y; an n; xn; matrix with only one eigenvalue b;. We get a corresponding decomposition

of X = @le_j X; j. It is shown in the proof of [19, Lemma 6.3] that each (X;;, Y; ;)
uniquely defines a point in CM(n; - b;). Thus, we have a map
k
ap : CM(b) — [ [ CM@; - by). (3.B)

i=1

By Lemma 7.1 of loc. cit. the map «p is an isomorphism of affine varieties.
3.2 Factorization of Rational Cherednik Algebras

As was shown in Section 5 of [1], one can use completions of the rational Cherednik algebra
to prove a factorization result for the generalized Calogero-Moser space X,,. In this section
we show that this factorization is compatible with isomorphism a4 of (3.C).

Fix p € b* and denote its image in h*/S, by b = Zle n; - bj. We may assume,
without loss of generality, that p = (b1, ..., b1, b2, ..., ba, b3,...). The stabilizer of p
with respectto &, is G, := G, X - - - x §,. The rational Cherednik algebra H), associated
to the group &, is isomorphic to a tensor product

Hp:Hn|®"'®an, (3'C)
and hence
Z(Hp) = Zy, Q@ ® Zy,. (3.D)
Therefore, Corollary 5.4 of [1] implies that there is an isomorphism of affine varieties
k
7 b) — 1_[7171(’15 - bi),
i=1
where 71 (n; - b;) is a closed subvariety in Spec(Z,,). Recall the factorization of Wilson’s

Calogero-Moser space as described in Lemma 3.B.

Theorem 3.1 The diagram

() [T, 7 i - by)
w”l \in‘//ni
CM(®) [1:_; CM(n; - b;)

ap

is commutative.
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Before we can give the proof of Theorem 3.1, we need to describe the isomorphism ¢
in representation theoretic terms. Firstly, since the diagram of the theorem involves isomor-
phisms between affine varieties it suffices to show commutativity on the level of closed
points. The proof relies on results from Section 5 of [1], and we will use freely the notation
of loc. cit. The completion of C[h*] with respect to the ideal my of functions vanishing on
the orbit b is denoted (C/[ﬁb. The completion (C/[ﬁp of C[h*] with respect to the maxi-

mal ideal defining p is a direct summand of W,, and we denote by e; the idempotent in

— —_—

C[bH*] such that e;C[h*], = [h*],. If L is a simple Hy,-module whose support is con-
tained in 7 ~1(b) then Proposition 5.3 of loc. cit. says that e L is an irreducible Hp,-module.
Therefore, ¢ can be described as the map that takes the character x; of Z, to the charac-
ter xe,L of Z,;, ® - -+ ® Zp,, for each simple H,-module L whose support is contained in
7~ L(b).

A

Proof To avoid any ambiguity, the generators of H,, will be denote X1, ..., Xu, Y1, ..., Jus
as oppose to the generators of H,, which are denoted x1, ..., x, and y1, ..., y,.

Let N be a simple H),-module. Via the isomorphism (3.C), we write N = N| ®- - - ® N,
where N; is a simple H,;-module. Define

m(i)=1+an, V1<i<k

r<i

Then, the isomorphism Spec(Z(H),)) ~ CM;, x --- x CM,, that is induced from the
factorization in (3.D) is given on the level of closed points by the map

N — [(X1, Y1), ..., Xk, Yo)l,

. . S,
where X; denotes the action of X,y on N; mil

S, .
N "' Fix

1

and ¥; denotes the action of yy,(;) on

Wi=6, x - xGy_1 X xGy
so that, since N is the regular representation as an & ,-module, one can identify NiG"ﬁ1 =
NWi,

Now let L be a simple H,-module such that mp - L = 0. Then, as explained above, the
morphism ¢ can be described as taking x; to x., . Therefore, to prove the commutativity
of the diagram, we must show that if (X, Y) represent the action of x; and y; on LGn-1 with
respect to some basis of that space then (X; ;, ¥; ;) represent the action of Xy, Ym(i) € Hp
on (e; LYWi with respect to some basis of that space.

Recall that b = {p = p1, ..., p1} is the orbit of p under G,,. Since mp - L = 0, we can
decompose L with respect to the action of C[h] as

Then, the functor e; sends L to e L = L, suchthatx; - e;l = %; - ejl foralll € L. We
can also decompose L with respect to the generalized eigenspaces of the action of y;:

k
L= Ly, (3.E)
i=1
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1540 G. Bellamy

so that ¥; : LbG[’”1 — LS"’I and X; j : ngj"’l — LS”". Let us fix an i. Let u; denote the
permutation in G,, that moves the block [m (i), ..., m(@ + 1) — 1] to[1, ..., n;] and moves
all the entries of [1, ..., n] below m (i) up by n;. Then, conjugation by u; sends W; into

Wi =6 1 XSy X+ % Gp,.

We have VT/,- = 6,_1 N Stabg, (1;(p)). Now

Ly = EB Ly, (3.F)

pj€li

where I; = {p;|(pj)1 = b;}. We have u;(p) € I; and &, acts transitively on this set.
This implies that L, (») C Lyp,; such that multiplication defines an isomorphism

Ind " Luy(py — L (3.G)
Hence, we have an explicit isomorphism

Wi
ui(p)

~ G,
piLy iy —> Ly, p)=

> o).

0’66,1,1

1
n— 1)

n—1

Recall that we want to compare the action of X;; and Y;; on LbGi with the action of

N N . Wi o . .
Xm(i)> Ym(@) € Hp on (et L)V = L,". Since u; (X)) =X and u; (ym(i)) = y1, it suffices

to consider the action of X1, 1 € Hp, on u i(L;Vi ) = Lx‘;"p). Thus, the theorem will follow

from the following claim. O

Claim 3.2 Forall/ e LY

wiipyr PGEID = Xiip() and p(1l) = Y ip (D).

Proof The action of X; ; and Y; ; on LS”" is given by

Sy

Pr; Sh—
Xi’,' : Lb- d n=l
1

Xy Pr; S, Sy N1
S L—> L, YL S L—> L
1 1 1

where pr; is projection onto LS”‘I. Since multiplication by u; (e1) is projection onto Ly (p),

(3.G) implies that pr; can be expressed as multiplication by ﬁ Yoo es, , o (uiler)).

Therefore,
A 1
pEil) = plx1 - ui(e))) = ——— > o (xr-uile)l) (3.H)
(n—1)!
0eS, |
1
=0T > owilenl) 3D

0eG,_

A direct calculation, using the fact that the set {o(u;(e1)) | ¢ € &,_1} consists of
orthogonal idempotents, shows that

1 1 1
w1 Z o(ui(e)l) = o Z o(u;i(er)) yroY Z o (u; (e]).

UEG,‘,I 066,1,1 0’6an1
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Therefore, we have

1 1
GD=x-| o= %j owie) | o= %} o (ui(en)l)
Y > owilen) | xi- : > owilenl)
(n—1)! Bl (n—1)! el
= pr;(xip() = Xii - p(D)
as required. The proof of p(y11) = ¥; ;p(l) is identical. O

The statement of the theorem follows from the above claim.

4 Torus Fixed Points

If we set deg(x;) = 1, deg(y;) = —1 and deg(o) = 0 for 0 € &,, then the defining
relations (2.A) imply that H,, is a Z-graded algebra. The centre of H, inherits a grading.
Thus, there is a natural action of C* on X,,. Similarly, we can define an action of the torus
C* on CM,,, by setting o - (X, Y) = (e~ !, X, aY). The isomorphism ,, of Proposition 2.2
is C*-equivariant. Moreover, it is known that there are only finitely many fixed points in
X, and CM,, under this action. Therefore v, defines a bijection between these fixed points.
The purpose of this section is to describe this bijection. The first step is to explicitly label
the fixed points in X,, and CM,, respectively.

4.1 C*-Fixed Points in CM,,

The fixed points of this C*-action were classified in [19, §6] and explicit representatives
(X, Y; v, w) of each fixed point given in Lemma 6.9 of loc. cit. The fixed points are labeled
by partitions of n. For each A - n, we describe a point X, € CM,. First, one rewrites
A = (A1, ..., At) in Frobenius form. This means that A is written a union of hook partitions
n—r+1,1" _1) of decreasing size such that, when stacked one above the other, the largest
at the bottom and smallest at the top, we recover the Young diagram of A. Combinatorially,
) is written as an [-tuple of pairs (ny, 1), ..., (n;, r;) subject to the restrictions r; > r; and
nj—ri>nj—rjifi < j.Here) ;n; =nand1 <r; <n; foralli.
Given such a pair, we have

X=X, Y)=(®;Xij, ®iYDij=1..1

where Y; is the upper-triangular Jordan block of size n; x n; with eigenvalues 0. The matrix
X;,; has all diagonals zero except the —1 diagonal (i.e. just below the main diagonal) where
the entries from top left to bottom right read

,2,....,ri—1;,—(n; —ry),...,—2,—1. 4.A)

Fori # j, X; j is an; x n; matrix with non-zero entries only on the r; — r; — 1 diagonal.
If i > j then the non-zero diagonal of X; ; has r; entries equal to n; followed by n; — r;
entries equal to zero. If i < j, the non-zero diagonal of X; ; has r; — 1 entries equal to 0
followed by n; — r; + 1 entries equal to —n;.
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1542 G. Bellamy

4.2 The Fixed Points in X,

Since H, is an Azumaya algebra, the closed points of X, are in bijection with isomorphism
classes of simple H,-modules. This implies that the C*-fixed points in X, are naturally
labeled by the isomorphism classes of simple, graded H,-modules. It is know [7] that the
Verma modules A (0, A), for A a partition of n, are graded and have a unique simple graded
quotient L(A). Moreover, up to shifts in grading, these (pairwise non-isomorphic) simple
modules are all possible simple, graded H,-modules. Therefore, the fixed points in X,, are
X, where x; is the character of Z,, defined by the simple H,-module L(A).

