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Neither neurobiological nor process models of meaning composition specify
the operator through which constituent parts are bound together into com-
positional structures. In this paper, we argue that a neurophysiological
computation system cannot achieve the compositionality exhibited in
human thought and language if it were to rely on a multiplicative operator
to perform binding, as the tensor product (TP)-based systems that have been
widely adopted in cognitive science, neuroscience and artificial intelligence
do. We show via simulation and two behavioural experiments that TPs
violate variable-value independence, but human behaviour does not.
Specifically, TPs fail to capture that in the statements fuzzy cactus and
fuzzy penguin, both cactus and penguin are predicated by fuzzy(x) and
belong to the set of fuzzy things, rendering these arguments similar to
each other. Consistent with that thesis, people judged arguments that
shared the same role to be similar, even when those arguments themselves
(e.g., cacti and penguins) were judged to be dissimilar when in isolation.
By contrast, the similarity of the TPs representing fuzzy(cactus) and fuzzy
(penguin) was determined by the similarity of the arguments, which in
this case approaches zero. Based on these results, we argue that neural
systems that use TPs for binding cannot approximate how the human
mind and brain represent compositional information during processing.
We describe a contrasting binding mechanism that any physiological or arti-
ficial neural system could use to maintain independence between a role and
its argument, a prerequisite for compositionality and, thus, for instantiating
the expressive power of human thought and language in a neural system.

This article is part of the theme issue ‘Towards mechanistic models of
meaning composition’.
1. Introduction
Our ability to use language indicates something foundational about how our
minds and brains represent, transform and reason about the world around
us. Namely, it indicates that we are able to think of combinations of words, con-
cepts, objects, features, and events, and their organization [1–5]. The language
we use to denote such meanings consists of sequences of words, whose mean-
ings, like the conceptual representations underlying them, must be composed.
Importantly, the composition process need not mirror regularities in our experi-
ence of the world: for example, while all bananas are naturally shades of green,
yellow, brown or black, we can easily conceive of a hot pink banana, encode this
thought in a phrase like ‘A hot pink banana’, and safely assume that anyone
who hears it or reads it will share the same thought we started with.1 In this
sense, meaning composition might be the lynchpin of cognition, necessary for
explaining the formal expressive power and creativity of human thought, reason-
ing, language and communication [6]. To this point, meaning composition has
been called the ‘holy grail’ of cognitive science [7].

Compositionality is a property of a system. In a compositional system, com-
plex entities are built as collections of simpler entities, and the meanings of
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these entities are a function of the meaning of the constituent
simpler entities and their arrangement (see [8], for a category
theoretic formalization, [9] for a hybrid distributional typed
formalism; [10]). Compositionality has been a subject of inter-
est in philosophy, logic and linguistics for nearly as long as
these disciplines, both modern and ancient, across east and
west, have existed (see [11] for a historical perspective;
particularly the contribution of the Vedic scholar �Sabara-
svāmin in the fourth/fifth century CE;2 also [13–16]). In the
language domain, compositionality typically refers to the
property that meanings of composed structures are a function
of the meanings of constituent units and the rules used to
combine those units into that structure [14,16–19]. For
example, we combine individual words like ‘Jane’, ‘goes to’
and ‘the store’ to form the sentence ‘Jane goes to the store’.
The meaning of the resulting phrase is a function not only
of the individual words, but their order (e.g., ‘the store
goes to Jane’ means something different). In the limit (as
long as recursion is supported), compositionality represents
the capacity to combine a finite set of objects into an infinite
set of combinations [20,21].

