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Modern high field and ultra high field magnetic resonance imaging (MRI) experiments
routinely collect multi-dimensional data with high spatial resolution, whether multi-
parametric structural, diffusion or functional MRI. While diffusion and functional imaging
have benefited from recent advances in multi-dimensional signal analysis and denoising,
structural MRI has remained untouched. In this work, we propose a denoising technique
for multi-parametric quantitative MRI, combining a highly popular denoising method
from diffusion imaging, over-complete local PCA, with a reconstruction of the complex-
valued MR signal in order to define stable estimates of the noise in the decomposition.
With this approach, we show signal to noise ratio (SNR) improvements in high
resolution MRI without compromising the spatial accuracy or generating spurious
perceptual boundaries.

Keywords: denoising, ultra-high field MRI, quantitative MRI, local PCA, complex MRI signal

INTRODUCTION

Ultra-high field magnetic resonance (MR) imaging at 7 Tesla and beyond has enabled
neuroscientists to probe the human brain in vivo beyond the macroscopic scale (Weiskopf
et al., 2015). In particular, quantitative MRI techniques (Cercignani et al., 2018) have become
more readily available and offer the promise of quantitative information about the underlying
microstructure. Unfortunately, as the size of the imaging voxel decreases well below the cubic
millimeter, so does the signal to noise ratio (SNR), and the achievable resolution even when
imaging a small portion of the brain remains limited, and requires multiple averages at the highest
resolutions (Stucht et al., 2015; Federau and Gallichan, 2016; Fracasso et al., 2016).

Multi-parametric quantitative methods acquire multiple images within a single sequence, in
order to estimate the underlying quantity (Helms et al., 2008; Metere et al., 2017; Caan et al.,
2018). This is comparable to diffusion-weighted MR imaging (DWI) where multiple images with
different weighting are acquired. Recent work in diffusion analysis demonstrated that the intrinsic
redundancy of the signal across these images can be employed to separate signal from noise with a
principal component analysis (PCA) over small patches of the images (Manjón et al., 2013; Veraart
et al., 2016). This principle can be transferred to multi-parametric quantitative MRI: in this work
we present an extension of the PCA denoising to the recently described MP2RAGEME sequence,
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which provides estimates of R1 and R2∗ relaxation rates as well
as quantitative susceptibility maps (QSM) in a very compact
imaging sequence (Caan et al., 2018).

The MP2RAGEME data comes with additional challenges for
the classical PCA approaches. First, the images are complex-
valued, comprising of both magnitude and phase needed for
the estimation of quantitative MRI parameters. This complex
nature of the data needs to be taken into account. Second, they
include only a few images compared to the high number of
directions acquired in DWI. Interestingly, we can make fairly
simple assumptions about the dimensionality of the signal, as
it contains primarily R1, R2∗, susceptibility and proton density
(PD) weighting. Taking these features into account, we were
able to effectively denoise high resolution MP2RAGEME data
without averaging, and maintain spatial precision. We studied
the impact of denoising on the computation of quantitative
maps, and its practical impact for reconstructing thin vessels
and delineating small, low contrast subcortical nuclei such as
the habenula, a notoriously difficult-to-image, small structure
in the subcortex.

MATERIALS AND METHODS

Data Acquisition
Our denoising method focuses on the recently developed
MP2RAGEME sequence (Caan et al., 2018) which combines
multiple inversions and multiple echoes from a magnetization-
prepared gradient echo sequence (MPRAGE) to simultaneously
obtain an estimate of quantitative T1, T2∗ and susceptibility.
The specific protocol of interest is comprised of five different
images: a first inversion with T1 weighting, followed by a second
inversion with predominantly PD weighting and four echoes with
increasing T2∗ weighting (Figure 1).

For the experiments, we used a high-resolution imaging
slab centered on the subcortex with the following parameters:
resolution = 0.5 mm isotropic, TR = 8.33 s, TR1 = 8 ms,
TR2 = 32 ms, TE1 = 4.6 ms, TE2A−D = 4.6/12.6/20.6/28.6 ms,
TI1/TI2 = 670/3738 ms, α1/α2 = 7/8◦. Data was obtained on
a 7T system (Philips Achieva, Netherlands) with a 32 channel
rf-coil (Nova Medical Inc., United States) for five healthy
human subjects as part of an ongoing atlasing study approved
by the Ethics Review Board of the Faculty of Social and
Behavioural Sciences, University of Amsterdam, Netherlands
(approval number: 2016-DP-6897). All subjects provided written
informed consent for the study.