Theorem 4.1 The isomorphism yr, = X, = CM,, sends the C*-fixed point x1oy € Xp to
the C* -fixed point X, in CM,,.

4.3 The Proof of Theorem 4.1

We require some basic combinatorics for the proof of Theorem 4.1. The Young diagram Y,
of A I n is the set

((,)eZ?|10<j<el)—1,0<i<ir;—1}

The content of the box (i, j) is cont(i, j) := i — j. We define the residue of A to be the
Laurent polynomial Res  (¢) = Z(i’j)eym g @) Tt defines a point in C" /&,

We denote by p the map CM,, — g//GL, ~ C"/G,, given by (X,Y) — Z = YX.
It will become apparent below that this morphism is dominant. Slight perversely, a point
Zf;l nik; in C" /&, will also be thought of as a formal Laurent polynomial Z?:l niq“i.
In particular, the polynomials Res ; (¢) define points in C"/S,,.

We wish to calculate the image of the fixed points X, under p. Write Z = YX =
@i,jZi,j, where Z; ; is a matrix of size n; x n;. Then Z; ; has non-zero entries only on the
rj — r; diagonal. The square matrix Z;; has entries only on the main diagonal, from top left
to bottom right they are

L,2,....,ri—=1;,—(nj —r),...,=2,—1,0. (4.B)

Fori > j, the non-zero diagonal of Z; ; has r; — 1 entries equal to n; followed by n; — r;
entries equal to 0. If i < j then the non-zero diagonal of Z; ; has r; — 1 entries equal to 0
followed by n; — r; + 1 entries equal to —n;.

Lemma 4.2 After row reduction Z can be put in the form 7= @iij,‘yj where Z,',i =Z;
foralli and Ziyj =0fori > j.

Proof The proof is a direct calculation. If the reader really wants to understand the proof,
we recommend they draw a picture to see what’s going on.

Inductively on i, we claim that we can remove the non-zero entries in each row of Z; ;,
where i > j, by taking away some multiple of a certain row above the rows of Z; ; in
such a way that all other blocks remain unchanged. So let us fix i > j and we assume
by induction that Z; y = 0 for all i’ < i and i’ > j'. Write Z; j = (Za,8)a,p, Where
l <a <n;,1 < B < nj. Then, from the above description of Z we see that the only non-
zero entries zy g of Z; ; are Za,atrj—ri fora =1,...,r; — 1 (recall that i > j implies that
rj —ri > 0). Now consider the column of Z containing Za,otrj—ri- This column intersects
the main diagonal of Z in the block Z; ; = (Za,»)a,» and the diagonal entry of Z; ; in this

@ Springer
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column is Eaﬂj,ri,aﬂj,ri. Sincea < r;—1,wehavea+r;j—r; <rj—1 < nj. Therefore,
(4.B) implies that Zg, SRR — # 0 and we can certainly take away from the row of Z
containing Zy,q+r j—r; @ multiple of the row of Z containing 2a+r_,-—r,»,a+r =t such that the
new value of Zaatr—ri is zero.

We claim that 2a+rj7r,~,a+rj7r,- is the only non-zero entry of the (a + r; — r;)th row. If
this is the case, then it is clear that none of the other blocks of Z are changed under this row
operation. The induction hypothesis implies that all entries to the left of 2a+r_,-—ri.,a+r_,-—ri
are zero. Since Z; ; is diagonal, all the entries to the right of 2a+rj—ri,a+rj—ri in Zj ; are
also zero. Therefore, any non-zero entry of the row would lie in a block Z; x with k > j.
We have rpy —r; < 0. Let Zjx = (Zu,v)u,v- Then, the only non-zero entries of Z; ; are

Zu,rg—rj+u foru =rj,...,n;. But the row of Z containing 2a+r;—ri,a+rj—r,- intersects Zj x
in Zatrj—rils v os Zatrj—ri)- Now 1 <@ <ri —1soa+rj—r <r; which implies
Zatrj—ri,v = 0 for all v as claimed. O

Proposition 4.3 The image of the C*-fixed point X, € CM,, under p equals Res ;:(q).

Proof The argument in the proof of Lemma 4.2 still works if we replace Z by ¢ I,, — Z where
t is some indeterminant and we work over the field C(r). Therefore, Lemma 4.2 implies
that det (tI, — Z) = [[,c;(t — @) where J is the multiset

1
|2, =1, =i =), ., =2,—1,0},
i=1

when A in Frobenius form is (ng,r),..., (n;, r;). Expressed in terms of the algebra
Z[q* | k € C], this is Res ;,(¢ ') = Res : (¢). O

4.4 Degenerate Affine Hecke Algebras

Next we construct the analogue of p for X,,. The fact that the degenerate affine Hecke
algebra is a subalgebra of the rational Cherednik algebra of type A is well-known and has
been extensively used to study the representation theory of rational Cherednik algebras at
t = 1 e.g. [2] and [8]. Martino [11] has shown that this embedding of the degenerate affine
Hecke algebra is also extremely useful at ¢+ = 0. For us, it will be used to construct a map
0: X, > C"/6&,.

Definition 4.4 The degenerate affine Hecke algebra H,, is the associative algebra generated
by Clzy, ..., z,] and &, satisfying the defining relations
$izj = ZjSi, SiZi = Zi+18i — 1,
foralli and j #i,i 4+ 1, where s; 1= 5, ;41.
We note that the defining relations imply that z;s; = s;z;4+1 — 1. Also, as vector spaces,

Hyp =~ Clzi1,...,zx] ® CS, and the centre of H, is the subalgebra C[z, ..., zn]Sn of
symmetric functions in the z;’s, see [10]. The following lemma is a direct calculation.

Lemma 4.5 The map

G yixi+ Yy sij=xiyi— Y sij, V1<i<n, 4.0

j<i j>i
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1544 G. Bellamy

and w +— w for all w € &,, defines an embedding H,, — H, such that
x]'Si,j ] >
[ziyxj]1 = xisi,j J<i
= Dk XiSik = D gsi XkSik i = ]

Therefore we will consider #,, as a subalgebra of H,,. Theorem 3.4 of [11] says that the

centre C[z1, ..., 241" of H,, is contained in Z,. The embedding C[z, ..., z,1%" — Z,
defines a dominant morphism p : X, — C"/&,. A standard tool in the study of the
representation theory of H,, is induction from representations of C[zy, ..., z,]. Therefore,

for a € C", define

M(a) :=Hu ®crz.....24] @>
where a is considered a character of C[zy, ..., z,] via evaluation. The module M (a) is
isomorphic to the regular representation as an G,-module. Let D be the dense, open subset
of C" consisting of all points a = (a1, ..., a,) such thata; —a; # 0, +1 forall 1 <i #
Jj < n. Then, it is shown in [10, Lemma 6.1.2] that M (a) is an irreducible H,-module for
alla € D.

Lemma 4.6 There exists a dense open subset U of X,, such that each irreducible H,-
module L, whose support is contained in U, is isomorphic to M (a) as a H,-module, for
some a € D. In particular, each such L is irreducible as a H,-module.

Proof Let U = p! (D) C X,, where D denotes the image of D in C"/&,,. Since D
is open in C"/S,, U is open in X,. The PBW theorems for H, and H, imply that the
morphism p is dominant. Therefore, there exists a dense open subset U’ of C" /&, such that
U’ C p(X,). Thus, U'ND # @ implies that U is non-empty and hence dense in X,, because
X, is irreducible. Let L be a simple H,-module whose support is in U. Choose v € L

to be a joint eigenvector for zy,...,z,. If ar, ..., a, are the corresponding eigenvalues
of the z;’s then a = (ay,...,a,) € D and 1 ® a — v defines a non-zero H,,-module
homomorphism M (a) — L. This is an isomorphism because dim M (a) = dim L and M (a)
is irreducible. O

Lemma 4.7 Let L be a simple H,-module such that L ~ M (a) with a € C" as a H,-
module. Then the eigenvalues of z1 € H, on LS greay, ..., ay.

