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Abstract 

Fatty acids are one of the most abundant lipids in the cell. Cells use them to build biological 

membranes, as energy reserves and as signaling molecules. Fatty acids are synthesized by 

a specialized protein machinery called the fatty acid synthase (FAS). Despite the crucial role 

fatty acids play in a cell, we still know surprising little about the structure and mechanism 

of action of fatty acid synthases. In fungi and mammals, fatty acid synthases are large 

multimeric protein complexes. During fatty acid synthesis, the growing fatty acid chain is 

thought to be shuttled by the acyl carrier protein domain to several enzyme active sites. To 

accomplish this, these proteins need to be dynamic. This, however, limits our ability to 

study their structure at high resolution. In this doctoral thesis, different biochemical 

methods were tested to reduce compositional and conformational heterogeneity of the 

fungal type I FAS. To address compositional heterogeneity, a mild chromatography-free 

purification strategy was established along with the removal of bound fatty acid 

intermediates from the complex. Gradient Fixation (GraFix), nanobody binding and 

addition of substrates were also tested for conformational stabilization of the complex. The 

improvement in compositional heterogeneity allowed structures of the FAS to be routinely 

determined at resolutions of 3Å, using both cryo-EM and X-ray crystallography. The 

structures determined during this thesis are the highest resolution structures of the FAS 

reported to date. Structural analysis revealed two conformational states of the FAS. The 

first, a non-rotated conformation, where the acyl carrier protein domain is localized at the 

ketosynthase domain, and a novel rotated conformation, where the acyl carrier protein is 

localized at the acetyl transferase domain. Along with this, a novel γ-subunit of the 

S.cerevisiae FAS was characterized. This is the first FAS binding protein identified in over 

five decades of FAS research. The γ-subunit spans a distance of 120 Å inside the FAS cavity 

and interacts with four domains: enoylreductase, acyl carrier protein, malonyl/palmitoyl 

transferase and ketoreductase. In addition, the γ-subunit stabilizes the rotated FAS 

conformation and reduces the affinity of FAS for its substrates. Through its interactions, the 

γ-subunit directly hinders the binding of the malonyl-CoA and NADPH to the respective 

catalytic domains. These results provide a better understanding of the dynamics of the 



fungal type I FAS. The dependence of ACP domain location on the conformation of the FAS 

dome suggests that the movement of the ACP inside the FAS might not be completely 

stochastic as previously postulated. Furthermore, the ability of the γ-subunit to regulate 

FAS activity by inhibiting multiple active sites is unique and adds a new mechanism of FAS 

regulation in yeast. In the future, the knowledge obtained by studying the γ-subunit can be 

applied for designing inhibitors based on its structure. It also offers a nature made scaffold 

that can be exploited to incorporate natural and designed enzymatic activities absent from 

the FAS. The work performed in this thesis underscores the need to revisit essential protein 

machineries using new sample preparation methods and structural techniques for a more 

comprehensive understanding of how protein structure correlates with function.  
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1. Introduction 

Proteins are one of the most abundant biological macromolecules in cells and have a diverse 

range of functions. Proteins can be regulatory, structural, protective, serve in transport, 

signaling, storage, or act as biological catalysts. They also enable synthesis and degradation 

of all other types of biological macromolecules. The ability of proteins to perform such 

diverse functions comes from the diversity of their structures. Building units of proteins are 

called amino acids. There are 21 naturally occurring amino acids, which can be joint linearly 

to form chains of varying lengths. Linear chains of amino acids further fold in 3D space. 

Given that any number of amino acids can arrange in any given order, it becomes clear that 

the combinatorial potential that exists for building proteins is virtually indefinite. What is 

more, individual proteins can further combine with other proteins, but also carbohydrates, 

lipids or nucleic acids to form large macromolecular complexes. Aside from their structural 

complexity, macromolecular complexes are dynamic and can undergo changes in 

composition and 3D conformation. Simply put, protein sequence determines its 3D 

architecture and its 3D architecture determines its function. Therefore, to understand the 

different cellular processes, it is important to study the 3D structures of the complexes 

driving them. 

One such large macromolecular complex is the fatty acid synthase. Cells rely on this protein 

machinery to produce fatty acids, one of the most abundant lipids in the cell. Fatty acids 

are carboxylic acids with long aliphatic chains which are essential for cellular function. Cells 

use fatty acids to build biological membranes in the form of phospholipids and glycolipid, 

as energy reserves in the form of triacylglycerol, and as signaling molecules in the form of 

phosphatidylinositol and sphingosine derivatives (Wang et al., 2011).  Despite the crucial 

role fatty acids play in a cell, we still know surprising little about the structure and 

mechanism of action of fatty acid synthases. In fungi and mammals, fatty acid synthases 

are large multimeric protein complexes (Lynen, 1980; Smith et al., 2003). These complexes 

contain all catalytic activities for de novo synthesis of fatty acids. During fatty acid synthesis, 

the growing fatty acid chain is thought to be shuttled by their acyl carrier protein domain 

to the several enzyme active sites (Chan and Vogel, 2010; Herbst et al., 2018; Schweizer and 
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Hofmann, 2004). To accomplish the structural rearrangements required for their function, 

these proteins need to be very dynamic. This, however, limits our ability to study their 

structure at atomic resolution.  

Presently, X-ray crystallography and single particle cryo-electron microscopy (cryo-EM) 

allow us to study large macromolecular complexes at high resolutions (Cheng, 2015; Shi, 

2014). These techniques rely on isolated proteins for obtaining structural information. The 

purified proteins need to be devoid of impurities. Likewise, they should be compositionally 

and conformationally homogenous. Obtaining such samples becomes difficult as the size 

and complexity of the protein complexes increase. Purification strategies involving the use 

of high salt concentrations along with use of chromatography steps, such as anion exchange 

and size exclusion work well for small (<100kDa) proteins, but can have detrimental effects 

on larger protein complexes (Liu et al., 2001). Multi-protein complexes tend to dissociate 

under high ionic strength. Along with this, shear forces due to interactions with resin used 

in chromatography columns can cause the loss of bound subunits (Tsumoto et al., 2007). 

Adding to this complexity, large protein complexes are also inherently dynamic and can 

exist in multiple conformations (Stark and Chari, 2016). Alternative purification methods 

and methods to stabilize large multimeric protein complexes are therefore necessary for 

studying their structure at high resolutions.  

In the following chapters, I review the current structural knowledge of the fungal FAS.  This 

will be followed by a description of the tools for improving sample preparations of large 

macromolecular complexes that were used in this thesis. Finally, I will briefly summarize 

the current knowledge regarding regulation of fungal FAS.  

1.1. Fatty acid synthesis  

Organisms such as bacteria, fungi and plants depend solely on de novo cellular synthesis of 

fatty acids to meet their needs (Brown et al., 2009; Janßen and Steinbüchel, 2014; Schweizer 

and Hofmann, 2004). Vertebrates, on the other hand, cannot synthesize all required fatty 

acids and must therefore rely on dietary fatty acids such as omega-3 and omega-6 fatty 

acids (Chirala et al., 1997; Di Pasquale, 2009; Swanson et al., 2012). The biochemical 
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mechanisms underlying fatty acid synthesis, however, are conserved from bacteria to 

humans (Lynen, 1980; Schweizer and Hofmann, 2004; Wakil et al., 1983). It requires three 

substrates – acetyl-CoA, malonyl-CoA and NAPDH (or NADH). Fatty acid synthesis is an 

iterative process where for each fatty acid chain, the first two carbon atoms come from an 

acetyl-CoA molecule and the rest come from malonyl-CoA (Figure 1).  

 

 

Figure 1. Fatty acid synthesis cycle in fungi. Fatty acid synthesis is an iterative process. (i) It 

starts with the transfer of an acetyl group from acetyl-CoA to an acyl carrier protein (ACP). (ii) The 

acetyl-ACP then is transferred to the active site thiol of the ketosynthase (KS) active site. (iii) Next, 

malonyl-CoA is synthesized from acetyl-CoA by acetyl-CoA carboxylase (ACC). (iv) Malonyl group 

from the malonyl-CoA is transferred to an ACP by the malonyl/palmitoyl transferase (MPT). (v) 

The KS domain bound acetyl group undergoes a condensation reaction with malonyl-ACP in the KS 

active site to form β-ketobutyryl-ACP. (vi) The β-ketobutyryl-ACP is then reduced by the 

ketoreductase enzyme (KR) using reducing equivalents from a NAD(P)H molecule to form β-

hydroxybuturyl-ACP. (vii) The dehydratase enzyme (DH) then catalyzes a dehydration reaction to 

form α,β-trans-butenoyl-ACP. (viii) The enoylreductase (ER) enzyme uses reducing equivalents 

from another NAD(P)H molecule to reduce the unsaturated bond of α,β-trans-butenoyl-ACP to form 

butyryl-ACP. This ends the first synthesis cycle. (ix) In the next cycle, the butyryl moiety is 

transferred to the KS active site thiol followed by another condensation reaction with the malonyl-

ACP. (x) The cycle repeats 6 more times after which the palmitoyl group from the palmitoyl-ACP is 

transferred onto a free CoA molecule by the MPT domain. Based on Herbst et al. (2018).  

 

The biosynthesis pathway starts with the transfer of an acetyl group from an acetyl-CoA 

onto a phosphopantetheine prosthetic (Ppant) group of the acyl carrier protein (ACP). The 
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acetyl-ACP is then transferred to the active site thiol of the ketosynthase (KS) active site. 

Next, malonyl-CoA synthesized by acetyl-CoA carboxylase (ACC) is used to extend the two 

carbon atoms provided by acetyl CoA. Malonyl group from the malonyl-CoA is transferred 

to an ACP by the malonyl/palmitoyl transferase (MPT). The acetyl group then undergoes a 

condensation reaction with the malonyl-ACP in the KS active site to form β-ketobutyryl-

ACP. The β-ketobutyryl-ACP is then reduced by the ketoreductase enzyme (KR) using 

reducing equivalents from a NAD(P)H molecule to form β-hydroxybuturyl-ACP. The β-

hydroxybuturyl-ACP in turn is acted on by the dehydratase enzyme (DH) resulting in 

removal of a water molecule forming α,β-trans-butenoyl-ACP. Finally, the enoylreductase 

(ER) enzyme uses reducing equivalents from another NAD(P)H molecule to reduce the 

unsaturated bond of the α,β-trans-butenoyl-ACP to form butyryl-ACP. This ends the first 

synthesis cycle. In the next cycle, the butyryl moiety is transferred to the KS active site thiol 

followed by another condensation reaction with the malonyl-ACP. The cycle then continues 

as mentioned above and is repeated until the formation of C16/18 long aliphatic chain 

which is transferred to a free CoA molecule by the MPT domain. 

1.2. Proteins involved in fatty acid synthesis  

The different steps of de novo fatty acid synthesis require seven different types of modules: 

six enzymes and an ACP domain to shuttle the substrates as well as intermediates among 

them. The arrangement of these seven modules varies among bacteria, fungi and mammals 

(Beld et al., 2015). In bacteria, plants, as well as eukaryotic organelles, such as mitochondria 

and plastids, each activity is located on separate polypeptides. This is referred to as the type 

II FAS system (White et al., 2005). Here, the proteins rely on random interactions in the 

cytosol, which makes the type II FAS very inefficient. To compensate for this, bacteria 

usually have high cytosolic concentrations of ACP (~100 µM) to increase the probability of 

ACP interacting with the right enzyme (Davis et al., 2001; Tang et al., 1997). However, as 

the ACP with the bound intermediates are exposed to all surrounding proteins in the 

cytosol, this arrangement is helpful in shuttling intermediates to downstream reactions, i.e. 

for synthesis of unsaturated fatty acids, or other secondary metabolites (White et al., 2005). 

In fungi, all modules are present on either one or two polypeptide chains, classified as the 
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fungal type I FAS. Here the proteins form a large barrel-shaped multimeric complex, which 

contains all activities required for fatty acid synthesis. It usually has an α6β6 

heterododecameric arrangement with molecular weights ranging between 2-3 MDa 

(Schweizer and Hofmann, 2004). The proximity of the active sites in this arrangement 

makes these enzymes more efficient than the bacterial type I system. For example, based on 

the dimensions of the fungal FAS, the local concentration of ACP is calculated to be ~ 1mM 

(Jenni et al., 2007). This is 10 times higher than in bacteria, allowing for faster transfer of 

intermediates between the different active sites. The last type of FAS assembly is the 

mammalian type I FAS. In this system, all the activities are present on a single 270 kDa 

polypeptide, which forms a ‘X’-shaped, α2-dimeric complex (Maier et al., 2008; Smith et al., 

2003). This arrangement merges the benefits of both the bacterial and fungal FAS systems. 

Here, the enzymatic domains are in close proximity, but the overall architecture allows the 

ACP to interact with other cytosolic proteins. 

 

 

Figure 2. Organization of modules required for fatty acid synthesis. (i) In bacteria, plants and 

eukaryotic organelles, the modules required for fatty acid synthesis are present on separate 

polypeptides. This is referred to as the type II FAS. Structures of the ketoreductase (KR), 

enoylreductase (ER), acyl carrier protein (ACP), dehydratase (DH), ACP synthase (ACPS), 

malonyl-/acetyl-transferase (AT) and ketosynthase (KS) enzymes are shown with their 

corresponding PDB ID within parenthesis. (ii) In Fungi, all the modules shown in (i) are present on 

a single or two polypeptide chains which assemble into large “barrel-shaped” multi-subunit 

complexes. This is known as the fungal FAS type I. (iii) In mammals, all the modules are present on 

a 270 kDa polypeptide, which forms a “X-shaped” dimeric complex. The thioesterase (TE) and ACP 

(yellow) domains were not visualized in the crystal structure and are depicted as cartoons. This 

figure is adapted from Beld et al. (2015). 
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1.3. Structure of the fungal fatty acid synthase  

Most fungal FAS are composed of two subunits - α and β. Together they form a 2.6 MDa, 

α6β6 heterododecameric complex. The complex has a barrel-like structure, which is 270 Å 

long and 260 Å wide (Jenni et al., 2007; Leibundgut et al., 2007; Lomakin et al., 2007). The 

α-subunit has four different domains: acyl carrier protein (ACP), ketosynthase (KS), 

ketoreductase (KR) and phosphopantetheine transferase (PPT). The β-subunit also has four 

domains: acetyl transferase (AT), enoyl reductase (ER), dehydratase (DH) and 

malonyl/palmitoyl transferase (MPT). Additionally, the first 94 residues of the α-subunit 

also contribute towards the formation of the MPT domain. Six α-subunits combine to form 

the central wheel of the molecule, whereas three β-subunits combine to form a dome on 

each side of the central wheel. In this arrangement, each dome contains three sets of active 

sites required for fatty acid synthesis along with three ACP domains. Each ACP domain is 

located within the barrel of the FAS where it is tethered to the MPT domain at its N-

terminus and to the central wheel at its C-terminus through flexible linkers. During fatty 

acid synthesis, the ACP domains are responsible for shuttling the substrates and acyl 

intermediates from one active site to the other within each dome of the FAS. 

The present structural view of the fungal FAS is a result of work performed by multiple 

labs. The first high resolution FAS structure from Thermomyces lanuginosus at 3.1 Å allowed 

the placement of all domains except the ACP and PPT (Jenni et al., 2007). The ACP domain 

was then visualized for the first time in the Saccharomyces cerevisiae FAS at 3.1 Å  

(Leibundgut et al., 2007). Here, the ACP was found to be located at the central wheel with 

its phosphopantetheine group protruding into the KS active site cleft. However, the protein 

sequences tethering the ACP to the FAS barrel were found to be flexible and therefore not 

visualized. The last unresolved domain of the FAS, PPT, was solved using the crystal 

structure of the isolated PPT domain at 2.9 Å (Johansson et al., 2009).   
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Figure 3: Architecture of the fungal fatty acid synthase. (i) The fungal FAS is composed of two 

subunits, α and β. Together the two subunits form a “barrel” like structure which is 270 Å long and 

260 Å wide. The α-subunits form the central wheel of the complex whereas the β-subunits form the 

dome of the complex on each side of the central wheel. The FAS has a D3 symmetry; a two-fold 

symmetry axis dissects the central wheel perpendicularly, whereas the three-fold axis runs down the 

length of the molecule (dotted line) (ii) The domain organization and architecture of the asymmetric 

unit of the FAS is shown. A small segment of the malonyl/palmitoyl-CoA acyl transferase (MPT) 

domain along with acyl carrier protein (ACP), ketosynthase (KS), ketoreductase (KR) and 

phosphopantetheine transferase (PPT) domains reside on the α-subunit. The acetyl transferase (AT), 

enoylreductase (ER), dehydratase (DH) and malonyl/palmitoyl-CoA acyl transferase (MPT) reside 

on the β-subunit.  
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Even though the complete structure of the FAS is known since 2010, there are still two 

important questions regarding the functioning of this complex that remain unanswered: 1) 

what is the structural basis behind substrate shuttling by ACP and 2) does the structure of 

the FAS change during substrate shuttling? 

1.3.1. What is the structural basis behind substrate shuttling by ACP? 

The molecular basis behind ACP shuttling in fungal FAS is poorly understood. The model 

for the determinants driving this process comes from molecular dynamic simulations 

(Anselmi et al., 2010). This study provided three insights. First, the ACP binding to different 

domains is dependent on electrostatic interactions. Second, the individual ACP domains 

can access all the catalytic sites in a reaction chamber, but their movement tends to be 

compartmentalized due to volume-exclusion effects by other ACP domains and their 

linkers. Third, even though the ACP moves randomly in 3D, most domains are localized in 

a circular path such that the adjacent domains follow the same order as required for 

synthesis. This domain arrangement promotes a more efficient and productive transfer of 

the ACP domain from one site to the other as compared to random diffusion. However, no 

direct biochemical or structural evidence supporting these simulations have been reported 

until date. The only structural evidence for substrate shuttling present is through cryo-EM 

analysis of cerulenin inhibited S. cerevisiae FAS (Gipson et al., 2010). As compared to the 

FAS crystal structures (Johansson et al., 2008; Leibundgut et al., 2007) where the ACP 

domain was found adjacent to the KS domain, the 5.9 Å cryo-EM structure displayed 

fragmented densities corresponding to the ACP domain next to all catalytic domains inside 

the dome. Even though this structure shows that the ACP domain can be located at different 

catalytic domains, it fails to provide mechanistic details regarding inter-domain 

interactions. The low-resolution and the presence of ACP domain densities next to all 

catalytic domains in one structure suggests conformational heterogeneity. The presence of 

more than six ACP domain densities is only possible when multiple conformations are 

averaged into one structure. To improve upon these observations, high resolutions 

structures of conformationally homogenous FAS molecules are required. For this, all ACP 

domains need to be stalled at the same site before structural studies are performed. Such 
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structures of the FAS with defined ACP positions would aid in understanding the ACP 

shuttling process. 

 

 

Figure 4. (i) Substrate shuttling by the ACP domain. Each FAS dome has three sets of active 

sites required for fatty acid synthesis. Additionally, the ACP (golden) is located within the FAS dome 

and is attached to the FAS through flexible linker sequences (black dotted line). During the catalytic 

cycle, the ACP domain shuttles the substrates and reaction intermediates among the six different 

catalytic domains. The numbers indicate the sequence of ACP movement during the first cycle of 

fatty acid synthesis. (ii) Structural difference between the S. cerevisiae FAS crystal structure 

and cryo-EM map. Overlay of the AT and MPT domain segments from the S. cerevisiae FAS 

crystal structure (yellow, PDB 2UV8, Leibundgut et al. (2007)) with the cryo-EM map (grey, 

EMDB 1623, Gipson et al. (2010)).  

 

1.3.2. Does the FAS structure change during substrate shuttling? 

Along with the presence of ACP densities next to the catalytic domains, the S.cerevisiae cryo-

EM structure (Gipson et al., 2010) also reported to have a different conformation of the 

dome in comparison to the crystal structures. The dome was more compact due to a 

rearrangement of the β-subunit. This was attributed mainly to the downward shift of AT 

domains by 10 Å, an outward rotation of the MPT by 9 Å along with smaller shifts in DH 

(5 Å) and ER domains (3 Å). It was argued that the cryo-EM structure represented the 

catalytically active conformation as the ACP domains were present at different active sites 

unlike in the crystal structures where they are always located at the KS domain. 

Stabilisation of an inactive conformation in crystals due to crystal contacts formed by the 

MPT domain was also hypothesised. However, a 4.9 Å cryo-EM Chaetomium thermophilum 
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FAS structure (Kastritis et al., 2017) contradicted the claims put forth by Gipson et al., (2010) 

by showing that the ACP can be stalled at a domain (ER) other than KS in the FAS 

conformation similar to the crystal structures.  

 It is thus unclear which conformation the FAS adopts during fatty acid synthesis – the one 

from the crystal structures or the one from S.cerevisiae cryo-EM structure. Along with this, 

whether the conformation of the β-subunit of the FAS affects the ACP domain’s ability to 

interact with the different catalytic is also an open question? The answers to these questions 

are important for understanding how the elaborate structure of the fungal FAS allows it to 

perform synthesis of fatty acids.  

1.4. Tools for improving sample preparations 

1.4.1. Chromatography-free purification 

Methods used for purifying large macromolecular complexes usually rely on tagging a 

subunit of the complex for affinity-based purification, along with other chromatography 

steps based on anion exchange and size exclusion. These methods are successful with small 

proteins (< 100kDa) but can have detrimental effects on larger protein complexes (Liu et al., 

2001). Multi-protein complexes tend to dissociate under high ionic strength. Along with 

this, shear forces due to interactions with the resin used in chromatography can cause the 

loss of bound subunits (Tsumoto et al., 2007). A milder purification procedure used to 

purify human 20S/26S proteasomes offers an alternative way of purifying large complexes 

(Haselbach et al., 2017; Schrader et al., 2016). This strategy involves precipitating proteins 

using polyethylene glycol (PEG) along with sucrose gradients while maintaining low ionic 

strength. 20S proteasomes purified using this method were shown to be 10 times more 

active than those purified using conventional chromatography based purifications 

(Schrader et al., 2016). The crystals from such a preparations also diffracted up to 1.8 Å 

which was a significant improvement compared to the previously reported 2.6 Å structure 

of the human 20S proteasome (Harshbarger et al., 2015). Such low salt, chromatography-

free methods offer an alternative and need to be tested on different protein complexes to 

check if they indeed are feasible and aid in achieving better resolutions. 
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1.4.2. GraFix 

Gradient Fixation (GraFix) of macromolecular complexes can be used for mild fixation of 

macromolecular complexes (Kastner et al., 2008). In this method, purified protein 

complexes are loaded onto a linear density gradient containing a fixative. During 

ultracentrifugation, the protein complexes sediment while undergoing mild crosslinking 

due to the gradual increase in crosslinker concentration. This method has been shown to 

stabilize protein complexes and prevent dissociation of subunits during cryo-EM sample 

preparation. GraFix has previously been used in the high resolution studies of 26S 

proteasomes, spliceosomes and the MHC-I complex (Bertram et al., 2017; Blees et al., 2017; 

Haselbach et al., 2017). To date, this method has only been applied to compositionally 

stabilize protein complexes. In this thesis, I investigated the applicability of GraFix for 

conformational stability of the FAS and its ACP domains.  

1.4.3. Nanobodies 

Nanobodies are antigen-binding domains derived from variable domains (VHH) of 

camelid (or shark) heavy chain only antibodies. They are ~13-15 kDa in size and contain 

three variable loops regions (CDR 1,2,3), which determine their binding affinity and 

specificity (Muyldermans, 2013). Nanobodies against a particular antigen can be generated 

by two methods (Liu et al., 2018): (1) Immunizing camelids with the antigen. Lymphocytes 

from the animals are then isolated and sequences of the VHH domains are amplified from 

cDNA libraries generated from these cells. The sequences for the VHH domains are ligated 

into vectors for phage display. The VHH domains expressed on the surface of 

bacteriophages are then selected for using immobilized antigens to identify high affinity 

binders. (2) In vitro libraries of nanobodies with randomized CDR sequences can also be 

directly used for phage display based screening against antigens. In comparison to 

conventional antibodies or Fab fragments, nanobodies are easy to produce as they can be 

expressed in E. coli or yeast, they are stable and their small size allows them to have better 

accessibility to epitopes (Muyldermans, 2013). In structural studies, nanobodies have been 

used for purifying proteins, as chaperones to assist in crystallization of other proteins and 
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also for stalling specific conformational state of macromolecular complexes (Dmitriev et al., 

2016; Duhoo et al., 2017; Pleiner et al., 2015; Steyaert and Kobilka, 2011). During this thesis, 

anti-FAS nanobodies were evaluated as a potential tool for stabilizing FAS conformations. 

