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Abstract
Amazonian swamp forests remove large amounts of carbon dioxide  (CO2) but produce methane  (CH4). Both are important 
greenhouse gases (GHG). Drought and cultivation cut the  CH4 emissions but may release  CO2. Varying oxygen content in 
nitrogen-rich soil produces nitrous oxide  (N2O), which is the third most important GHG. Despite the potentially tremendous 
changes, GHG emissions from wetland soils under different land uses and environmental conditions have rarely been compared 
in the Amazon. We measured environmental characteristics, and  CO2,  CH4 and  N2O emissions from the soil surface with manual 
opaque chambers in three sites near Iquitos, Peru from September 2019 to March 2020: a pristine peat swamp forest, a young 
forest and a slash-and-burn manioc field. The manioc field showed moderate soil respiration and  N2O emission. The peat swamp 
forests under slight water table drawdown emitted large amounts of  CO2 and  CH4. A heavy post-drought shower created a hot 
moment of  N2O in the pristine swamp forest, likely produced by nitrifiers. All in all, even small changes in soil moisture can 
create hot moments of GHG emissions from Amazonian wetland soils, and should therefore be carefully monitored.
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Resumen
Los bosques pantanosos amazónicos eliminan grandes cantidades de dióxido de carbono  (CO2) pero producen metano 
 (CH4). Ambos son importantes gases de efecto invernadero (GEI). La sequía y el cultivo reducen las emisiones de  CH4 pero 
pueden liberar  CO2. La variación del contenido de oxígeno en los suelos ricos en nitrógeno produce óxido nitroso  (N2O), 
que es el tercer GEI más importante. A pesar de los enormes cambios potenciales, las emisiones de GEI del suelos de los 
humedales bajo diferentes usos de la tierra y condiciones ambientales rara vez se han comparado en la Amazonía. Medimos 
las características ambientales y las emisiones de  CO2,  CH4 y  N2O de la superficie del suelo con cámaras opacas manuales en 
tres sitios cerca de Iquitos, Perú, de septiembre de 2019 a marzo de 2020: un bosque pantanoso de turba prístino, un bosque 
joven y un campo de yuca de talado y quemado. El campo de yuca mostró una respiración moderada del suelo y emisión de 
 N2O. Los bosques pantanosos de turba con un ligero descenso del nivel freático emitieron grandes cantidades de  CO2 y  CH4. 
Una fuerte lluvia posterior a la sequía creó un momento caliente de  N2O en el bosque pantanoso prístino, probablemente 
producido por nitrificantes. Endefinitiva, incluso pequeños cambios en la humedad del suelo pueden crear momentos cali-
entes de emisiones de GEI de los suelos de los humedales amazónicos y, por lo tanto, deben monitorearse cuidadosamente.
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Introduction

Peatlands are an enormous sink of carbon and nitrogen (Leif-
eld and Menichetti 2018; Loisel et al. 2021). Natural and 
human disturbances may release them as greenhouse gases 
(GHG). The issue is particularly acute in tropical peatlands 
(IPCC 2019). The Amazon has the largest area of tropical 
peatlands (Leifeld and Menichetti 2018; Ribeiro et al. 2021). 
Most of them are isolated from major population centres 
and roads, and thus inaccessible to logging and agriculture 
(Lilleskov et al. 2019). C sequestration dominates the GHG 
balance in natural peat swamps (Frolking and Roulet 2007) 
whereas disturbances increase GHG emissions (Turetsky 
et al. 2014; IPCC 2019). In the Amazon, drought is a quickly 
increasing ecosystem change which is shortening the growth 
period and imposing tree decline (IPCC 2019). Droughts 
increase ecosystem respiration (Karhu et al. 2014; Jassey 
et al. 2021). Specifically, fungi and other microbes that 
respire much of the  CO2 rapidly acclimatise with the rising 
temperature which may send the ecosystems down a positive 
feedback loop (Karhu et al. 2014; Jassey et al. 2021). Thus, 
drought-induced tree mortality is saturating the Amazon 
C sink (Hubau et al. 2020). Undisturbed, i.e. permamently 
waterlogged peat swamp forests accumulate carbon (C) in 
the peat for tens of thousands of yr (Ruwaimana et al. 2020). 
However, during dry seasons in a Peruvian peat swamp for-
est, ecosystem respiration exceeds gross primary production 
by a steady average of 600 mg C  day–1 even when the peat 
remains wet (Griffis et al. 2020). Overall, the impact of water 
table fluctuations on tropical peatland C balances is unclear 
and therefore needs research.