Proof Since L is isomorphic to the regular representation as a S ,-module, a basis of LSn-1
is given by {egs1,; ®a | | < i < n}, where ¢g is the trivial idempotent in CS,,_;. The lemma
follows from a direct calculation which shows that action of z; on LS with respect to
this basis is given by the matrix

a —1 ... -1
0 ap

1 =
SRR |
0 ... 0 a,

Note that 51; = 51 - - - 5;—28;—15i—2 - - - §S1 € &,,. Inductively, one can show that

i—1
2181+ 8i-28i—1 = 81+ 8i-28i—1%i — Zsl cec S Si—1,
=1
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where e is used to denote omission. Similarly,

i—1
ZiSi—18i—2 81 = 8i—18i-2 "+ 8121 + Zsi—l CreSjee st
j=1

Therefore, z151,; = 51,i2i — le_:11 Sp+++8j - Si—18i—2 -+ s1. Now, for j <i —1,

i—1
D st Seesicasiae s =i, j+ 1),
Jj=1

where (1,i,j + 1) denotes a permutation written in cycle notation, and
S1---8i—18i—2---s1 = 1. Hence
i—2
zisi=suizi— 1=y (Li j+1).
j=1
For each i, j, there exists some k such that ep(1, i, j + 1) = epsi . If we write
1

eos1,i = ——— o,
T =1 Z
eSSy
o(i)=1
then clearly k = j + 1. Thus, zieps1,; = eoS1.izi — €0 — Zl]_:lz €os1,j = €oS1,iZi —
le_:ll eps1, ;. This gives the matrix form of z; described above. O

Proposition 4.8 The following diagram is commutative

C'/6,

Proof Since v, is an isomorphism, it suffices to show that there is a dense open subset U
of X,, on which the diagram is commutative. We take U to be the subset of X,, described in
Lemma 4.6. Each point in U is labeled by an irreducible H,,-module L such that L >~ M (a)
with @ € D as a ‘H,-module. The point x; labeled by L is sent by v, to the pair (X, Y),

where X = x1|; s, and Y = yi[; s,_,. Thus,

ztlpe, = vixilps,, =YX =2,
By definition (4.3), p o ¥,(x1) equals the eigenvalues of Z, which by Lemma 4.7 are
ai, ..., ay. On the other hand, p(xy ) is the joint spectrum of z1, ..., z, on M (a), which is
ai, ..., ap, because C[zy, ..., 241" is central in H,,. O

We are finally in a position to give a proof of Theorem 4.1. A partition is uniquely defined
by its residue Res ; (¢). Therefore, Proposition 4.3 implies that X is uniquely defined by
0(X;,). Hence Proposition 4.8 implies that it suffices to show that p(x. 1)) = p(X,). By
Proposition 4.3, p(X;) = Res,:(q). To calculate p(x,), we need to calculate how the
symmetric polynomials in the variables z; act on L(}1). Let wg € &, be the longest word
and ®; = ) j<i Si,j the ith Jucys-Murphy element. Then, as noted in section 5.4 of [11],
we have — Zj>i si,j = —wo®;wy. Therefore, expression (4.C) for the z; together with the
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1546 G. Bellamy

arguments given in section 5.4 of loc. cit. imply that p(xx) = Res;(¢~!), which equals
Res (q)

5 Grassmannians

Wilson constructed an embedding of the Calogero-Moser space into the adelic Grassman-
nian G, a certain infinite dimensional (non-algebraic!) space. This embedding will allow
us to identify Lagrangians 2 ) in X,, with Schubert cells in G, Defining this embedding
requires the use of several auxiliary infinite dimensional Grassmannians. In order to facili-
tate the reader in keeping track of all these Grassmannians, we list them here with reference
to where they are first defined in the text. We have

GAd Gad s grat C gral’
where

GAd is the Adelic Grassmannian (5.2),
G is the adelic Grassmannian (5.3),
G is the reduced rational Grassmannian (5.1),
and
e  G"is the rational Grassmannian (5.1).

We also have another pair of infinite dimensional Grassmannians, the canonical Grassman-
nian Q&, defined in (5.10), which is contained inside the quasi-exponential Grassmannian
QQGr, defined in (5.6). The Grassmannians G4, G* and Q& can all be realized as an infinite
union of finite dimensional spaces
o o0 o0
GM=| ]G c=| |G Qe=|]Qé.

n=1 n=l1 n=1
and we have identifications GAd = G < QE which restrict to
~~Ad d
CM, — G,° — G «— Q¢,.
Finally, in Section 9, we will also consider the relative Grassmannian g,rfl and comment on

the embedding CM,, —> QE, —> Gl Tt is possible to equip most of the above spaces with
topologies, making the maps between them continuous. Since this fact will not play a role
in what we do, it will be easier for us simply to think of them as sets.

5.1 The Adelic Grassmannian

In this section we recall the definition of the Adelic Grassmannian G4 and the adelic
Grassmannian G*9, Before we can do this we need to define the rational Grassmannian.

Definition 5.1 The rational Grassmannian G™ is the space of all C-subspaces W of the
field C(z) such that

1. there exist polynomials a(z), b(z) € C[z] such that a(z)~'Clz] 2 W 2 b(2)Clz];
2. wehave dima(z)"'C[z]/ W = deg(a).

The reduced rational Grassmannian G™' is defined to be the proper subset of G™ consisting
of those spaces W such that one can chose a(z) = b(z) in the above definition.
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The Adelic Grassmannian is defined in a similar manner: For each b € C, let Gr, be the
Grassmannian of all subspaces W of C(z) such that

1. there exist some k > 0 with (z — b)) *C[z] 2 W 2 (z — b)*C[z];
2. we have dim(z — b) *C[z]/ W = k.

The space C[z] belongs to Gr, for all b € C.

Definition 5.2 The Adelic Grassmannian is defined to be the restricted product

0
GAd .= 1_[ Gryp,
beC

where {Wp},ec belongs to GAd if and only if W;, = C[z] for all but finitely many » € C.

The support of {Wj} € GAd is the finite subset of C consisting of all b such that Wj, #
C[z]. It is clear that each Gry is a subspace of G™. This can be extended to an embedding of
the whole of G4 into G™. For b € C U {00}, define the symmetric bilinear form (f, g), =
res;—p f(z)g(z)dz on C(z). The annihilator of a subspace W of C(z) with respect to this
form is written

Ann, W={feC@)|(f, g} =0V g e W}
The annihilator Ann,, W will be denoted W*. As noted in [19, §2.2], the involution
W+ W* preserves each of the subsets Gr, (this not true of the other Anny —). Define the
embedding i : GA4 — G™ by

i((Wp)) = () 2nny(W)) . (5.A)
beC

Definition 5.3 The image of the i inside G* is called the adelic Grassmannian and denoted
G,

Itis shown in Lemma 5.2 of loc. cit. that i is indeed an embedding. One can check directly
that the restriction of i to Gry, is just the naive inclusion Gr, C G™'. The action of C* on
C(z) given by - z = a~ !z induces an action of C* on GA4 and G™, making i equivariant.

5.2

Let W e Gry. Then, by definition, there exists some N > 0 such that (z —b)VC[z] C W C
(z—b)"NC[z] and dim W/(z —b)NC[z] = N. Thus, W/(z — b)N C[z] belongs to Gr(N, b),
the Grassmannian of N-dimensional subspaces of (z — b)~NCJz] /(z— b)NC|[z]. There is a
natural stratification of Gr(N, b) into Schubert cells (to be recalled in section 6) labeled by
all partitions that fit into an N x N box. Then, W/(z — b)Y C|[z] will belong to a particular
cell, labeled by A say. We define the degree of W to be |A|. One can easily check that this
definition is independent of the choice of N. Moreover, since the degree of C[z] € Gry is
0, the definition extends additively to the whole of GA¢. Let G2¢ be the set of all spaces of
degree n and Gfld the image of GnAd under i. There is another characterization of the space
G‘;ld in terms of the r-function, see Section 5.5. Namely, Gﬁd is the set of all W in G® such
that tw (¢, 0, 0, .. .) is a polynomial of degree n.

One of the key results of [19] is the construction of an embedding of the Calogero-Moser
space into the adelic Grassmannian. Since this construction is rather technical, we will not
recall the details, but simply note the features that we will require.
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1548 G. Bellamy

Theorem 5.4 There is an embedding B, : CM,, — G, whose image is Gf;d.
We define Supp : GXd — h*/&,, by

Supp({Wp}) = ) _ deg(W;) - b,
beC

which, via i, may also be considered as a map Gﬂd — b*/6,,. By Theorem 7.5 of loc. cit.,
the following diagram commutes

CM, b G (5.B)

N

b*/Gn

5.3 Quasi-Exponentials

Recall from the introduction that Q denotes the space of all functions of the form
Zle eb”‘g,- (x), where b; € C and g; (x) € C[x]. We think of the space Q as being a space
of linear functionals on the vector space C[z] via the pairing

(" g(x), (@) =€"g(d) - £(2)l:=0, (5.0)

where, formally, ¢?? - 7* = (z + b)". The pairing (—, —) satisfies (x - ¢, f) = (c, 9. f) and
(3x - ¢, f) = {c, zf). There is also a C*-action on Q given by « - x = ax. The pairing
(—, —) is C*-invariant.

Definition 5.5 A finite dimensional subspace C of Q is said to be a space of quasi-
exponentials. A quasi-exponential f € Q is said to be homogeneous if f = eP*g(x) for
some b € C and g(x) € C[x]. A space of quasi-exponentials C is said to be homogeneous if

c=@cb,

where C;, consists entirely of homogeneous quasi-exponentials of the form e*g(x) for
some b € C and g(x) € C[x].

Definition 5.6 The set of all homogeneous spaces of quasi-exponentials is called the quasi-
exponential Grassmannian and denoted QGr.