Two key properties of a compositional system are that the
meaning of a compositional structure is a function of the
constituent elements and their arrangement, and, simul-
taneously, that the meaning of the individual elements do
no systematically vary as a function of their position in the
compositional structure. Following the above example,
the meaning of ‘Jane goes to the store’ is a function of the
words and their arrangement, but the arrangement does
not change what Jane or store means.3 For a system to have
the expressive power that compositionality imbues (viz.,
human language), and, at the same time, to arise in the
mind and brain, implies that at some level individual mean-
ing parts (e.g., concepts, words, predicates, inflectional and
derivational morphemes) and larger meaning structures
(e.g., conceptual combinations, phrases, propositions, sen-
tences) must coexist or co-occur in the system. Yet crucially,
as we will argue in this paper, they must do so independently
from one another, at least at certain moments in processing, in
the space–time of neural representations, such that words
and concepts can be combined together without compromis-
ing the system’s access (in the limit) to the representation and
meaning of the original constituent parts. Instantiating a
neural system such that it can support compositionality
requires solving the problem of binding elements together
in a manner that maintains their structure and their indepen-
dence (e.g., [3,10]). Several mechanisms for instantiating
binding in a neural system have been proposed. One of the
most popular involves using tensor products (TPs) to bind
elements ([23–26]; but see [3,27]).

In the following, we present simulations and data from
two behavioural experiments that suggest that conjunctive
and multiplicative operators, such as the TP, lead to system
behaviour that is at odds with human behaviour. We show
that TPs, and other conjunctive coding schemes, violate the
independence of a variable and its value for binding rep-
resentations together [3,28], an operation that is crucial for
meaning composition and cognition more broadly [1,2,5,29–
32]. We demonstrate how this violation occurs, and discuss
why variable-value independence is important for theories
and models of human cognition, including for natural
language [3,27], and for any system to have compositionality.
We describe an existing compositional solution implemented
in a neural network [1,5,30,33] and its origins [34,35]. We
conclude that tensor-based systems cannot support
compositionality without additional modeller-derived inter-
ventions (e.g., modeller-determined labelling, specialized
deconvolution functions or look-up tables) and suggest that
the representational basis of the human mind and brain,
and any system that desires to emulate it, should be
built on a neurophysiological system that can support
compositionality during processing.

For the present purposes, we are interested in binding as
instantiating links between roles and their fillers (e.g.,
[2,29,32]). The role represents the filler’s place in the larger
structure, be it as the argument to a single-place predicate,
or a phrase, sentence or proposition. The filler occupies the
argument role and is operated on by the predicate during
interpretation to produce meaning [18]. In this sense, binding
can be seen as an elementary subroutine of meaning compo-
sition. However, we stress that in order for a system to be
compositional, the mechanism that carries binding infor-
mation must be completely independent of the
representational elements that specify the identity of the
active fillers, roles and predicates within that system
[1,3,5,10,28,29], and so, in the case of neural systems, in
neural space–time. For example, the representational
elements fuzzy and penguin, and prickly and cactus might be
bound to form the propositions fuzzy(penguin) and prickly
(cactus). While the statement fuzzy(penguin) has meaning
(a penguin that has the property of having fuzz or being
fuzzy), the elements fuzzy and penguin remain independent
when so bound. That is, the predicate fuzzy means the
same thing whether it is bound to ‘penguin’, ‘cactus’ or ‘den-
drite’.4 Second, the binding tag (the signal carrying the
binding information) must be dynamic. That is, it must
allow bindings to be created and destroyed on the fly. For
instance, if the penguin in the above example gets a buzz-
cut, the binding of fuzzy and penguin must be broken, and
the very-same representation of penguin must be bound to
the prickly predicate to form prickly(penguin) where the
same representational element coding for prickly in prickly
(cactus) is bound to the same representational element
coding for the penguin in fuzzy(penguin).

In tensor-based systems, TPs are used to bind infor-
mation, including argument roles and their fillers
[3,10,23,25,26,29,36]. Figure 1 illustrates how a tensor-based
system would represent the examples (i) fuzzy cactus and
(ii) fuzzy penguin. Hummel and colleagues [3,10] have
shown mathematically that TPs violate role–filler indepen-
dence. In short, because TPs rely on a multiplicative
operation, the binding of two items is an interactive rather
than independence-maintaining, or additive, operation. We
provide details of simulations demonstrating this point in
electronic supplementary material, appendix A, but in
short, once the roles and fillers are bound into a TP, the
similarity of a word or concept to itself (e.g., fuzzy(penguin)
versus fuzzy(cactus)) changes as a function of the similarity
of the other words or concepts it is bound to. So, a fuzzy
penguin and a fuzzy cactus will not be similar unless pen-
guins and cactus are also similar. In fact, in the limit, the
similarity between fuzzy(x) and fuzzy(y) approaches zero as
the similarities of x and y approach zero.