Anoxic decomposition of peat under high water table 
yields methane  (CH4; Teh et al. 2017; Hergoualc’h et al. 
2020), a potent greenhouse gas with a global warming 
potential of 28  CO2 equivalents (IPCC 2019). The  CH4 
produced in a peat layer moves to the topsoil where it can 
be consumed by methanotrophs or emitted either through 
the peat or conducted through plants (Soosaar et al. 2022). 
Therefore, hydroclimate and biogeochemistry of the differ-
ent peat layers, as well as vegetation type and land use are 
potential factors of  CH4 emissions in tropical peatlands.

Suboxic processes in nitrogen-rich peat under intermedi-
ate (50 to 60%) water content produce nitrous oxide  (N2O; 
Melillo et al. 2001; Jauhiainen et al. 2012; Rubol et al. 2012; 
Hu et al. 2015; Pärn et al. 2018; Hergoualc’h et al. 2020). 
The 5.4 million  km2 Amazon rainforest is the ecosystem 
with the largest  N2O emissions in the world (Ricaud et al. 
2009) producing 1,300 Gg  N2O-N  yr–1 (Melillo et al. 2001). 
Brazil is a major contributor to the global increase in  N2O 
emissions, owing to the increase in nitrogen (N) fertilisa-
tion (Thompson et al. 2019). Contribution of swamp for-
ests to the Amazonian  N2O emissions is poorly known (van 

Lent et al. 2015; Guilhen et al. 2020). A Peruvian palm peat 
swamp emitted 0.5 to 2.6 kg  N2O-N  ha–1  yr–1 (van Lent 
et al. 2015) and similar swamp forests in Southeast Asia 
emitted 2.7 ± 1.7 kg  N2O-N  ha–1  yr–1 (average ± standard 
deviation; van Lent et al. 2015). However, sources of  N2O 
(nitrate  (NO3

–) or ammonium  (NH4
+) and their vulnerability 

to climatic changes, such as water table, oxygen  (O2) and 
temperature fluctuations, are unclear and need investiga-
tion. Denitrification by the sequential reduction of  NO3

– is 
the most important mechanism behind  N2O production and 
emission (Butterbach-Bahl et al. 2013; Liengaard et al. 
2014; Hu et al. 2015). This has been identified from  N2O 
profiles and porewater nitrogen forms in wetting experiments 
on intact soil cores (Butterbach-Bahl et al. 2013; Liengaard 
et al. 2014; Hu et al. 2015).  N2O is an intermediate product 
of the denitrification process in either suboxic soil or under 
varying  O2 availability both in time and between anoxic soil 
aggregates and air-filled pores (Butterbach-Bahl et al. 2013; 
Hu et al. 2015). Only after depletion of  NO3

– is  N2O reduced 
to inert  N2, as Liengaard et al. (2014) observed in denitrifica-
tion potential incubations of soil from the Brazilian Ama-
zon. However, nitrification, the sequential oxidation of  NH4