1.4.4. Substrates/Inhibitors 

The conformational landscape of proteins can be altered by binding of small molecules 

(Cesa et al., 2015). This has been usually visualized for proteins in the form of snapshots of 

conformational differences with or without the substrates or inhibitors. This is also true for 

the fungal FAS where NADPH binding leads to rearrangement in an adjacent loop segment 

(881-875) of the KR domain (Jenni et al., 2007). Structures of the FAS in the presence of the 

other substrates or inhibitors mimicking reaction intermediates have not been reported and 

offer the possibility to visualize the different function states of this complex. Different 

combination of the FAS substrates (acetyl-CoA, malonyl-CoA and NADPH) along with 

inhibitors should be tested for this purpose. Additionally, the impact of such molecules on 

their binding site as well as on the whole complex would add to our understanding of how 

FAS performs its functions.  

1.4.5. In-silico sorting and analysis of protein conformations 

Along with improvements in biochemical preparations of protein complexes, 

computational methods can also be used to study and sort the composition as well as 

conformational heterogeneity in the sample. At present, most EM software packages 

accomplish this in a supervised or reference free manner using maximum likelihood 

estimation based algorithms (Grigorieff, 2016; Punjani et al., 2017; Zivanov et al., 2018). 

These procedures can either be used for in silico purification of a protein conformation 

and/or to determine the multiple 3D states a protein complex might adopt. However, this 

only hold true when complexes have distinct and stable conformational states (low energy 

states). Conformations representing continuous motions (high energy states) of a complex 

are still very difficult to distinguish. Proteins with such a behavior usually result in low-

resolution structures comprising the multiple possible states. Therefore, along with 
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determining the low energy states of proteins, methods for identifying and understanding 

high energy states that proteins might adopt are required. Conformational energy 

landscapes representing all the conformations present in cryo-EM datasets can be used in 

such scenarios as they can provide a more comprehensive understanding of dynamics of 

any given protein complex.  

1.4.5.1 Conformational energy landscapes using 3D Principle Component 

Analysis (PCA) 

Conformational landscape analysis for protein complexes can be performed using 

exhaustive 3D classification combined with 3D principle component analysis (3D PCA) 

(Haselbach et al., 2017, 2018). In this method, the total set of particles are split into numerous 

small subsets using 3D classification procedures. The obtained 3D volumes represent the 

different conformations of the complex present in the data. 3D Principle Component 

Analysis (PCA) is then performed to obtain the major modes of motion among the different 

3D volumes. The resultant eigenimages representing the variance in the data can used to 

describe each 3D volume using the following equation 

              𝑋𝑖 = �̅� + 𝛴𝑗=1
𝑛 𝑎𝑖,𝑗𝑒𝑖                          (1) 

, where every volume 𝑋𝑖 is described as a linear combination of the average volume �̅� and 

the eigenvectors 𝑒𝑖 multiplied with the linear factor 𝑎𝑖,𝑗. The first (𝑒1) and second 

(𝑒2) eigenvectors, which depict motions of compaction and rotation of the FAS dome, 

respectively, were selected for calculating conformational landscapes. The particle number 

belonging to each class can be used to calculate their free energies as multiples of the 

Boltzmann factor (𝑘𝐵𝑇): 

𝛥𝛥𝐺 = 𝑘𝐵𝑇 ln (
𝑝𝑖

𝑝0
)                                                                  (2)      

, where 𝑇 is the absolute temperature, 𝑘𝐵 the Boltzmann constant, 𝑝𝑖 is the number of 

particles in state 𝑖 and 𝑝0 is the number of particles in the most populated state. The linear 

factors of 𝑒1 and 𝑒2 calculated as per equation (1) contributing to the input 3D volumes 

represent the x and y coordinates of the landscapes whereas the z axis represents the free 

energies of each class. 
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 3D PCA helps in identifying the major modes of motion present in a complex. This 

information can be used for 3D sorting while focusing only on the dynamic areas during 

image processing. Energy landscapes can also be used to study the global effect of small 

molecules or binding proteins on the conformation of a macromolecular complex.  

1.5. Aims and Scopes – Part I 

Structural characterization of fungal type I fatty acid synthases has been underway since 

early 1970’s with the first high resolution structures determined in 2007. Structural data of 

these complexes to date comprise of one conformation solved at high resolution using X-

ray crystallography along with conflicting low-resolution structures using cryo-EM. 

Considering this, my aim was to gain insight into conformational changes of fungal type I 

fatty acid synthase during its catalytic cycle. In particular, the focus was on visualizing the 

tethered ACP bound to different enzymatic domains and to determine whether this 

correlates with the FAS dome conformation. For this purpose, different approaches such as 

mild fixation, substrate binding, nanobody-based stabilization and computational sorting 

were tested. During the course of this thesis, using the improved sample preparation 

conditions, I resolved two distinct conformations of the yeast FAS at sub-3 Å resolution. 

These are the highest resolution structures for this complex to date and provide new 

insights into the relationship between the structure and function of the FAS. Along with 

this, a novel FAS binding protein was co-purified using the newly established 

chromatography-free purification procedure. This protein was found to be involved in the 

regulation of FAS activity and was hence termed the γ-subunit. To understand the 

importance of this protein, a review of FAS regulation is therefore introduced below. 

1.6. Regulation of FAS in yeast 

Fatty acid synthesis is an energy demanding process. Energy rich metabolites produced 

during glycolysis and citric acid cycle such as acetyl-CoA, ATP, NADPH need to be shuttled 

into fatty acid synthesis based on nutrient availability and cellular requirements. For every 

palmitic acid (C16) synthesised, the cell uses the energetic equivalent of at least 122 ATP 

molecules (Wang et al., 2011). Therefore, if FAS activity is left unregulated, cellular survival 
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is under threat due to possible overconsumption of resources by this machinery (Shpilka et 

al., 2015). The mechanisms that yeast cells employ for regulating FAS abundance and 

activity are described below and are similar to those found in higher eukaryotes.  

1.6.1. Transcriptional Regulation 

The two genes encoding the α- (FAS2) and β-subunit (FAS1) of yeast FAS are present on 

different chromosomes and their transcription needs to be co-ordinated for a balanced 

expression. Interestingly, other fungi don’t have this problem as their FAS genes are usually 

arranged around the same promotor but oritented in opposite directions. The constitutive 

transcription of yeast FAS genes is mediated by general transcription factors – Rap1, Abf1, 

Reb1 for FAS1 and only by Reb1 for FAS2 (Schweizer and Hofmann, 2004). These 

transcription factors contribute towards 50% of the total expression levels of FAS genes. 

The rest is modulated by Inositol/Choline concentrations in the cell. Decrease in 

Inositol/Choline upregulates the levels of Ino2 and Ino4, which in turn activate FAS gene 

expression by binding and recruiting RNA polymerase to ICRE (Inositol/Choline 

Responsive Elements) elements in the upstream region of the FAS genes. On the other hand, 

increase in Inositol/Choline levels negatively regulates activation by Ino2/Ino4 through 

Opi1 and through histone deacetylation by Sin3 (Schweizer and Hofmann, 2004). Ino2/Ino4 

and Opi1 also regulate ACC (synthesises malonyl-CoA) expression in a similar manner 

(Hasslacher et al., 1993).   

1.6.2. Translational regulation 

Translation of FAS2 is dependent on the levels of the β-subunit. It was first described in 

2001 that the initial 66 nucleotides of the FAS2 gene contain a regulatory site, which 

depends on the β-subunit for translational activation (Wenz, 2001). The mechanism for this 

observation was provided using ribosome profiling by Shiber et al., (2018). Their data 

suggested that the ribosomes slow down/pause after translating the initial ~ 94 amino acids 

of the α-subunit. These exposed amino acids are actually a part of and essential for the 

activity of MPT domain in the C-terminus of β-subunit. The MPT domain of the translated 
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β-subunit interacts with the exposed amino acids of the α-subunit resulting in activating 

translation and also promotes co-translational folding. This mechanism allows cells to have 

a stoichiometric expression of both the subunits. 

1.6.3. Post-translational modification 

The first committed step of fatty acid biosynthesis where acetyl-CoA is carboxylated by 

acetyl-CoA carboxylase 1 (ACC1) to form malonyl-CoA is regulated through post-

translational phosphorylation. In conditions of high cellular ATP concentrations, yeast 

ACC1 is in its active non-phosphorylated form. However, when ATP concentrations 

decrease, the yeast ACC1 is inactivated through phosphorylation by AMP-activated protein 

kinase called SNF1. This leads to a decrease in malonyl-CoA concentrations resulting in 

lower FAS activity (Hedbacker and Carlson, 2008; Wei et al., 2016). There are no known 

direct modifications of the yeast FAS that can affect its activity.  

1.6.4. Post-translational degradation    

Even if either of the two FAS subunits are over-expressed with respect to each other, 

selective degradation of un-assembled FAS subunits allows the cell to balance the 

individual subunit concentrations. Orphan α-subunits are degraded in the cytosol by 

26S/30S proteasomes. For this, α-subunits are ubiquitinated in the presence of Hsp70 

chaperone, Ssa1 by E2 ubiquitin-conjugating enzymes Ubc2/Ubc4 and E3 ubiquitin ligase 

Ubr1 (Egner et al., 1993; Scazzari et al., 2015). The ubiquitinated proteins are then acted 

upon by Cdc48 AAA-Atpase to disassemble the proteins for degradation by proteasomes. 

On the other hand, assembled FAS complexes or unassembled β-subunits are transported 

to vacuoles in a Atg8 dependent manner for their degradtion by vacuolar proteases like 

yscA and yscB (Egner et al., 1993; Shpilka et al., 2015). The degradation of FAS is important 

especially during nitrogen stress where cellular survival depends upon reduced FAS 

activity (Shpilka et al., 2015).  
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1.6.5. Metabolite based regulation  

The final known layer of FAS regulation involves short-term activation or inhibition of 

enzyme activity by metabolites. Even though direct evidence for yeast Acc1 is missing, it is 

known that this enzyme is allosterically activated by citrate but is inhibited by end products 

of fatty acid synthesis, palmitic- and steric-CoAs (Hasslacher et al., 1993; Hunkeler et al., 

2016; Wakil et al., 1983). At high intracellular glucose levels, activation of Acc1 promotes 

increase in FAS activity due to the increase in malonyl-CoA concentrations. In turn, excess 

fatty acids produced regulate FAS by inhibting malonyl-CoA production by Acc1. Excess 

fatty acids also inhibit FAS directly and thus are important for feedback regulation based 

on cellular needs. The mechanism of inhibition of FAS by fatty acids is not well understood. 

In vitro studies have also demostrated that the ratio of acetyl-CoA/Malonyl-CoA can effect 

the chain length of fatty acids produced by the FAS (Sumper et al., 1969).    

1.7. Aims and Scopes – Part II 

During my PhD work, I established a chromatography-free purification of the S. cerevisiae 

FAS. Interestingly, a 17 kDa protein was found to co-purify with the FAS. Since a specific 

fungal FAS binding protein has not been reported to date, I aimed to characterize the role 

of this 17 kDa protein with respect to the FAS. To this end, I performed biochemical and 

structural analysis of the FAS in the presence and absence of this 17 kDa protein. This 

protein was found to bind inside the FAS and interact with three catalytic active sites. 

Additionally, it lowers the affinity of the FAS for all its substrates and affects the 

conformational landscape of the FAS. Due to its substantial effect on the FAS activity and 

structure, this protein was termed as the “γ-subunit” of the FAS. 
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2. Materials and Methods 

2.1. Materials  

2.1.1. Special Equipment 

Equipment  Manufacturer 

ActiLoops Molecular dimensions 

Amicon ultra 15 centrifugal concentrator Millipore 

Balances Sartorius 

Centrifuge LYNX 6000 Thermo Scientific 

Copper EM grids Plano 

Cryschem M Plate (24-well) Hampton Research 

Crystal Clear Sealing Tape Jena Bioscience 

Crystalgen pregreased Plate (24-well),  Jena Bioscience 

Dialyzer mini D-tube Millipore 

Electro Supplier Power Pac 3000  BioRad 

EmulsiFlex-C3 Avestin Inc. 

Fiberlite rotor F14/ F21/ F35L Thermo Scientific 

Fluoromax-4 fluorescence 

spectrophotometer 

Horiba Scientific 

Gradient Master ip Biocomp 

Incubator Eco-Line E100 RUMED 

Incubator Multitron Pro Shaker Infors HT 

LithoLoops Molecular dimensions 

MicroLoops MiTeGen 

Orbital Shaker RS-S20 Phoenix Instrument 

Photometer Lambda Bio X Perkin Elmer 

Pipetting Robot Microlab Star LET Hamilton 

Quantifoil grid R3.5/1 Cu 200 mesh Quantifoil MicroTools GmbH 

Rotor TH660 Thermo Scientific 

Rotor S140AT Thermo Scientific 

Rotor SW40 Beckmann Coulter 

Siliconized Glass Cover Slides Hampton Research 

Stereo microscopes M125 Leica 

TEM CM200 FEG Philips 

TEM Titan Krios Thermo Scientific 

Ultra-Centrifugal Mill ZM 200 Retsch® 

Ultracentrifuge WX Ultra 80/ 90 Thermo Scientific 

V-750 UV-Visible spectrophotometer Jasco instruments 

Vitrobot Thermo Scientific 

Zebra Micro Desalt Spin Column Thermo Scientific 
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2.1.2. Chemicals 

Chemicals  Supplier 

Acetic acid  Merck 

Acetonitrile Merck 

Acetyl-CoA Sigma 

Amido Black 10B  SERVA Electrophoresis 

Ammonium sulfate Merck 

Benzamidine Hydrochloride hydrate Sigma-Aldrich 

β-mercaptoethanol (β-ME) Sigma-Aldrich 

Biotin-dPEGTM(24)-NHS Iris biotech 

Bis(sulfosuccinimidyl)suberate (BS3)  Thermo Scientific 

Bis(2-hydroxyethyl)aminotris(hydroxymethyl)methane 

(BisTris)  

Sigma-Aldrich 

Boric acid Merck 

Bradford Assay reagent  BioRad 

Coomassie Brilliant Blue R-250  BioRad 

Dimethyl sulfoxide (DMSO)  AppliChem 

Dithiothreitol (DTT)  Roth 

DNase Jeno Bioscience 

Ethanol  Merck 

Ethylenediaminetetraacetic acid (EDTA)  Merck 

Glucose Merck 

Glutaraldehyde  Science Services 

Glycerol  Merck 

Hydrochloric acid (HCl) Merck 

Iodoacetamide Sigma-Aldrich 

Isopropyl ß-D-1-thiogalactopyranoside (IPTG)  Sigma-Aldrich 

Isopropanol Merck 

Lauryl maltose neopentyl glycol (LMNG)  Anatrace 

Lyzozyme Thermo Scientific 

Magnesium chloride (MgCl2)  Merck 

Magnesium acetate (Mg(CH3COO)2) Merck 

Malonyl-CoA Sigma-Aldrich 

NHS-rhodamine Thermo Scientific 

Nicotinamide adenine dinucleotide (NADH) Roth 

Nicotinamide adenine dinucleotide phosphate (NADPH) Roth 

2-(N-morpholino)ethanesulfonic acid (MES)  Sigma-Aldrich 

Octyl glucose neopentyl glycol (OGNG)  Anatrace 

Polyethylene glycol (PEG) 400  Sigma-Aldrich 

PEG 3350  Sigma-Aldrich 

Peptone/tryptone Roth 

Phenylmethane sulfonyl fluoride (PMSF)  Sigma-Aldrich 

Potassium acetate Merck 

Potassium chloride (KCl)  Merck 
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Potassium hydroxide (KOH) Merck 

All Blue Protein Standard BioRad 

Sucrose  Merck 

Sodium Aspartate  Sigma-Aldrich 

Sodium chloride (NaCl) Merck 

Sodium malonate Sigma-Aldrich 

SDS-PAGE running buffer  Roth 

Terrific broth Melford biolabratory 

Tri-fluoro acetic acid (TFA) Merck 

Tris(hydroxymethyl)aminomethane (Tris) VWR chemicals 

Yeast extract Roth 

Uranyl formate Custom made 

 

2.1.3. Buffer composition 

Purification Buffer: 

0.05 M BisTris pH 6.5 

0.05 M potassium acetate 

0.01 M magnesium acetate 

Crystallization Buffer A: 

0.1 M HEPES pH 7.0 

0.3 M sodium-malonate 

pH 7.0  

11.5-13% (w/v) PEG3350 

Crystallization Buffer B: 

0.1 M MES pH 6.2 

0.15-0.3 M ammonium 

sulphate 

7-8% (w/v) PEG 8000 

Stabilization buffer A: 

0.1 M HEPES pH 7.0 

0.3 M  sodium malonate 

pH 7.0 

15% (w/v) PEG3350 

Stabilization buffer B: 

0.1 M MES pH 6.2 

0.3 M ammonium sulphate 

12% (w/v) PEG 8000 

Kinetic assay buffer: 

0.05 M BisTris pH 6.5 

0.05 M potassium acetate 

0.5 mM magnesium acetate  
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2.1.4. Software 

Software  Source Reference 

Adobe Creative 

Suite 5  

http://www.adobe.com/de/creativecloud.html  

CCP4   http://www.ccp4.ac.uk (Winn et al., 

2011) 

COW suite  Department of Structural Dynamics, 

Max-Planck-Institute for Biophysical Chemistry 

 

COOT   https://www2.mrclmb.cam.ac.uk/ 

personal/pemsley/coot 

(Emsley and 

Cowtan, 2004) 

Gautomatch  http://www.mrc-lmb.cam.ac.uk/kzhang  

Gctf   http://www.mrclmb.cam.ac.uk/kzhang (Zhang, 2016) 

JLigand   http://www.ysbl.york.ac.uk/mxstat/JLigand (Lebedev et al., 

2012) 

OriginPro 9.1  http://www.originlab.de/Origin  

Phenix   https://www.phenix-online.org (Adams et al., 

2010) 

Python 2.7  https://www.python.org  

PyMOL  https://www.pymol.org (Schrödinger, 

2015) 

Refmac5   https://www2.mrc-lmb.cam.ac.uk/groups/ 

murshudov/content/refmac/refmac.html 

(Murshudov et 

al., 2011) 

RELION 2.0/3.0  http://www2.mrc-lmb.cam.ac.uk/relion (Scheres, 2012; 

Zivanov et al., 

2018) 

Robetta   http://robetta.bakerlab.org/ (Kim et al., 2004) 

Staraniso Server  http://staraniso.globalphasing.org/ 

cgibin/staraniso.cgi 

(Tickle, I. 

Flensburg, C. 

Keller, P. 

Paciorek, W. 

Sharff, A. 

Vonrhein, C. 

Bricogne, 2018) 

UCSF Chimera   http://www.cgl.ucsf.edu/chimera (Pettersen et al., 

2004) 

UCSF Chimera X https://www.cgl.ucsf.edu/chimerax/ (Goddard et al., 

2018) 

XDS Program 

Package 
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2.2. Methods  

2.2.1. Cell culture 

2.2.1.1. Chaetomium thermophilum culture 

Chaetomium thermophilum La Touche var. thermophilum was grown in YPD medium in an 

Infors 150 liter fermenter and harvested in late log phase at an OD600 of 9-10. Subsequently, 

cells were washed with cold ddH2O, dried and then flash frozen in liquid nitrogen.   

2.2.1.2. Saccharomyces cerevisiae culture 

All yeast manipulations were performed as per standard protocols (Gietz, 2014). 

Saccharomyces cerevisiae strains BJ2168 (MATa prc1-407 prb1-1122 pep4-3 leu2 trp1 ura3-52 

gal2) and Tma17Δ BJ2168 (MATa prc1-407 prb1-1122 pep4-3 leu2 trp1 ura3-52 gal2 

Tma17::kanMX) were used in this study. Cells were grown in YPD medium in an Infors 250 

litre fermenter and harvested in late log phase at an OD600 of 9-10. Subsequently, cells were 

washed with cold ddH2O and then resuspended in 2X cell resuspension buffer (0.05 M 

BisTris pH 6.5, 0.05 M potassium chloride, 0.01 M magnesium chloride) containing 20% 

(w/v) sucrose such that 2 ml of buffer was added per gram of cells. Cells were then flash 

frozen as beads in liquid nitrogen and stored at -80 °C until further use. 

2.2.2. Protein Purification 

2.2.2.1. Purification of Chaetomium thermophilum FAS (CtFAS) 

The purification strategy was adapted from protocols developed earlier for the purification 

of human 20S and 26S proteasomes (Haselbach et al., 2017; Schrader et al., 2016). 180 g of 

frozen cell pellets were ground in liquid nitrogen to a fine powder using a Retsch ZM200 

mill. The ground powder was thawed in a water bath at 37 °C, supplemented with 420 mL 

of purification buffer containing 20 mM DTT followed by the addition of benzamidine 

chloride to 10 mM and PMSF to 5 mM (from a 100 mM stock solution in propanol). The 

extract was incubated at 25 °C on a magnetic stirrer for 30 minutes followed by 
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centrifugation at 30,000 x g for 30 minutes at 4 °C. After centrifugation, the supernatant was 

filtered through 3 layers each of cheese cloth and miracloth to obtain a S30 cell extract. This 

was then centrifuged at 100,000 x g for 1 hour at 4 °C. The supernatant was again filtered 

through 3 layers each of cheese cloth and miracloth. The obtained clarified S100 extract was 

subjected to differential precipitation with PolyEthyleneGlycol400 (PEG; number signifies 

the mean molecular weight of the PEG polymer). PEG400 was added to a concentration of 

15% (v/v) to the S100 extract while stirring at 18 °C and incubated for 30 minutes. 

Precipitated proteins were removed by centrifugation at 30,000 x g for 30 minutes at 4 °C. 

The precipitate of this step was recovered by centrifugation at 30,000 x g for 30 minutes at 

4 °C and resuspended in purification buffer containing 2% (w/v) sucrose, 10 mM DTT and 

0.01% (w/v) Lauryl Maltose Neopentyl Glycol (LMNG) in an orbital shaker at 18 °C. The 

resuspended material was loaded on 10-45% (w/v) linear sucrose gradients in purification 

buffer containing 10 mM DTT, which were centrifuged at 100,000 x g for 16 h at 4 °C. 

Gradients were harvested in 1 ml fractions. SDS-PAGE was utilized to identify fractions 

containing FAS. Selected fractions were pooled, treated with 10 mM NADH for 30 minutes 

at 18 °C and then precipitated by addition of 8% (v/v) PEG3350. After centrifugation (30,000 

x g, 30 minutes), the supernatant was then precipitated by raising the concentration of 

PEG3350 to 10%. The precipitate of this step, which contained the FAS, was resuspended in 

purification buffer containing 2% (w/v) sucrose, 10 mM DTT and 0.01% (w/v) LMNG. The 

resuspended material was loaded on linear 10-45% (w/v) sucrose gradients in purification 

buffer containing 10 mM DTT, and centrifuged at 79,000 x g for 16 h at 4 °C. Fractions 

containing FAS were identified by SDS-PAGE, pooled and precipitated by the addition of 

40% (v/v) PEG400 and resuspended in purification buffer containing 10% (w/v) sucrose, 10 

mM DTT and 0.01% (w/v) LMNG. Protein concentrations were determined by Bradford 

assay (BioRad, Munich, Germany) using a BSA standard and protein was stored at a 

concentration of 12 mg/ml.  