Complex Signal Reconstruction
One of the main drawbacks of existing local PCA methods for
denoising is that they work on magnitude images, which follow
Rician distributions. A simple correction proposed in Baselice
et al. (2009) and Eichner et al. (2015) for removing the Rician
bias in DWI averaging is to revert to the complex signal, taking
into account the phase information. Methods exist to perform
PCA directly in the complex domain (Horel, 1984) but those
are focusing estimating variations in spatial dynamic processes.
The MRI signal being static in nature, its real and imaginary

parts can simply be treated as a two-dimensional vector for
real-valued PCA.

Phase and magnitude of the MRI signal have very different
noise properties, so it is not adequate to just stack them into a
vector for the PCA. Instead, we follow the complex signal strategy
by reconstructing the real and imaginary parts of the complex
signal, which have the same noise characteristics. However,
phase contains additional variations due to non-local effects
of air cavities around the brain, which bring severe ringing
artifacts in the reconstructed data (Figure 2A). In Eichner et al.
(2015), the global phase information is removed with a total
variation method, which generally respects the location of phase
wraps. However, we found that this approach is not effective
in regions where the phase wraps have high frequency, and
there are residual phase artifacts in the local phase. While
these have little consequences for their averaging application,
they provide systematic variations for the PCA decomposition,
which is undesirable here. We therefore start with a full phase
unwrapping (Abdul-Rahman et al., 2005) followed by a total
variation smoothing (Chambolle, 2004) of the unwrapped phase
(Figure 2B). The residual phase variations are used as local
phase, and combined with the magnitude to reconstruct real
and imaginary parts of the complex signal (Figures 2C,D). Note
that here, unlike (Eichner et al., 2015), we do not discard the
imaginary part of the signal as it contains valuable information
about the noise and residual anatomical information.

Local PCA of Complex Signal
The complex signal, now comprising ten image dimensions
all similar in nature, is then processed following the local
overcomplete PCA approach of Manjón et al. (2013). In short,
the images are cut into small, overlapping patches of NxNxN
voxels, and the M contrasts combined into a N3xM matrix. The
average patch value per contrast is subtracted, and the matrix
decomposed via singular value decomposition (SVD) to yield the
eigenvectors and associated singular values (square roots of the
eigenvalues) of the covariance matrix across the patch. In this
work, we used patches of size N = 4, and M = 10.

The overlapping patches are combined following the
technique of Manjón et al. (2013), weighting each patch by
the number of kept eigenvectors Wpatch =

1
1+Mkept

. Once
recombined, the eigenvectors rapidly change from a rich
information content, encoding boundaries, to pure noise
(Figure 3). However, the decision boundary between actual
signal and noise is variable across the brain, due to the presence
of different tissue types, multiple tissue boundaries, etc. In
order to infer for each patch the number of eigenvectors
to keep, we thus need to first quantify the expected noise
distribution over the SVD.

Estimating the Noise
Noise estimation in advanced MRI is challenging: variations in
coil sensitivity, non-local susceptibility effects and dependencies
to the B0 field as well as various acquisition techniques will
affect the signal and the noise differently in different regions. The
original local PCA denoising methods of Manjón et al. (2013)
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FIGURE 1 | The MP2RAGEME sequence: (A) First inversion, (B–E): second inversion, first to fourth echo (top: magnitude, bottom: phase).