+ 
to  NO3

– is an exceptionally important source of  N2O (10% 
of  N2O production) in the Amazon (Inatomi et al. 2019). 
Hergoualc’h et al. (2020) identified nitrifier denitrification 
as the probable source process for the high  N2O emission in 
a Peruvian palm peat swamp forest. Thus, evidence on  N2O 
source mechanisms and on its denitrification potential reduc-
tion to inert  N2 (measured in soil incubations) in the tropics 
is scarce and contradicting. In addition, studies on mineral 
soil are unreliable for climate change effects on peatlands 
for their essentially different hydrology and biogeochemistry 
(Rydin and Jeglum 2013). In peatlands, water table stays 
above or near the ground surface throughout the dry season, 
protecting the carbon and nitrogen stocks (Turetsky et al. 
2014). Peatland clearing, commonly with fire, renders the 
peat carbon and nitrogen stocks vulnerable (Turetsky et al. 
2014; Lilleskov et al. 2019). Few studies have compared 
greenhouse gas fluxes across a variety of land uses and water 
table fluctuations in former and current Amazonian swamps. 
No study reports  O2 content values in relation to the green-
house gas fluxes including denitrification potential.

We set an objective to identify environmental drivers of 
soil respiration, and  CH4 and  N2O production and consump-
tion rates across a common gradients of land use in the Peru-
vian Amazon peatlands – from pristine peat swamp forest 
through a secondary forest to arable land – with accord-
ing differences in soil chemistry and water table. Our spe-
cific research questions tested the importance of chemical 
resources (such as organic C, total N,  NH4

+,  NO3
–) and cli-

matic fluctuations (in temperature, water table, soil moisture 
and  O2) for soil respiration, and the  CH4 and  N2O fluxes.
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Materials and Methods

We measured fluxes of the three GHGs using opaque soil 
chambers and environmental factors of the GHGs in three 
current or former swamps with the Mauritia flexuosa palm 
under various disturbance histories (Fig. 1): 1 — ‘Swamp’, 
a wet peat swamp forest in the Quistococha lake flood-
plain (6 m peat, − 0.03 to − 0.125 m water table during the 
campaigns; see Roucoux et al. 2013 for detailed physical 
description) located at 3°50’03.9” S, 73°19’08.1” W, 2 — 
‘Slope’, a 12-year old secondary swamp forest grown over 
a fallow pasture and banana plantation on an alluvial toe 
slope (0.1 to 0.3 m organic layer; − 0.09 to − 0.70 m water 
table toposequentially) 3°50’10.7” S, 73°21’45.0” W and 
3 — ‘Manioc’, a slash-and-burn cultivated manioc (Mani-
hot esculenta) field (0.03 to 0.15 m peat; − 2 m water table 
drawn down by the nearby stream channel and further dried 
by the burn clearing of forest and hand tillage of soil, no 
fertiliser), 3°51’00.0” S, 73°22’45.8” W. Regionally, rain-
fall is most pronounced during the 6-month January–June 
period, with peaks in March–April (Madigosky and Vat-
nick 2000). Rainfall diminishes sharply during April, with 
further decline during the next two months. The lowest 
period of rainfall is July–September (average of 572 cm 
 yr–1). Droughts or periods without rainfall can last for up 
to 7 consecutive days and dry days can occur for up to 20 
days in a single month. In the rainy season (January–June), 
dry spells are typically much shorter and may last only two 
days. Although unusual, rainfall can be absent up to 15 
days a month (Madigosky and Vatnick 2000).

At the ‘Slope’ and ‘Manioc’ sites, we established three 
toposequent stations at an interval of 15 m with 1.5 m eleva-
tion difference between the sequent stations. Water table in 
the ‘Slope’ forest varied between − 0.09 and − 0.13 m at the 
bottom of the transect, between − 0.115 and − 0.15 m at the 
middle and around − 0.7 m at the upper station. Each sta-
tion received three chambers three to five meters apart from 
each other. The ‘Swamp’ site was located in a flat terrain. 
Due to a flat uniform terrain, we organised the chambers 
in the ‘Swamp’ site in no stations or particular sequence to 
topographic features.  CO2,  CH4 and  N2O gas concentrations 
were sampled using the static chamber method with PVC 
collars of 0.5 m diameter and 0.1 m depth installed in the 
soil. The inside of collars at the ‘Slope’ site was covered 
with sparse < 0.2 m tall Pteridaceae ferns while the collars 
in the ‘Swamp’ and ‘Manioc’ sites contained no plants. We 
used white 65 L PVC truncated conical gas sampling cham-
bers. We did not use extra cover against sunlight but the 
chamber design is generally regarded as opaque (Hutchin-
son and Livingston 1993). We calculated individual  CO2, 
 CH4 and  N2O fluxes using changes in concentration dur-
ing one hour within the chamber. Gas concentration was 