Essentially by composing fuzzy with penguin or cactus
using TPs, information about being in the set of fuzzy
things is being shared across fuzzy cactus and fuzzy penguin.
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Figure 1. An illustration of two representational coding schemes for the predicates fuzzy ( penguin), fuzzy (cactus), prickly ( penguin) and prickly (cactus). In a role–
filler binding calculus, these propositions can be represented as one-place predicates. The top panel is a cartoon illustration of how a compositional system that uses
dynamic binding would bind the predicates and arguments. The bottom panel is a cartoon illustration, inspired by Dolan & Smolensky [23], of how a tensor-based
system would perform binding.
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But, in a system that uses TPs for binding, the information
that both cactus and penguin belong to the set of fuzzy
things is not available during composition without an
additional mechanism for tracking the binding relation
between fuzzy penguin and fuzzy and penguin (e.g., a function
that indicates which arguments (cactus, penguin) went into
which TP ( fuzzy cactus, fuzzy penguin), a look-up table with
that information or simply the knowledge of the modeller
looking at the values in the network). Another consequence
of a TP-based architecture without a tracking mechanism is
that binding information (viz., the fact that fuzzy penguin
goes with fuzzy and penguin) is not available to other neurons
in the network during meaning composition; binding infor-
mation must be available to downstream neurons in order
for the system to maintain variable-value independence—
for the system to be functionally symbolic, and for the
behaviour of the system to align with that of humans.

By contrast, in a binding system that maintains role–filler
independence, the similarity of x to itself is fixed, regardless
of what it is bound to. This makes the prediction that in
prickly penguin and fuzzy penguin, the representation of pen-
guin will be the same, or have identity with itself. And
fuzzy penguin and fuzzy cactus will share the property of
being fuzzy in the system, and as such, should not be
judged as completely dissimilar.

To address the question of whether people can judge the
similarity of a composed phrase independently of similarity
judgements of the words that compose it, we performed
two behavioural experiments probing the similarity of
words and phrases and then modelled how they relate to
each other. In experiment 1, we asked participants to rate
the perceived similarity of nouns and predicates (adjectives
and verbs) as single words compared to each other. In exper-
iment 2, we asked a different set of participants to rate the
similarity between two phrases (always a noun combined
with an adjective or a verb) against each other. In one con-
dition, we presented the maximal identity case, where both
words and phrases were identical. Otherwise, we varied
whether the noun or the predicate was identical (but not
the other word), or varied the similarity between nouns
and predicates as estimated by the cosine similarity between
word2vec representations [37] of the words. We then applied
a hierarchical model testing scheme that pitted the predic-
tions of a TP-based system against an asynchronous
dynamic binding (ADB) system. We note that when both fil-
lers and roles are similar to each other, both models predict
the same thing—maximal similarity as identity is
approached. The key prediction regards cases where the fil-
lers and roles are not a priori similar to each other; TP
predicts these have (cosine) similarity of zero, ADB predicts
they will be judged as similar despite constituent relative dis-
similarity. Below, we present the methods of both
experiments 1 and 2 before discussing their results together.
2. Experiment 1: word similarity ratings
(a) Participants
Participants were recruited from the Max Planck Institute for
Psycholinguistics participant pool. Twenty-one Dutch native
speakers took part in the study; 17 were female and 4 were
male. The average age of the participants was 22.93 years
(s.d. = 2.54, range 19.04–29.93) and they gave informed con-
sent before participating in the study. They received €6 for
their participation.
(b) Stimuli
The stimuli were either nouns or predicates (adjectives or
inflected verbs) derived from the noun phrases and sentences
of the second experiment. There were 48 different nouns. Each
noun appeared in three trials: once in the ‘same’ condition,
where the same noun was shown as ‘word1’ and ‘word2’
and twice in the ‘different’ condition, where the word was
paired with one other noun, and shown in both orders
(word1/word2 position). See the electronic supplementary
material, appendix for all conditions. This led to a total of 96
noun trials and there were 96 different predicates. As for the
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nouns, each predicate appeared in three trials. This led to a
total of 192 predicate trials.