We have QGr = | |2, OGr,, where QGr, is the set of all homogeneous spaces of
quasi-exponentials of dimension n. We define Supp : QGr, — C"/&, by Supp(C) =
Z{F:l n; - b if C = @f:] Cp, with dim Cj, = n;. As shown in [18, Proposition 4.6],
the spaces of quasi-exponentials are related to the rational Grassmannian as follows. For
C C Q, define

Ve :={f €Clz]l(g, f) =0, Vg e C}.

Lemma 5.7 The subspace W C C(z) belongs to 5““ if and only if there exists a finite

dimensional subspace C C Q and polynomial q with deg(q) = dim C such that W =
-1

g9 Vc.
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Proof Fix C ¢ Q with dimC < oo and ¢ € C[z] such that degg = dim C. Then there
exist by,...,b, € Candry,...,r, € Nsuchthat C C Span {ebixxri }. The polynomial

n
h=]le-b)"!
i=1

has the property that (e?*x’i hf) = Oforall 1 <i < nandall f € C[z]. Therefore, the
ideal i C[z] is contained in V¢ and hence hg C[z] C V(¢ as well. Thus,

h Clz] = (hq)q~'Clz] c ¢~ 'Ve c ¢7'CLz],

which implies that g~ V¢ € G™. To prove the converse, we note that if u = [T z—b)“
then
Cu={g € Ql(g uf)=0Vf € Clz]} = Span{e(@; — 1, 1:)}.

In particular, dim C, = degu. The pairing (—, —) identifies C, = (C[z]/(u))*. Given
pClz] ¢ W C ¢~ 'Clz], we have pgClz] € ¢W C Clz]. Set u = pg and let C =
{wl{w, fy = 0Vf € gW}. Then, the identification C, >~ (C[z]/(x))* induces an isomor-
phism Gry (Cy) = Grgeg y—k (Clz]/(u)), under which ¢W = V. Since codimc(; (g W) =
deg g, we have

dimC = dim(W)l = codim(c[z]/(u)(qu) = codimc[;)(gW) = degq.

If C € QGr is a homogeneous space of quasi-exponentials then define

gec@= ] G-b"

beSupp(C)
where n, = dim Cj. Then deg(gc) = dim C and, by Lemma 5.7, qgl V¢ is a point in gmt.
Write y : QGr — G™ for the map C > qgl Ve. As explained in [18, §6],
Proposition 5.8 The image of the map y equals G*.

Unfortunately, as noted in [18, §6], the set of all homogeneous spaces of quasi-
exponentials does not map bijectively onto G4,

5.4 Canonical Spaces

For each W € G4, there is a canonical choice of a space C in the fiber y ~1(W). This choice
allows us to define a subset of QGr such that the restriction of y to this subset is a bijection.

Definition 5.9 Let C C Q be a homogeneous space of quasi-exponentials and fix a
homogeneous basis eb“‘gl x),..., eb"“‘g,, (x) of C. The Wronskian of C is defined to be
Wrc (x) = det (3} (e"7* g ()i, j=1,..n - €~ 2i=1 1%, (5.D)

The Wronskian is (up to a scalar) independent of the choice of basis and is a polynomial
in x. The degree of C is defined to be deg(C) := deg(Wrc) and the space C is said to be
canonical if dim C = deg(C).

Definition 5.10 The canonical Grassmannian is defined to be the set of all canonical,
homogeneous spaces of quasi-exponentials. It is denoted QE.
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We first show that there is a unique canonical space in y~ L (W) for all W € Grg C G,
Recall from Section 5.2 that we have a partition of Gry into Schubert cells Qge. LetW € Qie
and define S = {so, s1, ..., } asin (5.2). We can multiply W by N for some N > —sg = Ao
so that zY' W c C[z] and then take the annihilator C of this space in Q.

Lemma 5.11 Let W € Gry be of degree n and let r be the smallest positive integer such
that 77 W C C[z]. For each N > r set Cy = Anng ZNW. Then, C,, is the unique canonical
space of quasi-exponentials in the set {Cy | N > r}.

Proof Let X be a partition of n and assume that W € Qge. Then, r = Ag. For any N > X,
the space Cy is homogeneous because z?C[z] C zV'W for some d implies that Cy consists
entirely of polynomials in x. We claim that deg Wrc,, (x) = n forall N > Aq. By definition,
this claim is equivalent to the statement of the lemma. Therefore, we will give a proof of the
claim. Let r; = s; + N so that

rig1—1

S Y g

Jj=d;i+1

is a basis for zV W. We claim that the number of elements in No\(S + N) is N. To see this,
consider the set S+ N as a collection of beads on N. Moving all beads as far right as possible
gives us the set N + N. In doing so this the number of gaps does not change. Then, the claim
follows from the obvious fact that |[N\(N + N)| = N. Write {eg < ] < --+ < ey—1} for
N\(S + N). Then, Cy has a basis given by

ei—1
x¢ + E Bi. jx]

;ﬁek Vk

Here, x is the linear functional such that (x¥, f) = kl, ok (f)]z=0 so that (xk, Zhy = Ok.1-
Recall that we have chosen d > 0 such that z9C[z] C zVW. The degree of the Wronskian
of Cy is Z —0 [e, (N — 1 —1i)]. We need to calculate this number. First, note that
{0,1,...,N+d -1} ={ro,...,ra—1} U{eo, ..., en—1} so that

N+d—1 d—1 N—1
SRR SRS I
i=0 j=0 i=0
Hence
N—1
(N +d)(N +d—
- Zrz Z €,
equivalently,
d—1 d—1 N-1
(N+d)(N+d-1) . .
> — Z]—Sj — ZN+] :Zei.
j=0 j=0 i=

Thus, N(N Dpn=yN 0 e; which implies that 3"V 0 e — (N — i) = n as claimed. In
fact, one can see that making N larger just makes the tail {x cxbx2 } of the basis of
Cy longer and doesn’t affect the Wronskian. O
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Using the fact that 8§ ebx glx) = ePX (3, +b)k g(x), one can check that the same argument
applies to any space W € Gry,. Thatis, if W € 923 where A F n, then Anng(z — b)"W is

the unique canonical space in the fiber y ~!(W). Therefore, we define n : GAY — Q& by
n({Wb}) = @Anng [(Z — b)deg(Wb)Wb] )
beC

The map 7 is a bijection.

Proposition 5.12 The diagram

is commutative.

Proof Let W = {W,} € G* with n({Wp}) = @beSupp(W) Cp. The commutativity of the
diagram is the statement

l_[ (z—b)™™ | Anncyy @ Cp :ﬂAnnb(W;).

beSupp(W) beSupp(W) beC

Since Annc;1(Cp) = (z — b)"* W), we must show that

N e=o"Wy={ [] G=b"]|[)20msWp).

beSupp(W) beSupp(W) beC

Since (z — b)"* W, C CJz] for all b € Supp(W), we may rewrite the above as

m(Z — bW, = (1_[(2 — b)nb) ﬂ Annb(Wb*), 5.E)

beC beC beC

where nj, = 0 for b not in the support of W. Let LHS refer to the left hand side of equation
(5.E) and RHS to the right hand side of (5.E). We first show that the LHS is contained in
the RHS. For all b € C, we have Wj, € Ann,(W;). In fact, by [19, Lemma 2.5], W}, is the
subspace of Anny, (W) consisting of all functions whose only pole is at b. Let f belong to
the LHS. Then f € (z—b)"» W}, and hence (z—b) ™" f € Ann,(W}}) for all b. If we take any
function ¢ € Ann, (W) and i € C(z) such that & has no pole at b, then gh € Ann,(W})).
This implies that ([ [,cc(z —a)™") f € Ann,(W}). Hence,

(H(z — a)”“) fe[\ammy(Wy) = fe (H(z - b)’”’) () Anny(W)).

aeC beC beC beC

Thus, LHS is contained in RHS.
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Now assume that f € ﬂbec Anny,(W;). Then, (]—[,,Ec (z —a)"“) f belongs to
a#b
Annb(Wlf) and has no poles other than at b. Therefore, [19, Lemma 2.5] implies that

(]_[ wec (7 — a)”“> f belongs to W,,. Hence,

a#b
(l_[(z - a)"ﬂ) fe@h"Wy, VbeC = (]‘[<z - a)”ﬂ) e (bW
acC acC beC
Thus, RHS is contained in LHS. O
Proposition 5.12 implies that there is a well-defined bijection 0 i~! : G* — QE. We

will also denote this map by 7.
5.5 The z-Function

The rational Grassmannian is a subspace of Sato’s Grassmannian and therefore plays an
important role in

the study of the Kadomtsev-Petviashvili (KP) hierarchy. It also means that, via the
Boson-Fermion correspondence, we can associate to each W € G™ its t-function, which is
a rational function in the infinitely many variables® t1, 12, 13, . . .

w(t, ., 13,...) € C(t, 0,13, ...).