FIGURE 2 | Phase pre-processing. (A) original phase map, (B) after unwrapping and global phase removal (estimating global phase variations with TV-smoothing
and keeping only the residual phase), (C) reconstructed real signal combining magnitude and cosine of the phase, (D) reconstructed imaginary signal combining
magnitude and sine of the phase. These reconstructed signals are the input for the local PCA algorithm.

used elaborate estimates of the magnitude image noise, taking
into account its Rician properties. A recent extension of the work
uses random matrix theory to model the expected distribution of
random noise eigenvalues and determine its threshold (Veraart
et al., 2016). While this approach is theoretically grounded, it
may be sensitive to disturbances when applied to data with
a limited number of eigenvalues. In Figure 4, we simulated
small 4 × 4 × 4 voxel patches with 10 dimensions (as in the
MP2RAGEME sequence) and 3 non-zero eigenvalues. While the
random matrix theory method performs well in non-interpolated

data, its performance degrades strongly when the noise becomes
correlated across voxels from image interpolation.

In this work, we propose a more robust approach based
on two properties of the complex signal: first, that the noise
is locally Gaussian, and second that the spread of singular
values for Gaussian noise can be reasonably well approximated
by a straight line, at least when the number of dimensions
in the decomposition is small. This property is retained by
interpolation, which makes it possible to perform denoising
after image registration, for instance when motion correction is
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FIGURE 3 | Local PCA decomposition: first five singular value maps (top) and eigenvector maps (bottom) from highest to lowest. Eigenvectors were first
reformatted into 4 × 4 × 4 patches and averaged using the same averaging weights as in the denoising, singular values were set as a constant over the patch and
averaged in the same way.

needed as in DWI or fMRI, or after fat navigator-based motion
correction in structural MRI (Gallichan and Marques, 2017).

Our algorithm to estimate the noise level proceeds as follows:
first, a line is fitted to the M/2 lowest singular values of the patch
decomposition using linear least squares (here, M/2 = 5). Then,
every singular value above a factor of α above the expected noise
level given by the fitted line is kept, while the others are removed
(in this work, we used α = 5%). Thus, the main requirements of
our method are that: (1) local signal variations across contrasts
in each individual patch are Gaussian-distributed, and (2) the
intrinsic dimension of the data is lower than half of the number
of acquired images. The patches are then reconstructed and
averaged across the image, the complex images separated into
magnitude and phase, and finally the discarded global phase
variations are reintroduced and wrapped, to obtain data as
similar as possible to the original input. In addition, a map
of the number of kept eigenvectors and of the noise fitting
residuals weighted by patch are computed for quality control
(see Figure 5).

The entire algorithm, from phase pre-processing to noise
estimation and recombination is summarized in Figure 6.

Software Package
To make our method more widely usable, we released the
denoising algorithm in Open Source in the Nighres python
library (Huntenburg et al., 2018)1. The algorithm can be called
as the nighres.intensity.lcpca_denoising module in python (3.0+)
scripts and notebooks. The algorithm itself is implemented in
Java 8 for increased efficiency in the IMCN Toolkit2 and wrapped
in python with JCC (see Huntenburg et al., 2018 for details on
the integration).

1https://www.github.com/nighres/nighres/
2https://www.github.com/imcn-uva/imcn-imaging/

A sample data set along with a complete processing script
as well as the statistics from our experiments are available
on FigShare3.

Quantitative Mapping
The main interest of quantitative MR mapping techniques such
as the MP2RAGEME sequence is to obtain estimates of the MR
parameters of T1, T2∗ relaxation times and susceptibility χ from
the measured images. In order to do so, we used the look-up table
method of Marques et al. (2010) to generate T1 estimates, a simple
regression in log domain to obtain T2∗ (Miller and Joseph, 1993)
and the TGV-QSM reconstruction algorithm of Langkammer
et al. (2015) to create quantitative susceptibility maps (QSM),
following the approach of Caan et al. (2018) to estimate QSM
for each of the three last echoes of the second inversion and take
the median. As a byproduct, the T1 estimation also generates
bias-corrected T1-weighted images, and the T2∗ fitting produces
an S0 baseline image devoid of T2∗ effects, which will be used
in some of the processing. T1 and T2∗ mapping methods are
included in the Nighres library, and the TGV-QSM algorithm is
also freely available4.