2.2.2.2. Purification of S. cerevisiae FAS (ScFAS)  

700 g of frozen cell beads (corresponding to 233 g wet cell weight of yeast) were ground in 

liquid nitrogen to a fine powder using a Retsch ZM200 mill. The ground powder was 
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thawed in a water bath at 37 °C, supplemented with purification buffer to 0.33x 

concentration from a 10x stock, followed by the addition of sucrose powder to 20% (w/v), 

benzamidine chloride to 10 mM and PMSF to 1 mM (from a 100 mM stock solution in 

propanol). The extract was incubated at 25 °C on a magnetic stirrer for 30 minutes followed 

by centrifugation at 30,000 x g for 30 minutes at 4 °C. After centrifugation, the supernatant 

was filtered through 3 layers each of cheese cloth and miracloth to obtain a S30 yeast cell 

extract. To this, Octyl Glucose Neopentyl Glycol (OGNG) (from a 10% (w/v) stock) was 

added to a final concentration of 0.2% (v/v) and the extract was incubated at 30 °C for 30 

minutes followed by centrifugation at 100,000 x g for 1 hour at 4 °C. The supernatant was 

again filtered through 3 layers each of cheese cloth and miracloth. The thus clarified S100 

extract was subjected to differential precipitation with PolyEthyleneGlycol400 (PEG; 

number signifies the mean molecular weight of the PEG polymer). PEG400 was added to a 

concentration of 20% (v/v) to the yeast S100 extract while stirring at 18 °C and incubated for 

30 minutes. Precipitated proteins were removed by centrifugation at 30,000 x g for 30 

minutes at 4 °C. The supernatant was then precipitated by raising the concentration of 

PEG400 to 30% (v/v) as described above. The precipitate of this step, which contains the 

FAS, was recovered by centrifugation at 30,000 x g for 30 minutes at 4 °C and resuspended 

in purification buffer containing 2% (w/v) sucrose, 10 mM DTT and 0.01% (w/v) Lauryl 

Maltose Neopentyl Glycol (LMNG) in an orbital shaker at 18 °C. The resuspended material 

was loaded on 10-45% (w/v) linear sucrose gradients in purification buffer containing 10 

mM DTT, which were centrifuged at 100,000 x g for 16 h at 4 °C. Gradients were harvested 

in 1 ml fractions. SDS-PAGE was utilized to identify fractions containing FAS. Selected 

fractions were pooled and precipitated by the addition of 40% (v/v) PEG400. After 

centrifugation (30,000 x g, 30 minutes), the supernatant was removed and the precipitate 

was resuspended in purification buffer containing 2% (w/v) sucrose, 10 mM DTT and 0.01% 

(w/v) LMNG. The resuspended material was loaded on linear 10-45% (w/v) sucrose 

gradients in purification buffer containing 10 mM DTT, and centrifuged at 79,000 x g for 16 

h at 4 °C. Fractions containing FAS were identified by SDS-PAGE, pooled and cycled in the 

presence of 50 µM Malonyl-CoA and 100 µM of NADPH for 30 min at 18 °C (this step of 

substrate addition was performed for FAS preparations after the structural analysis of the 

endogenous FAS holoenzyme complex). The protein was precipitated and concentrated by 
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the addition of 40% (v/v) PEG400 and resuspended in purification buffer containing 2% 

(w/v) sucrose, 10 mM DTT and 0.01% (w/v) LMNG. Another round of linear 10-45% (w/v) 

sucrose gradients in purification buffer containing 10 mM DTT, centrifuged at 60,000 x g 

for 16 h at 4 °C and subsequent re-precipitation of FAS fractions with 40% (v/v) PEG400 

was required to yield a final purified protein preparation at ~15 mg/ml in purification buffer 

containing 10% sucrose (w/v), 10 mM DTT and 0.01% (w/v) LMNG. Protein concentrations 

were determined by Bradford assay (BioRad, Munich, Germany) using a BSA standard. 

This procedure reproducibly resulted in a yield of 15-20 mg purified yeast FAS.  

2.2.2.3. Expression and purification of the γ-subunit  

The γ-subunit was cloned as a synthetic gene into a pET151/D-TOPO® plasmid (Geneart, 

Regensburg) and expressed with an N-terminal His6-TEV-tag in BL21 Star (DE3) competent 

cells. The transformed cells were grown at 37 °C with 180 rpm shaking until an OD600 of 0.5 

was reached, the temperature was then decreased to 18 °C and expression of the γ-subunit 

was induced 1 h after reduction of the temperature by the addition of 0.5 mM IPTG. γ-

subunit was expressed for 16 h at 18 °C and 180 rpm. The cells were harvested by 

centrifugation (5000 x g, 15 minutes, 4 °C), washed with cold ddH2O and stored at -80 °C.  

For purification, 7 grams of cells were resuspended in 42 ml of resuspension buffer (20 mM 

Tris-HCl pH 8.0, 500 mM NaCl, 10 mM imidazole, 0.2 mM PMSF, 10 mM benzamidine). 

After addition of 2 U/ml DNAse and 0.33 mg/ml lysozyme, the suspension was incubated 

for 30 min at 4 °C. Cells were lysed by passing twice through an Avestin Emulsiflex C3 

fluidizer (Avestin, Mannheim, Germany) at 15,000 PSI. The obtained lysate was centrifuged 

(30 min, 50,000 g, 4 °C) and filtered through Minisart NML Plus cellulose-acetate syringe 

filters with a 0.45 µm pore size (Sartorius). The cleared lysate was loaded onto a Ni-NTA 

gravity column (5 ml bed volume) pre-equilibrated with 20 column volumes (CV) of 

resuspension buffer. The column was washed with 20 CV resuspension buffer, followed by 

20 CV of washing buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 20 mM imidazole, 0.2 mM 

PMSF, 10 mM benzamidine). For elution of the bound Tma17p, 5 CV of elution buffer (20 

mM Tris-HCl pH 8.0, 500 mM NaCl, 500 mM imidazole, 0.2 mM PMSF, 10 mM 

benzamidine) were applied and collected in 2 ml fractions. The elution fractions were 
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analyzed with SDS-PAGE, the Tma17p containing fractions pooled, and the protein 

concentration photometrically determined (MW = 17.4 kDa, ε280 = 5960). To cleave the N-

terminal His6-TEV-tag, TEV-protease was added to the protein in an enzyme-to-protein 

ratio of 1:50 followed by dialysis overnight in 5 l dialysis buffer (20 mM Tris-HCl pH 8.0, 5 

mM β-ME, 100 mM NaCl) at 4°C. The digested Tma17p was applied to a Ni-NTA column, 

which was pre-equlilibrated with 20 CV dialysis buffer. The flow-through was collected in 

2 ml fractions and single fractions were analyzed by SDS-PAGE. Fractions containing pure 

Tma17p were pooled and concentrated to a final concentration of 20 mg/ml using a 10 kDa 

MWCO Amicon Ultra 15 centrifugal concentrator (Millipore). The final protein was 

aliquoted, frozen in liquid nitrogen and stored at -80 °C.  For further kinetic and structural 

investigations, purified Tma17p was thawed and dialysed into the kinetic assay buffer at 4 

°C using 6-8 kDa MWCO Dialyzer Mini D-Tubes (Millipore). 

2.2.2.4. Nanobody expression and purification 

Nanobody cloned into cytoplasmic expression and characterization vector pTP898 were 

transformed into E. coli BL21 DE3 cells and cultured in TB medium containing kanamycin. 

The transformed cells were grown at 37 °C with 180 rpm shaking until an OD600 of 0.6 was 

reached, the temperature was then decreased to 25 °C. The expression was induced 1 h after 

reduction of the temperature by the addition of 0.2 mM IPTG. The nanobody was expressed 

for 5 h at 25 °C and 180 rpm. The cells were harvested by centrifugation (5000 x g, 15 

minutes, 4 °C), washed with cold ddH2O and stored at -80 °C.  

For purification, 4 grams of cells were resuspended in 20 ml of resuspension buffer (50 mM 

Tris-HCl pH 7.5, 300 mM NaCl, 20 mM imidazole, 1 mM PMSF, 10 mM benzamidine). After 

addition of 2 U/ml DNAse and 0.33 mg/ml lysozyme, the suspension was incubated for 30 

min at 4 °C. Cells were lysed by sonication for 2 minutes at 50% amplitude and a pulse of 

2sec on/off. The resulting lysate was centrifuged (30 min, 50,000 g, 4 °C) and filtered through 

Minisart NML Plus cellulose-acetate syringe filters with a 0.45 µm pore size (Sartorius). The 

cleared lysate was loaded onto a Ni-NTA gravity column (2 ml bed volume) pre-

equilibrated with 20 column volumes (CV) of resuspension buffer. The column was washed 

with 30 CV resuspension buffer. The beads were then incubated with 5ml resuspension 
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buffer containing 1 µM SUMO protease for 2 h. The column was then washed with 30 CV 

resuspension buffer to remove the cleaved tags. For elution of the bound nanobody, 8 CV 

of elution buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 500 mM imidazole, 0.1 mM 

benzamidine) were applied and collected in 2 ml fractions. The elution fractions were 

analyzed with SDS-PAGE, the nanobody containing fractions pooled, and the protein 

concentration photometrically determined. The protein was dialyzed overnight in 50 mM 

Bis-Tris acetate pH 6.5, 50 mM KOAc, 5 mM Mg(OAc)2, 5 mM DTT and 8.5% sucrose. After 

concentrating using a 4 kDa MWCO Amicon Ultra 15 centrifugal concentrator (Millipore), 

the protein was aliquoted, frozen in liquid nitrogen and stored at -80 °C.   

2.2.3. Biochemical Assays 

2.2.3.1. Binding affinity of the γ-subunit to FAS  

To determine the binding affinity of the γ-subunit to the FAS, γ-subunit was labelled with 

NHS-Rhodamine (Thermo Fisher Scientific) by incubating the protein with the dye in a 1:10 

ratio for 1hr at 25 °C in dark. The mixture was passed through a desalting column to remove 

excess unreacted dye. Different concentrations of NHS-Rhodamine labelled γ-subunit were 

titrated against 15.38 pmol FAS in assay buffer in a total reaction volume of 40 µl. The mix 

was incubated at 30 °C for 30 minutes. 10 µl of each reaction were then loaded onto a 1.5% 

(w/v) agarose gel (in 0.5X TBE, 2 mM MgCl2) and run at 75 mA for 2 hours at 4 °C. The 

fluorescence signal from the FAS-γ-subunit complex was imaged using an Amersham 

imager 600 (GE Healthcare) and quantified using ImageJ (Schindelin et al., 2012). The 

dissociation constant of the γ-subunit was calculated using the Hill equation. 

2.2.3.2. Salt concentration-dependent dissociation of the γ-subunit   

FAS holoenzyme (0.52 mg) was loaded on linear 10-45% (w/v) sucrose gradients in 

purification buffer containing 10mM DTT supplemented with either 0, 100, or 200 mM KCl. 

The gradients were centrifuged at 120,000 x g for 16h at 4 °C and were harvested in 200 µl 

fractions. All fractions of the gradients at the three salt concentrations were then analyzed 

by SDS-PAGE.  
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2.2.3.3. Steady-state kinetics 

Kinetic measurements were carried out with a V-750 UV-Visible spectrophotometer (Jasco 

Instruments) by monitoring NADPH consumption during substrate turnover. The 

substrate concentration dependence for all three FAS substrates (i.e., NADPH, acetyl-CoA 

and malonyl-CoA) was analyzed. Commercial acetyl-CoA and malonyl-CoA were further 

purified by Reverse-Phase (RP)-HPLC (ÄKTA BASIC 900, GE Healthcare Life Sciences) 

using a preparative column (MN Nucleodur® 100-5-C18, 250 mm x 21 mm, 5 µm, flow rate: 

10 ml/min). UV-absorption was detected at 215 nm, 260 nm and 280 nm, and purification 

was performed with a linear gradient of A (water + 0.1% (v/v) TFA) to B (79.9% acetonitrile 

(v/v) + 20% ddH2O + 0.1% (v/v) TFA). The peak fractions of the corresponding substrates 

were collected, lyophilized and stored at -80 °C until use. The substrate stock concentrations 

were determined photometrically (NADPH: ε340 = 6220 M-1cm-1, ε371=2631.8 ± 6.5 M-1cm-1; 

acetyl-CoA: ε260 = 15.400 M-1cm-1; malonyl-CoA: ε260=15400 M-1cm-1). Initial velocities of fatty 

acid synthesis at varying acetyl- and malonyl-CoA concentrations were determined by the 

measurement of the time-dependent change in absorption of NADPH at λ = 340 nm. To 

study the concentration dependence for acetyl-CoA, malonyl-CoA (120 µM), and NADPH 

(360 µM) were kept constant, while acetyl-CoA concentrations were varied between 0-180 

µM. In the case of malonyl-CoA, acetyl-CoA (180 µM) and NADPH (360 µM) were kept 

constant, while the concentration of malonyl-CoA concentrations was varied from 0-180 

µM. For the corresponding analysis of NADPH, measurements were performed at a 

wavelength of λ = 371 nm, because NADPH saturation could not be analyzed at 340 nm 

owing to the high absorbance. All kinetic measurements were performed by incubating 

protein stock solutions containing 0.254 µM FAS either with or without 254 µM of the γ-

subunit for 30 min at 30 °C. Single enzymatic reactions contained 12.7 nM FAS with or 

without 12.7 µM γ-subunit, 0.2 mg/ml lysozyme as non-specific buffer protein, kinetic assay 

buffer, the respective required substrate concentrations and 10% (w/v) sucrose. Single 

reactions were pre-mixed and incubated (1 min, 30 °C). The enzymatic reaction was started 

by addition of malonyl-CoA and measured at 30 °C. The data were fitted with different 

kinetic models including the Michaelis-Menten equation, the Hill equation or with a 

modified Michaelis-Menten equation implementing substrate activation. 
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2.2.3.4. Biotinylation of FAS 

Biotinylated labeled FAS was used for selection of ScFAS specific nanobodies using phage 

display. 500 ul of 0.3 µM FAS in resuspension buffer was incubated with 10-fold excess (3 

µM) Biotin-dPEGTM(24)-NHS (Iris Biotech) at 25 °C for 30 minutes. The goal was to have 

single labelled FAS and 10-fold excess of NHS-biotin was found to give the most optimal 

results. The reaction was quenched by 10 µl of 1 M Tris pH 7.0. The mixture was loaded 

onto a PD-10 column to separate the unbound biotin. The eluent was collected as 500 µl 

fractions and the ones containing FAS were determined using a dot blot. In the end, 1 ml of 

0.12 µM biotinylated FAS was obtained.  

2.2.4. Crosslinking Mass Spectrometry 

We analyzed purified FAS holoenzyme by crosslinking mass spectrometry. For BS3 

crosslinking, the protein complex was incubated with 1 mM of BS3 crosslinker (from a 

100mM stock in DMSO) for 30 min at 30 °C. The reaction was quenched with 100 mM Tris-

HCl pH 8.0 (from a 1 M stock). For SDA crosslinking, the protein complex was incubated 

with 2 mM SDA (100 mM stock in DMSO) for 30 min at 30 °C, quenched with 50 mM Tris-

HCl and dialyzed against reconstitution buffer via a membrane filter (MF Membrane 

Filters, 0.025 µm VSWP, Merck). Afterwards, sample was irradiated with UV light (365 nm 

wavelength) for 5 min at 4°C. For EDC crosslinking, the complex was incubated with 5 mM 

EDC (100 mM stock in reconstitution buffer) and 10 mM sulfo-NHS for intermediate 

stabilization for 1 h at 30°C. The reaction was quenched with 20 mM dithiothreitol (DTT) 

and 50 mM Tris-HCl. Proteins were reduced and alkylated with 10 mM DTT and 40 mM 

iodoacetamide, respectively. In the presence of 1 M urea, proteins were digested by trypsin 

in an enzyme-to-protein ratio of 1:50 at 37 °C overnight. Peptides were acidified with 

trifluoroacetic acid (TFA) added to a final concentration of 0.5% (v/v), desalted on 

MicroSpin Colums (Harvard Apparatus) following the manufacturer’s instructions, and 

vacuum dried. Peptides were resuspended in 50 µL of 50% acetonitrile/0.1% (v/v) TFA 

before enriching of cross-linked species by peptide size exclusion (SuperdexPeptide 3.2/300 

column, GE Healthcare). Fractions of 50 µL were collected and those that eluted first and 

contained the cross-linked peptide pairs were analyzed by LC-MS/MS.  
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Cross-linked peptides of the first BS3 replicate were measured in technical duplicates on an 

Orbitrap Fusion Lumos Tribrid Mass Spectrometer coupled to a Dionex UltiMate 3000 

UHPLC system (both Thermo Fisher Scientific) equipped with an in-house-packed C18 

column (ReproSil-Pur 120 C18-AQ, 1.9 µm pore size, 75 µm inner diameter, 30 cm length, 

Dr. Maisch GmbH). Samples were separated by applying the following gradient: mobile 

phase A consisted of 0.1% formic acid (v/v), mobile phase B of 80% acetonitrile/0.08% formic 

acid (v/v). The gradient started at 5% B, increasing to 12, 15 or 20% B within 3 min 

(according to fraction), followed by a continuous increase to 48% B within 45 min, then 

keeping B constant at 90% for 8 min. After each run the column was again equilibrated to 

5% B for 2 min. The flow rate was set to 300 nL/min. MS1 survey scans were acquired in the 

orbitrap (OT) with a resolution of 120,000, an injection time (IT) of 60 ms and an automatic 

gain control (AGC) target of 5×105. Dynamic exclusion (DE) was set to 10 s and only charge 

states between 3 and 8 were considered for fragmentation. MS2 spectra were acquired in 

the OT of the 20 most abundant precursor ions, resolution 30,000, IT 120 ms and AGC target 

5×104. Fragmentation was enforced by higher-energy collisional dissociation (HCD) at 30% 

normalized collision energy (NCE). The second BS3 replicate was treated with the following 

changes: we used a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific), at MS1 

the IT was set to 50 ms and the AGC target to 1×106. At MS2, the IT was set to 128 ms and 

the AGC target to 1×105. DE covered 30 ms. Here, the 30 most abundant precursor ions were 

considered for fragmentation. The SDA and EDC sample sets were measured in technical 

duplicates on an Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Fisher Scientific) with 

the same settings as described for the first BS3-replicate. 

ProteomeDiscoverer 1.4 (Thermo Fisher Scientific) was used for converting .raw files into 

.mgf format (signal-to-noise ratio 1.5, 1000–10000 Da precursor mass). The generated .mgf 

files were subjected to pLink v. 1.23(Yang et al., 2012) to identify cross-linked peptides. 

Here, default settings were applied with carbamidomethylation of cysteines as a fixed and 

oxidation of methionines as a variable modification, the FDR was set to 0.01. The crosslinker 

was selected according to the respective experiment. Spectra of inter-cross-links between 

FAS and the γ-subunit within the first BS3-replicate as well as for the SDA and EDC sample 

sets were evaluated manually. For all crosslinkers, a score cut-off of 3 was applied and only 
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cross-links supported by more than one crosslinked peptide spectrum matches (CSMs) 

were considered. 

2.2.5. EM sample preparation and data collection 

2.2.5.1. Negative stain grid preparation 

Negative staining is a quick and easy method to visualize proteins in electron microscopy 

(EM). A heavy metal solution such as uranyl formate is used to stain the proteins. The 

contrast created due to the differences in electron densities of the stain and the proteins is 

exploited to image the proteins. First, the protein sample with a concentration of 0.5 mg/ml 

is placed in a teflon well (Teflon is inert and does not interact with the proteins). Carbon 

coated mica was then floated on the sample. The mono-atomic carbon layer keeps floating 

and adsorbs the particles while the mica sinks. After 30 seconds, the carbon layer was fished 

using a carbon coated copper grid. The particles were then stained by floating the grid on 

a saturated uranyl formate solution for 1 min after which excess stain was removed by 

gently blotting with a tissue followed by drying for 2 min. The proteins were visualized 

using a CM200 (Philips) electron microscope. Images were taken at a 66 k-fold 

magnification with a maximal electron dose of 20 electrons per Å2. A voltage of 160 kV was 

used for acceleration of the electrons. Images were recorded with a two-fold binned 4k x 4k 

CCD camera (TVIPS) resulting in a pixel size of 2.45 Å/pixel. 

2.2.5.2. Glutaraldehyde concentration for CtFAS GraFix gradients 

Glutaraldehyde concentrations to be used for GraFix were determined by incubating 20 µg 

of CtFAS with increasing concentrations of Glutaraldehyde (0, 0.025, 0.05, 0.01, 0.02%) in a 

total volume of 20 µl for 30 mins at 4 °C. 10 µl of this was loaded onto an SDS-PAGE gel. 

The concentration of 0.05% glutaraldehyde was found to be optimal as the bands 

corresponding to CtFAS began to migrate slower at this crosslinker concentration.  
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2.2.5.3. Preparative reconstitution of the FAS γ-subunit complex   

For reconstitution of the FAS holoenzyme, a 100-fold excess of the γ-subunit was added to 

4 µM FAS and incubated at 30 °C for 30 min. The protein was then loaded on 10-45% (w/v) 

sucrose gradients in purification buffer containing 10 mM DTT, and then centrifuged at 

64,000 x g for 16 h at 4 °C. Gradients were harvested in 400 µl fractions. We then used SDS-

PAGE to identify fractions containing FAS holoenzyme. Selected fractions were pooled and 

precipitated by the addition of 40% (v/v) PEG400. After centrifugation (30,000 x g, 30 

minutes), the supernatant was removed and the precipitate was resuspended in 

purification buffer containing 10% (w/v) sucrose, 10 mM DTT and 0.01% (w/v) LMNG to a 

final concentration of 10 mg/ml. 

2.2.5.4. Cryo-EM sample preparation  

CtFAS 

For the native CtFAS dataset, 200 pmol of purified CtFAS was loaded on 10-45% (w/v) 

linear sucrose gradient in purification buffer containing 10 mM DTT and centrifuged at 

100,000 x g for 16 h at 4 °C. The gradient was harvested in 200 µl fractions and those 

containing the FAS were identified using dot blots stained with 0.1% amido black solution. 

The FAS fraction were pooled and buffer exchanged to purification buffer lacking sucrose 

using a Zeba spin column (Thermo Scientific, Germany). The particles were adsorbed to a 

continuous carbon film attached to a Quantifoil (3,5/1) (Quantifoil, Jena, Germany) grid for 

2 min at 4 °C. The grid was then transferred to a Vitrobot Mark IV (Thermofisher, Germany) 

plunge-freezer, where it was vitrified after blotting for 8 s at 4 °C and 100% humidity. 

For the GraFix treated CtFAS, the above protocol had two variations. The sucrose gradients 

also contained a linear 0-0.05% glutaraldehyde gradient and 20 mM sodium aspartate (pH 

6.5) was added to all the harvested gradient fractions to quench the crosslinking reaction 

before proceeding. 
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ScFAS 

EM grids were prepared for ScFAS, ScFAS-γ-subunit complex and ScFAS with substrates 

(1 mM Malonyl-CoA and 2 mM NADPH) at a protein concentration of 0.5 mg/ml. The 

particles were adsorbed to a continuous carbon film attached to a Quantifoil (3,5/1) 

(Quantifoil, Jena, Germany) grid for 2 min at 4 °C. The grid was then transferred to a 

Vitrobot Mark IV (Thermofisher, Germany) plunge-freezer, where it was vitrified after 

blotting for 8 s at 4 °C and 100% humidity. 

For studying the effect of γ-subunit concentration on the conformation landscape of ScFAS, 

γ-subunit concentration was titrated against a constant amount of FAS. For this, 0.5 µM 

FAS solution was used and recombinant, purified γ-subunit was titrated in 0-, 2-,4-, 6-,12-, 

24-, 48- and 96-fold excess. The protein mix was incubated at 30 °C for 30 min and then 

kept at 4 °C. 4 µl of each sample was applied to freshly glow-discharged Quantifoil 

R1.2/1.3 and R2/2 holey carbon grids (Quantifoil Micro Tools, Jena, Germany) followed by 

plunge freezing as described above. 

For FAS-Nb complexes, 0.5 mg/ml FAS solution was incubated with 12-fold molar excess 

of the respective nanobody for 30 mins at RT. The particles were adsorbed to a continuous 

carbon film and plunge frozen as described above. 

2.2.5.5. Cryo-EM data collection and image processing 

Data were acquired on a Titan Krios (Thermo Fisher Scientific) operating at 300 kV using 

either a Falcon III (integrating mode) camera or a K2 summit (counting mode) camera 

(Gatan, Inc.). Data collection and processing statistics are summarized in Supplementary 

Table 3 and 5. The acquired movies were motion corrected and dose weighted using 

Motioncor2 (Zheng et al., 2017) with all the frames split into 5x5 patches. The aligned frames 

were used to perform per micrograph CTF estimation using GCTF (Zhang, 2016). Particle 

selection was done using Gautomatch (from Dr. K. Zhang). All subsequent image 

processing steps were performed with Relion 3.0 (Scheres, 2012; Zivanov et al., 2018), unless 

otherwise specified (Figure 16, Supplementary Figure. S1, S4). The extracted particles were 

subjected to 3 rounds of reference free 2D classification to remove bad/empty images. The 
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remaining particles were refined with a mask around the central wheel using D3 symmetry. 

EMDB-1623 was low pass filtered to 30 Å and used as reference for all 3D refinement and 

3D classification procedures. The refined particles were then classified without alignment, 

with a mask around the two domes. The particles from the 3D class displaying the best 

resolution were selected and used for one more round of 3D refinement and classification 

as performed before. The data further classified into 3 main classes. The particles belonging 

to their respective classes were refined resulting in structures with resolutions of 3.5 Å or 

better. Even though all the 3 classes were at comparable resolutions, their local resolutions 

– especially in the dome region of the molecule – were very different. Only one class 

displayed high resolution details throughout the whole molecule. Finally, the particles 

belonging to this class were selected and used to perform CTF refinement (and particle 

polishing for the FAS holoenzyme dataset) followed by 3D refinement.  