measured at 20 min intervals (0, 20, 40 and 60 min). The 
fluxes were measured between 8 and 11 am to represent the 
average diurnal emissions (according to Figs. 11 and 12 in 
Griffis et al. 2020). We conducted 9 flux measurements in 
the ‘Swamp’ forest (10 collars) from September 2019 to 
March 2020, four flux measurements in the ‘Slope’ forest (9 
collars) in September 2020 and 9 flux measurements in the 
‘Manioc’ field (9 collars) from September 2019 to March 
2020 according to the schedule presented in Table 1. We 
used five chambers, which we moved between the collars. 
Before the first sampling in September, young manioc sap-
lings had been planted. By 15 February, they had grown to 
3 m height covering the whole field with a sparse canopy 
(< 30% shading). No manioc plant grew directly out of the 
stationary gas sampling collars at any time. The manioc was 
harvested in late February, leaving a bare field for the March 

Fig. 1  Location of study sites (1 – ‘Swamp’, 2 – ‘Slope’, and 3 
– ‘Manioc’) and distribution of palm swamp forests in the Pastaza-
Marañon Basin (data from Draper et al. 2014). Background image for 
the site location map above – © Google Maps
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sampling. The gas samples were transported to a laboratory 
at the University of Tartu and analysed by gas chromatogra-
phy (GC-2014; Shimadzu, Kyōto, Japan) instrumented with 
an electron capture detector for detection of  N2O and a flame 
ionisation detector for  CH4, and Loftfield-type autosamplers. 
An individual gas flux was determined on the basis of lin-
ear regression obtained from consecutive concentrations 
(Hutchinson and Livingston 1993). We closely examined 
the shape of our gas concentration trends in each individual 
chambers. Practically all significant deviations from a linear 
trend were apparently caused by a faulty chamber sealing. 
We did not observe any signs of ebullition such as jump 
rises in concentration not followed by a drop in concentra-
tion. An only small share of ebullition may be a peculiarity 
of our long chamber closing time of 1 h. A p level of < 0.05 
was accepted for the goodness of fit to linear regression. 
Out of 216 flux measurements, 14 failed to pass the quality 
check. Insignificant fluxes (p > 0.05) below the accuracy of 
gas chromatograph (regression change of gas concentration 
δv < 10 ppb) were included in the analysis as zeros.

Each station was equipped with a 1 m deep observation 
well (a 0.05 m perforated PP-HT pipe wrapped in filter tex-
tile). Water table height was recorded from the observation 
wells during the gas sampling. Soil moisture was measured 
with a GS3 sensor connected to a ProCheck handheld reader 
(Decagon Devices, Pullman, WA, USA). Soil temperature was 
measured between 0.1 and 0.4 m depth at an interval of 0.1 m. 
Soil oxygen  (O2) content was measured with a stand-alone 

fibre optic oxygen meter (PreSens, Regensburg, Germany) at 
0.05 m and 0.005 m depths in September and March.

A 200 g soil sample was collected from each chamber 
between 0 and 0.1 m depth after the gas flux measurements 
in September and March. The soil samples were stored and 
transported at 5 °C to the Estonian University of Life Sci-
ences. At the laboratory, plant-available (KCl extractable) 
phosphorus (P) was determined on a FIAstar 5000 flow 
injection analyser (FOSS, Hilleroed, Denmark; Ruzicka and 
Hansen 1981). Plant available potassium (K) was determined 
from the same solution by the flame-photometric method, 
and plant available magnesium (Mg) was determined from a 
100 mL ammonium acetate solution with a titanium-yellow 
reagent on the flow injection analyser (Ruzicka and Hansen 
1981). Calcium (Ca) was analysed using the same solution 
by the flame photometrical method (Ruzicka and Hansen 
1981). Soil pH was determined on a 1 N KCl solution. Soil 
ammonium  (NH4