Manual Delineations
In order to obtain structure-specific measures of quality and to
evaluate the practical benefits of the method for segmentation
purposes, we performed a manual segmentation study. To
evaluate the benefits of the denoising, we selected the habenula,
a small structure ventral to the thalamus, which together with
the pineal gland and stria medullaris forms the epithalamus
(Hikosaka, 2010; Strotmann et al., 2013; Mai et al., 2016).
Since we cannot distinguish between the medial and lateral

3https://uvaauas.figshare.com/projects/Denoising_High-field_Multi-
dimensional_MRI_with_Local_Complex_PCA/61832
4http://www.neuroimaging.at/pages/qsm.php
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FIGURE 4 | Noise properties of the PCA thresholding: estimation of the threshold to denoise a 4 × 4 × 4 voxel patch with 10 dimensions and 3 non-zero
eigenvalues, with added Gaussian noise and a SNR of 10 (left) or 20 (right), with no interpolation (top), a single interpolation of all 10 dimensions (middle), or
multiple linear interpolations for each of the 10 dimensions (bottom). All interpolations are linear interpolations shifting the 3-dimensional voxel grid by a uniformly
distributed random offset of up to a half voxel. In each subfigure, the left side shows 20 eigen- and singular value examples with the corresponding threshold as a
vertical bar, for the random matrix approach (in red) and the linear fitting approach (in blue). The right side shows the histogram of thresholds estimated over 10,000
simulated noise patterns. Dotted lines indicate the ideal number of eigenvalues to keep.

habenula on MRI, both were included in our delineations. Given
its size, complex shape, and heterogeneous composition, the
habenula requires high resolution images and detailed anatomical
knowledge to be reliably delineated on MRI.

In this study, the habenula was delineated by two raters on
the reconstructed quantitative T1 maps obtained with or without
denoising. The consensus mask (regions labeled by all raters on
all images) were used to measure noise properties, while the
overlap of the masks was used to measure inter-rater reliability.

Co-registration to Standard Space
Previously proposed methods for local PCA denoising have
shown decreased performance when handling interpolated data
due to the changes in the noise distribution (Manjón et al.,
2013; Veraart et al., 2016). To test the performance of our

noise estimation approach, we co-registered our data to standard
space by aligning it first with a whole brain image of the same
subject and then to the MNI152 template at 0.5 mm resolution.
Both registrations used the first inversion of the MP2RAGEME
sequence, and were performed with linear registration in ANTS
(Avants et al., 2008). Phase images were unwrapped before
transformation to avoid interpolating across phase wraps, and
quantitative maps were computed before and after denoising
in standard space.

Region Labeling
To evaluate the signal improvement across a variety of
structures, we used manual delineations of the striatum,
globus pallidus internal and external segment, subthalamic
nucleus, substantia nigra and red nucleus obtained from lower
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FIGURE 5 | Maps of estimated noise threshold from actual data: number of kept eigenvectors (left) and R2 goodness of fit of the linear fit of the lowest singular
values of the PCA (right) for data in original acquisition space (A) and linearly co-registered into MNI space (B). As in Figure 3 full-sized images were obtained by
setting the value of each patch to either the corresponding number of kept eigenvectors or the R2 score and averaging the patches over the image.

FIGURE 6 | Summary of the Local-Complex PCA denoising algorithm
(LCPCA).

resolution MP2RAGEME images (0.64 × 0.64 × 0.7 mm
resolution) with higher SNR. The delineations were performed
independently by two raters and the conjunction between
them was used as the structure mask. The masks were
co-registered linearly to the high resolution slab based on
their scanner coordinates followed by a rigid registration
in ANTS. The intensities of the quantitative maps inside
each region were averaged and used to compute signal-
to-noise ratio statistics (i.e., mean intensity over standard
deviation inside each structure) of the original images and
reconstructed quantitative maps before and after denoising
in original space.

Vascular Reconstructions
Finally, we tested the capabilities of the denoising to maintain
fine details by segmenting the vasculature with the method of
Huck et al. (2019) on R2∗ quantitative maps. The algorithm uses a
spatial vessel filter followed by global diffusion, and is particularly
sensitive to small vessels (Bazin et al., 2016). The filter was run
with standard parameters on both the original and denoised
R2∗ maps after skull stripping using the S0 image and T1 map
obtained during quantitative mapping (Bazin et al., 2014), and
the result was overlaid on the bias-corrected T1-weighted image
for orientation.