See [12] for the definition of Ty . A more geometric definition of the t-function in terms of
a non-vanishing section of the dual of the determinant line bundle on G™' is given in [17].
One can also define t-functions on the Calogero-Moser space CM,, and on the set of all
spaces of quasi-exponentials in Q as follows. Let (X, Y) € CM,, and define

oo
Ty (0.3, ) = det(X + ) i (V). (5.F)
i=1
As shown in section 3.8 of [19], we have 7(x,y) = 75,(x,v)-
Let C be a space of quasi-exponential and fix a basis {cy, ..., ¢,} of this space. Define

tg(tl,tz,t3,...) = det (<Ci,ZjG(Z)>) s

i,j=l...n
where (—, —) is the pairing (5.C) and G(z) := exp (}_{2, z't;). Assume that Supp C =
Zﬁ:l njb; and define

k e} nj
[ 0
wc(t, fr,...) = Hexp (— E blj-ti) ot 2, . .0).
i=1 i=1

Lemma 5.13 For all C = n(W) in QF, we have tw = t¢ and
Wre(x) = 1¢(x,0,...). (5.6)

Proof As shownin [18, (5.7)], if SuppC = n-0 then 1y = ‘L'g, which obviously is the same
as 7¢. The general formula will follow from [17, Lemma 3.8], for which we need to use the

ZOften, in the literature, one sets x = t1.
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language of symmetric functions. Let A be the ring of symmetric functions and denote by
pi,resp. h;, e;, the ith power, resp. complete symmetric and elementary symmetric, function
in A. If we proclaim (see [17, Proposition 8.2]) that

o0
G ' =14) hi =H),
i=1
then this forces —it; = p;, which is a consequence of the identity

exp ZEZ Hexp Z (tjz) H%:H(z).
i (1 —1tj2)

i=1 j=I1 j>1 j>1

Then, G(z) equals szl exp (— >3, ll(tﬂ)i) = E(—z), where

E@ =1+ Zelz =[Ja+uo

i>1

is the generating function for the elementary symmetric functions. Set g := G(z) and let
. T 1
If we define f and f by g = exp(f) and g = exp(f), then
f=iwz7’} f= —i&z’}
i1 ! i-1 !

where p;(b) = pi(b1,...,b1,b2, ..., b3, b3,...,b,0,...,) with b; occurring n; times.
Then,

P B _ < pid)
SG.p= 5 | S @r@a=3

Lemma 3.8 of [17] says that, after making the substitution —it; = p;, we have ¢ =
exp(S(f, f))tg. Since

[ k 00 nj
- (— N am,) e (— zb;t,-) |

i=1 j=1 i=1

the claim ty = 7¢ follows.
Recall the definition of Wrc (x) as given in (5.D). If one makes the substitution #; = x,

tp = t3 = --- = 0 into t¢ then the equality (5.G) is evident. O
6 Schubert Cells
6.1
At various stages, we will define “Schubert cells” in each of the infinite Grassmannian

introduced in the previous section. The notation used to denote these cells depends on which
Grassmannian they sit inside, namely

Q. CX,, Qmccwm, QYccd QFf c oG
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We begin by considering the spaces €2 and Q§™. Recall that the C*-fixed points in CM,,
are X;, A - n. Define Q™ = {X € CM, | limy .00 X = X;}. Then, it is shown in
[19, Proposition 6.11] that

CM(n-0) = | | 5™ (6.A)

An

If b = n-b; for some by € C then the map (X, Y) — (X, Y +b11,) defines an isomorphism
CM(n - 0) >~ CM(b) and (6.A) implies that we get a decomposition of CM(d) into cells
Qg‘ln/\ In geperal, ifb = Zle n;b;, then for every multipartition A = D a®yof n
such that A) + n;, define

cm . —1 cm cm
4 = oy (2,0 x 2T

Then, it follows from (3.B) and (6.A) that:

Proposition 6.1 The space CM(b) is a finite disjoint union of affine spaces

cMmb) = | | 5%

A

where the union is over all multipartitions . = D Ay of n such that AD g,

Lemma 6.2 The isomorphism Vr,, restricts to an isomorphism Qp ) = Qini

Proof By Theorem 4.1, the isomorphism 1, restricts to an isomorphism 29 = Qg5
for all A - n. This, together with (3.A) and Theorem 3.1, implies the general statement. [

6.2

Next, we consider the spaces W € Gry C G i.e. those spaces W € G such that
Supp(W) = deg(W) - 0. If W € Gryp then there exists an integer k such that z7%Clz] o
W D z*¥C|[z]. Therefore, we can chose a basis

Si41—1

F+ Y il |ieN (6.B)

Jj=si+1
of W such that s; = i fori > 0. As in [17, §3], a basis {w;}ien, of W is said to be
admissible if w; = 7' for i >> 0. The set (6.B) is an admissible basis. If we associate to
each w;, the degree s; of the trailing term of w;, then we get a set Sw = {so, 51, ...}. The
set S satisfies s; = i for i > 0 and each such set corresponds to a partition A, defined by
Ai =i —s;sothat Ao > A1 > ... and A; = 0 for i > 0. The C*-fixed points in Grg of the
action defined in Section 5.1 are

W, = Span{z® | s € S}
where S is the set corresponding to A. Then,
Gro= | | @
AEP

where Qid ={W € Grg | limy_ oo - W = W, }is a Schubert cell in Gry. It is the set of all
spaces W such that Sy = A.
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For b € C, lett, : C(z) — C(z) be the automorphism z — z — b. Then, f, defines an
isomorphism Gry —> Grp, and we set Q;zdk = tb(Q‘)‘Ld). Now let b = ZLI nib; € b*/6,
and L = D . AWy a multipartition of n such that 2D n;. We define

k
QL =i 1 Wy e [ ] 0 1

i=1

Lemma 6.3 Foreach b € C" /&, and . multipartition of type b, we have B, (QE‘R) = QZ‘}A.

Proof The diagram (5.B) implies that it suffices to show that 8, (Q5™) = Qi{d. Since B, is
C*-equivariant and both ™ and Qid are defined to be attracting sets for the C*-action, it
suffices to show that g, (X;) = W,. This is shown in [19, Proposition 6.13]. O

6.3

Next we define Schubert cells in the quasi-exponential Grassmannian. We begin with the
standard definition of Schubert cells in Gr,, (C[x]2,) C QE, where C[x],, denote the space
of all polynomials in C[x] of degree less than 2, as given in [6, page 147]. Let

F={0=FyCF1C-- CFau=Clxlan}
be a complete flag in C[x]»,. Then, given a partition A = (Ao, ..., A,—1) With at most n
parts such that 1o < n, the Schubert cell 2, (F) C Gr,(C[x]2,) is given by
Q(F) ={V € Gr(Clxla) | dm(VNF) =i forn+i—Ai-1 <k<n-+i—»xA
and all 0 <i < n},
where the condition for i = 0is dim(V N F,_,,) = 0. Then, dim 2, (F) = n? — |A|. The
flag at infinity is
F(oo) ={0 c Clx]1 c Clx]2 C --- C Clx]2a}.

A partition A with at most n parts such that 1y < n is precisely the same as a partition
that fits into an n x n square. The compliment of A in this square is the rotation by 7 of
another partition, denoted A. It is the unique partition such that X; + A,_;_; =n foralli =

0, 1,...,n—1. For each partition A of n, we define Qge = Q5(F(00)). It is n-dimensional.
The C*-fixed point in 23° has basis {x% |i =0,...,n — 1}, where d; = n +x; — (i + 1).

Lemma 6.4 Let A be a partition of n, then n(Qid) = ng

Proof The proof of Lemma 5.11 shows that the map n : W +— Anng(z"W) sends the
Schubert cell Qid to the set U, consisting of all spaces in Gr, (C[x]p,) C Q& with basis

e,-—]
X4 Y Bixl |0<i<n—1¢. 6.C)

j=0

j#e
Note that dim U, = ZZ’:_OI (e — i) = n. If V € Gr,(C[x]p,) has a basis as in (6.C) then
dim(V NC[x]x) = #{i | e; < i}, whichequals j say if and only ife; | < k < ¢;. Therefore
Up = Qp(F(c0)) where it is the partition given by e; = n + j — u;. Equivalently,
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en—j—1 =2n —(j+1) —@,_;_;. Since [ is defined by p; + [,_;_; = n, we see that
en—j—1 =n+ uj — (j+ 1). Thus, from the definition of {r;} and {e;} given in the proof of
Lemma 5.11, it follows that u is the (unique) partition of n such that

0,1,....2n =1y ={n+i—2|0<i<n—u{n+pu—G+D|0<i<n—1}

One can deduce that this implies that & = A’ from the fact that Z = S U —S), which is
easily checked. O

We fix coordinates on the Schubert cell Qge by fixing basis
i) =x4a12% "+ +a, Vi=01,...,n—1
wheree; =n+A; — (@ +1)andg;; =0ife; — j € {ej41,..., €51}, foreach C € Qge.
Then, (C[Qge] is a polynomial ring in the a; ;. Let b = Z?:l nib; € h*/6, and A =
(A(l), AW ) a multipartition of n such that A® - ;. Inside QGr we have the product of
Grassmannians
Gry(QGr) = Gty (¢"*Clxlan, ) X -+ x Gry (" Clilan, )
As usual, we define Qgi to be the product QET,,\(U X e X QZZ"M,{) in Grp(QGr). The
set Grp (QGr) has a natural scheme structure, such that Qgex is a locally closed subvariety.
Moreover,
_ qe
Grp(QGn N Q€ = | |,
AHD

6.4

Let W € Grp and fix some admissible basis {w;};en, of W. The admissible basis may
be thought of as a Z x N ma;rix, where the columns are the vectors w;. Then, W €
Gr, (z7"Cl[z]/7"C[z]) if w; = zi=lforalli > n. The corresponding matrix has the form

|
0 .0
\ .
| :
e -----
W1, —n wn—n: .
: .0 -
,“ilﬂ—,l,,l”ﬂ"l:l,:,,j,,,
|
10
|
0 10
|
! 1

For each A = § € P, the determinant w* := wS = det(wj, j)ies, jeN is well-defined. Also,
if any sy > n for k < n then wS = 0, since the kth column of (w;, j)ies, jeN is the zero
vector. Therefore, we may assume that {sg, ..., s,—1} is a subset of the interval [—n, n — 1].
Thus, there are (2:) such S. Since these determinants depend, up to a scalar, on a choice of

admissible basis, this means that we have defined a map Gr, (z7"C[z]/z"Cl[z]) — pCH-1,
This is nothing but the classical Pliicker embedding. In terms of partitions, each coordinate
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of PG~ s labeled by a partition of length at most n such that A9 < n i.e. all partitions
that fit into a square of length n. The Pliicker embedding is C*-equivariant and the fixed
points x;, of the C*-action on Gr, (z"C[z]/z"C[z]) are mapped to the points w* = 1 and
w’ =0 forall v # A.