+) and nitrate  (NO3
–) contents were deter-

mined on a 2 M KCl extract of soil by flow-injection analy-
sis (Ruzicka and Hansen 1981). Total N and C contents of 
oven-dry samples were determined using a dry combustion 
method on a varioMAX CNS elemental analyser. The soil 
organic matter (SOM) content of the oven-dry samples was 
determined by loss on ignition at 360° C.

To measure potential  N2O and molecular nitrogen  (N2) 
fluxes with the He–O2 soil incubation technique (Espenberg 
et al. 2018) at our laboratory in Tartu, Estonia, we collected 
intact soil cores (0.068 m diameter, 0.06 m height) from the 
top 0.1 m from each chamber after the last gas flux measure-
ments in September and March. The soil cores were stored 
and transported at 5 °C. The cylinders with the intact soil 
cores were placed into special gas tight incubation vessels 
in a climate-controlled space (own design). Gases were 
removed by flushing with an artificial gas mixture (21.0% 
 O2, 358 ppm  CO2, 0.313 ppm  N2O, 1.67 ppm  CH4, 5.97 
ppm  N2 and the rest He). The new atmosphere equilibrium 
was kept by continuously flushing the vessel headspace 
with the artificial gas mixture at 20 mL per min was estab-
lished after 12–24 h. The flushing time depended on the 
soil moisture. The temperature was kept similar to the field 
temperature during the incubation. Concentrations of  N2O 
and  N2 were analysed by the GC-2014 (Shimadzu, Japan). 
Flux rates were calculated from the actual gas concentration 
of the continuous flow rate from the vessel headspace after 
subtraction of a blank value from a vessel without a soil 
core, which is equivalent to concentrations from the artificial 
He–O2 gas mixture.

We tested normal distribution of the samples by the Kol-
mogorov–Smirnov and Shapiro–Wilk’s tests using the stats 
package in R. As data for most of the sites were not normally 
distributed (p > 0.05), we analysed relationships between 
the GHG fluxes and environmental characteristics by the 
nonparametric generalised additive models (GAM) usinge 

Table 1  Time schedule of flux measurements in all collars of each 
study site. X marks a 1-hour flux measurement

Date Swamp Slope Manioc

16.09.2019 X
17.09.2019 X
19.09.2019 XX
20.09.2019 XX
21.09.2019 XX
22.09.2019 XX
24.09.2019 X
25.09.2019 X
04.01.2020 X
11.01.2020 X
18.01.2020 X
25.01.2020 X
04.02.2020 X
08.02.2020 X
15.02.2020 X
22.02.2020 X
02.03.2020 X
03.03.2020 X
04.03.2020 X
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the simplest smoothing term (k = 3) in the mgcv package in 
R, and principal component analysis (PCA) using the stats 
package in R. For each cluster of replicate measurements we 
plotted a normal data ellipse with size defined as a normal 
probability equal to 0.68. Significance of differences between 
sites was checked by the unpaired two-sided Wilcoxon rank 
sum test (the wilcox.test function, stats package in R).

Results and Discussion

The PCA separated our three sites along gradients of soil 
respiration,  CH4 and  N2O fluxes (see detailed results in the 
next sections) and along physicochemical gradients (Fig. 2). 
Most clearly, the breaks between sites followed a water table 
gradient as well as soil  O2, temperature and  NO3

– content 
gradients. The waterlogged swamp peat did not contain a 
detectable amount of  NO3

–. As no fertiliser was added on 

our sites (see Methods), the high  NO3
– level in the manioc 

field was probably produced by nitrification induced by 
the slash-and-burn and subsequent water-table drawdown. 
Within the sites, the PCA distinguished the gas-sampling 
chambers along a soil nutrient gradient (Ca, Mg, pH, P, total 
N,  NH4

+) independent from the water table changes. The 
nutrients may have enhanced heterotrophic  CO2 and  N2O 
production. Within-site differences in water table and macro-
nutrients were still remarkable. In the ‘Swamp’ forest, water 
table varied from − 0.12 to − 0.085 m in mid-September, 
rose to − 0.03 m after a 30 mm shower 6 h before the 24 
September session and dropped to − 0.07 m during the next 
dry day. From January to March, it was steadily − 0.03 m. 
Soil  O2 content remained < 0.1 mg  L–1 at both 0.005 and 
0.05 m depth throughout the observations.