RESULTS

Impact on Quantitative Maps
As shown in Figure 7, the LCPCA denoising strongly impacts
the estimation of quantitative signals, as the SNR gains of
multiple images are combined. Visually, we found a strong gain
in particular for R2∗ mapping, which is quite noise-sensitive with
the low number of echo times of the MP2RAGEME sequence.
While the improvements are subtle at the whole brain scale, they
are very clear when focusing on small regions, particularly in the
subcortex where the original SNR is low.

SNR Measures
The denoising systematically improved the SNR in all structures,
although not identically across regions and contrasts (Figure 8).
On individual MP2RAGEME images, the improvement was
modest, while denoising had a stronger cumulative impact
on quantitative map estimation, especially for R1. While R2∗
appears visually improved, the SNR measures were more
similar partly due to the heterogeneity of R2∗ values in many
anatomical structures. QSM is the least affected, both visually and
quantitatively, which is expected as the quantitative susceptibility
reconstruction algorithm includes its own spatial regularization
method [in this case, total generalized variation (TGV)]. Still,
some more heterogeneous regions of the subcortex appear
smoother after denoising. Interestingly, the highest gains were
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FIGURE 7 | Comparison of quantitative MRI reconstruction: left, from the original MP2RAGEME images; right from the denoised result.

FIGURE 8 | SNR improvement for the delineated structures and the different contrasts for the five subjects of the experiment (from left to right: first inversion,
second inversion echo 1 to 4, estimated R1 map, estimated R2∗ map, estimated QSM; mean and standard deviation across subjects). SNR is computed as the
mean signal over its standard deviation in each structure, and the improvement is the difference between original and denoised data.

obtained for the smaller structures such as substantia nigra,
subthalamic nucleus and red nucleus. Results were similar across
the five subjects of the experiment.

Impact on Manual Delineations
Manual delineations of the habenula are challenging, and inter-
rater agreement is low. Our denoising improved the consensus
(Figure 9), but not to the point of an acceptable level of
reproducibility for measuring anatomical quantities such as
volume or shape. Again, there were no notable variations of the
improvement across subjects.

Effects of Interpolation
When performing the denoising step after image co-registration
to a standard space and interpolation, we observe only small
differences in the LCPCA algorithm behavior (Figure 5). The

interpolation procedure tends to slightly increase the dimension
of the kept signal, probably due to the mixing of signals
across voxels. However, the proposed dimensionality estimation
procedure appears largely robust to interpolation.

Impact on Vascular Reconstruction
Brain vasculature is very difficult to image, as most of the
vessels have sub-millimeter resolution even at the surface of the
brain. Because most methods use local information to identify
vessels, they are very sensitive to noise, and prone to large
amounts of false detections. Figure 10 illustrates the potential
benefits of the proposed denoising in separating vessels from
noise, while preserving the fine details of the vasculature. A full
test of the consistency of detected vessels across multiple scans
would be needed to assess that the method does enhance vessels,
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FIGURE 9 | Comparison of manual delineations of the lateral habenula with or without denoising for the five subjects of the experiment. (A) Inter-rater agreement
between delineations, (B) 3D rendering of the lateral habenula in one subject, as delineated by each rater (red and green outline, respectively), (C) Zoomed-in
rendering.

FIGURE 10 | Comparison of vasculature reconstruction with or without
denoising (maximum intensity projection over 15 mm of the estimated vessel
probability map (overlaid on the T1-weighted image for the subject, for
orientation). Insets show regions of the cerebellum (left) and subcortex (right)
where lower SNR seems to artificially increase the detected vascular density in
the original image.

however, it is worth noting that these fine structures are preserved
in the denoising.

DISCUSSION

In this work we presented a new local PCA denoising technique,
using the full complex signal acquired to correct acquisitions
with multiple image contrasts such as DWI or quantitative MRI
sequences. Even with a sequence like MP2RAGEME, where only
five different images are used in order to recover T1, T2∗, and
QSM, the proposed approach was able to effectively reduce the
noise without introducing blurring artifacts. The homogeneity of
structures compared to their boundary was improved over the
basal ganglia structures, and delineation of small brain structures

such as the habenula was shown to be more reproducible in high
resolution images with high levels of imaging noise.