If, as in the proof of Lemma 5.13, we make the substitution —i#; = p;, where p; is the
ith power polynomial in the ring A of symmetric functions, then the t-function belongs to
A. By [17, Proposition 8.2], the expansion of 7 in terms of Schur polynomials

w = E wks;\

reP

has coefficients given by the determinants w*. Therefore, if W € Gr,(z"C[z]/z"C[z]),
then tw =), whs;.
The map 7 : G* — QE restricts to an isomorphism

Gr, (z7"C[z]/2"Clz]) —> Gr,(Clx]an),

which sends V to (z"V)*. Thus, it is clearly an isomorphism of varieties. If C €
Gr,(C[x12n), then ¢ = erlj c*s,, where each ¢* is a homogeneous function on
Gr, (C[x]2,) which once again just defines the usual Pliicker embedding.

Theorem 6.5 The map n o B, : CM, — Q& C QGr restricts to an isomorphism of
algebraic varieties Q3" ~ Qgeﬂ C Grp(QQGr).

Proof Since both n and B, behave well with respect to factorization, by diagram (5.B) and
Proposition 5.12, it suffices to show that n o B, : CM,, — Q& restricts to an isomorphism
of algebraic varieties Q5™ ~ ng C Gry.0(C[x]2,). We expand

T(x,y) = Z fuX, Y)sy,

HeP

where each f,(X,Y) € C[CM,]. Define C[Q}{] — C[Q5™] by c(a;,;) = fu(X. V).
That this is well-defined and that it is an isomorphism both follow from the fact that the
pair of spaces Qg‘f and Q5™ are reduced and that the r-function distinguishes closed points
of both spaces. O

6.5 The Proof of Theorem 1.1

In this subsection, we give a proof of Theorem 1.1. We define v, : X, — QGr to be the
composition 1 o B, o ¥, so that v, identifies X,, with its image Q&, in QGr. Recall that
Theorem 1.1 claims that v, restricts to an isomorphism of algebraic varieties

vn 't Qpa —> Q5 C Gry(QGn).

This statement will follow from Theorem 6.5, if we can show that ¥, (2p2) = ani
By Theorem 3.1, v, is compatible with factorizations. Therefore, it suffices to show that
Y, (2;) = Q5™ for A a partition of n. Both €, and Q™ are attracting sets for the C*-
action. Therefore, since ¥, is C*-equivariant, it suffices to show that v, (x,) = X;. This
is precisely the statement of Theorem 4.1, which completes the proof of Theorem 1.1.
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6.6

Let N = n?> — 1. The Wronskian, Definition 5.9, may be considered as a map Wr :
Gty (Clx]2n) — PV, where

Wr(W) =1[co:---:cn] if Wryx) = chN + -4 c1x + .
Ifg = (q1,...,qn) € b, then its image in /S, isa = (ay, ..., a,) where
n

l_l(x —g)=x"+ax"""+.. +a.

i=1
We embed b/&,, into PV, as a locally closed subvariety by

(ar,az,...,ap) —>lay:ar:---:a,:1:0:---:0]. (6.D)
Proposition 6.6 The map v, : X,, — Q&, restricts to an isomorphism of schemes
Qo = Wil (—a) N QJF,

where the right hand side is the scheme theoretic interesection in Gr, (C[x]2,).

Proof By Theorem 1.1, v, restricts to an isomorphism of algebraic varieties €2, =~ Qge.
Based on diagram (3.A), it suffices to replace 20,3, by Q5™ N @~ !(a). As alocally closed
embedding, B, : Q™ — Gro(C[x]2,) was given by the polynomial coefficents of the
t-function. Therefore, it suffices to show that

Bu
Qsm Qf (6.E)

wl lWr

/Gy ——> /S,

commutes, as morphisms of schemes. For all (X, Y) in CM,,, we have

o0
det (x + Zir,-(—Y)“> =18,x,1)(t1,...),

i=1

see (5.F). Setting 1, = t3 = - - - = O gives det(X +11) = g, (x,v)(t1, 0, .. .). Equation (5.G)
says that Wrg, (x v)(t1) = 16,(x,v)(t1, 0, ...). Thus, det(X + #t;) = Wrg,(x,y)(f1). Since
w (X, Y) is defined to be the coefficients of the polynomial det(z; — X), the diagram (6.E)
commutes. O

Remark 6.7 We have defined the Wronskian for any homogeneous space of quasi-
exponentials. The proof of Proposition 6.6 shows that, as sets, we have
Vn(Qpaa) = Wrl(—a) N Q5 =: Q55

,—a

foralla € /6, b € h*/S,,, and A a multipartition of type b.
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7 Baby Verma Modules
7.1

Dual to the Verma modules A(p, A) are the induced modules V(g, n) = H, RClhIxe, M
where ¢ € hand p € Irr(S,). For each a € /6, and b € h*/G,,, with correspond-
ing maximal ideals m; C C[h]®" and n, C C[h*]S", we define the quotient modules
A(p,r,a) = A(p,L)/mgA(p, L) and V(gq, p,b) = V(q, n)/npV(q, ). These are the
(dual) baby Verma modules. The image of p in h*/W is denoted p and similarly for g.

Lemma 7.1 If p = b and g = a then
dim Homp, (V(q. t, ), A(p, A, @)) = diim Homg; (Ind g; u', Ind g;x);

otherwise Hompy, (V(q, ., b), A(p, A, a)) = 0.

Proof If p # b, then np - A(p, A, @) # 0 and hence Homy, (V(q, i, b), A(p, A, a)) = 0.
Therefore we assume that p = b. Then,

Homgy, (V(g, i, b), A(p, X, a)) = Hompy,(V(q, 1), A(p, A, a))
= Homcppixs, (k, A(p, A, a)).

As a C[h]-module, p is just the direct sum of dim p copies of the skyscraper sheaf at g. If
ai, ..., a are the points in the & ,-orbit corresponding to a, then

k
A(p,x, @) = P CIbl, @ Ind "
i=1

as a C[h]-module, where C[h],, is a module supported at a;. Then,

Homcppixa, (0, A(p, &, a)) C Homey)(n, A(p, &, a))

implies that Homgpxs, (R, A(p, &, a)) = O unless g = a. Therefore, we assume that
q = a. Then, there exists some i such that ¢ = a; and

Homcyyjxe, (i, A(p, X, @) = Homegy xe, (1, Clhl, @ Ind & 4).

Under the automorphism x — x — g(x) of C[h] x &, the module C[], is sent to the
coinvariant ring C[H1¢°®7 and p is sent to Ko, which is defined to be the C[h] x &,-module
isomorphic to u as a &,-module and supported at 0. Thus,

Homcyh)x e, (. C[hl; ® Ind S;x) ~ Homgyyixs, (o, CH“%? @ Ind g; N (TA)

= Homcypixs, (Ko soc(C[h]°®7) @ Ind g;’))‘).
(7.B)

The socle of C[§]¢°®« is one-dimensional, isomorphic to the sign representation sgn as a
G&,-module. Therefore, the space (7.B) can be identified with

Home, (1, sgn ® Ind " A) = Home, (Ind & (& ® sgn), Ind & ),

O
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Conjecture 7.2 Let I denote the annihilator of the Z,-module
Homy, (V(q, 1, b), A(p, &, a)),

and set Z(p, q, A, u) = Z,/1. We conjecture that Z(p, g, X, p) is a Gorenstein ring and
that the module Homg, (V(q, p, b), A(p, A, a)) is isomorphic to the coregular (= regular)
representation as a Z(p, ¢, A, p)-module.

Remark 7.3 1t is natural to expect that a suitable generalization of the above holds for
rational Cherednik algebras associated to any complex refection group, provided that the
intersection of SuppA(p, A, @) and SuppV (g, p, b) is contained in the smooth locus of the
generalized Calogero-Moser space.

7.2 Wilson’s Bispectral Involution

There is a natural anti-involution B : H,, — H," on the rational Cherednik algebra, extend-
ing the involution o +— o ~! on the group algebra CS,. It is defined by B(x;) = i,
B(yi) = x; and B(s;;) = s;;. This allows us to define an auto-equivalence on H,-modtg.,
the category of finite dimensional H,,-modules,

B: H,-modiq —> H,-mod¢q, B(M)= M*,

where M* is the vector space dual and (h - f)(m) = f(B(h) - m) forh € H,, m € M and
f € M*. The anti-involution B restricts to an automorphism of Z, and hence of X,,.