The dry station (water table − 0.7 m; soil water con-
tent 0.26  m3  m–3; soil temperature around 26 ºC at 10 cm 
depth) of the 12-year old ‘Slope’ swamp forest respired the 

Fig. 2  Principal component 
analysis (PCA) of GHG fluxes 
and environmental character-
istics in September 2019. Each 
data point represents one GHG 
flux replicate measurement. A 
normal data ellipse is shown 
around points from each site



 Wetlands           (2023) 43:62 

1 3

   62  Page 6 of 11

largest amount of  CO2 (session averages of 130 to 210 mg 
C  m–2  h–1). That station apparently represents the optimal 
moisture for soil respiration (Byrne et al. 2005; Balogh 
et al. 2011). The respiration declined with the increase in 
the water table (session averages of 43 to 91 mg C  m–2  h–1 
at the wettest station). The dry ‘Manioc’ field with higher 
soil temperature (soil water content 0.15 to 0.24  m3  m–3; soil 
temperature 26 to 34 ºC at 0.1 m depth during all months) 
respired 75 to 98 mg C  m–2  h–1 steadily throughout the study 
period (Fig. 3a). The anoxic ‘Swamp’ peat (soil dissolved 
 O2 content < 0.1 mg  L–1 at both 0.005 and 0.05 m depth) 
respired 49 to 150 mg C  m–2  h–1 at session average in nega-
tive linear relationship with water table (Fig. 4). Two alter-
native sources of the respiration at high soil water content 
(> 0.8  m3  m–3) and no dissolved  O2 in the soil (< 0.1 mg  L–1 
at both 0.005 and 0.05 m depth from 24 September onward). 
For one, anaerobic  CO2 production from dissolved organic 
matter diverted from methanogenesis (Heitmann et al. 2007). 
Second, the aerenchymous palm roots may have provided  O2 
in the deeper soil zones (van Lent et al. 2019).

The wet ‘Swamp’ forest floor emitted session averages 
of 530 to 9,100 µg  CH4-C  m–2  h–1 (Fig. 3b) owing to the 
high − 0.03 to − 0.125 m water table (in agreement with 
Hergoualc’h et al. 2020). This was less than the 43,000 µg 
 CH4-C  m–2  h–1 (of mostly ebullition) measured in a nearby 
peat swamp forest (Teh et al. 2017) and the 14,000 µg  CH4-C 
 m–2  h–1 from the Mauritia flexuosa palm peat swamp forests 
in Madre de Dios, Peru (Winton et al. 2017), but similarly 
high to the 1,500 to 3,200 µg C  m–2  h–1 of diffused  CH4 
reported from nearby peat swamp forests (Teh et al. 2017; 
Hergoualc’h et al. 2020). Above the canopy, 600 to 1,300 µg 
C  m–2  h–1 was measured (with water table between − 0.03 
and − 0.12 m; Griffis et al. 2020). This shows that even dur-
ing the dry season the palm swamp emits a lot of  CH4 and a 
large part of it reaches the atmosphere. Our measurements 
also lay within the range of  CH4 fluxes reported from Bra-
zilian swamp forest soils (igapo and varzea; Pangala et al. 
2017). The dry slash-and-burn ‘Manioc’ field consumed 
 CH4 at a session mean rate of 49 to 83 µg C  m–2  h–1 (Fig. 3b).