2.2.5.6. Energy Landscapes calculation 

The data were processed as described above until the first classification step. For this 

analysis, batches of ~100,000 particles were classified into 15 classes. The particles belonging 

to each class were selected and refined again without applying any masks. The refined 3D 

volumes from each dataset (a total of 165) were then used for the conformational landscape 

analysis as previously described (Haselbach et al., 2017, 2018). The 3D volumes were first 

aligned in USCF Chimera (Pettersen et al., 2004) with the central wheel of the molecule as 

the reference point. Further steps were performed in the COW software suite (www.cow-

em.de). The 3D volumes were normalized and filtered to 20 Å. 3D Principle Component 

Analysis (PCA) was then performed to obtain the major modes of motion among the 

different samples. The resultant eigenvectors representing the variance in the data were 

sorted based on decreasing significance and then used to describe each 3D volume using 

the following equation 

 𝑋𝑖 = �̅� + 𝛴𝑗=1
𝑛 𝑎𝑖,𝑗𝑒𝑖             (1) 

, where every volume 𝑋𝑖 is described as a linear combination of the average volume �̅� and 

the eigenvectors 𝑒𝑖 multiplied with the linear factor 𝑎𝑖,𝑗. The first (𝑒1) and second 

(𝑒2) eigenvectors, which depict motions of compaction and rotation of the FAS dome, 
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respectively, were selected for calculating conformational landscapes. The particle number 

belonging to each class was used to calculate their free energies as multiples of the 

Boltzmann factor (𝑘𝐵𝑇): 

   𝛥𝛥𝐺 = 𝑘𝐵𝑇 ln (
𝑝𝑖

𝑝0
)                                                                  (2)      

, where 𝑇 is the absolute temperature, 𝑘𝐵 the Boltzmann constant, 𝑝𝑖 is the number of 

particles in state 𝑖 and 𝑝0 is the number of particles in the most populated state. The linear 

factors of 𝑒1 and 𝑒2 calculated as per equation (1) contributing to the input 3D volumes 

represent the x and y coordinates of the landscapes whereas the z axis represents the free 

energies of each class. 

2.2.6. X-ray crystallography methods  

2.2.6.1 Crystallization and Stabilization 

FAS in purification buffer containing 10% sucrose (w/v), 10 mM DTT and 0.01% (w/v) 

LMNG was crystallized at 7 mg/ml by mixing 1 µl protein + 1 µl crystallization buffer A in 

Crystalgen hanging drop diffusion plates (Jena Bioscience, Germany) over a 750 µl 

reservoir of crystallization buffer A. For the FAS holoenzyme, a 7-fold molar excess of γ-

subunit (in the buffer used for FAS) was added to a 7 mg/ml protein solution of FAS and 

incubated for 30 minutes at 30 °C. The reconstituted complex was then crystallized by 

mixing 1 µl protein + 1 µl crystallization buffer B in Chryschem sitting drop vapor diffusion 

plates (Hampton Research, Aliso Viejo, USA) over a 500 µl reservoir of crystallization buffer 

B. The crystals took 3-7 days to grow at 18 °C and were usually around 150 x 200 x 200 µm 

in size. 

The crystals obtained were transferred to 4 °C by gradually decreasing the temperature in 

a linear manner over 48 h using a Rumed® E100 incubator (Rubarth Apparate GmbH, 

Germany). Stabilization and dehydration procedures were performed as follows: 1) The 

drop was unsealed and 2 µl of the reservoir solution was added to the drop. Then 2 µl of 

crystal stabilization buffer (A for FAS, B for FAS holoenzyme) was added. 2) 2 µl of crystal 

stabilization buffer containing 5% (v/v) ethylene glycol was added followed by removal of 
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2 µl of solution from the drop. Then 2 µl of crystal stabilization buffer containing 5% (v/v) 

ethylene glycol was again added to the drop. This procedure was repeated with crystal 

stabilization buffer containing 10% and then 20% (v/v) ethylene glycol. 3) The reservoir 

solution was exchanged for crystal stabilization buffer containing 25% (v/v) ethylene glycol 

and the drop was resealed. The crystals were then allowed to equilibrate by vapour 

diffusion in excess of 16 h.  

2.2.6.2. X-ray Diffraction Data collection 

The crystals were harvested in Spine Litholoops (Molecular Dimensions, Suffolk, UK or 

Jena Bioscience, Jena, Germany) mounted on magnetic pins, and vitrified by plunge-cooling 

in liquid nitrogen. The data were collected on EMBL beamline P14 at the PETRA III storage 

ring (DESY, Hamburg, Germany) using a MD3 vertical-spindle diffractometer (EMBL and 

Arinax, Moirans, France) and an EIGER 16M detector (Dectris, Baden, Switzerland). A 

white beam refractive lens transfocator and slits were used to obtain homogenous X-ray 

beams which matched the crystal dimensions (Schrader et al., 2016). Diffraction data were 

scaled and integrated with the XDS program package (Kabsch, 2010). 

2.2.6.3. X-ray structure determination 

Initial phases for FAS were determined by molecular replacement performed with 

MOLREP (Vagin and Teplyakov, 2010) using the Saccharomyces cerevisiae FAS structure 

(PDB ID: 2UV8). The model was built and optimized by several rounds of interactive 

manual model building in Coot (Emsley and Cowtan, 2004) and refinement in Refmac5 

(Murshudov et al., 2011). Finally, TLS refinement was performed, where each TLS domain 

was defined by individual enzymatic domains. The obtained structure displays excellent 

stereochemistry with 19.7 % / 21.8% (R/Rfree) (Supplementary Table 4). Analysis of the 

diffraction data with the STARANISO server indicated mild anisotropy. This suggested 

anisotropic scaling and truncation of the data should allow for better refinement of the 

model. This was indeed the case and resulted in a final model with lower average B-factors 

and 19.2 % / 21.1 % (R/Rfree) (Supplementary Table 4).  
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The refined FAS crystal structure was used to determine the initial phases by molecular 

replacement with MOLREP (Vagin and Teplyakov, 2010) for the FAS-holoenzyme 

diffraction data. The obtained density map was found to correlate better with the FAS 

holoenzyme model (as determined by cryo-EM) rather than the FAS structure. Therefore, 

we used the model of - and -subunits from the FAS holoenzyme cryo-EM model in initial 

refinement of the X-ray data. Notably, the ACP domain and the γ-subunit were removed 

from the structure prior to refinement to avoid introducing a phase bias. After several 

rounds of rigid body refinement in Refmac5 (Murshudov et al., 2011), difference densities 

corresponding to the ACP domain and γ-subunit next to the AT and ER domain, 

respectively could be easily identified. The ACP and the γ-subunit sequences were then 

placed into their respective densities followed by additional rounds of refinement using 

Coot (Emsley and Cowtan, 2004) and Refmac5 (Murshudov et al., 2011).  

2.2.7. EM Model building 

The crystallographic FAS model was used as the initial model for both the FAS and FAS 

holoenzyme structures determined by cryo-EM. It was docked into the EM densities as a 

rigid body using UCSF Chimera (Pettersen et al., 2004). An additional round of rigid body 

refinement was then performed in Refmac5 (Murshudov et al., 2011). The model then 

underwent several rounds of manual modelling in Coot (Emsley and Cowtan, 2004) and 

refinement in Refmac5 (Murshudov et al., 2011) (Supplementary Table 3).  

Several models for the γ-subunit were generated based on sequence homology using the 

Robetta (Kim et al., 2004) prediction server. All of them were docked into the “extra 

density” in the FAS holoenzyme map using UCSF Chimera (Pettersen et al., 2004). The 

model with the best fit was then manually modelled into the density based on the cross-

linking data as well as side chain densities that were visible. There were two unstructured 

regions (60-76, 114-132) of this protein that could not be confidently modelled. 

For validation of the models, fourier shell correlation (FSC) between the refined model and 

the map was calculated (FSCsum). The model was also refined using the first unfiltered half-

map. This model was then compared to the first half map (FSCwork) as well as to the second 

half-map (FSCfree) to check for signs of overfitting.  
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All figures were made using Pymol (Schrödinger, 2015), Chimera (Pettersen et al., 2004) 

and ChimeraX (Goddard et al., 2018). 

 



3.1. Structure investigations of Chaetomium thermophilum FAS 39 

 

3. Results  

The first step to fulfill the aims set for this thesis was to obtain a preparation of 

compositionally homogenous fungal FAS. Previous structural studies of this complex 

mainly relied on the use of ammonium sulfate precipitation, sucrose gradients and anion 

exchange chromatography to purify endogenous FAS (Jenni et al., 2007; Leibundgut et al., 

2007; Lomakin et al., 2007). Some research groups have also tried to use recombinant 

approaches by either tagging the endogenous gene with a His-Tag or expressing the full 

molecule in E. coli (Elad et al., 2018; Johansson et al., 2008). Using these purification 

methods, 3.1-3.3 Å structures of type I FAS have been solved from fungi Thermomyces 

lanuginosus and Saccharomyces cerevisiae along with those from pathogenic bacteria like 

Mycobacterium tuberculosis. To be able to study the FAS structure and dynamics at high 

resolution, I tested a different approach involving PEG precipitation and sucrose gradients, 

while maintaining constant low salt conditions (< 100 mM). A similar mild purification 

strategy was successfully applied for purifying 20S/26S proteasomes (Haselbach et al., 2017; 

Schrader et al., 2016) and enabled the study of these structures at high resolutions. 

3.1. Structure investigations of Chaetomium thermophilum FAS 

3.1.1. Purification of endogenous FAS from Chaetomium thermophilum 

A chromatography-free purification of endogenous FAS from Chaetomium thermophilum 

(CtFAS) was established based on the method previously employed to purify 20/26S 

proteasomes (Haselbach et al., 2017; Schrader et al., 2016) (Figure 5). Cell lysate prepared 

from frozen ground cells was centrifuged at 30,000g for 30 min to remove cell debris 

followed by centrifugation at 100,000g for 1 hr. FAS was then precipitated from the clarified 

lysate using 15% PEG400. The precipitated proteins were then loaded onto 10-45% sucrose 

gradients (Figure 5(ii)). The fractions containing FAS were pooled and then precipitated 

using 6%, 8% and 10% PEG3350 concentrations. The 8-10% PEG3350 cut contained the FAS 

and was then loaded onto 10-45% sucrose gradients (Figure 5(iii)). The fractions containing 

the FAS were pooled, precipitated and resuspended to a concentration of 12 mg/ml. FAS 
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bands of 210 and 230 kDa were confirmed using mass spectrometry. Along with this, the 

major impurity in the sample were two bands around 100 kDa which were identified as 

subunits of the oxoglutarate dehydrogenase complex. The oxoglutarate dehydrogenase 

complex is in the same molecular weight range as the FAS and therefore always co-

sediments with the FAS. Optimization of PEG precipitation steps to remove the 

oxoglutarate dehydrogenase complex from the FAS preparations was tested but was 

unsuccessful. Therefore, even with the present impurities, I used the CtFAS sample for 

negative stain electron microscopy to check whether the purity of the sample was adequate 

for structural studies. 

 

 

Figure 5. Schematic representation of the chromatography-free purification established for 

Chaetomium thermophilum FAS. (i) The chromatography-free purification of FAS involved 

specific precipitation of FAS using PEG in combination with sucrose density gradients. The SDS-

PAGE gel for the fractions of the first (ii) and second (iii) 10-40% sucrose gradient step is depicted. 

Fractions containing the FAS that were pooled are indicated by the red box.  
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3.1.2. Negative stain electron microscopy 

The purified endogenous CtFAS was first analyzed with negative stain EM to check the 

purity of the sample. Visually, the obtained micrographs consist mainly of FAS particles 

(>90%) along with some particles that correspond to the oxoglutarate dehydrogenase 

complex as well as unexpected 20S proteasomes (Figure 6(i)). This observation correlated 

with the amount of contaminants observed by SDS-PAGE during purification. 2D class 

averages of the selected particles depicted classical side views of a type I fungal FAS (Figure 

6(i)). The 2D class averages were used for generating a de novo 3D starting model using the 

COW suite (Figure 6(ii)). I then used Relion 2.0 (Scheres, 2012) for refining the particles 

using the de novo 3D model as a reference. This resulted in a 20Å structure which, at this 

resolution, appears to be identical to other published fungal FAS structures (Figure 6(iii)). 

After confirming that the purified CtFAS was pure and intact for structural studies, I used 

the sample for crystallization as well as cryo-EM in order to determine the structure at high 

resolution. 

 

 

Figure 6. Analysis of CtFAS using negative stain electron microscopy. (i) Negative stain 

micrograph of the purified CtFAS along with representative 2D class averages. (ii) De novo 3D 

starting model of the CtFAS reconstructed using COW suite. (iii) 20 Å negative stain EM structure 

of the CtFAS. 
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3.1.3. Crystallization trials  

Crystallization of CtFAS was done in parallel with the cryo-EM studies. The strategy for 

screening crystallization conditions involved testing different combinations of precipitant 

and salt concentrations. Crystals in the range of 150-300 µm were obtained at 18 °C using 

two crystallization conditions in 0.1M MES pH 7.0: (1) 0.6 M KCl, 6-7% PEG 6000 and (2) 

1M ammonium nitrate, 7-8% PEG5000. The crystals belonged to C2221 space group with a 

unit cell of a = 264.2 Å, b = 351.2 Å, c = 418.4 Å, α=β=γ=90° and the best crystals diffracted 

up to ~5-6 Å. Furthermore, the crystal diffraction was more reproducible upon transfer to 4 

°C before stabilization and dehydration procedures. Due to the crystal diffraction being 

limited to low-resolutions of the obtained crystals, I exclusively used cryo-EM to study the 

effects of GraFix on CtFAS structure.   

3.1.4. Cryo-EM structure determination of CtFAS 

Cryo-EM data for the CtFAS were acquired on a Titan Krios with a Cs corrector at 300 kV 

using a Falcon II direct electron detector in integrating mode. The micrographs displayed 

good contrast, which enabled robust particle selection. I first performed 2D classification 

using 492,557 particles selected from 6421 micrographs (Figure 7(i)). After each 2D 

classification step, empty images or images with low signal-to-noise were discarded. The 

obtained 2D class averages consisted exclusively of side views of the FAS. This was 

followed by 3D classification procedures in Relion 3.0 which further sorted the data into 

one good subset of particles (73,391 particles, 14.9% of total particles). This final set of 

particles resulted in a 3.2 Å density map with applied D3 symmetry (Figure 7(ii)). Even 

though the FSC 0.143 criterion suggested the map resolution to be 3.2 Å, local resolution 

variations in the structure were present, from ~3 Å at the central wheel to ~3.4-3.8 Å at the 

dome region. Furthermore, the angular distribution of the particles used for the 3D 

refinement displayed an orientation bias (Figure 7(iii)). In the angular distribution plot, a 

tilt angle of 90° represents the side view of the FAS whereas 0° represents the top view of 

the FAS. The data consists mainly of side views of the FAS along with minor populations 

of particles adopting tilted orientations, however, none of the particles show top views of 
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the complex. Such an orientation distribution is not ideal but was sufficient to obtain a 3.2Å 

structure of CtFAS. A similar view distribution of an asymmetric complex would result in 

more apparent effects on the obtained structure such as smearing of the density in the 

direction of the major particle projection orientation. Whether such an orientation bias is 

limiting the attainable resolution for the CtFAS is an open question and I tried to answer 

this using the GraFix procedure as described in the next section. 

To build an atomic model into the cryo-EM map, previous high resolution FAS structures 

from Thermomyces lanuginosus and Saccharomyces cerevisiae were first fit into the map at the 

secondary structure level. Both structures correlate well with the map, with all domains 

except ACP and PPT modelled in the map. In the end, the Thermomyces lanuginosus structure 

was found to be a more suitable template for building the CtFAS structure as CtFAS has a 

sequence identity of ~74% with the T. languinosus FAS as compared to ~60% with the S. 

cerevisiae FAS (ScFAS). After mutating the respective residues, I first refined the model 

interactively followed by refinement using Refmac5. The final refined model of the CtFAS 

had a FSC0.5= 3.3 Å and a cross-correlation of 0.76 with the CtFAS map (Figure 7(iv)). 
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Figure 7. Cryo-EM analysis of CtFAS. (i) A typical electron micrograph of CtFAS embedded in 

vitreous ice along with representative 2D class averages. (ii) Local resolution map of the 3.2 Å CtFAS 

structure. The local resolution varies from 3 Å at the central wheel to 3.4-3.8 Å at the dome. (iii) 

Angular distribution of particles used in the final 3D reconstruction. (iv) Fourier shell correlation 

(FSC) curves of two independently refined subsets of particles (half map vs half map) as well as the 

final refined map and the model (map vs model) are shown. The half map vs half map curve indicates 

a resolution of 3.2 Å at a threshold of 0.143. The map vs model curve shows a resolution of 3.3 Å 

using the 0.5 threshold criterion.   

 

The 3.2 Å structure of CtFAS is the highest resolved structure of a type I fungal FAS 

determined by cryo-EM and is comparable to the 3.1 Å structures determined previously 

by X-ray crystallography. Multiple 3D classification steps were performed to further 

improve the resolution, however, the resolution of the CtFAS structure did not improve. 

The attainable resolution for a biological sample with the microscope used at the time this 

data was acquired was better than 2.5 Å (data not shown). This indicated that the resolution 

limiting factor was most likely not the structural technique used, but the heterogeneity of 

the protein sample itself. One factor contributing towards this could be the unresolved ACP 
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domain. The ACP domain interacts with six catalytic domains within the FAS dome during 

fatty acid synthesis. It can therefore be either located at one (or many) of the catalytic 

domains or can be present in the empty space inside in the FAS dome. The ACP domain 

not being visible in the CtFAS structure suggests that the domain is not stabilized at a 

distinct site in the CtFAS. Thus, the random distribution of ACP domains would explain 

the absence of any corresponding density within the FAS as their signal gets averaged out 

during 3D reconstruction. In the FAS, since the ACP domains are tethered to the FAS barrel 

with linker sequences, it is plausible that the inconsistent distribution of the ACP domain 

within the FAS results in random variations in the FAS barrel itself.   

To address the issue of conformational heterogeneity and to improve the resolution of the 

CtFAS structure, I tested the GraFix method (Kastner et al., 2008). The hypothesis was that 

this mild crosslinking method could assist in stabilizing the FAS dome and the ACP domain 

within.  

3.1.5. Effect of Grafix on CtFAS structure.  

As a crosslinking agent for GraFix, I used glutaraldehyde. Glutaraldehyde is a zero-length 

bi-functional crosslinker, which can covalently link closely situated primary amine groups 

in protein complexes. Glutaraldehyde could affect the FAS structure in two ways, (1) by 

intramolecular crosslinks between closely situated lysine residues and (2) by changing the 

charge distribution on the surface of the molecule using a charged molecule to quench the 

monovalently attached glutaraldehyde molecules. I tested the optimal concentration of 

glutaraldehyde for GraFix by in-batch crosslinking at 4 °C and found that ~0.05% 

glutaraldehyde results in mild crosslinking of the FAS subunits as they migrate slower than 

the untreated FAS. At higher glutaraldehyde concentrations the FAS subunits are 

completely crosslinked rendering them too large to enter the SDS-PAGE gel (Figure 8(i)). I 

then used 0.05% of glutaraldehyde for mild crosslinking of CtFAS using GraFix and the 

crosslinking reaction was terminated using 20 mM aspartate pH 6.5. GraFix-treated FAS 

appeared to be more thermostable as shown by the Proteoplex assay (Chari et al., 2015) 

(Figure 8 (ii)). The increase in melting temperature upon GraFix was most likely a result of 

intramolecular crosslinks. Along with this, negative stain micrographs of the GraFix-treated 
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FAS displayed particles with equally distributed top and side views of the complex (Figure 

8(iii)). This was distinctly different from the untreated FAS where only side views were 

visible (Figure 6(i)). The use of aspartate for quenching the GraFix reaction makes the FAS 

more negatively charged, which is the most likely reason for the change in particle 

orientations. 

 

 

Figure 8. GraFix treatment of the CtFAS. (i) Gel depicting the effect of increasing glutaraldehyde 

concentration on the migration of FAS subunits (210, 230 kDa) on SDS-PAGE. Mild crosslinking 

is observed at 0.05% glutaraldehyde due to slower migration of the FAS subunits whereas complete 

crosslinking is observed at 0.075% onwards as the FAS subunits are unable to enter the gel. (ii) 

Normalized melting curves of the untreated (black) and GraFix-treated (green) FAS using the 

Proteoplex assay (Chari et al., 2015). (iii) Typical negative stain micrograph of GraFix-treated 

CtFAS. 

 

Finally, I used cryo-EM to determine if GraFix had implications for high resolution 

determination of CtFAS.  The data was collected on a Titan Krios with a Cs corrector at 300 

kV using a Falcon II direct electron detector in integrating mode. A set of 573,431 particles 

were selected from 6496 micrographs and used for 2D classification. The 2D class averages 

were different from those obtained with untreated FAS (Figure 9(i)). Along with the side 

views, tilted views of the FAS were also present. Furthermore, upon 3D classification, I 

found that GraFix-treated CtFAS was conformationally similar to the untreated FAS with 

most particles belonging to one major state of the FAS. Further, no densities corresponding 

to the ACP domain were observed during the different image processing steps.  After 

multiples round of 3D classification, 110,961 particles were selected and used to reconstruct 

a 3.4 Å GraFix-treated FAS structure with applied D3 symmetry (Figure 9 (ii)).  
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Figure 9. Cryo-EM analysis of GraFix-treated CtFAS. (i) A typical electron micrograph of the 

GraFix-treated CtFAS embedded in vitreous ice along with representative 2D class averages. (ii) 

Local resolution map of the 3.4 Å CtFAS structure. The local resolution varies from 3-3.4 Å at the 

central wheel to 3.8-4 Å at the dome. (iii) Angular distribution of particles used in the final 3D 

reconstruction of 3.4 Å. (iv) Fourier shell correlation (FSC) curves of two independently refined 

subsets of particles (half map vs half map) as well as the final refined map and the model (map vs 

model) are shown. The half map vs half map curve indicates a resolution of 3.4 Å at a threshold of 

0.143. The map vs model curve shows a resolution of 3.4 Å using the 0.5 threshold criterion.   

 

The untreated FAS was resolved at 3.2 Å, which was better by 0.2 Å as compared to the 

GraFix-treated FAS. Along with no discernible effect on the structure of the FAS, the mild 

fixation condition tested was ineffective in stabilizing the ACP domain. However, upon 

GraFix, particle orientations are more uniformly distributed as compared to the untreated 

FAS, where one view of the particle is over-represented (Figure 9(iii)). This is apparent both 

in the 2D class averages as well as in the angular distribution of the particles used for 3D 
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refinement. To further assess the effect of GraFix on the FAS structure, I refined the CtFAS 

model obtained from the untreated FAS map against the GraFix-treated FAS map (Figure 

9 (iv)). The final refined model of the GraFix-treated CtFAS had a FSC0.5= 3.4 Å and a cross-

correlation of 0.87 with the map (Figure 9(iv)). 

On comparing the untreated and GraFix-treated FAS models, no structural differences were 

observed and a root-mean-square deviation (RMSD) between the Cα atoms of the two 

models ~0.4 Å, suggesting that the two structures are almost identical. Thus, even though 

GraFix stabilized the molecule, as indicated by the Proteoplex assay, it had no apparent 

impact on the structure of the CtFAS or on the attained resolution. However, GraFix 

treatment aided in achieving a uniform particle orientation distribution of the FAS. 

The combination of glutaraldehyde for crosslinking and aspartate as a quenching agent 

used here for GraFix can be further modified in order to find conditions conducive to 

structural stabilization of the FAS dome, the ACP domains or both. For this purpose, 

chemical crosslinkers with different length or reactivity towards different function groups, 

in combination with quenching agents with different charge properties can be tested. 