On the other hand, Wilson defined the bispectral involution b on G*, which in terms of
Baker functions is given by JW (z,x) = Jb(w) (x, z). Asnoted in [19, page 4], the bispectral
involution on CM,, is defined by b(X, Y) = (Y’, X’). As one might expect, we have

Lemma 7.4 We have v, o B = b o .

Proof Let L be a simple H,-module and (X, Y) the matrices representing the action of
(x1, y1) on LSn-1 with respect to some fixed basis. Then, with respect to the dual basis, the
action of (y1, x1) on (LSn-1)* is given by (Y’, X*). O

Recall (4.4) the C*-fixed points X; € CM,,. The following observation is contained in
[7].
Lemma 7.5 Forall A - n, B(L(X)) = L()). Thus, B(X;,) = X,.
7.3 Fourier Transform

The Fourier transform, as introduced in [4, §4], is an automorphism of order four F : H, =
H,, define by

F(x,))=vi, FGO)=—-xi, Fw)=w, Viell,n], we&,.

We can use F to twist representations of H,. If M is a H,-module then, as a vector space,
FM = M and the action of H, on "M is defined by h-m = F(h)m.

Lemma 7.6 Choose p € h*, g € h,ach/W andb € h*/W.
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1. We have
FA(P, M) =V(p, V), TA(p. A, @) =V(p,L, —a),

V. w) = A(=q. ), V@G rb)=A=q. pb).
2. Let ) be a partition of n. Then, "L(1) ~ L()\").

Proof Part (1) follows from the fact that F(C[h]) = C[h*] and F acts as the identity on
C6,.

By part (1), A0, »,0) ~ H, ®crpeoSn x, »» Where H, is the restricted rational
Cherednik algebra. As a C[h*1¢°Gn x &,-module, FA(0, 1, 0) =~ C[h*]°C» @ . The socle
of this module is det(y) ® A, where det(y) = ]_[i<j(y,~ — yj). Since det(y) ® A =~ A as
an G,,-module and h - det(y) ® A = 0, it follows that there exists a non-zero homomor-
phism A(0, A", 0) — FA(0, A, 0). The image of this homomorphism is contained in the
socle of FA(0, A, 0), therefore it must factor through L(\"), the simple head of A(0, A’, 0).
The composition factors of FA(0, A, 0) are all isomorphic (since A(0, A, 0) also has this
property). Hence all these factors must be L(A"). Applying F to the short exact sequence

0— Ker - A0,2,0) > L(A) — 0
shows that FL(1) >~ L(A!). O

7.4 Adjoint Anti-Automorphism

Define the anti-automorphism (—)* : H, N HP by x = —x;, y} = y; and SZ]‘ =5 ;-
As in (7.2), this defines an auto-equivalence

(—)* : Hy-modga, —> Hy-modiq, (M) = M*,

where M* is the vector space dual and (4 - f)(m) = f(h*-m) forh € H,,m € M and f €
M*. We also have the corresponding automorphism (—)* of X,,. Define the automorphism
(—)* of CM,, by (X, Y) > (=X, Y") and recall from Section 5.1 that W — W* defines
an automorphism (—)* of G,

Lemma 7.7 We have (—)* o ¥, = ¥, o (—)* and (=)* o B, = B, o (—)*.

Proof The proof of the first statement is completely analogous to the proof of Lemma 7.4.
The second statement is [19, Lemma 7.7]. O

Let A = (A, ..., 1(®) be a multipartition. The transpose of A is defined component-
wise, A" = (WD), ..., (A0,

Proposition 7.8 Under the adjoint automorphism, Qz,x = Qp

Proof By Lemma 7.7, we can work either with the rational Cherednik algebra or in the
Calogero-Moser space. First, we note that one can deduce from the explicit formula for (—)*
on CM,,, together with the factorization construction given by Wilson, Section 3.1, that we
have

Q)" = ab_l((SZZTA(,))* X e (25 1))
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Moreover, for b € C and 1, : CM,, N CM,, (X, Y) = (X, Y — bl,) we have
Q™" = [ (™)1 = ([,
Therefore, it suffices to show that (Q{™)* = Q. The automorphism (—)* is also C*-

equivariant. Hence, it suffices to show that X} = X,:. For this, we use the fact that (—)* =
F o B. Therefore, the result follows from Lemmata 7.5 and 7.6. O

8 Intersecting Schubert cells
8.1

Recall that, in addition to the Verma modules, we also defined in section 7 the dual Verma
modules V(g, p). Considered as Z,-modules, their supports were denoted Uy 4, where
g = a in b/, In this section, we describe the sets v, (Uq, ).

Definition 8.1 Let C € QGr be an n-dimensional space of quasi-exponentials. Then, the
sequence of exponents of C at a point b € CU {oo} is the (unique) set of integers d = {dy <

- < dy—1} with the property that, for each 7, there exists a function f € C with order d;
at b. A point b of C U {oo} is said to be singular if the exponents of C at b differs from
{0,...,n—1}.

Leta = Zf-‘zl n;ja; € h/S,, where the a; are pairwise distinct. Choose a multipartition
wo= (D, ..., u®) of n such that u® F n;. From u we define the tuple of integers
d={djli=1,...,k, j=0,...,n; — 1} by

diji=p +ni—(G+1). (8.A)

Then, set of all C € Q& such that the singularities of C are {ay, ..., a;} and the exponents
of C at aq; are

{0<~-~<2n—n,~—1<2n—n,~+d,~,1 <--~<2n—ni+d,-,n[},

is denoted Ugef,t. The parameterization is chosen so that we can apply [16, Theorem 2.6],
which says that
(Qa0)® = Vap- (8.B)

Asa consequence,

Theorem 8.2 Forallq € hwitha =g € h/S,, p € Wy and b € b*/&,, the map v, gives
bijections

~ qe
Ua,ll« > Ua,u

J

Oapb ————>=0gpu s

Proof By Remark 6.7, v,(Qp1.4) = Qgi, —a As noted in Section 7.2, the map v, inter-
twines the bispectral involution on X, with Wilson’s bispectral involution on Q& (or
rather the corresponding integral transform as defined in [16]). Equation (8.B) implies that

qe B _ 7yd¢
(Qa,u,b) _Ua,u,b'
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Let (—1) : H, N H,, be the isomorphism which is the identity on &,, and maps x; to
—x; and y; to —y;. Then, B = F o (—)* o (—1). We have sz_ul)b = Q_g4 u,—p- Proposition
7.8 implies that Qia%_b = Q_g4 .5 and Lemma 7.6 (1) implies that Qia,p,’,b = Ugq,p' b-
Therefore, QS’ wb = Og,pt,p- This implies the claim of the theorem. O

8.2

For g; € C, let F(g;) be the complete flag
Folai) : Filg) = (x —g)*IClxlj, 0= j<2n,

in Clx]on. Letg = (q1,--.,91,92, ..., 92,43, . ..), where the g; are pairwise distinct and
gi occurs n; terms. Let = (D, ..., u®) bea multipartition with u® + n;; equivalently
i € Irr(S). Then, we define

k
Qu(g) = [0 (F @)
i=1
a scheme theoretic intersection of Schubert cells in Gr;, (C[x],). Let Gr;, (C[x ]2/ )can denote
the intersection of Gry,(C[x]z,) with Q& in QGr, considered as a reduced variety. Then,
Gr (Clxlon)can = |51, 25 We define €2,(¢)can to be the scheme-theoretic intersection
of Q4 (q) with Gr,, (C[x]2,)can. In order to prove a special case of the above conjecture when
W = &,, we need to make the following technical assumption.

Assumption 8.3 We have an equality v,(Ug,pn.0) = u(q)can as subschemes of
Gr,, (Clx]20).

We remark that neither Ug, y 5.0 Or €244(g)can is a reduced scheme. In order to convince
the reader that Assumption 8.3 is not unreasonable, we have

Lemma 8.4 Let g € by and p € Irr(S,). Then, we have an equality v, (Og,un0) =
Q4 (q)can of subsets of Gr,, (C[x]2,) and

dimC[Ua,u,n-O] = dim C[Qu(Q)can] = |6n/6q| dim p.

Proof A point V€ Gr,(Clx]z,) belongs to €2, (g;) if and only if ¢; is a singular
point of V such that the exponents of V at ¢; are encoded by u®. On the other hand,
Theorem 8.2 implies that v, (Ug,yu.».0) is the set of all canonical homogeneous spaces of
quasi-exponentials with exponents prescribed by ¢ and u contained in Gr, (C[x]2,). Every
space in Gr, (C[x]2,) is obvious homogeneous. Therefore v, (U4, u,1.0) is the intersection of
@, (q) with Gr, (C[x]2;)can, which by definition is €2, (¢)can.

Theorem 1.2 of [1] implies that dim C[Uq, 4 ,.0] equals the rank of eV (g, p) as a free
(C[h*]G” -module. As a C[§*]%»-module,

eV(g. ) = e(ClH*I @ Ind g’ k) = e(ind & (C[H*] @ ) = ¢ (C[H*1 ® ),

where ¢, is the trivial idempotent in C&,. This implies that the rank of eV (g, p) equals
16,/6,| dim p.