(c) Task and procedure
Participants read pairs of words on a computer screen and
judged how similar the words were to each other. In each
trial, the instruction was summarized again at the top of the
screen (‘How similar are these words?’). Below, the two
words were presented, one on the right and one on the left.
Beneath the words, there was a slider bar. The left of the
slider bar was marked as ‘totally not’ (helemaal niet) and the
right of the slider bar was marked as ‘totally similar’ (helemaal
wel). At the bottom of the screen, it said that participants
could finish the trial and go to the next one by pressing
Enter/return. The slider bar ranged in value from −300 to
300 and could be moved with an interval of 3. These values
were not visible to the participant. The scores were later con-
verted to a scale of −100 to 100 (the same slider bar was
used in experiment 2). The task consisted of 288 trials. First,
the participants rated the 96 noun trials. The order of the
trials was randomized per participant. After a short break,
they rated the 192 predicate trials.

3. Experiment 2: phrase similarity ratings
(a) Participants
Participants were recruited from the Max Planck Institute for
Psycholinguistics participant pool. Thirty-eight Dutch native
speakers took part in the study. Twenty-nine were female
and 9 were male. The average age of the participants was
22.99 years (s.d. = 2.32, range 18.84–28.89). Participants gave
informed consent before participating in the study. They
received €10 for their participation.
(b) Stimuli, task and procedure
The stimuli were either noun phrases consisting of an article,
adjective and noun, or full sentences consisting of an article,
noun and inflected verb; see the electronic supplementary
material, appendix for a full list. Three lists of 24 word
pairs were used to construct the stimuli: one list of noun
pairs, one list of adjective pairs and one list of verb pairs.
The pairs were selected using the co-sine similarity of word2-
vec vectors between nouns. The list of 24 was then divided
into four blocks of 6 pairs each: one ‘very similar’, one ‘simi-
lar’, one ‘dissimilar’ and one ‘very dissimilar’ block. The
noun pairs were matched to the adjective and verb pairs in
a counterbalanced way to form the phrases/sentences. Each
noun pair was matched to a verb pair and an adjective pair
from each of the four blocks. Hence, each noun was com-
bined once with a very similar verb/adjective, once with a
similar verb/adjective, once with a dissimilar verb/adjective
and once with a very dissimilar verb/adjective. Each noun
pair therefore occurred in eight different combinations: four
with a verb and four with an adjective for a total of 192
pairs of phrases. Finally, to create conditions, the similarity
of the phrase pairs was varied. All eight versions of the
noun pair therefore occurred in four different conditions. In
the first condition, both pairs were the same (identity con-
dition). In the second condition, the subjects were the same,



Table 1. Summary of results of quality of models using TP and ADB to
predict human ratings of similarities of role–filler pairs. AIC, Akaike
Information Criterion; BIC, Bayesian Information Criterion.

model AIC BIC estR2

rating∼TP 261 721 261 754 0.58

rating∼ADB 258 088 258 121 0.63
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but the predicate was different (different predicate condition).
In the third condition, the predicate was the same, but the
subject was different (different subject condition). In the
fourth and final condition, both the subject and the predicate
were different (both different/opposite condition). There
were a total of 768 trials. The task and slider bar from
experiment 1 were used in experiment 2.