However, for the rest of the thesis, I changed the model organism to Saccharomyces cerevisiae 

taking into account the following two observations: (1) using a thermostable FAS from C. 

thermophilum did not translate into structural stability of the complex as the structure was 

still limited to 3.2 Å. (2) The inability to visualize the ACP domains in the structural data 

most likely adds to structural variability in the complex. In the Saccharomyces cerevisiae FAS 

(ScFAS), the ACP domains tend to be docked at the ketosynthase active site. ScFAS, with 

its stalled ACP domains, might offer a more stable protein structure for achieving 

resolutions below 3 Å. The ability to visualize the ACP domain would also allow me to 

study the effects of ACP domain movement on the FAS structure.  
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3.2. Saccharomyces cerevisiae FAS as a model system 

3.2.1. Purification of endogenous FAS from Saccharomyces cerevisiae 

The protease-deficient yeast strain BJ2168 (MATa prc1-407 prb1-1122 pep4-3 leu2 trp1 ura3-

52 gal2) was used to obtain higher intracellular concentrations of FAS as well as to reduce 

proteolytic cleavage of the protein during purification. The conditions used for purifying 

ScFAS were distinct from those used for CtFAS due to differences in precipitation behavior 

of the FAS from the two species (Figure 10 (i)). The ScFAS precipitated from the S100 yeast 

lysate between 20-30% PEG400 concentration. The co-precipitated impurities were then 

separated in three subsequent steps involving sucrose gradients followed by precipitation 

using 40% PEG400. With this protocol 15-20 mg of protein were routinely obtained from 

~233g of cells (wet weight). Interestingly, unlike the CtFAS purification, purified ScFAS was 

devoid of protein complexes such as the oxoglutarate dehydrogenase. However, there was 

a prominent 20 kDa protein (as per SDS-PAGE) that was found to co-purify with the ScFAS 

(Figure 10 (ii)). A protein this small would normally sediment in the top fractions of 

gradients used for FAS purification. The co-sedimentation of this 20kDa protein with the 

FAS in the 40S region was, therefore, surprising. This can only be possible either by a direct 

interaction of this protein with the FAS, or if it assembles into a large multimeric complex 

with a sedimentation coefficient of ~ 40S. Both scenarios have never been reported and I 

therefore asked two questions - what is the identity of this small protein? Why is it found 

in the 40S region of the sucrose gradients?  
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Figure 10. Purification of S. cerevisiae FAS (i) Schematic representation of the chromatography-

free purification established for S. cerevisiae FAS. The chromatography purification of ScFAS 

involved specific precipitation of FAS using PEG followed by sucrose density gradients. (ii) SDS-

PAGE analysis of FAS purification from BJ2168 S. cerevisiae strain. Aliquots of S30 (lane 2) and 

S100 (lane 3) extracts, the resuspended PEG cut (lane 4), the pool of the first, second and third 

sucrose gradients (lanes 5, 6 and 7) as well as the final purified protein preparation (lane 7) and a 

molecular weight marker (lane 1) are depicted. Note the distinct co-purification of a protein with an 

apparent molecular weight of 20 kDa. (iii) SDS-PAGE analysis of FAS purification from a Δtma17 

S. cerevisiae strain. Aliquots of the same fractions as in (ii) are loaded. Note the absence of the protein 

with an apparent molecular weight of 20 kDa. 

3.2.2. Discovery of a novel interactor of the yeast FAS 

The 20kDa band on the SDS-PAGE gel was identified by tandem mass spectrometry to be 

a protein previously reported to be either associated with ribosomes as Tma17p (Fleischer 

et al., 2006) or to represent a stress induced chaperone for 26S proteasome assembly as 

Adc17p (Hanssum et al., 2014; Rousseau and Bertolotti, 2016). It is mainly found in fungi 

(Hanssum et al., 2014) (Figure 11). Three segments (1-53, 66-110 and 146-150) of Tma17p are 

conserved among the different species, whereas the remaining part of the protein appears 

to have diverged over the course of evolution. Since both negative stain EM and tandem 

mass spectrometry did not detect ribosome or 26S proteasome contamination 

(Supplementary Table 1), I further investigated Tma17p. For this, a Tma17p deletion strain 

was generated and was used to purify the FAS using the same protocol as described above. 

Corroborating the results from mass spectrometry, the 20kDa band was absent from the 

proteins purified from the Δtma17 strain (Figure 10 (ii)), thus, confirming that this small co-

purifying protein is indeed Tma17p/Adc17p.  
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Figure 11. Tma17p is conserved in fungi. Sequences from Tma17p homologues from different 

fungal species were obtained from the Uniprot database and multiple sequence alignment was 

performed using the T-Coffee package (Notredame et al., 2000). The residues are colored according 

to the ClustalX scheme, where the conserved residues are labelled as follows: blue (hydrophobic), red 

(positively charged), magenta (negatively charged), green (polar), orange (glycine), yellow (proline) 

and cyan (aromatic). 

 

Is Tma17p an independent multimeric 40S complex or is it associated with the FAS? To 

answer this question, I visualized the FAS with the co-purified Tma17p using negative stain 

electron microscopy. The micrographs contained particles with dimensions and appearance 

typical of the FAS with no indications of any other complex being present in the sample. 

Further, the recombinant Tma17p expressed in E. coli did not sediment in the 40S region of 

the sucrose gradients but had a sedimentation profile similar to what one would expect for 

17 kDa protein (Figure 12 (i)). This was distinctly different from what I observed for Tma17p 

purified along with FAS. These two observations suggested that Tma17p might be directly 

interacting with FAS. To test this hypothesis, I reconstituted the Tma17p-FAS complex in 
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vitro. The binding assay performed involved titrating increasing concentrations of 

rhodamine-labelled Tma17p against a constant amount of ΔTma17p-FAS. The bound 

Tma17p was then separated from the unbound fraction using a native agarose gel (Figure 

12 (ii)). The FAS migrated slower than the labelled Tma17p owing to the large difference in 

their molecular weights and charge distribution. The fluorescence signal from the region 

corresponding to the FAS was then measured to detect the bound Tma17p (Figure 12 (ii)). 

The fraction of labelled Tma17p bound to the FAS increases proportionally to the amount 

of labelled protein and displayed a sigmoidal behavior. Such a sigmoidal curve is 

characteristic of co-operative binding and therefore the Hill equation was used for fitting 

the data points. The binding of Tma17p to FAS has a K0.5 = 2.1  0.2 µM suggesting a 

moderate affinity. Along with this, the binding curve had a Hill coefficient (nH) of 2.1  0.3. 

A Hill coefficient of 2 indicates a positive binding cooperativity, where more than one 

Tma17p molecule binds per molecule of FAS and the binding of one Tma17p enhances the 

binding of other Tma17p molecules. Another valuable information from this binding curve 

was that the concentration of Tma17p required to fully saturate the FAS was ~6 µM. 

Therefore, in all future structural and biochemical experiments, Tma17p concentrations in 

excess of 6 µM were used to reconstitute the Tma17p-FAS complex.  
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Figure 12. Tma17p binds to the FAS. (i) SDS-PAGE analysis of sucrose density gradient 

centrifugation of isolated, recombinant Tma17p in gradients utilized to resolve FAS. The 

recombinant Tma17p protein is present in the top fractions of the gradient (red) and its 

sedimentation behavior is distinct from when it is bound to FAS (black). (ii) Reconstitution of the 

Tma17p-FAS complex. The top left depicts a Coomassie-stained native gel, where the positions of 

migration of FAS and Tma17p are indicated. The middle panel shows a fluorescence detection of the 

FAS region of the gel to visualize FAS-bound Tma17p, the bottom panel represents the quantitative 

analysis of the fluorescence signal. Hill equation was used for fitting the data points. 

 

Finally, Tma17p is also known to be phosphorylated in vivo (Albuquerque et al., 2008; Holt 

et al., 2009) and the endogenous Tma17p purified with the FAS was indeed found to be 

phosphorylated using mass spectrometry. To check for the impact of such modifications on 

Tma17p’s affinity to the FAS, I compared the stability of endogenously purified Tma17p-

FAS complex versus the reconstituted one. To study this, the stability of the Tma17p-FAS 

complex with respect to increasing salt concentrations was used as an indicator for 

Tma17p’s affinity to the FAS. For this, the respective samples were loaded onto sucrose 

gradients containing 50mM, 150mM and 250mM KCl. For the reconstituted complex, 

Tma17p completely dissociated at 150mM salt concentration. In comparison, the 

endogenous complex was more stable, with approximately half of the bound Tma17p 

dissociating at 150mM KCl and a complete dissociation occurring at 250mM KCl (Figure 

13). This suggested that the interaction of endogenous Tma17p with the FAS is stronger 

than that of the recombinant version. Along with this, the complete dissociation of Tma17p 

from FAS at 250 mM KCl suggests that Tma17p-FAS interaction could have escaped 

identification due to the dissociation of Tma17p from the FAS because of the relatively high-
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salt conditions (between 0.2-1M) previously employed to purify the FAS (Leibundgut et al., 

2007; Lomakin et al., 2007).  

 

 

Figure 13. Dissociation of endogenous Tma17p from the FAS is less salt-labile than the 

recombinant Tma17p. SDS-PAGE analysis of sucrose density gradient centrifugation of (i) 

reconstituted Tma17p-FAS complex and (ii) endogenous Tma17p-FAS complex. At 50 mM KCl, 

Tma17p is stably associated with FAS and co-sediments in the 40S region of the gradient (lanes 14-

17). In contrast, gradient centrifugation at 150 mM KCl causes the partial dissociation of 

endogenous Tma17p (lanes 2-9 and 14-17) and complete dissociation of recombinant FAS (lanes 1-

7). At 250 mM KCl, endogenous Tma17p is completely dissociated from FAS and sediments in the 

top fractions of the gradient (lanes 1-7). 

 

3.2.3. Mass spectrometric analysis of Tma17p and Tma17p-FAS complex 

All the following mass spectrometric data analysis was performed in collaboration with 

Andreas Linden and Henning Urlaub (Bioanalytical Mass Spectrometry group, Max Planck 

Institute for Biophysical Chemistry). 
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Data from proteome wide screens showed that Tma17p can be phosphorylated at serine 24, 

68 and 76 (Albuquerque et al., 2008; Holt et al., 2009). We therefore used mass spectrometry 

to determine whether the endogenous Tma17p purified with the FAS carries a 

phosphorylation as well as to determine the identity of the phosphorylated residues. We 

found several phosphorylated residues on both the FAS and Tma17p. Interestingly, along 

with all serine residues in the Tma17p reported previously to be modified, serine 38 was 

also found to be phosphorylated. The significance of the post-translation modifications on 

Tma17p were not investigated further during this thesis as I primarily focused on 

characterizing the effect of Tma17p on FAS activity and structure. 

Furthermore, crosslinking mass spectrometry (XL-MS) was used to gain more insight into 

the interaction between the Tma17p and FAS. Considering the abundance of aspartate and 

lysine residues in both, Tma17p and FAS, crosslinkers were chosen such that they bind to 

either of these two residues. Three independent trials using SDA (succinimidyl 4,4’-

azipentanoate), EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) and 

BS3 (bis(sulfosuccinimidyl) suberate) crosslinkers were performed. EDC and SDA are zero-

length crosslinkers which couple short range interactions (< 5 Å). EDC links primary amines 

(such as Lys) with closely located carboxyl groups (such as Asp and Glu), whereas SDA 

links primary amines to any amino acid side chain in its proximity. BS3 is an amine-to-

amine crosslinker that can link residues 10-20 Å apart. The mass spectra obtained from this 

analysis indicated that all the FAS residues in the vicinity of the Tma17p lie inside the barrel 

of the complex (Figure 14, Supplementary Table 2). Residues 55-72 of the Tma17p seem to 

have short range interactions near the active site cleft of the MPT domain, whereas residues 

124 and 129 are near the KS domain. Along with this, all three crosslinkers suggested that 

the Tma17p also interacts with the ER domain of FAS. The proximity of a 17 kDa protein to 

the MPT, ER and KS domain hinted at two possibilities:  (1) Tma17p has multiple binding 

sites inside the dome of FAS or, (2) it is structured in a way that it simultaneously interacts 

with all the domains over a distance of ~120Å. 
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Figure 14. XL-MS analysis of the Tma17p-FAS complex. Crosslinks between Tma17p and FAS 

using BS3 (black), EDC (orange) and SDA (cyan) crosslinker are depicted. The N-terminal residues 

of Tma17p are located near the ER domain, the central residues are near the ER and MPT domains 

and the C-terminal residues are in proximity of the KS domain. 

3.2.4. Effect of FAS activity upon binding of Tma17p 

XL-MS data suggested that the Tma17p interacts within the interior of the FAS dome and 

is in proximity of active site clefts of at least the MPT and ER domains. To examine if such 

interactions affect the activity of the FAS, I collaborated with Benjamin Graf (Department 

of Structural Dynamics, Max Planck Institute for Biophysical Chemistry) to determine 

steady state kinetics. The data was analyzed by Victor Sautner and Kai Tittmann 

(Department of Molecular Enzymology, Georg August University Goettingen).  

To determine steady state kinetics of the FAS, the initial rate of change in NADPH 

absorbance was measured. NADPH absorbs light at a wavelength of 340 nm whereas its 

reduced form, NADP+ does not. Since for each fatty acid synthesized, FAS uses 1 acetyl-

CoA, 7 malonyl-CoA and 14 NADPH molecules, measuring the rate of change in NADPH 

reduction correlates to FAS activity. FAS activity was then measured in the presence and 

absence of saturating concentrations (12 µM) of Tma17p. The concentration of each 

substrate (acetyl-CoA, malonyl-CoA and NADPH) was titrated individually, while keeping 

the other two at saturating levels. Three curves were obtained in the end, one for each 
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substrate. These kinetic measurements allowed for the detection and identification of the 

effects of Tma17p binding on FAS activity. 

The steady state kinetic measurements revealed saturation kinetics along with co-operative 

binding for acetyl-CoA and malonyl-CoA with an apparent binding affinity (KMapp) of 6.5  

0.5 µM and 6.5  0.7 µM, respectively (Figure 15(ii,iii)). The data for NADPH, however, did 

not exhibit similar behavior to the other substrates and could be best explained by a 

substrate dependent activation model. This model has two phases, the first phase follows a 

hyperbolic behavior where the KMapp for NADPH was 9.1  1.8 µM, whereas the second 

phase has a linear, non-saturating behavior. The second phase is indicative of activation of 

the enzyme at higher substrate concentrations and has an activation constant (Kact) of 3.0  

0.5 mM (Figure 15(i)). In comparison, for the Tma17p-FAS complex, even though the 

general behavior of acetyl-CoA and malonyl-CoA turnover rates were similar to that of the 

FAS where the KMapp increased to 12.2  1.8 µM and 22.4  2.4 µM, respectively. For NADPH, 

the enzyme complex exhibited a classic, hyperbolic Michaelis-Menten dependence with a 

KM of 155  29 µM.   

The kinetic analysis revealed that the FAS activity is affected upon binding of Tma17p. In 

the presence of Tma17p, the affinity of the FAS for its substrates — acetyl-CoA, malonyl-

CoA and NADPH — decreased by 2-, 4- and 16-fold, respectively. This novel FAS binding 

protein appears to have an inhibitory activity, where the mode of action varies from a non-

competitive one for acetyl-CoA to a competitive one for malonyl-CoA. In the case of 

NADPH, there was a complete change in the response of FAS towards increasing NADPH 

concentrations. This was evident by the change from a substrate-dependent activation 

model in the absence of Tma17p to a classical hyperbolic behavior in the presence of 

Tma17p. 

All the biochemical evidence presented until now indicate that Tma17p binds the FAS in a 

specific manner. It also has the ability to affect FAS activity. Based on these observations, 

Tma17p will now be referred to as an accessory “γ-subunit” of the FAS, the Tma17p-FAS 

complex as FAS holoenzyme and FAS without the Tma17p as FAS.  
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Figure 15. Steady-state kinetic analysis of FAS in the absence and presence of Tma17p.  

Substrate concentration dependence of FAS and Tma17p-FAS for substrates: NADPH (i)(ii), acetyl-

CoA (iii) and malonyl-CoA (iv). The plots depict initial velocities of FAS (black) and Tma17p-FAS 

(red) versus the concentrations of the respective substrate. The substrate activation kinetic model 

used to describe the NADPH dependence of FAS is shown as an inset in (i).   

3.2.5 Molecular basis underlying the γ-subunit’s inhibitory activity 

To further understand the molecular basis underlying the γ-subunit’s ability to bind and 

inhibit the FAS, I studied the effect of the γ-subunit on the FAS structure. To this end, I 

performed structural and conformational landscape analysis of FAS as well as the FAS 

holoenzyme complex. Since, the γ-subunit can partially dissociate from the FAS during 

purification and cryo-EM sample preparation, FAS holoenzyme reconstituted by addition 

of saturating amounts of the γ-subunit to the FAS was also used in addition to the 

endogenous complex for structure elucidation. Along with this, due to the differences 

between previously reported ScFAS structures solved by cryo-EM and X-ray 

crystallography (Gipson et al., 2010; Jenni et al., 2007; Leibundgut et al., 2007), I used both 
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the techniques in parallel to cross-validate the structural findings and avoid 

misinterpretation of the data.  

3.2.5.1. Cryo-EM analysis of endogenous FAS holoenzyme complex 

For the endogenous FAS holoenzyme complex 14,968 micrographs were acquired on a 

Titan Krios with a Cs corrector at 300 kV using a Falcon III direct electron detector in 

integrating mode (Supplementary Table 3). Good contrast and particle density aided 

selection of 1,305,760 particles which were classified in 2D to sort out empty images or those 

displaying only low-resolution features (Figure 16). This reduced the dataset by 28%. It is 

worth drawing the reader’s attention here again to the fact that the central wheel — 

composed of the α-subunit — is very densely packed and is the most stable part of the 

complex. In contrast, the β-subunit forms the two dome-like structures where the inter-

domain regions have numerous exposed surfaces allowing for conformational variability. 

The most successful strategy for sorting the different FAS conformations was based on 

focused 3D refinement using D3 symmetry on the central wheel to obtain the alignment 

parameters for the particle images. These alignment parameters were then used for sorting 

the different 3D conformations while focusing on the conformationally variable dome 

region. Using the whole molecule or focusing on the FAS dome for 3D refinement was 

found not to be as effective for sorting conformations. Taking this into account, the 

remaining 789,813 particles were then iteratively used for multiple rounds of focused 

refinement, 3D classification and 2D classification using Relion 3.0 (Zivanov et al., 2018) to 

select for the most stable conformation of FAS which can then be resolved at high resolution 

(Figure 16). After the first round of 3D classification, two states of the FAS were observed, 

one with 40.6% of the particles with a conformation identical to the published FAS 

structures, whereas, 59.4% of particles had a different “rotated” conformation of the dome. 

The rotation of the dome was due to a large shift in the AT and MPT domains (Figure 17(i)). 

In this rotated conformation, the density corresponding to the ACP domain was localized 

next to the AT active site. Further, iterative rounds of focused 3D refinement and 3D 

classification were performed separately on the two conformational states. During each 

sorting step, the major difference between different 3D classes was the resolution of the 
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resulting 3D volumes instead of conformational differences. Only the particles belonging 

to the best resolved class were used for the subsequent round of sorting. This approach 

resulted in a 3.2 Å structure of the rotated conformation using 127,305 particles and a 3.3 Å 

structure of the non-rotated conformation using 81,635 particles, estimated using the FSC 

0.143 criterion. Both 3D maps displayed local resolution variations in the range of 3 – 4 Å.  

 

Figure 16. Scheme for cryo-EM data processing for endogenous FAS holoenzyme. The scheme 

depicts the different image processing steps performed. (1) Motion-corrected and dose weighted 

micrographs were used for particle selection. (2) Selected, individual particles were classified in 2D 
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for 3 rounds, where particles belonging to class averages with bad optical properties or low signal-

to-noise were removed after each round. (3) The selected particles were then used for 3D refinement 

using D3 symmetry with the published cryo-EM structure of S. cerevisiae FAS (EMDB – 1623) as 

a reference. During the 3D refinement, a mask was placed around the central wheel to focus the 

refinement around the most stable part of the protein complex. (4) The alignment parameters of the 

particles from the previous step were used for classifying the particles in 3D. For 3D classification, 

a mask around the dome of the FAS was used to sort the major movements of this molecule, the 

rotated and the non-rotated conformations. (5) Particles from the best 3D classes were selected 

followed by multiple rounds of 3D refinement and classification as described above. Particles 

belonging to the class with the most uniform resolution were selected for a final 3D refinement. The 

final 3D maps obtained had an overall resolution, estimated using the FSC 0.143 criterion, of 3.3 Å 

for the non-rotated state and 3.2 Å for the rotated state.  

 

Structural differences between the rotated and non-rotated state of the 

endogenous FAS holoenzyme complex 

The 3.1 Å FAS crystal structure (Leibundgut et al., 2007) (PDB 2UV8) correlated well (~79%) 

with the non-rotated conformation of the FAS except for two differences – (1) the ACP 

domain was not resolved in the cryo-EM map of the non-rotated state and (2) minor 

deviations in segments of the MPT domain. The unresolved ACP domain in the non-rotated 

conformation of the FAS was a significant variation from the published ScFAS crystal 

structure (Figure 17 (ii)). One reason for this could be the heterogeneity in the molecules 

bound to the phosphopantetheine prosthetic group of the ACP. Therefore, to stabilize the 

ACP, I added an additional step during the ScFAS purification, where I added malonyl-

CoA and NADPH to the FAS sample in order to complete the synthesis of all bound 

intermediates. This was done to bring all the ACP domains of the FAS to the same 

functional state, where all the phosphopantetheine groups are empty. This process of 

adding FAS substrates to remove the ACP bound intermediates is here forth referred to as 

“FAS cycling”. The FAS samples used for all subsequent experiments were “cycled” during 

purification to bring all the molecules to the same functional state. 

The second, rotated conformation of the FAS, displayed large shifts of AT and MPT domain 

when compared to the crystallographic FAS structure (Leibundgut et al., 2007). The 

crystallographic model was fit into the rotated state map interactively in Coot (Emsley and 

Cowtan, 2004) and then refined using Refmac5 (Murshudov et al., 2011). Most of the 
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conformational differences of the dome were explained by rigid body shifts of the different 

domains in the β-subunit. The AT domain shifts downwards by 7 Å and the MPT domain 

moves outwards by 10 Å (Figure 17(i)). The ER and DH domains, however, displayed only 

minor shifts of ~4 Å each and the α-subunit was relatively unchanged. The overall length 

of the FAS was reduced by 10 Å as a result of these structural rearrangements of the FAS 

dome. In the rotated state, the ACP domain was stabilized next to the AT active site channel 

as compared to the non-rotated conformation of the crystal structure, where it is situated at 

the KS domain. Two additional densities which could not be explained by any of the 

structured or flexible FAS residues were observed only in the rotated conformation of FAS 

(Figure 17(ii)). The first one was in the KR domain substrate binding cleft and the other 

corresponded to a coiled coil density, which was present next to the ER domain. Based on 

the XL-MS data, the location of the extra densities was in close proximity (~ 10-30 Å) to the 

residues in the ER, MPT and KS domain that formed crosslinks with the γ-subunit. 

Therefore, I hypothesized that these densities corresponded to the γ-subunit, which was 

characterized in the previous chapters to co-purify with, interact with and inhibit the FAS. 
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Figure 17. Structural differences between the non-rotated and rotated conformations of the 

endogenous FAS holoenzyme complex. (i) Overlay of β-subunits of the non-rotated (grey) and 

rotated (blue) conformation of the FAS. In the rotated conformation of the FAS, each β-subunit is 

rotated by 15° and the overall length of the molecule decreases by 10 Å. This results in an inward 

shift of the AT domain by 7 Å and an outward movement of the MPT domain by 10 Å. (ii) In the 

left panel, the non-rotated conformation is shown, where no ACP domains are observed. Rotation of 

the β-subunit correlates with the stabilization of the ACP domain (yellow) at the AT domain (blue). 

Additionally, a coiled coil density was found directly adjacent to the ACP domains in the rotated 

state, as well as a small density fragment at the KR domains (pink). 

 

Similar observations in terms of the FAS dome conformation were also reported by Gipson 

et al. (2010), in their 6 Å cryo-EM structure of cerulenin inhibited FAS. Their structure was 

similar to the rotated state presented here and also consists of a coiled coil density next to 

the ER domain. Gipson et al. (2010) did not report the presence of additional proteins bound 

to the FAS and hypothesized that the coiled coil density most likely belonged to the ACP 

linker arms which become structured in the rotated conformation of the FAS. Taking these 

previous observations into consideration, I proceeded with testing whether the FAS can 

adopt the rotated conformation in the absence of the γ-subunit to confirm the identity of 

these extra densities. Both X-ray crystallography and cryo-EM were used for structure 
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determination of the FAS in the absence of the γ-subunit for cross-validation of structural 

findings. 

3.2.5.3. Cryo-EM structure determination of FAS in the absence of the γ-subunit   

For determining the structure of the FAS in the absence of the γ-subunit, 5,541 micrographs 

were acquired on a Titan Krios at 300 kV using a Falcon III direct electron detector in 

integrating mode (Supplementary Table 3). From these micrographs, 1,189,206 particles 

were initially selected. The image processing pipeline employed was similar to the one used 

for endogenous FAS holoenzyme complex (Supplementary Figure S1). The 834,204 particles 

selected after 2D classifications were used for two rounds of focused refinement and 3D 

classification using Relion 3.0 (Zivanov et al., 2018) to select for the different stable 

conformations of the FAS. The first round of 3D classification resulted in two distinct 

classes, one comprising 8.2% of the particles in the rotated conformation and the other 

91.8% in the non-rotated. The rotated conformation had the ACP domain located at the AT 

domain whereas the non-rotated conformation had the ACP located at the KS domain 

(Figure 18).  