The swamp forest peat produced session averages of 65 
and 58 µg  N2O-N  m–2  h–1 during the 0.085–0.012 m water-
table drawdown on 16 and 17 September, respectively. 
Among the tested factors, water table fluctuation emerged 
as important. Accordingly, a 30 mm shower on the night 
before 24 September raised the water table to − 0.03 m, 
caused a 2-fold drop in peat respiration (Fig. 4), and initi-
ated session-average peaks of 360 and 420 µg  N2O-N  m–2 
 h–1 from the 90–350 mg dry  kg–1 soil  NH4

+-N on 24 and 25 
September. In January to March, a steady average of 11.6 µg 
 N2O-N  m–2  h–1 (session averages of 2.3 to 27 µg  N2O-N  m–2 
 h–1) was produced from the 120 mg dry  kg–1 soil  NH4

+-N 
(Fig. 5a) regardless of rainfall immediately before some of 
the sampling sessions. Across the study period, the fluxes 

correlated log-linearly with soil  NH4
+ content (Fig. 5a). Few 

 N2O flux models consider rainfall events; among them, the 
DeNitrification–DeComposition model (DNDC; Li et al. 
1992) calculates  N2O fluxes driven by decomposition of 
organic N and denitrification following rainfall events. 
However, more records of  N2O peaks after rainfall events 
are needed to feed a model properly. Our measured  N2O 
emissions contrasted the earlier-reported negligible emis-
sions from a nearby palm peat swamp forest (Teh et al. 2017) 
and were relatively high compared to the average 31 ± 22 µg 

Fig. 3  Individual  CO2 (a),  CH4 (b) and  N2O (c) fluxes in Peru, and 
their box plots. Significant differences according to Wilcoxon test are 
shown with asterisks as follows: * – p < 0.05; ** – p < 0.01; *** – 
p < 0.001. Asterisks directly above box without brackets denote sig-
nificant difference from all other sites in the plot
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 N2O-N  m–2  h–1 (average ± standard deviation across stud-
ies) from the 410 ± 120 mg dry  kg–1 soil  NH4

+-N in South-
east Asian wetland forests (van Lent et al. 2015), despite 
using an analogous measurement protocol (Hutchinson and 
Livingston 1993). Our measured fluxes were higher than 
model-predicted emissions of 21 µg  N2O-N  m–2  h–1 for the 
Amazon Basin (Guilhen et al. 2020) but agreed with huge 
 N2O emissions from floodplains soils of the Brazilian Ama-
zon by Figueiredo et al. (2019).

Soil  NO3
– content was below the detection limit in most 

of the anoxic peat samples, while  NH4
+ varied between 90 

and 350 mg N dry  kg–1. This contradicts previous knowledge 
on low-NO3

– water-saturated peat as a negligible source of 
 N2O (Rubol et al. 2012; Teh et al. 2017; Pärn et al. 2018). 
Melillo et al. (2001) reported > 50 µg  N2O-N  m–2  h–1 in an 
Amazon upland rainforest with low  NO3

– content. Most of 
anaerobic  N2O production pathways use  NO3

– as the source 
(Baggs 2011; Butterbach-Bahl et al. 2013; Hu et al. 2015). 
Among the few exceptions, nitrifier denitrification avoids 
 NO3

– reducing  NO2
− directly into  N2O (Wrage-Mönnig et al. 

2018). Hergoualc’h et al. (2020) identified nitrifier denitri-
fication in the palm swamp. It is a well-documented pro-
cess in mineralised peats (Wrage-Mönnig et al. 2018; Masta 
et al. 2020). Alternatively, either the  CO2 produced in the 
anaerobic respiration of dissolved organic matter (Heitmann 
et al. 2007) or  O2 from aerenchymous palm roots (van Lent 
et al. 2019) may have fed incomplete nitrification with the 
derived  NO3

– immediately used up by plants and denitrifiers 
in heavy competition on the  NO3

– (Kuzyakov and Xu 2013). 
The latter in turn may have produced a part of the  N2O in 
the anaerobic soil zone (in agreement with van Lent et al. 
2019). As another possible mechanism, co-denitrification 
reduces nitrogen dioxide  (NO2