(c) Results of experiments 1 and 2
Our goal is to determine the binding mechanism that best fit
the human predicate–filler rating data. Using the similarity
ratings of single words from experiment 1 (see below), we
determined predicted predicate–filler similarities for all
word pairs in the experiment. As noted above, the similarity
between two TP bindings is equal to the product of the
similarity of the roles to the similarity of the filler, or

cos(rf ,r0 f 0) ¼ cos (r,r0)cos( f , f 0),

where rf is the TP of r and f. Similarly, for ADB, the similarity
between two role filler bindings is equal to the weighted aver-
age of the similarity of the roles and the similarity of the
fillers, or

cos (A(r,f),A(r0 f 0)) ¼ (cos (r,r0))þ (1� n)(cos (f ,f 0)),

where A(r,f ) is the binding of r to f via systematic asynchrony,
and n is a weighting parameter, here set to 0.5 to get an
unbiased average.

Dynamic binding can be implemented as synchronous or
asynchronous binding (see [32–34]). However, modelling the
result of synchrony-based binding is not so straightforward,
as the results of the binding process vary greatly when r and
f are coded on independent or non-independent dimensions.
See the electronic supplementary material, appendix for
more discussion of this issue and illustration by simulation.

After calculating the predicted similarities of predicate–
filler bindings using both TP and ADB, we used both to
model the human similarity ratings. We built two hierarchical
models with TP and ADB predicting human ratings, with
participants as a random variable (intercept only; modelling
participants with independent slopes produced similar
results). The results are presented in table 1.

In short, participants’ similarity ratings followed the pre-
dictions of ADB rather than TP. Moreover, the relative
closeness of the estimated R2 was in large part a product of
the similar predictions made by both ADB and TP for a
subset of the similarities of predicate–filler pairs (e.g., both
models predict maximal similarity when both roles and fillers
are identical). In line with this observation, adding the TP pre-
dictions to a model with ADB increased estimated R2 by 0.002.
4. Discussion
The similarity ratings of individual words did not determine the
similarity ratings of the composed phrases. A tensor-decompo-
sition of these same data showed that in a tensor-based
system, the similarity of individual words drives the similarity
of the phrases they appear in (see the electronic supplementary
material, appendix for simulation details). If people can separate
the similarity of roles, fillers and the predicates those constitu-
ents create, then they cannot be relying on tensors, or any
other conjunctive operator, to perform binding during proces-
sing. We note, however, that in the limit, TPs of composed
phrases could still be used during long-term storage if access
to the constituent parts is not needed for behaviour or
interpretation.

For a system to be compositional in the sense that human
cognition is compositional, bindings between roles and fillers
must be constructed on the fly, or dynamic, and these bindings
must not affect the core representation of the constituent
words or concepts beyond what is needed in the moment
of processing to determine compositional meaning. The
core representations of words and concepts, such as the
examples fuzzy and prickly, should apply to whatever argu-
ment is predicated, just as the system should not instantiate
multiple representations of the same entity when a single
entity is referred to.

Dynamic binding requires: (i) states that carry infor-
mation about the world via its representational elements
(i.e., specifying what is present in a given situation or data-
set), (ii) a mechanism that carries binding information
(specifying how those elements are arranged) must be
independent from the coding of representational elements,
and (iii) processes by which new representational structures
are inferred from the existing structures.5 These three sources
of information must be independent (i.e., the binding oper-
ator must not affect the meaning of the bound items; [3]).
Any system that can represent these three independent
sources of information can, in principle, attain variable-value
independence, a pre-requisite for compositionality.

An instantiation of dynamic binding that exploits the asyn-
chrony of unit firing in order to represent a predicate, role and
argument can be seen in the model DORA (Discovery of
Relations by Analogy; [1,5,29,30,33]), which is descended from
the symbolic-connectionist system LISA (Learning and Inference
with Schemas and Analogies; [34,35]). DORA implements two
fundamental concepts from cognitive science and neuroscience:
(i) that learning and generalization are based in a process of
comparison [38,39], and (ii) that information in distributed
neural computing systems is carried by the oscillations that
emerge as its component units fire in excitatory and inhibitory
cycles [32,40]. DORA uses oscillatory regularities in the net-
work to dynamically bind predicates and arguments, without
fundamentally changing the meaning of any elements so
bound (though, in principle, statistics about the bindings
could be tracked), resulting in a compositional system (see
figure 2 for illustration).