 

Figure 18. ACP location in the non-rotated and rotated conformations of the “cycled” FAS. 

In the left panel, the non-rotated conformation with the ACP domain at the KS active site is shown. 

In the right panel, the ACP located at the AT domain in the rotated FAS conformation is depicted. 

Notice that the ACP domain in the non-rotated state of the “cycled” FAS is resolved as compared to 

the non-rotated conformation of the non-cycled FAS (Figure 17).   
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Particles belonging to the best class of the non-rotated FAS conformation then used for 

another round of sorting (Supplementary Figure S1). The data for the non-rotated state was 

further classified into 3 main classes which refined to 3.3 Å (class 1 containing 20% 

particles), 3.2 Å (class 2 containing 25% particles) and 3.1Å (class 3 containing 33% particles) 

resolution, estimated using the 0.143 FSC criterion. All the three 3D volumes were at 

comparable global resolutions and conformationally identical. However, significant local 

resolution differences in class 1 and 2 suggested that there was still some variability in the 

dome which resulted in poorly resolved features as compared to the central wheel. 

Therefore, particles belonging to class 3 were selected for further steps where the CTF 

parameters were refined in Relion 3.0. For the rotated conformation, all the particles after 

the first 3D classification were directly used for CTF refinement followed by 3D refinement. 

In the end, FAS structures of 2.9 Å (using 144,526 particles) for the non-rotated 

conformation and 3.2 Å (using 69,059 particles) for the rotated conformation were obtained 

with applied D3 symmetry (Figure 19(i)). The global resolutions were estimated using the 

FSC 0.143 criterion (Figure 19(ii)).  

The crystallographic FAS structure (from the next section) was refined against the 2.9 Å 

non-rotated FAS map (Supplementary Table 4). Densities corresponding to side chains 

were visible throughout the structure (Figure 19(iii)). The refined model had a CC of 0.9 

and Fourier shell correlation (FSCsum) between the map and the model indicated a resolution 

of 3 Å as per the FSC 0.5 criterion (Figure 19(iv)). The refined FAS model was also validated 

by refining the crystallographic FAS structure against the first unfiltered half-map (FSCwork). 

The refined structure from the first half-map was then compared with the second unfiltered 

half-map (FSCfree) (Figure 18 (iv)). The FSCwork and FSCfree curves were comparable and this 

indicated that the refined models have not been over-fitted to the cryo-EM data. The rotated 

FAS map from this dataset was not used for model building as FAS structures with the 

same conformation were solved at higher resolution in the later sections of this thesis. Only 

the highest resolved rotated FAS structure was used for model building (section 3.2.5.4.). 
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Figure 19. Cryo-EM structure of the FAS in the absence of the γ-subunit. (i) Local resolution 

maps of the non-rotated (left) and rotated (right) conformations of the FAS. The resolution range 

depicted is from 2.5 Å (blue) to 4.5 Å (red). The local resolution varies from 2.5 Å to 3.5 Å for the 

non-rotated state and from 3 Å to 4 Å for the rotated state. (ii) Fourier shell correlation (FSC) of two 

independently refined subsets of particles for the non-rotated (grey) and rotated (blue) conformation 

of FAS. The FSC curve indicates a resolution of 2.9 Å for the non-rotated conformation and 3.2 Å 

for the rotated conformation at a threshold of 0.143. (iii) Several excerpts within (a) DH, (b) AT, (c) 

ER, (d) KR and (e) KS domains displayed in cyan are utilized to show the quality of the final 2.9 Å 

density map. (iv) Fourier shell correlation (FSC) curves of the final refined map of the non-rotated 

conformation and its model (FSCsum), the first unfiltered half-map and its model (FSCwork) as well as 

the second unfiltered half-map and the model from the first unfiltered half-map (FSCfree). The FSCsum 

curve indicates a resolution of 3 Å at a threshold of 0.143. The FSCwork and FSCfree overlap with each 

other and indicate that the model is not affected by overfitting. 

 

3.2.5.2. Crystallographic structure determination of FAS in the absence of the γ-

subunit   

The FAS sample used for growing crystals was prepared similarly to the one used for cryo-

EM sample preparation. I crystallized the FAS using the sitting drop vapor diffusion 

technique with the following buffer: 0.3 M sodium malonate, 11.5-13% (w/v) PEG3350 and 

0.1 M HEPES pH 7. The crystals diffracted X-rays to 2.9 Å and belonged to the primitive 

monoclinic space group P21 with unit cell constants of a = 217.6 Å, b = 347.6 Å, c = 265.3 Å, 
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β = 107.9° with a single FAS molecule in the asymmetric unit. The structure was solved by 

molecular replacement using the previously reported 3.1 Å S. cerevisiae structure 

(Leibundgut et al., 2007). The resulting electron density displayed features corresponding 

to side chains throughout the whole molecule including the PPT domain, which was absent 

in the model used for phasing (Figure 20(i)). The PPT domain was thus modelled into the 

density and was found to have a similar structure to that solved for an isolated PPT domain 

(Johansson et al., 2009) (Figure 20(ii)). The only sequences that could not be modelled in this 

structure were the same flexible loop segments which have always been unresolved in 

previous reported structures. The model after refinement had average B-factors of 92 Å2 

and R/Rfree of 19.7% / 21.8%.  The diffraction data was also analyzed using the STARANISO 

server, where a mild anisotropy in diffraction of ~0.1-0.2 Å was detected (Supplementary 

Figure S2). Anisotropically truncated data, taking into account diffraction spots up to 2.8 Å 

in certain directions, was then used for model refinement. The side chain and solvent 

densities improved resulting in an improved model with average B-factors reduced to ~ 73 

Å2 and R/Rfree of 19.2% / 21.1% (Supplementary Figure S2, Supplementary Table 4).  

 

 

Figure 20. Crystallographic structure of the FAS in the absence of the γ-subunit. (i) X-ray 

crystal structure of FAS at 2.9 Å resolution. Several excerpts within the respective enzymatic 

domains displayed in orange are utilized to show the quality of the final 2mFo-DFc electron density 

maps contoured at: (a) DH domain 1.5 σ, (b) AT domain 1.5 σ, (c) ER domain 1.5 σ, (d) KR domain 

2.0 σ and (e) KS domain 2.0 σ. (ii) PPT domain (red) and an α-helical sequence (grey) along with 

their corresponding density contoured at 1.0 σ. These regions were not visualized together with the 

FAS in previous high resolution structures of this complex (Leibundgut et al., 2007). 
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The crystallographic FAS structure was similar in conformation to the non-rotated cryo-EM 

model. The Cα atoms of the crystallographic model and the non-rotated cryo-EM model 

were compared and had an overall RMSD of 0.92 Å (Figure 21). The first 150 residues of the 

AT domain along with two segments in the MPT domain (1737-1750, 1850-1970) differed 

the most between the two models. Upon excluding these residues from the calculations, the 

RMSD decreased to 0.67 Å. To put these variations into context, published structures of 

identical proteins are known to have a Cα atom RMSD in the range of  0 - 1.2 Å (Kufareva 

and Abagyan, 2012). These deviations are attributed to inherent protein flexibility and 

experimental resolution limits. Therefore, RMSD values between 0 - 1.2 Å are considered 

here to infer that the two structures being compared are nearly identical. Furthermore, the 

overall RMSD between the published crystallographic FAS structure (Leibundgut et al., 

2007) and the one from this study is ~1 Å, whereas, between the published crystallographic 

FAS structure and the cryo-EM structure from this study is ~ 0.7 (Supplementary Figure 

S3). The most variations observed in these two comparisons are are also found at the AT 

and MPT domains. The MPT domain is involved in forming crystal contacts and thus can 

vary between the EM and crystal structures as well as among the crystals belonging to 

different space groups. In general, the RMSD values of below 1 Å between the published 

FAS structure and the ones from this study indicate that the structure of the FAS does not 

vary significantly between the two structural techniques. 

After validating that the structure of the FAS determined by X-ray crystallography and 

cryo-EM remains almost identical, I then compared the two conformations of the FAS 

obtained from the endogenous FAS holoenzyme sample and the FAS sample in the absence 

of the γ-subunit that were described in the previous sections. 
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Figure 21. Comparison among FAS models derived from X-ray crystallography and cryo-

EM. The RMSD between the cryo-EM and X-ray crystal structure from this study as well as between 

X-ray crystal structure from this study and the published FAS structure (PDB 2UV8) was less than 

or equal to 1 Å. The AT domains residues 5-150 along with MPT domain residues 1737-1750 and 

1850-1970 contributed towards 20-30% of the total deviations among the structures. RMSD values 

calculated excluding the aforementioned residues are indicated within brackets.   

Stabilization of the ACP in the non-rotated conformation using “cycled” FAS 

Unlike in the endogenous FAS holoenzyme complex, the non-rotated conformation of FAS 

without the γ-subunit had the ACP domain stalled at the KS domain (Figure 18). This is 

attributed to the step where FAS was “cycled” using malonyl-CoA and NADPH to drive 

all the FAS molecules to the same functional state. The stabilization of the ACP domain in 

the non-rotated state also improved the resolution of this FAS conformation by 0.3 Å for 

the cryo-EM map. The 2.9 Å crystal structure obtained from these FAS preparations was 

also 0.2 Å better than the published FAS structures (Jenni et al., 2007; Leibundgut et al., 

2007).  
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Comparison between rotated FAS conformation with and without the γ-subunit  

In the absence of the γ-subunit, FAS was found to adopt both the rotated (~8%) and the 

non-rotated (~92%) conformation (Figure 18). The ratio of the two states were different from 

the endogenous FAS holoenzyme complex, which had 60% particles in the rotated and 40% 

in the non-rotated state (Figure17). Furthermore, the additional densities next to the ER and 

KR domain were absent in the FAS when the γ-subunit was absent (Figure 22). The 

correlation between the presence of the coiled coil density in the structure and the presence 

of the γ-subunit in the FAS preparation indicates that these densities corresponds to the γ-

subunit and not to any segment of the FAS itself. The non-rotated conformations of the FAS, 

both, with and without the γ-subunit were devoid of any additional densities that might 

correspond to the γ-subunit. Therefore, it appears as though the γ-subunit is bound to the 

FAS in a stable manner only in the rotated conformation. 

 

Figure 22. Comparison of rotated FAS conformation of the FAS, FAS-holoenzyme and 

Gipson et al. (2010) cryo-EM structures. The density maps corresponding to the asymmetric unit 

of the FAS from the cryo-EM structure of FAS in the absence of the γ-subunit (left, this study), FAS-

holoenzyme (middle, this study) and the 5.9 Å FAS structure from Gipson et al. (2010) (right). In 

the presence of the γ-subunit, the rotated conformation of FAS contains extra densities next to the 

ER and KR domains (pink). Similar densities were also observed by Gipson et al. (2010). 

 3.2.5.4. Cryo-EM structure of the reconstituted FAS holoenzyme complex 

After having determined the structure of the endogenous FAS holoenzyme complex, I then 

proceeded to determine the structure of the FAS saturated with the recombinant γ-subunit. 

Cryo-EM sample preparation, image acquisition and processing were performed in similar 
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manner as described for the endogenous complex (Supplementary Figure S4). 2D 

classification resulted in 642,703 particles which were then used for 3D classification. All 

the obtained 3D classes had a rotated conformation with their ACP at the AT site. The 

absence of the non-rotated conformation of the FAS further supported the previous 

observation where the presence of the γ-subunit results in a higher proportion of the rotated 

conformation. In the end, I was able to reconstruct a cryo-EM structure from 110,597 

particles at a global resolution of 2.8 Å with applied D3 symmetry, estimated using the FSC 

0.143 criterion. The quality of the FAS holoenzyme structure was comparable to that of the 

FAS structure and allowed for equally reliable model building (Figure 23, Supplementary 

Table 3).   

 

Figure 23. Cryo-EM structure of reconstituted FAS holoenzyme. (i) Local resolution maps of 

the FAS holoenzyme complex. The resolution range depicted is from 2.5 Å (blue) to 4.5 Å (red). The 

local resolution varies from 2.5 Å to 3.5 Å. (ii) Fourier shell correlation (FSC) of two independently 

refined subsets of particles of FAS holoenzyme complex. The FSC curve indicates a resolution of 2.8 

Å at a threshold of 0.143. (iii) Several excerpts within (a) DH, (b) AT, (c) ER, (d) KR and (e) KS 

domains displayed in cyan to show the quality of the final 2.8 Å density map. (iv) Fourier shell 

correlation (FSC) curves of the final refined map and its model (FSCsum), first unfiltered half-map 

and its model (FSCwork) as well as the second unfiltered half-map and the model from the first 

unfiltered half-map (FSCfree). The FSCsum curve indicates a resolution of 3 Å at a threshold of 0.5. The 

FSCwork and FSCfree are nearly identical and indicate that the model is not affected by overfitting. 
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3.2.5.5. Crystallographic model of the reconstituted FAS holoenzyme complex 

The effect of the γ-subunit on FAS conformation was also validated using crystals of the γ-

subunit-FAS complex grown by Benjamin Graf (Department of Structural Dynamics, Max 

Planck Institute for Biophysical Chemistry). They belonged to the primitive monoclinic 

space group P21 with unit cell constants of a = 234.9 Å, b = 430.3 Å, c = 422.6 Å,  = 97 °, that 

contained two FAS holoenzyme complexes in the asymmetric unit, and diffracted X-rays to 

4.6 Å resolution. I then solved the structure by molecular replacement using the FAS crystal 

structure to avoid bias. The different FAS domains were then fitted into the density 

interactively in Coot followed by refinement using Refmac5. The conformation of the FAS 

in presence of γ-subunit from the crystallographic data corroborated the findings from 

cryo-EM data (Figure 24(i)). Along with this, the ACP position and the density 

corresponding to the γ-subunit was found to be identical as seen in the EM data and was 

readily verified by positive difference density- as well as by omit-maps (once the model 

was built) of the FAS holoenzyme crystal structure (Figure 24(ii)).  
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Figure 24. Crystallographic structure of the reconstituted FAS holoenzyme complex. (i) X-

ray crystal structure of the FAS holoenzyme at 4.6 Å resolution. (a) Electron density of the entire 

FAS holoenzyme molecule as an envelope colored in blue. Also depicted are top (b)  and side view (c) 

of the Cα-trace models with their corresponding 2mFo-DFc electron densities contoured at 1.5 σ. (ii) 

(a) Shown is the initial positive mFo-DFc difference density (green) contoured at 3 σ obtained when 

only α- and β-subunit models are used for refinement of the 4.6 Å FAS holoenzyme crystallographic 

data. Densities corresponding to α-helical segments of ACP domain and γ-subunit were observed 

next to the AT and ER domains, respectively. (b) An ACP domain-omit Fo-DFc map is shown 

contoured at 3 σ to verify the correct modelling of this domain in the FAS holoenzyme. (c) A γ-

subunit omit Fo-DFc map is shown contoured at 3 σ to verify the correct modelling of this domain 

in the FAS holoenzyme. 
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Cross-validation between crystallographic and cryo-EM structure of 

reconstituted FAS holoenzyme complex 

Model of the FAS holoenzyme refined against the cryo-EM map resulted in a model with 

an overall RMSD of 0.8 Å with respect to the crystal structure. The similarity between the 

models derived from cryo-EM and X-ray crystallography of both FAS and the FAS 

holoenzyme, enable a reliable and conclusive interpretation of the structural impact of γ-

subunit binding. These findings are independent of crystal contacts and imposed symmetry 

in determination of the cryo-EM structures and provide for a robust cross-validation of the 

structural data. 

Correlation of FAS dome structure and ACP location 

In addition to understanding the FAS dynamics in the presence and absence of the γ-

subunit, other general conclusions can also be made from all the crystallographic and cryo-

EM structures presented in this thesis. FAS adopts a rotated conformation, where the ACP 

domain is located next to the AT active site (Figure 25(i)). This state corresponds to the first 

step of the catalytic cycle when the acetyl group is transferred to the ACP domain from the 

active site Ser274. FAS also adopts a non-rotated conformation where the ACP domain is 

located at the KS domain or is not visualized for reasons that are poorly understood. The 

non-rotated conformation of the FAS appears to be sampled during the condensation 

reaction at the KS active site. Whether the structure of the FAS dome has a rotated or non-

rotated conformation when ACP domain interacts with other active sites (KR, ER, DH, 

MPT) is still unclear.  
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Figure 25. Correlation of FAS dome conformation and ACP domain location. (i) ACP domain 

(yellow) location within the FAS barrel in the non-rotated and rotated FAS conformation is depicted. 

In the non-rotated state, the ACP domain can either be delocalized within the FAS dome or be located 

at the KS domain (orange). In the rotated conformation, the ACP domain is located at the AT domain 

(blue). (ii) The model and density map of the ACP domain in the 2.8 Å cryo-EM structure of the 

FAS holoenzyme complex are shown. (iii) Overlay of ACP Cα-models from the crystal structure of 

FAS (yellow) and cryo-EM model of the FAS holoenzyme complex (blue). The Cα-models are nearly 

identical with a Cα RMSD of 0.7 Å. The only difference between the two ACP structures appears to 

be the orientation of the phosphopantetheine prosthetic group (black dotted circle) attached at Ser180.   

Why is the ACP domain located at the AT domain only in the rotated FAS 

conformation? 

The changes in the dome conformation correlate with the movement of the ACP domain 

from the KS to the AT domain. However, neither the structure of the ACP domain nor the 

structure of the AT domain differs notably (Cα atom RMSD of ~0.7 Å) between the two 

states. For the ACP domain, only the orientation of the phosphopantetheine prosthetic 

group protruding into the AT active site was found to be different than when it is in the KS 

active site (Figure 25(ii)). For the AT domain, upon dome rotation, the AT domains slides 

downwards through a rigid body shift of 7 Å, but this does not result in structural changes 

within the domain. The structural changes that make ACP binding to the AT domain more 

favorable appear to lie in the inter domain distance between the AT and ER domains (Figure 

26). In the rotated state, the ACP bound at the AT site is not hindered or excluded by the 

proximal segments of the ER domain. However, in the non-rotated state, two helixes of the 

ER domain – helix 687-698 and helix 709-723 are situated in a manner that they could hinder 

the ACP to form productive interactions with the AT domain. Therefore, it can be 
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hypothesized that the purpose of the rotation of the AT domain is to shift away from the 

ER domain, allowing the ACP to bind unhindered.  

 

Figure 26. Structural basis for ACP binding to the AT domain in the rotated FAS 

conformation. (i) Overlay of AT and ER domains of the rotated (blue) and the non-rotated (grey) 

conformation of FAS where the two structures are aligned with respect to the AT domain. In the 

rotated state, the ACP (yellow) is bound at the AT domain. In the non-rotated state, the ER domain 

is located closer to the AT domain in comparison to the rotated state. Assuming that the ACP-AT 

interactions remain the same in the non-rotated FAS conformation, the two helical segments of the 

ER domain (salmon) would sterically hinder the binding the of the ACP to the AT domain.  Therefore, 

it is likely that the rotated conformation of the FAS enables the spatial accommodation of the ACP at 

the AT domain. (ii) Electrostatic interactions between the ACP and ER domain in the rotated FAS 

conformation are depicted. The positively charge regions of the ACP and ER domain lie in manner 

that they avoid clashing with each other (iii) Interactions between the ACP and ER domain in the 

non-rotated FAS conformation assuming the ACP-AT interaction is the same as in the rotated FAS 

conformation. The helical segment of the (salmon) of the non-rotated ER domain is ~3 Å closer as 

compared to the rotated ER conformation which might sterically hinder the ACP binding.      

3.2.5.5. Molecular basis of γ-subunit - FAS interaction 

After modelling all the domains of the FAS into the 2.8 Å FAS holoenzyme structure, two 

un-modelled densities corresponding to the γ-subunit still remained. A large coiled coil like 
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density between the ACP and ER domain along with a smaller one in the NADPH binding 

cleft of the KR domain. For building the model for the γ-subunit, five homology models 

were first generated using Robetta server (Kim et al., 2004). The model that fit best to the 

coiled coil density was then selected as a starting point for interactive building. The density 

corresponding to the γ-subunit allowed for distinguishing bulky side chains which were 

used to maintain the right sequence frame. The structure modelled based on the cryo-EM 

density was later cross-verified with the XL-MS data (Supplementary Figure S5). Residues 

3-59 and 77-113 were placed in the density next to the ER domain and the C-terminal 

residues 133-150 were fit into the density in the NADPH binding site (Figure 27). Two 

segments of the γ-subunit (residues 60-76 and 114-132) were found to be dynamic as they 

could only be visualized at low density thresholds. Even though these two segments could 

not be confidently modelled, the XL-MS data clearly suggests that the aspartate rich region 

(60-76) is in close proximity to the MPT active site and the residues 114-132 form a loop 

connecting the coiled coil to the C-terminus (Figure 14).  

 

Figure 27. Model of the γ-subunit. The composite model of the γ-subunit based on XL-MS data 

(black) and the observed side chain densities in the FAS holoenzyme cryo-EM structure is depicted. 

The interactions of the γ-subunit with the ER (green), MPT (yellow green) and KR (orange) domains 

are highlighted (circles). In the left inlet, γ-subunit model placed in its corresponding density can be 

visualized. No density corresponding to residues 60-76 and 114-132 is visible, most likely owing to 

their flexible nature.  
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Interactions of γ-subunit with four FAS domains 

Having solved the structure of the FAS holoenzyme complex, an important question I 

addressed was the molecular basis behind γ-subunit’s effect on FAS activity. Inside the FAS 

dome, the γ-subunit spans a distance of ~120 Å, where it interacts with four domains 

(Figure 28) and sterically obstructs substrate binding in three of them –  

(1) ER domain: The N-terminal residues (3-24) of the γ-subunit are situated next to the ER 

domain occluding the ACP binding site such that Glu14, Glu15 residues protrude into the 

NADPH binding site. Furthermore, comparing the NADP+ bound ER domain from the 

Thermomyces lanuginosus FAS structure (Jenni et al., 2007) with that of the FAS holoenzyme 

complex, side chains of negatively charged γ-subunit residues Gln13, Glu14 and Glu15 

were located within 3 Å of the phosphate group of NADP+. Such an arrangement of the γ-

subunit would sterically hinder the binding of NADPH and would result in a mutually 

exclusive binding between the γ-subunit and NADPH.   

 (2) ACP domain: A positively charged patch on the first helical segment of the γ-subunit 

(residues 41-54) is in contact with a complementary negatively charged region on an 

adjacent helical segment of the ACP domain (residues 207-215). Such charge-based 

interactions between the γ-subunit and ACP appear to contribute to the stabilization of the 

ACP domain at the AT site in the γ-subunit bound rotated state. When bound at the AT 

domain, the ACP domain’s prosthetic phosphopantetheine arm protrudes into the pocket 

that is used for binding acetyl-CoA. The substrate binding pocket of the AT site can 

accommodate either the substrate or the phosphopantetheine arm. Therefore, the 

stabilization of ACP by the γ-subunit would hinder the binding of acetyl-CoA and in turn, 

the transfer of the acetyl moiety from acetyl-CoA to the active site serine. Thus, although 

the γ-subunit does not interfere with acetyl-CoA binding site directly, the stabilization of 

ACP at the AT active site would be a possible hypothesis for the reduction in acetyl-CoA 

affinity observed during the kinetic analysis. 

 (3) MPT domain: The aspartate rich loop (residues 59-76) of the γ-subunit is in close 

proximity of the substrate binding cleft of MPT domain as evidenced by XL-MS.  The MPT 

substrate binding cleft is lined with positively charged residues such as Arg59, 1861, 1962 
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and Lys62, 1918. Specifically, Arg59, 1861, 1962 are important for the malonyl-CoA binding. 

Structurally, the proximity of the negatively charged loop of the γ-subunit and the 

positively charged surface of the MPT domain would result in an electrostatically favorable 

interaction. Such an interaction would result in (1) the stabilization of the MPT in its rotated 

state as the non-rotated MPT would sterically exclude the bound γ-subunit and (2) 

obstructing malonyl-CoA binding. The presence of negatively charged residues of the γ-

subunit near the malonyl-CoA binding site sterically hinder the incoming malonyl-CoA 

molecules as well as mask the arginine residues that stabilize the bound malonyl-CoA. 

These electrostatic interactions therefore are the most likely reason for the 4-fold reduction 

in malonyl-CoA affinity in the presence of the γ-subunit. 

(4) KR domain: The C-terminus (133-150) of the γ-subunit is attached to the coiled coil 

segment via a flexible linker. The C-terminal residues are unstructured but bind within the 

NADPH binding cleft of the KR domain and would therefore compete with NADPH. This 

adds another site, where the γ-subunit interferes with NADPH binding. The disruption of 

NADPH binding at the ER and KR domain also correlates with the large decrease in 

NADPH affinity during the kinetic analysis seen in the presence of the γ-subunit. 