By using both magnitude and phase information, the proposed
method captures the entire noise distribution, and stays in the
statistically simpler domain of complex Gaussian perturbations.
However, obtaining high quality phase images is not trivial for
all scanners and imaging sequences and can be a limitation
also in retrospective processing, as the phase is commonly
discarded. Note also that certain acceleration techniques such
as partial Fourier encoding may sacrifice the phase signal
estimation. In the case of quantitative MRI sequences based
on the MP2RAGE method or focusing on QSM, phase data is
required to obtain the quantitative maps, so it is important to
take it into account and denoise it. While there is no conceptual
requirement to use both phase and magnitude in the denoising,
lowering the number of dimensions reduces the applicability
of the method: in the case of the MP2RAGEME using only
five dimensions in order to separate four-dimensional signals
from noise is challenging, and the linear fit of the noise to
the last half of the local PCA eigenvalues becomes unreliable.
Yet, preliminary experiments with other relaxometry methods
such as multi-parameter mapping (Weiskopf et al., 2013), which
acquire between 14 and 20 images, indicated that the separation
of signal and noise based on magnitude alone was possible
(unpublished data).

The main requirements of the noise estimation method are
that: (1) local signal variations across contrasts in each individual
patch are Gaussian-distributed, and (2) the intrinsic dimension
of the data is generally lower than half of the number of acquired
images. The first requirement is easily met in small patches,
regardless of the type of data acquired. The second requirement
depends on the type of MR sequence and tissue properties under
consideration, but can be met simply by running twice the same
sequence, as is commonly done for increasing SNR by classical
averaging. Note also that in the case of a single contrast PCA
approach reduces to simple averaging with no added value.
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The main interest of the PCA-based approaches for denoising
high resolution images is that unlike most other methods, they do
not impose spatial regularity but rather enforce regularity across
contrasts, preserving small anatomical details without blurring or
inducing artificial boundaries. Recent advances in spatial filtering
techniques have demonstrated significant improvements, but still
introduce some form of spatial averaging (see Milanfar, 2013
for a review). Note that a thorough comparison with advanced
spatial denoising techniques was performed by Manjón et al.
(2013) in the context of DWI data, showing comparable or better
performance for LPCA. In addition, while the impact of noise
removal on conventional MR images remains subtle, it offers the
option to push MR sequences beyond the usually accepted limits
of thermal noise as long as enough signal remains to be reliably
detected. As ultra-high field advances toward higher and higher
resolutions, such denoising methods may become essential part
of the imaging protocol for multi-contrast anatomical imaging
in the same way they have become a standard tool for advanced
DWI pre-processing (Veraart et al., 2016).

Finally, the proposed method is generally applicable to other
relaxometry sequences such as multi-echo GRE, multi-echo
MPRAGE or multi-parametric maps (MPM), as well as DWI or
(multi-echo) fMRI. In some cases, e.g., T2∗ relaxometry or multi-
echo fMRI, it is important to note that the known relationship
between echoes could also be used to further discriminate
signal from noise (Kundu et al., 2017). The robustness of the
proposed noise threshold estimation technique to interpolation
makes it also interesting for other MR imaging protocols that
include multiple images with different contrasts, even if acquired
sequentially or even at different resolutions, as long as the ratio
of total number of images to actual number of measured contrast
mechanisms is sufficient to estimate noise properties.

CONCLUSION

Here we presented a new local PCA method to denoise high
resolution multi-parametric quantitative MRI data. Combining
magnitude and phase data, we could differentiate between
signal- and noise-induced variations with a simple model that
is robust to interpolation. The resulting quantitative images are
automatically regularized and additional anatomical detail is
visible in low contrast regions. The denoising software is openly
available as part of the IMCN Toolkit (see text footnote 2) and
the Nighres library (see text footnote 1). The proposed method
can be extended to denoise other MR imaging sequences with
similar properties, namely partially redundant contrasts and low

intrinsic dimensionality. While the method is already efficient to
denoise MR images acquired with cutting edge methods at the
lower limits of SNR, we hope they may help further to push MR
imaging toward acquiring even more challenging data where the
noise may visually dominate but significant amounts of signal are
still available.
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