In conclusion, the predictions of a tensor-based system
were not borne out in human similarity ratings. The represen-
tational implications of using TPs for binding (namely, the
violation of independence; see the electronic supplementary
material, appendix) contradict both formal accounts of rela-
tional and analogical reasoning and formal theories of
language. In our view, the empirical result we presented
here, in combination with the aforementioned represen-
tational conflicts, highlights the importance of being faithful
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to certain computational system properties of the human
mind and brain when deriving models of human cognition
and behaviour. If a high-level desideratum like composition-
ality can be achieved while obeying the basic constraints of
neurophysiological computation, the hope of accounting for
the expressive power of the human mind in both formal
and biological models is not yet lost.
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Endnotes
1We thank Giosuè Baggio for the phrasing we co-opt here.
2Two centuries later, medieval Indian Vedic scholar Kumārila Bhat

_
t
_
a

further formulated a compositional view of semantics for sentences
called abhihitānvaya, or the ‘theory of words in relation’ (see [12]).
3Here, we refer to a hypothetical case where the meaning of store or
Jane changed as a function of whether the word functioned as a sub-
ject or object or as the agent or patient of a verb, and not to the fact
that lexical items can have multiple senses (see [22]) and that the lex-
ical meanings can take on different senses in different contexts (e.g.,
fuzzy logic versus fuzzy penguin). Nor do we deny the fact that both
words and composed structures can vary in their meaning as a
function of context. Our claim is that the system cannot lose
access to Jane and store; they must be separable from Jane goes to
the store.
4However, the meaning of the phrase need not keep the word
meanings constant after they are composed (via whatever oper-
ator) into a phrase. For example, fuzzy can change its sense
based on the noun it modifies (e.g., fuzzy(penguin) versus fuzzy(-
logic) (see [22]), but this change of sense does not imply that the
system no longer has access to the two senses or meaning rep-
resentations of fuzzy.
5The instantiation of this in DORA is a process for recruiting a node
to code the conjunction of the constituents and that node is separate
from the feature-based distributed coding of the constituents in
another layer of the network (see [1,5,33] for more detail).
0306
References
1. Doumas LAA, Martin AE. 2018 Learning structured
representations from experience. Psychol. Learn.
Motiv. 69, 165–203. (doi:10.1016/bs.plm.2018.
10.002)

2. Fodor JA, Pylyshyn ZW. 1988 Connectionism and
cognitive architecture: a critical analysis. Cognition
28, 3–71. (doi:10.1016/0010-0277(88)90031-5)

3. Hummel JE. 2011 Getting symbols out of a neural
architecture. Connect. Sci. 23, 109–118. (doi:10.
1080/09540091.2011.569880)

4. Martin AE. 2016 Language processing as cue
integration: grounding the psychology of language
in perception and neurophysiology. Front. Psychol.
7, 120. (doi:10.3389/fpsyg.2016.00120)

5. Martin AE, Doumas LA. 2019 Predicate learning in
neural systems: using oscillations to discover latent
structure. Curr. Opin. Behav. Sci. 29, 77–83. (doi:10.
1016/j.cobeha.2019.04.008)

6. Baggio G. 2018 Meaning in the brain. Cambridge,
MA: MIT Press.

7. Jackendoff R. 2002 Foundations of language: brain,
meaning, grammar, evolution. Oxford, UK: Oxford
University Press.

8. Phillips S. 2019 Sheaving—a universal construction
for semantic compositionality. Phil. Trans. R. Soc. B
375, 20190303. (doi:10.1098/rstb.2019.0303)

9. Coecke B, Sadrzadeh M, Clark S. 2010 Mathematical
foundations for a compositional distributional model
of meaning. arXiv preprint arXiv:1003.4394.