–) or NO into  N2O (Spott et al. 
2011; Butterbach-Bahl et al. 2013). As a fourth potential 
source, we can consider denitrification in cryptogams such 
as lichens and fungi in other symbioses on the litter (Lenhart 
et al. 2015). The soil in our dry sites also emitted consider-
able 43 µg (12 to 55 µg as session average)  N2O-N  m–2  h–1 

in positive relationships with soil  NO3
– content (Figs. 3c 

and 5bc).
Potential  N2 production exceeded the potential  N2O 

flow by 1 to 2 orders of magnitude (Fig. 6).  N2O pro-
duction potential in the intact soil cores collected from 
the ‘Swamp’ forest after the September hot moment was 
64 µg  N2O-N  m–2  h–1. The soil cores collected in March 
and from other locations in all other sampling times 
showed near-zero  N2O production potential. The product 
potential of  N2 in the palm swamp was 1,100 µg  m–2  h–1 
in late September and 5,500 µg  m–2  h–1 in March. This 

Fig. 4  Soil respiration declined with the rise of water table in the 
‘Swamp’ forest in Peru

Fig. 5  Relationships between monthly average (a, c), and individual 
(b)  N2O emissions and soil N forms
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shows that denitrification was deficient in September 
whereas in March practically all  N2O was dentrified to 
 N2. In the ‘Manioc’ site,  N2 production potential was low, 
further explaining the significant  N2O emissions (Fig. 3b) 
with incomplete denitrification. At the bottom station of 
Slope,  N2 potential was intermediate between the natural 
palm swamp and the manioc field, completing the clear 

 N2 potential gradient according to the previous duration 
of high water table.

The field  N2O :  (N2O +  N2 potential) product ratio was the 
highest at the ‘Swamp’ in September, owing to huge  N2O 
emission and moderate  N2 potential. These can probably be 
explained, again, by the water-table drawdown and heavy 
shower before the sampling. In March the  N2O :  (N2O +  N2) 
ratio showed near-zero values in the ‘Swamp’ forest, due to 
low  N2O emission and very high  N2 potential. Thus, the  N2O 
likely produced from nitrifier denitrification in March was 
consumed by denitrification. That likely resulted from the 
December rainfall after which high water table settled in for 
months. The ‘Slope’ also showed a low  N2O :  (N2O +  N2) 
ratio owing to moderate  N2O emission and high  N2 potential. 
The  N2O :  (N2O +  N2) ratio in the ‘Manioc’ site was moder-
ate, due to moderate  N2O emissions and low  N2 potential in 
the dry soil.

We carefully examined the  N2O and  N2 production poten-
tial results for a possible effect of cold storage on the soil for 
incubations. Studies by Verchot (1999), Arnold et al. (2008) 
and others have demonstrated adverse impacts on N cycling 
microbes and thus problematic and could lead to significant 
treatment effects. Our incubations, however, showed various 
production potential rates which we assumed were related 
to their ambient environmental conditions. As a validation 
point, the  N2O production potentials generally followed 
the same pattern as the field  N2O measurements, with the 
‘Swamp’ in September emitting hundreds of µg  m–2   h–1 
 N2O-N with the rest of the sessions showing small or negli-
gible  N2O fluxes (Figs. 5 and 6b).

Conclusions

The cultivated field in the Peruvian Amazon emitted rela-
tively high amounts of  CO2 and  N2O but the swamp forest 
under a rising water table topped even that, while retaining 
their naturally high  CH4 production and part of the  CO2 
emission. We observed several indirect signs of temporary 
oxygen intrusion in the swamp forest soil. The resulting high 
GHG emissions demand close monitoring of soil moisture 
and oxygen levels in Amazonian wetand soils. Management 
of Amazonian swamp forests should be aware of the impact 
even small changes in soil moisture have on GHG emissions 
wherefore conservation of swamp forests is still the surest 
way to minimise the GHG emissions.
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