Thus, the structure of the FAS holoenzyme complex presented here illustrates the molecular 

basis behind γ-subunit’s ability to stabilize the rotated state of the FAS as well as to affect 

substrate binding at AT, ER, MPT and KR domain. 
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Figure 28. Molecular basis for γ-subunit-FAS interaction. Shown is the interaction between 

the γ-subunit with the ACP domain (top left), ER domain (top right), MPT domain (bottom left) 

and the KR domain (bottom right). The N-terminal residues of the γ-subunit interact with the ER 

domain where negatively charged residues, Glu14, 15, protrude into the NADPH binding site (top 

right). A patch of basic residues on the first helical segment of the γ-subunit forms electrostatic 

interactions with an acidic patch on the proximal helix of the ACP domain (top left). The aspartate 

rich loop (59-76) of the γ-subunit is in proximity with arginine residues around the MPT active site 

cleft (bottom left). The location of this γ-subunit segment was confirmed using XL-MS. The C-

terminal residues are unstructured but bind into the NADPH binding site on the KR domain active 

site (bottom right). 

3.2.5.6. Changes in the conformational landscape of FAS due to the γ-

subunit  

Until now, this thesis has only dealt with the most dominant conformations of the FAS, 

with and without the γ-subunit. However, proteins exist in an ensemble of conformations, 

where only some are stable enough to be resolved at high resolution. To complement the 
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observations of the effect of the γ-subunit on the ratio of rotated and non-rotated state of 

FAS, I investigated the effect of such protein-protein interactions on the conformational 

landscape of FAS. Such a comprehensive structural analysis would allow insight into the 

global implications of the binding of the γ-subunit to the FAS.  

For this analysis, 0.5 µM FAS was titrated with increasing concentration of the γ-subunit 

before grid preparation for cryo-EM. It is important to note here that even though the 

structures of FAS and FAS holoenzyme complex were determined using grids with a thin 

carbon support film, the very high concentrations of γ-subunit used for energy landscape 

calculations prevented the binding of FAS to the support film (data not shown). Thus, the 

samples were frozen in the absence of any kind of support film attached to the grids. Small 

datasets were then acquired for the different samples (Supplementary Table 5). Using the 

obtained data, conformational landscapes of FAS in the presence of different γ-subunit 

concentrations were determined using 3D principle component analysis (PCA) followed by 

energy landscape calculations (Haselbach et al., 2017, 2018).  

First, I refined 3D structures of the individual datasets with a mask corresponding to the 

central wheel, which is indistinguishable in conformation in both the non-rotated and 

rotated. To gain insight into the conformational space occupied by the dome in each 

individual dataset, I then performed a 3D classification without alignment in batches of 

6,500 particles each, relying exclusively on the alignment parameters of the central wheel 

obtained from the focused 3D refinement. The individual 3D classes thus obtained were 

individually refined to ensure their validity. At this step, quantification of particles 

belonging to 3D classes corresponding to either the non-rotated or rotated conformation 

showed a clear correlation between the dome conformation and abundance of γ-subunit 

(Figure 29(i)). In conditions without the γ-subunit, 2% of the particles adopt a rotated 

conformation. This increased to 58% at 1 µM then to 88% at 3 µM and >98% at saturating 

concentrations of the γ-subunit. Next, a total of 165 3D volumes were used for 3D principal 

component analysis (PCA). The first eigenvector of this 3D PCA described the compaction 

of the dome, whereas the second eigenvector signified the notable rotation of the dome. By 

using the number of particles contributing to a particular 3D class, an energy landscape was 
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mapped by performing a Boltzmann interpolation within a coordinate system that is 

defined by the first and second eigenvectors of the PCA.  

 

 

Figure 29. Effect of the γ-subunit on the conformational landscape of the FAS. (i) Analysis 

of the proportion of particles in the non-rotated or rotated conformation in response to increasing 

amounts of the γ-subunit. While less than 2% of particles adopt the rotated state in the absence of 

the γ-subunit in a 0.6 µM FAS solution, their proportion gradually increases to 56% at a 1 µM γ-

subunit , to 80% at a 2 µM γ-subunit, to 88% at a 3 µM γ-subunit and finally saturates at about 

95% at 7µM γ-subunit concentration. (ii) Energy landscape analysis of FAS conformations induced 

by the γ-subunit. The x-axis of each individual plots corresponds to the linear factor of the first 

Eigenimage, which describes the overall compaction of the FAS structure. The y-axis corresponds to 

the linear factor of the second Eigenimage, which describes the rotation of the FAS dome. The FAS 

adopts a non-rotated conformation (left). At 3 µM γ-subunit, a minor population of the FAS particles 

adopt a non-rotated conformation whereas the majority have shifted to a rotated one (right). (iii) At 

γ-subunit concentration in excess of 3 µM, FAS particles adopt only the rotated conformation.  (iv) 

Overlay of the energy landscape plots of the FAS in the presence of increasing concentrations of the 

γ-subunit. The energy landscapes indicate that binding of the γ-subunit results in the formation of 

an energy barrier (dotted line) at 4 °C to gain access to the non-rotated conformation and suggests a 

smooth transition with some additional conformational intermediates. The path of transition from 

non-rotated to rotated FAS conformations is indicated by the dotted black line. 

 

The energy landscape of the FAS indicate that although all particles have a non-rotated 

state, there exists one major conformational minimum along with small number of particles 
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with conformations deviating due to minor rotation and compaction of FAS molecules 

(Figure 29(ii)). At 1 µM γ-subunit concentration, two minima exist, one representing the 

non-rotated state and the other being the γ-subunit bound rotated state. At higher γ-

subunit concentrations, there is again one major conformational minimum, albeit for the 

rotated state of the FAS. Moreover, the energy landscapes indicate that binding of the γ-

subunit results in the formation of an energy barrier restricting access to the non-rotated 

conformation (Figure 29(iv)). These energy landscapes recapitulate the binding of the γ-

subunit and the ensuing formation of the FAS holoenzyme complex results in the 

stabilization of the rotated conformation.  

3.3. Other tools tested for stabilizing the FAS structure   

Along with chromatography-free purification, cycling the FAS complex during purification 

and GraFix, I also investigated whether FAS substrates or anti-FAS nanobodies could be 

used for stabilizing the FAS structure. 

3.3.1. Substrate induced structural changes of the FAS 

A cryo-EM dataset of 11,416 micrographs was acquired on a Titan Krios with Falcon III 

detector (integrating mode) for the FAS in presence of malonyl-CoA and NADPH 

(Supplementary Table 3). Upon 3D classification, only 2.6% of the particles had the dome 

in a rotated state whereas the rest were in the non-rotated form. In comparison, FAS alone 

has only ~8% of the particles with a rotated dome conformation (section 3.2.5.3.). In the end, 

even though only 2.6% of the particles had a rotated conformation, a 3.3 Å structure of the 

rotated form using 43,467 particles owing to the large initial dataset of 1.7 million particles. 

Furthermore, a 3.0 Å structure for the non-rotated form using 191,899 particles was 

obtained. At these resolutions, it was possible to unambiguously distinguish the bound 

substrates as well as model them into their corresponding densities (Figure 30). 
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3.3.1.1. Substrate binding is conformation independent  

In the presence of malonyl-CoA and NADPH, the ratio of rotated/non-rotated state 

decreased by 5% as compared to when they are absent. One might expect that this would 

indicate preferential binding of the substrates to the non-rotated state of FAS; however, this 

was not the case. The substrate binding was found to be independent of the dome 

conformation as unambiguous densities corresponding to malonyl-CoA and NADPH were 

observed in both FAS conformations. However, substrate binding to the FAS did result in 

local conformational changes in the FAS domains (Figure 30).  

3.3.1.2. Local changes in FAS domains upon substrate binding 

KR domain: The loop segment 874-881 of the α-subunit located next to the KR domain 

active site is not well defined in the cryo-EM maps (Figure 30(ii)). However, when NADPH 

is bound to the KR active site pocket, the loop segment 874-881 clamps onto the substrate. 

This structural rearrangement probably helps in stabilizing the bound substrate. This has 

also been shown in the NADP+ bound FAS structure from Thermomyces languinosus (Jenni 

et al., 2007). This similarity in NADPH/NADP+ induced changes in the KR domain among 

the two species further emphasizes how structural mechanisms of this complex have 

remained conserved despite the divergence of the sequences over the course of evolution.  

MPT domain: The binding of malonyl-CoA also results in a conformational change in the 

MPT domain. The helical segments on the right side of the MPT catalytic cleft (residues 

1850-1970) encloses upon the substrate like the claw of a crab (Figure 30(iiia)). This 

conformational change of the MPT results in the formation of polar contacts between the 

arginine residues 59 and 1961 and the phosphate groups of malonyl-CoA which would 

have a stabilizing effect on the bound substrate. 
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Figure 30. Structural changes in the FAS in the presence of malonyl-CoA and NADPH. (i) 

Density for the ER domain with bound NADPH (yellow) in the non-rotated (grey) and rotated (blue) 

FAS conformation. The experimental density for modelling NADPH molecules along with 

surrounding active site resides of the ER domain is shown beside the respective domains. On the 

right, an overlay of the ER active site residues of the ER domain in the non-rotated state (white) with 

those from the rotated FAS conformation are shown.(ii) Experimental density for the KR domain in 

the absence of NADPH (left, grey) as well as in the presence of NADPH in the KR active site in the 

non-rotated (middle, grey) and rotated (right, blue) FAS conformation are shown. The flexible 

segment (874-881) near the active site (pink) clamps onto the bound NADPH molecule (yellow). 

(iii) (a) Overlay of the MPT domain in the absence (grey) and presence (blue) of a bound malonyl-

CoA molecule (orange). Binding of the malonyl-CoA elicits a large structural change in the α-helical 

segments on the right of the active site where they clamp down on the bound substrate. (b) 

Experimental density for malonyl-CoA bound to the MPT domain in the non-rotated (grey) and 

rotated (blue) FAS conformation is depicted. 
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3.3.1.3. Effect of dome rotation on NADPH binding to the ER domain 

Unlike for the KR and MPT domain, substrate binding to the ER domain was not similar 

between the two FAS conformations (Figure 30(i)). The NADPH binding pocket of the ER 

domain differs between the rotated and non-rotated FAS state. In the rotated state, ER 

active site pocket is narrower by ~1 Å than in the non-rotated state. These minor changes in 

the ER domain appear to change the conformation of the bound NADPH. In the non-rotated 

state, NADPH is situated such that its nicotinamide ring is located between the catalytic 

His740 and the FMN ring. The bound NADPH is in close proximity of both the catalytic 

residues of the ER domain. This has also been shown in the NADP+ bound FAS structure 

from Thermomyces languinosus (Jenni et al., 2007). In contrast, in the rotated state, the 

nicotinamide ring flips out by ~ 45° towards the inside of the FAS dome. The distance 

between the flipped-out nicotinamide ring and the FMN is ~6 Å. At such a distance it is 

unlikely that the FMN can catalyze the reaction, where reducing equivalent from NADPH 

are used to reduce β-enoyl acyl chains. These results show that although NADPH molecules 

can bind the ER domain in the rotated and non-rotated conformations of the FAS, the bound 

NADPH is in close proximity to the catalytic residues only in the non-rotated state of the 

FAS. Since it is not possible to distinguish between NADPH and NADP+ in the cryo-EM 

maps at a resolution of 3 Å, additional experiments would need to be performed to 

determine the reduction state of the NADPH. Furthermore, the biological significance of 

the “flipped-out” conformation of NADPH would also need to be examined to understand 

which NADPH conformation is required for catalysis.  

3.3.1.4. Comparison between the FAS holoenzyme complex and the rotated FAS 

conformation in the presence of malonyl-CoA and NADPH 

The structure of the rotated FAS conformation with the bound malonyl-CoA and NADPH 

(NADP+) was also compared to the FAS holoenzyme structure. It was found that all 

interactions between the γ-subunit and the ER, MPT and KR domain, as suggested in 

section 3.2.5.5., would indeed obstruct the binding of the substrates (Figure 31). The N-

terminal residues of the γ-subunit, Gln 12, Glu 14 and 15 form steric clashes with the ER 

bound NADPH. The residues at the MPT which stabilize the bound malonyl-CoA, Arg 59, 
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1961 are present in the region which forms short range contacts with the negatively charged 

loop of the γ-subunit  as shown by the XL-MS data. These residues would be masked by 

the γ-subunit rendering them unavailable for malonyl-CoA. Finally, the NADPH bound at 

the KR site overlaps with the C-terminus of the γ-subunit which again points toward steric 

exclusion of this substrate upon γ-subunit binding to the FAS.  

 

 

Figure 31. Steric exclusion of substrates by the γ-subunit. (i) Overlay of the γ-subunit from 

the FAS holoenzyme structure and the NADPH bound ER domain from the rotated FAS 

conformation. The N-terminal residues of the γ-subunit, namely Gln12, Glu14 and 15, would 

sterically hinder the binding of NADPH. (ii) Overlay of the C-terminus of the γ-subunit from the 

FAS holoenzyme structure and the NADPH bound KR domain from the rotated FAS conformation. 

The C-terminal residues of the γ-subunit occlude the NADPH binding site of the KR domain. 

3.3.2. Conformational stabilization using anti-FAS nanobodies 

The discovery of the γ-subunit and its ability to stabilize the rotated conformation of FAS 

was serendipitous. To stabilize other conformations of the FAS where the ACP domain 

might be stalled at sites except the AT or KS domain, I evaluated the use of anti-FAS 

nanobodies. This idea was inspired by the use of nanobodies to select for distinct 

conformations of complexes like GPCRs (Dmitriev et al., 2016; Steyaert and Kobilka, 2011) 

and I wanted to test if this might also hold true for a large multimeric complex like the FAS.  
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3.3.2.1. Characterizing the nanobody clones 

Immunization of alpacas with CtFAS and ScFAS as well as selection of yeast FAS specific 

nanobodies was done in collaboration with Tino Pleiner from the lab of Dirk Görlich (Max 

Planck Institute of Biophysical Chemistry) as previously described (Pleiner et al., 2015). The 

nanobody clones selected after three rounds of phage display were grouped into 10 classes 

based on the sequence similarity of their CDR III region. I then expressed and purified one 

representative member from the different classes as described by Pleiner et al. (2015) for 

characterizing their binding to the FAS.  

 

 

Figure 32. Band shift assay to identify FAS-nanobody complex. Shown is the effect of 

increasing nanobody concentrations (in molar fold excess) on the migration of FAS in a native 

agarose gel. The binding of the respective nanobody to the FAS changes the molecular weight and 

net charge on the FAS molecule which is elicited as a band shift. 

 

Band shift assays were conducted on 1% native agarose gels for testing whether the isolated 

nanobody clones bind the FAS. Increasing molar ratios of the different nanobody clones 

were titrated against a constant FAS concentration. FAS migration was reduced upon 

increasing the concentrations of the nanobodies eliciting as a band shift (Figure 32). All the 

nanobody clones tested were found to bind to the FAS. For most of the tested clones, 

binding saturation was reached in the presence of ~7-fold molar excess of the respective 

nanobody indicating strong binding affinities.  
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3.3.2.2. Mapping the binding sites on FAS 

To map the binding sites on the FAS, small cryo-EM datasets of Nb-FAS complexes from 

the 8 most distinct classes were acquired. The samples prepared were in the presence of 

malonyl-CoA and NADPH to reduce the FAS dome dynamics so that better resolutions 

could be attained with the limited amount of data. The datasets ranged from 10K – 200K 

particles. In, the end, a total of five different binding sites were found – three at the MPT 

domain, one at the DH domain and one at the AT domain (Figure 33).  

 

 

Figure 33. Unique nanobody binding sites mapped on the FAS. (i) Domain organization of the 

β-subunit of the FAS is depicted. (ii) Shown are the unique binding sites of anti-FAS nanobodies 

generated in this study. Nb2 (purple), Nb3 (brown), Nb5 (salmon), Nb10 (red) and Nb11 (green) on 

the FAS complex. Nb2, 10 and 11 bind to different parts of the MPT domain (cyan). Nb3 binds to 

the AT domain (blue) whereas the Nb5 binds to the segment of the DH domain (yellow) next to the 

MPT domain.  

3.3.2.3. Effect on stabilizing FAS conformations 

In the presence of substrates, all Nb-FAS complexes were in the non-rotated conformation. 

This was expected as the FAS mainly adopts the non-rotated state on addition of substrates 

(section 3.3.1.). Along with this, the ACP domain was also situated at the KS domain for all 

except Nb5. In Nb5-FAS complex, a poorly defined ACP domain density was observed next 

to the MPT domain (Figure 34(i)). Since, the dehydratase domain bound Nb5 is situated in 

close proximity of the MPT domain, it is possible that Nb5 modulates the MPT domain in 

a way that promotes ACP-MPT domain interactions over those between the ACP domain 

and the KS domain (Figure 34(ii)). It is also important to mention here that the malonyl-

CoA present in the sample would compete with the ACP to bind to the MPT resulting in 
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destabilizing the ACP-MPT interactions. This might be a reason why the ACP domain 

density is fragmented. Therefore, it would be necessary in the future to test whether Nb5 

could stabilize the ACP domain at the MPT domain in the absence of substrates. 

 

 

Figure 34. Effect of Nb5 binding to the FAS structure. (i) The view inside the dome of FAS bound 

Nb5 is shown. Density corresponding to the ACP domain is absent from the KS domain. However, 

low-resolution densities which most likely correspond to the ACP domain (red dotted circle) are 

present next to the MPT active site (green). (ii) Overlay of the experimental density of the Nb5 

bound FAS with the atomic model of the rotated conformation of the FAS. Nb5 is bound adjacent to 

the MPT domain in a manner that it can restrict the movement of the MPT. Since the DH domain 

is nearly identical between the non-rotated and rotated FAS conformations, the Nb5 location is also 

likely to remain constant between the two conformations. In this scenario, the MPT conformation in 

the rotated state of the FAS would be sterically hindered by Nb5 (white arrows).   

 

Additionally, the effect of Nb2 and Nb3 on FAS conformations were tested in the absence 

of substrates. Both of these clones were able to bind the rotated as well as the non-rotated 

FAS. However, the ratio of these two conformations was different from what we observe 

for FAS alone. In Nb2- and Nb3-FAS complexes, ~48% and ~11% of the particles were in the 

rotated state, respectively (Figure 35). In comparison, FAS alone has only ~8% of the 

particles in this conformation. Therefore, this initial test with the two clones suggests that 

not only can these nanobodies bind to the different conformational states, they somehow 

can also stabilize the rotated form of FAS. 

These preliminary results regarding the use of nanobodies as a tool for structural studies of 

large macromolecular complexes are promising. Future prospects on the how to utilize the 
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different anti-FAS nanobody clones generated as a part of this study will be discussed in 

more detail in the next section.    

 

 

Figure 35. Stabilization of FAS conformations on nanobody binding. Shown are the non-

rotated and rotated conformation of the FAS in the presence of Nb2 (left) and Nb3 (right). The 

relative abundance of the respective conformations are mention within parenthesis. As compared to 

the FAS in the absence of nanobodies where only 8% of the particles adopt a rotated conformation, 

48% of the Nb2 bound FAS particles and 11% of the Nb3 bound FAS particles were in the rotated 

conformation. 

 

3.3.2.4. Future uses for anti-FAS nanobodies 

Nanobodies for FAS purification.  

The specificity and high affinity of anti-FAS nanobodies can be used for purifying fungal 

type I FAS from different species. Structural conservation along with limited amount of 

sequence conservation among the different fungal species would allow these nanobodies 

to also bind FAS from other fungal species. Since cryo-EM methods for high resolution FAS 

structure determination require only picomole quantities of FAS, small amounts of cell 

lysate can then be used for purifying FAS from different species. This would be especially 

be helpful for purifying FAS from pathogenic species where it is difficult to cultivate cells 

in bulk.     
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Nanobodies for restricting structural flexibility 

Preliminary tests regarding effects of nanobody binding on the conformational landscape 

of FAS suggested that the clone binding on the MPT domain stabilized the rotated state 

whereas the one bound on the AT domain had no effect. However, the nanobodies did not 

have conformational specificity. This could be due to the fact that the domain shift as rigid 

bodies between the two FAS conformations and the binding regions of the nanobodies do 

not alter significantly. Why, then, was there a change in the ratio of rotates/non-rotated state 

in the presence of Nb2? A plausible explanation for this observation could be that the 

carbon support foil used for grid preparation interacts with the bound nanobodies which 

in turn affects the FAS conformation This can be tested by preparing the cryo-EM sample 

in the absence of any support foil and is also necessary before proceeding with future efforts 

on studying the effects of nanobody binding to the FAS.  

Another interesting candidate is Nb5, which binds to the structural hot-dog fold of the 

dehydratase domain. This nanobody is located in the proximity of the MPT domain in a 

manner that it would hinder the outward rotation of this domain seen in the rotated 

conformation of the FAS (Figure 34(ii)). If this is indeed the case then this clone can be used 

for assessing the role and impact of the MPT rotation on FAS activity. Characterizing the 

nanobodies which inhibit the fungal FAS or reduce its activity could also have great impact 

as anti-fungal therapeutics.   
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4. Discussion  

Large macromolecular complexes perform essential functions in the cell. These complexes 

are composed of smaller building blocks that together form intricate 3D assemblies. While 

performing their respective tasks, macromolecular complexes can adopt multiple 

conformations. Such conformational flexibility is functionally important but hinders our 

ability to study these structures at high resolution. The crucial problem of stabilizing 

distinct functional states of large macromolecules is a common phenomenon and is 

currently the major limiting factor for achieving high resolution structures. In this doctoral 

thesis, I studied the structural dynamics of the large multi-subunit fungal FAS. To this end, 

various aspects of sample preparation were tested, which resulted in resolving two distinct 

FAS conformations at high resolution. Furthermore, a novel γ-subunit of the yeast FAS was 

discovered and was found to affect the FAS activity as well as structure. The findings of 

this thesis and their implications on structural investigations of large molecular complexes 

in general, and of FAS in particular, will be the main focus of the discussion below. 

4.1. Obtaining stable macromolecular complexes for structural 

studies  

Various methods have been developed to tackle the two core problems of sample 

preparation for high resolution structural determination – compositional and 

conformational heterogeneity (section 1.4). Tools relevant for large macromolecular 

complexes such as the FAS were applied in this thesis to obtain better resolved structures 

of the FAS. These efforts helped in improving the resolution of the FAS structure as well as 

in resolving multiple conformations of this macromolecular complex. The technical aspects 

regarding sample preparation presented in this thesis for the FAS will be beneficial and 

applicable for future studies of the FAS as well as other multifunctional protein complexes.   
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4.1.1. Purification of compositionally homogeneous proteins 

The prerequisite for studying large protein complexes is to obtain intact preparations, 

where all the components of the complex are present in stoichiometric amounts. Failure to 

do so leads to heterogeneity in the sample, which hinders structure determination. 

Purification methods employed at the beginning of any structural study therefore need to 

be carefully selected. In this thesis, a chromatography-free purification under low salt 

conditions led to the co-purification of an accessory γ-subunit of S. cerevisiae FAS. Further, 

the interaction between the γ-subunit and FAS were found to be salt labile, causing the γ-

subunit to dissociate at high salt concentrations of 250 mM KCl. Therefore, the low salt 

conditions used during the chromatography-free purification were essential in preventing 

dissociation of the γ-subunit from the FAS during purification. Previous studies of the FAS 

employed methods such as anion exchange chromatography during purification. The high 

salt concentrations (~0.2-1 M) used in these methods could have led to at least a partial 

dissociation of the γ-subunit  from the FAS. However, it is difficult to speculate the exact 

reason why the γ-subunit has remained unidentified until now. 

The identification of the γ-subunit also helped in preparation of FAS as two 

compositionally homogenous samples – FAS without the γ-subunit and as FAS 

holoenzyme complex. Using these samples, it was possible to improve the resolution of 

FAS structures to ~ 2.8-2.9 Å as compared to the 3.1 Å structures published previously (Jenni 

et al., 2007; Leibundgut et al., 2007).  

4.1.2. Thermodynamic trapping of protein complexes 

4.1.2.1. Working at 4 °C to populate energetic conformational minima 

Samples for cryo-EM were prepared at 4 °C. This was based on previous observations made 

in the lab, where lower temperatures result in trapping protein complexes, such as the 

ribosome, into distinct conformational minima (Fischer et al., 2010). Working at such low 

temperatures was indeed beneficial for structure elucidation, however, it is not the most 

optimal temperature for studying conformational landscapes. To improve upon this, future 
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conformational analysis of FAS and similar complexes should be also performed at more 

physiological temperatures to access conformational states that might be unfavorable in the 

present experimental setup. 