10. Doumas LA, Hummel JE. 2005 Approaches to
modeling human mental representations: what
works, what doesn’t and why. In The Cambridge
handbook of thinking and reasoning (eds KJ
Holyoak, RG Morrison), pp. 73–94. New York, NY:
Cambridge University Press.
11. Pagin P, Westerståhl D. 2010 Compositionality I:
definitions and variants. Philos. Compass 5,
250–264. (doi:10.1111/j.1747-9991.2009.00228.x)

12. van Bekkum WJ, Houben J, Sluiter I, Versteegh
K. 1997 The emergence of semantics in four
linguistic traditions: Hebrew, Sanskrit,
Greek, Arabic, Vol. 82. Amsterdam, The
Netherlands: John Benjamins Publishing.

13. Boole G. 1854 An investigation of the laws of
thought: on which are founded the mathematical
theories of logic and probabilities. Mineola, NY:
Dover Publications.

14. Frege G. 1884 Die Grundlagen der Arithmetik: eine
logisch mathematische Untersuchung über den
begriff der zahl. Breslau, Prussia: Verlage Wilhelm
Koebner.

15. Plato, Cobb WS. 1990 Plato’s sophist. Savage, MD:
Rowan & Littlefield.

16. Wittgenstein L. 1922 Tractatus logico-philosophicus.
London, UK: Routledge & Kegan Paul.

17. Kratzer A, Heim I. 1998 Semantics in
generative grammar, Vol. 1185. Oxford, UK:
Blackwell.

18. Partee B. 1975 Montague grammar and
transformational grammar. Linguistic inquiry 6,
203–300.

19. Partee BH. 1995 Quantificational structures and
compositionality. In Quantification in natural
languages, Studies in Linguistics and Philosophy,
vol. 54 (eds E Bach, E Jelinek, A Kratzer, BH Partee),
pp. 541–601. Dordrecht, The Netherlands: Springer.

20. Chomsky N. 1957 Syntactic structures. The Hague,
The Netherlands: Mouton.

21. von Humboldt WF. 1836 Uber die Verschiedenheit
desmenschlichen Sprachbaues und ihren Einfluss auf
die geistige Entwickelung des Menschengeschlechts.
(Lettre à M. Jacquet sur les alphabets de la Polynésie
Asiatique.). Bonn, Germany: F. Dümmler. See
https://archive.org/details/
berdieverschied00humbgoog/page/n15.

22. Murphy G. 2004 The big book of concepts.
Cambridge, MA: MIT Press.

23. Dolan CP, Smolensky P. 1989 Tensor product
production system: a modular architecture and
representation. Connect. Sci. 1, 53–68. (doi:10.1080/
09540098908915629)

24. Plate TA. 1991 Holographic reduced representations:
convolution algebra for compositional distributed
representations. Technical Report. CRG-TR-91-1,
University of Toronto.

25. Smolensky P. 1990 Tensor product variable
binding and the representation of symbolic
structures in connectionist systems. Artif.
Intell. 46, 159–216. (doi:10.1016/0004-
3702(90)90007-M)

26. Smolensky P, Legendre G. 2006 The harmonic mind:
from neural computation to optimality-theoretic
grammar (cognitive architecture), Vol. 1. Cambridge,
MA: MIT press.

27. Fodor JA, McLaughlin BP. 1990 Connectionism
and the problem of systematicity: why
Smolensky’s solution doesn’t work. Cognition 35,
183–204. (doi:10.1016/0010-0277(90)
90014-B)

28. Holyoak KJ, Hummel JE. 2000 The proper treatment
of symbols in a connectionist architecture. In
Cognitive dynamics: conceptual and representational
change in humans and machines (eds E Dietrich, AB
Markman), pp. 229–263. New York, NY: Taylor &
Francis. (doi:10.4324/9781315805658)