Recall that two complete flags F, and G, in C[x]y, are said to be transverse if dim F; N
gj =min{i + j —2n, 0} forall i, j. Let b # ¢ € CU {oo}. Then, it is easy to check that the
flags F,(b) and F,(c) are transverse. Hence, the flags appearing in the intersection €2, (q)
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are pairwise transverse. They are also transverse to Q3 (F (00)) for each partition A of 7.
As noted above, Gr,, (C[x]21)can = |—|)»Fn Q7 (F(00)). Since the set-theoretic intersection
Q,(q) N Q5 (F (00)) consists of finitely many points (notice that dim 1 (F(g) = n?—
|| and dim Q5(F(00)) = |Al, hence if D, dimpu® = n and A F n, then dim Qu(g) N
Q5(F (00)) = 0) the transeverality condition implies that

(2,00 (F(gi)] -+ - [0 (F (@)1 - [Q(F (00))]

is some multiple of the identity in the cohomology ring H*(Gro(C[x]2,)), where [X] - [Y]
denotes multiplication in H*(Gro(C[x]z,)) of the classes defined by the closures of the
locally closed subvarieties X, Y of Grg(C[x]z,). Thus,

dim C[€2y(¢)can] = Z[Q,m (Flg)]- - [2,0 (F(g))] - [S25:(F (00))].
A-n

Let 03 = [Q4(F(D))] = [, (F(00))] be the class of a Schubert cell in H*(Gry(C[x]2,)).
They form a basis of H*(Gro(C[x]2,)) such that o, .. = 1. Let (—, —) be the non-
degenerate pairing on H*(Gro(C[x]2,)) defined by letting ([X], [Y]) be the coefficient of 1
in the expansion of [X] - [Y] in terms of the basis {0, }. The duality theorem, [6, page 149],
says that (0;,, o) = 83,,. Thus, Schubert calculus implies that

dim C[24,(¢)can] = srnl0,0 - 0,m, 04)
S, . n
=D sems,) Homes, (4, Ind ey i) = dimind & u,
as required. O
Theorem 8.5 Under Assumption 8.3, the map v, induces an isomorphism of Gorenstein
rings
Z0,q, 1 p) = CIQQ, _, NQu(@)],

and Hompy, (V(q, p,0), A0, A, @)) is the coregular representation as a Z(0,q, X, ju)-
module.

Proof The Morita equivalence between H, and Z, implies that
Hompy, (V(g, . 0), A0, 1, @)) =~ Homz, (eV(q, r, 0), eA(0, A, @)).

Let I be the annihilator of eV (g, i, 0) in Z,, and J the annihilator of e A (0, A, @). Theorem
1.2 of [1] implies that eV (g, ., 0) >~ Z,, /I and e A(0, A, @) ~ Z,/J are cyclic Z,,-modules.
By Proposition 6.6, Spec Z,,/J = 20,3 4 is isomorphic to wWrl(—a) N Qgc = an’_a.
Using Assumption 8.3, we have Spec Z,, /I = Ug, 0.0 = 24 (q)can- Therefore, [14, Lemma
4.3] implies that

Zu /(I +J) = CIWr ! (=a) N Q) N Qu(@)can] = CIWT ' (—a) N 25 N Qu(g)]
is a Gorenstein ring. This proves the first statement of the theorem. The result [14, Lemma
3.8] states that:
Claim 8.6 Let Z be a commutative ring and /, J ideals of Z such that

e dmZ/I,Z/J < o0,
e Z/Jand Z/I + J are Gorenstein.

Let] =1+ JinZ/J.Then, kerl ~ (Z/(I + J))* as Z/(I + J)-modules.
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Applying the above claim in our case, it suffices to identify ker 7 with
Homy, (V(q, 1, 0), A0, A, a)) = Homgz,(Z,/J, Z,/I).
This is straight-forward. O

Remark 8.7 The claim about dimensions made after Corollary 1.2 can be deduced from the
proof of Lemmata 7.1 and 8.4. Also,

Hompy, (V(q, i, 0), A0, 1, @)) = Hompy, (V(q, n), A0, 1,)),

which implies that Corollary 1.2 is equivalent to the statement of Theorem 8.5.

9 The Relative Grassmanian
9.1

In this final section we make some basic remarks about the relative Grassmanian, and its
relationship to the Calogero-Moser space. As noted in [5], one can interpreter Wilson’s
embedding B, as an embedding of CM,, into

Gl .= (I, W) | I < Cl[z] with dimC[z]/]
= nand W C C[z]/1 2 an n-dimensional subspace.},

the relative Grassmaniann. Since both CM,, and g;el are quasi-projective varieties, it is
natural to expect that Wilson’s embedding is a morphism of varieties. In this subsection we
suggest one way that one might hope to show this. Projection onto / defines a proper map
grel — A™ = Hilb"(C). Let E be the rank 2n vector bundle on A", whose fiber over
I is C[z]/I 2, Recall, [9, Example 2.2.3], that the relative Grassmanian is the space that
represents the contravariant functor F : Sch, ) — Sets, from the category of schemes over
A to sets defined by

F(X)={¢:&"E - F | Fflatof rank n}/ >~ .

where £ : X — A®.

We denote by R the coordinate ring of CM,,. Recall that 7 : CM, — h*/S,. Let £ =
7* E be the vector bundle of rank 21 on CM,, induced by E. Since CM,, is affine, we consider
instead the corresponding projective R-module of section, which we will also denote by
£. Since & is the pull-back of a projective C[A® ]-module, it is actually a free R-module.
Explicitly,

& = Rlz]/(det(z — Y)).

Associated to each space W € G* is the Baker function JW (z, x)f,vsee [18] andl19]. Just
as for the 7-function, the Baker function distinguishes points in that Yy, (z, x) = ¥w, (2, x)
if and only if Wi = W,. If Supp(W) = Z?:l n;b;, then defing Yw(z) = ]—[fle(z —
b;)". The regular Baker function vy (z, x) is defined to be Wy (z)¥rw (z, x). We define the
polynomial Baker function to be

Ph (2, x) = Wi (1) - Y (2, %) = Wi () - Wiw () - T (2, %),

It is known, e.g. as a consequence of [18, Proposition 6.5], that w"}?l(z, x) = g(z,x)e¥",
where g(z, x) is a polynomial of degree deg(W) in both z and x. The following lemma
follows from the description of i given in section 4 of [18].

@ Springer



1566 G. Bellamy

Lemma 9.1 Let W € G* and C = n(W) € QE. Then,

Wiy (2)W = Span {350 (z, x))|x=0 forallk € N} = C*.

For each (X, Y) € CM,, consider the element llfz);[Y) =edet(X —x) (Y —2)—1) e
R®C[[x, z]]. Let K be the R-submodule of £ generated by
aowpol a1wpol a2wpol
X X X

[x=0" [x=0" [x=0""""

Then, we define F to be the quotient /K.

Conjecture 9.2 The quotient £ — F is a vector bundle of rank n on CM,, inducing a
locally closed embedding B, : CM,, — Gl

Remark 9.3 The definition of CM,, as a G.L.T. quotient implies that there is a “tautological”
rank n bundle on the space. It is unclear to the author how this tautological bundle is related

to F.
. pol — n i . n i i
Expanding, Yy, (z, x)e™ =}/, _ga;,jz'x/, we write Dy =} /', a; jx/ 0}

Lemma 9.4 Let W € G¥. Then, C = n(W) € QE is the space of all holomorphic solutions
of the differential equation Dy .

Proof By Lemma 9.1, Yy ()W = C+, which equals Span{(a)’c‘l//svol(z,x))hzo | k =
0, 1,...}. We apply the easy identity (8§xje“)|x:o = 811 (z%). Thus, ¢ € C if and only if

(e, @4 w (@ )o) = (e X0 o @i 0 (e o)

iaJ .k j ai k
= <c, 20 j—0ai 70 (2 )> =<Z7,j:oai,jx’3)’fc,z >=0

for all k € N. This implies that Zﬁj:O a; jx’dLc = 0. Since the dimension of C is n, C
contains all solutions of the differential equation Dy . O

If g(x) is a polynomial and p # 0, then the function e”* g(x) has an irregular singularity
of order one at infinity. Thus, if D is an nth order differential equation whose space of
solutions is C € QGr then D has only regular singularities in C and (at worst) an irregular
singularity at oo of order one. Moreover, the residue of D at oo is Supp(C) € h*/S,.
Recall that D is said to be Fuchsian if it has only regular singularities i.e. if and only if
Supp(C) = 0. Given a simple H,-module L, we write Dy for the nth order differential
equation whose space of solutions equals v, (xz) € QGr.

Corollary 9.5 Let L be a simple H,,-module. Then, the differential equation Dy, is Fuchsian
if and only if C[h*]7" - L = 0.

Proof The space C of solutions of Dy is a homogeneous space of quasi-exponential func-
tions. As noted above, Dy, will be Fuchsian if and only if the support of C equals zero. That
is, if and only if the augmentation ideal in (C[h*]_:" annihilates L. O
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Example 9.6 For each partition A of n we have the simple H,-module L(A). Since the
support of L(1) is sent to the C*-fixed point in Qge, the proof of Lemma 6.4 shows that

n—1
Dpoy = l_[(xa —e),
i=0
wheree; =n+A; — (@ +1).
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