http://dx.doi.org/10.1016/bs.plm.2018.10.002
http://dx.doi.org/10.1016/bs.plm.2018.10.002
http://dx.doi.org/10.1016/0010-0277(88)90031-5
http://dx.doi.org/10.1080/09540091.2011.569880
http://dx.doi.org/10.1080/09540091.2011.569880
http://dx.doi.org/10.3389/fpsyg.2016.00120
http://dx.doi.org/10.1016/j.cobeha.2019.04.008
http://dx.doi.org/10.1016/j.cobeha.2019.04.008
http://dx.doi.org/10.1098/rstb.2019.0303
http://dx.doi.org/10.1111/j.1747-9991.2009.00228.x
https://archive.org/details/berdieverschied00humbgoog/page/n15
https://archive.org/details/berdieverschied00humbgoog/page/n15
http://dx.doi.org/10.1080/09540098908915629
http://dx.doi.org/10.1080/09540098908915629
http://dx.doi.org/10.1016/0004-3702(90)90007-M
http://dx.doi.org/10.1016/0004-3702(90)90007-M
http://dx.doi.org/10.1016/0010-0277(90)90014-B
http://dx.doi.org/10.1016/0010-0277(90)90014-B
http://dx.doi.org/10.4324/9781315805658


royalsocietypublishing.org/journal/rstb
Ph

7
29. Doumas LAA, Hummel JE. 2012 Computational
models of higher cognition. In Oxford handbook of
thinking and reasoning), pp. 52–66. Oxford, UK:
Oxford University Press.

30. Martin AE, Doumas LA. 2017 A mechanism for the
cortical computation of hierarchical linguistic
structure. PLoS Biol. 15, e2000663. (doi:10.1371/
journal.pbio.2000663)

31. Singer W. 1999 Neuronal synchrony: a versatile code
for the definition of relations? Neuron 24, 49–65.
(doi:10.1016/S0896-6273(00)80821-1)

32. von der Malsburg C. 1995 Binding in models of
perception and brain function. Curr. Opin Neurobiol.
5, 520–526. (doi:10.1016/0959-4388(95)80014-X)
33. Doumas LAA, Hummel JE, Sandhofer CM. 2008 A
theory of the discovery and predication of relational
concepts. Psychol. Rev. 115, 1. (doi:10.1037/0033-
295X.115.1.1)

34. Hummel JE, Holyoak KJ. 1997 Distributed
representations of structure: a theory of analogical
access and mapping. Psychol. Rev. 104, 427.
(doi:10.1037/0033-295X.104.3.427)

35. Hummel JE, Holyoak KJ. 2003 A symbolic-connectionist
theory of relational inference and generalization. Psychol.
Rev. 110, 220. (doi:10.1037/0033-295X.110.2.220)

36. Plate TA. 1995 Holographic reduced representations.
IEEE Trans. Neural Netw. 6, 623–641. (doi:10.1109/
72.377968)
37. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J.
2013 Distributed representations of words and
phrases and their compositionality). arXiv preprint
(arXiv:1310.4546)

38. Gentner D. 2003 Why we’re so smart. In
Language in mind: advances in the study
of language and thought (eds D Gentner,
S Goldin-Meadow), pp. 195–235.
Cambridge, MA: MIT Press.

39. Mandler JM. 2004 The foundations of mind: origins
of conceptual thought. Oxford, UK: Oxford University
Press.

40. Buzsáki G. 2006 Rhythms of the brain. Oxford, UK:
Oxford University Press.
i
l.T
rans.R.Soc.B
375:20190306

http://dx.doi.org/10.1371/journal.pbio.2000663
http://dx.doi.org/10.1371/journal.pbio.2000663
http://dx.doi.org/10.1016/S0896-6273(00)80821-1
http://dx.doi.org/10.1016/0959-4388(95)80014-X
http://dx.doi.org/10.1037/0033-295X.115.1.1
http://dx.doi.org/10.1037/0033-295X.115.1.1
http://dx.doi.org/10.1037/0033-295X.104.3.427
http://dx.doi.org/10.1037/0033-295X.110.2.220
http://dx.doi.org/10.1109/72.377968
http://dx.doi.org/10.1109/72.377968

	Tensors and compositionality in neural systems
	Introduction
	Experiment 1: word similarity ratings
	Participants
	Stimuli
	Task and procedure

	Experiment 2: phrase similarity ratings
	Participants
	Stimuli, task and procedure
	Results of experiments 1 and 2

	Discussion
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