4.1.2.2. Thermophilic vs mesophilic organisms as a source for protein complexes 

Are thermophilic variants of protein complexes more conformationally stable than those 

from mesophilic organisms? The answer for many large complexes including the FAS is 

probably “no”, as there seems to be little correlation between thermal stability and 

conformational stability. For the FAS, cryo-EM data for both CtFAS and ScFAS displayed 

similar amount of conformational heterogeneity during the 3D sorting steps. Along with 

this, the number of particles required to obtain resolutions of 3.2 Å were also found to be 

similar if not better for ScFAS. Identical trends can also be observed from structures of large 

multidomain complexes solved from both thermophilic and mesophilic sources. For 

example, 20S proteasomes from human, yeast as well as Thermoplasma acidophilum have 

been resolved to resolutions of ~1.8-1.9 Å (Förster et al., 2005; Groll et al., 1997; Schrader et 

al., 2016). Therefore, improving the biochemical preparations of large protein complexes, 

as done for the FAS during this thesis, might be more beneficial for high resolution 

structural studies instead of just utilizing protein complexes from thermophilic organisms.   

4.1.3. Using protein function for conformational stabilization 

Multifunctional fatty acid synthases can have multiple intermediates bound to them, from 

acetyl or malonyl moieties of the substrates to intermediate acyl chains. By addition of 

malonyl-CoA and NADPH during purification, referred to as “cycling”, all the bound 

intermediates are elongated to the final FAS product C16/18 acyl chain. The full length acyl 

chains are in turn, transferred from the ACP domain onto a free CoA molecule by the MPT 

domain. With this, all FAS molecules were brought to a common functional state where all 

the domains were empty. By doing so, the ACP domains of the FAS were found to be 

stabilized at the KS domain in the non-rotated conformation.  In contrast, the non-rotated 

state of the FAS without “cycling” did not allow the visualization the ACP domains. The 

exact reason for this is poorly understood. However, it can be speculated to be a result of 
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heterogeneity in the moieties bound to the ACP domain, which in turn affects the 

localization of the ACP domain. Building on these observations, unravelling the structures 

of the FAS with ACP stalled at one of the other four catalytic domains would require to 

start from an empty ACP and then develop strategies to either stop the cycle at a particular 

step or by loading the same intermediate analogs onto the empty ACP to force it to stall at 

a given active site. 

4.1.4. Using GraFix based chemical fixation 

GraFix has been previously applied for stabilizing multi-subunit complexes such as the 26S 

proteasome and spliceosomes for cryo-EM studies (Bertram et al., 2017; Haselbach et al., 

2017). For the FAS, GraFix did not affect the conformational variability of the protein but 

was very useful in improving the distribution of particle orientations. A uniform 

orientation distribution is important for cryo-EM as this method relies on 2D views of 

multiple orientations of a protein to be able to reconstruct its 3D shape. The effect of such 

dramatic changes in particle orientation is not reflected in the 3D reconstructions of the FAS 

due to compensation of missing particle orientations by the applied D3 symmetry. 

Asymmetric protein with similar orientations as the un-treated FAS would have a severe 

view bias causing densities to smears in the direction of the major view. This method can 

therefore be applied to asymmetric complexes, which suffer from such orientation bias.  

4.1.5. Nanobody based stabilization 

Recently, nanobodies have been applied for the conformational selection/stabilization of 

membrane proteins as well as small proteins for structural and functional studies (Dmitriev 

et al., 2016; Duhoo et al., 2017; Pleiner et al., 2015; Steyaert and Kobilka, 2011). Preliminary 

results obtained during this thesis suggest that they can be further applied for structural 

probing of large multidomain complexes as well. For example, one of the anti-FAS 

nanobody clones, Nb5, was found to bind on the surface of the FAS, at the DH domain. The 

bound Nb5 was located adjacent to the MPT domain and was found to stabilize the ACP-

MPT domain interactions. The location of Nb5 on the FAS also suggest that it stabilizes the 
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MPT-ACP domain interaction by restricting the movement of the MPT domain. Even 

though the extent to which Nb5 restricts the MPT domain need to be determined, such 

nanobodies could be an important tool in the future for understanding how dynamics of 

individual domains like the MPT domain affect FAS activity.  

4.2. Structural methods for studying large multidomain 

complexes  

4.2.1. Studying protein structure in solution or in a crystalline lattice? 

Previous structural studies of the FAS using X-ray crystallography (Leibundgut et al., 2007) 

and cryo-EM (Gipson et al., 2010) have provided a conflicting structural view. The 

structural difference was attributed to the protein being in solution in one technique and 

being in a crystalline lattice in the other (Gipson et al., 2010). To make conclusive 

interpretation of the obtained structural data, FAS structures during this thesis were solved 

using both techniques mentioned above. Interestingly, both the structural states observed 

before were found to exist irrespective of the technique used. The structural models 

obtained as a result were also consistent between cryo-EM and X-ray crystallographic data. 

Based on these results, the method for structure determination appears to be irrelevant. 

Therefore, the decision about the technique to use for studying such complexes should 

solely be based on the quality of the data that can be obtained. 

4.2.2. Cryo-EM maps vs crystallographic maps for model building  

The crystallographic 2.9 Å map of the FAS was much more detailed in comparison to the 

cryo-EM map at the same resolution. Densities corresponding to carbonyl bumps in the 

protein back bone density as well as some solvent molecules could be clearly distinguished 

in the X-ray map but were not as apparent in the cryo-EM map (Figure 36). In the end, 

model building and refinement was found to be more intuitive and resulted in better 

models using the X-ray map. The FAS data suggests that with the present tools, X-ray maps 

fare better than EM maps for building atomic models at resolutions of ~3 Å.  
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Figure 36. Comparison between FAS maps derived from X-ray crystallography and cryo-

EM at a resolution of 2.9 Å. The crystallographic map (left) in comparison to the cryo-EM map 

(right) displays better defined side chain densities as well as distinct bumps corresponding to the 

carbonyl groups of the protein backbone.  

 

The reasons for such differences between the maps obtained from these two structural 

techniques is unclear. In the context of the FAS, such differences in the map quality could 

arise due to the following reasons: 

1) Inaccuracy in particle alignment: cryo-EM micrographs have a low signal-to-

noise ratio (SNR) due to the low electron dose used for imaging. The low SNR hinders 

accurate particle alignment which in turn hamper resolving fine details such as the carbonyl 

bumps. In this thesis, Falcon III camera, in integrating-mode, was used to acquire the 

micrographs for determining the high resolution FAS structures. In this mode of the 

camera, the electrons are detected in the form of the total charge deposited on the detector. 

This mode of detection however leads to low SNR due to multiple electrons coinciding at 

the detector simultaneously. This can be improved by using the counting mode of the 

Falcon III where the imaging is done in a manner that the camera can detect each incident 

electron. The SNR in the counting-mode at high resolution is reported to be almost twice as 

much as in the integrating-mode. This could be tested for the FAS in the future to examine 

whether data acquisition in  counting-mode would improve upon the quality of the present 

cryo-EM maps of the FAS.  

2) D3-symmetry applied during 3D refinement: the fungal type I FAS has an 

apparent D3-symmetry due to which a D3-symmetry was applied during the 3D refinement 

procedures. Since, the crystallographic FAS model and FAS model from the D3-symmetric 
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cryo-EM map were nearly identical, the symmetry applied does not seem to introduce a 

perceivable artifacts in the FAS structure. However, it cannot be ruled out that deviations 

from the D3-symmetry are not present in the particle used for 3D refinement. It is possible 

that minor deviations in symmetry lead to averaging of fine details in the resulting 

structure. The deviation of one or more FAS subunits from the applied D3-symmetry would 

affect the accuracy of particle alignment. Image processing of the cryo-EM data for the FAS 

without applying symmetries would be of great interest and might help understand the 

limitations that applying symmetries can have on the FAS structure.  

4.2.3. 3D PCA – energy landscapes as a tool for analyzing cryo-EM data  

Cryo-EM image processing involves multiple 3D sorting steps where many less abundant 

conformations and compositionally heterogeneous particles are sorted out. This results in 

the structural determination of only one or a few possible conformational states at high 

resolution, despite the fact that many other conformations may also exist in the sample. To 

complement these structural analyses, tools like 3D PCA that generate energy landscapes 

can help analyze the structural states of all the particles present in a dataset. Such analysis 

can provide valuable information regarding (1) the number of energetic minima in a 

dataset, (2) major modes of motion within a complex and (3) subunits or factors that have 

variable occupancy(Haselbach et al., 2017). Since this analysis can be performed at 

resolutions of ~ 20 Å, it can always be done with a small subset of particles to estimate the 

number of conformations one might expect or the regions of the complex that are stable or 

dynamic. As shown with the γ-subunit, energy landscapes can also be used to visualize the 

effect of protein-protein interactions on conformational landscapes. Finally, since there is a 

lot of interest in using cryo-EM for high throughput screening, one could in principle apply 

this method for this purpose as well. For example, in the case of the FAS, since we have a 

reference energy landscape, small datasets of ~200-300 micrographs at lower magnifications 

to obtain ~ 100,000 particles should be enough to detect whether a small molecule or protein 

stabilizes a particular FAS conformation using this method. In general, such a tool is 

complementary to the present cryo-EM image processing pipelines and provides a 

possibility to analyze the low-resolution information present in the structural data. 
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4.3. Novel insights into fungal FAS machinery   

4.3.1. Conformations of the FAS dome correlate with ACP movement  

Structural studies of FAS have postulated that this complex has a static two barrel chamber 

with a dynamic acyl carrier protein inside, which carries substrates and elongating 

intermediates from one active site to another in a stochastic manner during fatty acid 

synthesis (Anselmi et al., 2010; Gipson et al., 2010; Jenni et al., 2007). Insights gained in this 

study using X-ray crystallography and cryo-EM provide an alternate view of how this 

machinery functions. In the absence of bound substrates or intermediates, the FAS dome 

can adopt two conformations – a rotated one with the ACP stalled at the AT domain and a 

non-rotated one, where the ACP is stalled at the KS domain. The specificity of the ACP for 

the AT domain in the rotated state can be explained by the increase in the binding surface 

area created by the downward shift of the AT domain  

Functionally, the rotated state would correspond to the structure of the FAS at the first step 

of fatty acid synthesis, where the acetyl group is loaded onto the phosphopantetheine arm 

of the ACP domain. In contrast, the non-rotated state with the ACP domain at the KS site 

would correspond to the step where an acetyl/malonyl group or an intermediate acyl chain 

is shuttled to the KS active site. Therefore, the present structures can be viewed as snapshots 

of two steps in the fatty acid synthesis cycle.  

In general, these findings add to our understanding of the ACP shuttling process. The 

correlation between ACP position and the state of the FAS dome was never observed before 

or considered when computational models for ACP shuttling were generated, making it 

necessary to update previous studies based on these observations.  

4.3.2. Conformational changes provide directionality to ACP movement 

The conformational changes in the rotated state of the FAS strongly affects two catalytic 

domains – AT and MPT. Upon rotation of the β-subunit, the ACP interacts with the AT 

domain in a stable manner. Concurrently, the MPT domain moves outwards with respect 

of the FAS dome. It is also possible that such an outward facing conformation of the MPT 
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domain makes this site less favorable for interactions with the ACP domain. However, more 

structural evidence is required to make a conclusive statement regarding the dependence 

of ACP domain binding on the MPT conformation. Nevertheless, structural changes of the 

FAS dome could direct the movement of the ACP, at least towards the AT domain during 

the catalytic cycle. This ability of the FAS to direct the movement of the ACP towards one 

of its domains suggests at the possibility that the movement of ACP inside the FAS barrel 

could be guided by structural changes in the β-subunits. From the data presented in this 

thesis, this appears to be likely for the first step of the fatty acid synthesis cycle where an 

acetyl group is transferred to the ACP domain. The remaining domains of the FAS dome 

— namely, KS, KR, ER and DH — remain relatively unchanged between the rotated and 

non-rotated FAS conformation. Therefore, at present, it is difficult to predict without 

further structural evidence whether the ACP binding to these four domains is preferred in 

a particular FAS conformation. 

These findings indicate that the shuttling of substrates might be a more ordered 

phenomenon than previously suggested (Anselmi et al., 2010; Jenni et al., 2007; Leibundgut 

et al., 2007). The notion of ACP shuttling as a stochastic process is now uncertain in light of 

the directionality provided to the ACP by rotation of the FAS dome. FAS structures with 

the ACP stalled at the different domains of the FAS are therefore key for solving this puzzle 

and for obtaining a definitive model for substrate shuttling by the ACP.  

4.3.3 Tma17p — a novel γ-subunit of the yeast FAS  

Along with insights into the dynamics of the FAS structure, the sample preparation 

methods used during the course of this study led to the discovery of a novel γ-subunit of 

the yeast FAS. A protein previously termed as Tma17 (translational machinery associated 

protein) (Fleischer et al., 2006)/Adc17 (ATPase dedicated chaperone) (Hanssum et al., 2014) 

was found to be bound to FAS purified from S. cerevisiae. Yeast deletion strains, 

reconstitution assays, crosslinking mass spectrometry along with high resolution structures 

not only confirmed this initial observation, but also showed that Tma17p is a specific 

interacting partner of the FAS. It is thus quite surprising that there were no previous reports 

regarding a “Tma17p” with the ability to bind the fungal FAS. However, Tma17p-FAS 
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complex has been detected in two previous publications before, but was apparently not 

characterized. Retrospective analysis of data from these publications have brought forward 

the following observations: 

1) The initial identification of the Tma17p as a translational machinery associated 

protein by Fleischer et al., (2006) were based on its co-sedimentation with ribosomal 

proteins on sucrose gradients. Mass spectrometry analysis used in their study revealed that 

Tma17 was present in fractions containing 40S and 60S subunits. Interestingly, so was the 

FAS. In a reverse experiment, TAP-tagged Tma17 was used to pull down associated 

proteins. No ribosomal proteins were found bound to it, which is why this study did not 

investigate this protein any further. However the most abundant protein bound to Tma17 

was the FAS. Fleischer et al., (2006) never claimed that Tma17 was associated with the 

ribosomes, however, their results have been misinterpreted leading to the characterization 

of Tma17 as a ribosome associated protein in all public databases like UniProt and 

yeastgenome.org.   

2) The cryo-EM structure of the yeast FAS by Gipson et al., (2010) was the first sub 

6 Å structure solved of this complex by this method. This study found the FAS dome to 

adopt a rotated conformation. Additionally, two unknown, long cylindrical densities were 

observed. They misinterpreted these as two locations for the ACP linker regions. In light of 

the findings of this thesis, we now know that these densities can be attributed to the γ-

subunit and that the FAS dome conformation was stabilized in the rotated state because of 

the bound γ-subunit. This example illustrates that cryo-EM densities at low-resolutions 

should be carefully evaluated. Additional methods such as cross-linking mass spectrometry 

should be routinely employed for such structural data in order to obtain more reliable 

conclusions. 

Thus, the interaction between FAS and the γ-subunit indicated by pull-down assays, mass 

spectrometry along with structural data showing stabilization of the rotated FAS 

conformation by the γ-subunit were already present. However, due to limitations of using 

only single techniques, the interaction between the γ-subunit and FAS was overlooked or 

misinterpreted. In this thesis, different approaches such as XL-MS, kinetic and structural 
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analysis allowed the identification and characterization of the Tma17p as the γ-subunit of 

the yeast FAS. 

4.3.4. Is the γ-subunit involved in different cellular processes? 

Apart from interacting with the FAS, the γ-subunit has been interpreted to be an ATPase 

dedicated chaperone. Based on their biochemical evidence, Hanssum et al. ( 2014) 

interpreted that the γ-subunit interacts with Rpt6 subunit of the 26S proteasome and assists 

in the assembly of the complex. However, there are some discrepancies within the data 

presented in this paper. (1) Immunoprecipitation of Flag-tagged γ-subunit led to the 

identification of only Rpt6 as its interactor. This contradicts the observations of Fleischer et 

al. (2006) who reported FAS as the most abundant γ-subunit bound species along with 

insignificant amounts of Rpt6. (2) Using yeast two-hybrid assays, binding of the γ-subunit 

with full length Rpt6 was found to be very weak and only the N-terminal coiled coil domain 

of Rpt6 (NT-Rpt6) was found to strongly interact with the γ-subunit. The differences in the 

ability of the γ-subunit to bind the full length and truncated version of Rpt6 was, however, 

not investigated. Further, they did not perform binding assays to determine in vitro binding 

affinity of the γ-subunit to Rpt6. This raises the question of whether the interaction between 

the γ-subunit and Rpt6 is indeed specific. (3) Formation of a NT-Rpt6 and NT-Rpt3 complex 

upon co-expression with the γ-subunit in E. coli was then used as a functional assay to show 

the γ-subunit chaperone activity. Since all the biochemical assays depicting the chaperone 

activity of the γ-subunit were performed using the N-terminal segment of Rpt6 and Rpt3, 

it is again difficult to conclude if the results obtained were due to specific or non-specific 

interactions. (4) Growth defects in the γ-subunit deletion strains could not be rescued by 

overexpressing other Rpt6 chaperones indicating that γ-subunit dependent growth defects 

could arise because of reasons other than proteasome assembly. (5) In WT cells, there was 

no correlation between the presence/absence of the γ-subunit and cellular levels of 

proteasome subunits or 26S proteasomes. (6) Finally, the correlation between an increase in 

cellular stress and γ-subunit expression was also shown. However, the relationship 

between increased γ-subunit expression under stress and its effect on proteasome assembly 

is inconclusive. For example, in wild type cells, proteasome subunit levels, including Rpt6, 
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were unaffected by the presence or absence of the γ-subunit. This observation contradicts 

the experiments where the authors show a decrease in Rpt6 levels when proteasome 

assembly is affected.  In addition, the reduction in 30S proteasome levels and activity in the 

absence of the γ-subunit are statistically on the borderline of being considered significant 

(p-value of 0.05). Taken together, these points indicate that further investigations are 

necessary to distinguish whether the effects on yeast cells in the absence of the γ-subunit 

are due to its role in modulating FAS activity or proteasome assembly, or perhaps both.  

4.2.2 Present hypothesis for the role of γ-subunit in the cell 

Prior to this thesis, along with the mischaracterization of the γ-subunit as a ribosome 

associated protein, it was also reported to have an increased cellular expression during 

stress and act as a chaperone for 26S proteasome assembly (Fleischer et al., 2006; Hanssum 

et al., 2014; Murphy et al., 2015; Rousseau and Bertolotti, 2016). Based on these publication 

and the data presented in this thesis, I propose the following hypothesis for the role of γ-

subunit in the cell:  

Upon stress conditions like heat shock, glucose depletion or treatment with tunicamycin or 

rapamycin, cellular γ-subunit levels increase manifold. This increase in protein expression 

is not due to the unfolded protein response and is mediated by Map kinase1 in Hog1 or 

TORC1-dependent manner. This pathway is also responsible for increase in the levels of 

proteasome subunits and assembly chaperones to cope with the stress. The γ-subunit can 

then performs two functions in the cell:  

1) The γ-subunit binds to the FAS and decreases its activity to prevent futile 

consumption of energy rich substrates such as acetyl-CoA, ATP and NADPH for fatty acid 

synthesis. Since the reduction in FAS activity is essential for cell viability under stress 

conditions (Shpilka et al., 2015), the γ-subunit can function as the protein responsible for 

regulating FAS activity. Therefore, as cells detect stressful conditions, increase in γ-subunit 

concentrations could be used as immediate short term regulation of FAS which can further 

be degraded if the stress conditions persist.  
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2) The γ-subunit could act as a chaperone for assembling 26S proteasome through 

its interactions with the coiled coil domain of Rpt6 under stress conditions to cope with the 

increased amounts of ubiquitinated proteins. However, this cellular function of the γ-

subunit needs further experimental evidence due to reasons described in section 4.3.4. 

Since the γ-subunit is also present in stress free conditions, it may also be used to ensure 

that FAS uses its substrates only when they are present above a certain threshold 

concentration. This would be helpful for the cell as the substrate binding affinity of FAS is 

very high in absence of the γ-subunit, in the range of ~10 µM. The cell can therefore 

manipulate the shuttling of metabolites into fatty acid synthesis by modulating γ-subunit 

concentration even in a stress-free state.  

Therefore, the γ-subunit can have potentially two cellular roles: (1) as a post-translational 

regulator of FAS through which the cell can precisely control when and how much fatty 

acids to synthesize, in both physiological and stress conditions and (2) as a chaperone for 

26S proteasome assembly during stress conditions. 

4.2.4. γ-subunit is conserved among yeast but not in higher eukaryotes   

The binding mechanism of the γ-subunit makes it optimal for binding only the α6, β6 fungal 

type I FAS. In comparison, structures of type II FAS as well as metazoan type I FAS have 

distinctly different architectures and would need a protein with a different structure than 

the γ-subunit to perform similar functions. As expected, sequence conservation based 

searches resulted in no hits outside the fungi kingdom. Interestingly, even within fungi, the 

γ-subunit is mostly conserved in the phylum of Ascomycota. Sequence identity ranged 

from 30-95% whereas the overall protein length varied from 140-170 amino acids. Other 

fungal species either might have another protein analogous to the γ-subunit but with a 

different structure or they might regulate FAS activity through other unknown 

mechanisms.   
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4.2.5. Biotechnological applications of the FAS and its γ-subunit 

Using microbes for production of fatty acid or fatty acid derived products (known as 

oleochemicals) offers a cheap and sustainable alternative to vegetable oils and animal fats 

as source of raw materials for industrial production of commodities such as biodiesel, 

detergents, lubricants, bioplastics, emulsifiers, coatings, food and feed additives (Janßen 

and Steinbüchel, 2014; Peralta-Yahya et al., 2012). In particular, S. cerevisae has been 

engineered to produce fuels like ethanol, isobutanol, butanol, and farnesene (Zhou et al., 

2014). Further ways to increase yields as well as diversify the products are being 

investigated. Structural information of enzymes involved in fatty acids synthesis aid such 

endeavours, as they allow for targetted manipulation of the FAS. For example, multiple 

mutations in the fungal FAS based on structural data were screened to produce short chain 

fatty acids (SCFAs) using S. cerevisiae FAS or polyketides using C. ammoniagenes FAS 

(Gajewski et al., 2017a, 2017b). In particular, for the production of SCFAs, out of the 

different combinations of mutations in AT (I306S), MPT (R1834K) and KS (G1250S, 

M1251W, F1279Y), it was observed that R1834K favoured C8-FA, I306A-G1250S favored 

C6-FA and I306A-G1250S-R1834K resulted in a mixture of C6-FA/C8-FA. The mutations 

were intended to affect substrate affinities at the modified active sites, however, the exact 

effect could only be determined experimentally. More comprehensive structural data 

comprising of different conformational states of FAS would help diversify the compounds 

synthesised by it using strategies similar to those described by Gajewski et al., (2017b). 

In addition, the knowledge about the existence and mechanism of the γ-subunit in FAS 

regulation has many biotechnological implications. Yeast strains used for industrial 

production of fatty acids could be modified by genomic deletion of the γ-subunit, which 

might help in achieving higher output due to the absence of a protein that reduces the 

affinity of FAS for its substrates. Since the γ-subunit binds inside the FAS barrel, it can be 

used to localize new enzymatic modules to the FAS. This would allow for the diversification 

of the compounds produced by this machinery. It is known that a 20kDa TAP-tag does not 

hinder the binding of the γ-subunit to FAS (Fleischer et al., 2006), however, the limit for the 

size and number of the additional proteins that can be tethered to it would need to be tested. 

Finally, the C-terminal residues that bind to the KR active site cleft offer a scaffold for 
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designing potent inhibitors specific for the fungal FAS. The binding affinity of this peptide 

fragment itself could also be further optimized using random mutation and screening 

approaches to create high affinity inhibitors specific for different types of NADPH-binding 

enzymes.    
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5. Conclusion and Outlook 

In this doctoral thesis, sample preparation methods to tackle problems of compositional 

and conformational heterogeneity of the type I fungal fatty acid synthase were tested. The 

type I fungal FAS used as a model system helped shed light on the impact of proper 

biochemical handling of large complexes on the quality of the structural data that is 

obtained from them.  

In contrast to previously employed purification strategies for the type I fungal FAS, a 

chromatography-free purification was found to be beneficial. This is illustrated by the co-

purification of a novel γ-subunit of the FAS. These biochemical preparations of the FAS 

helped in advancing the quality of structural data by allowing for reproducibly achieving 

resolutions of ~3.0 Å using both X-ray crystallography and cryo-EM. Different biochemical 

treatments were then tested to further improve the resolution of the FAS structure. GraFix 

was shown to be effective in overcoming orientation bias that macromolecules might have 

on an EM grid but did not affect the resolution of the structure. On the other hand, “cycling” 

of the FAS with its substrates was crucial in stabilizing the otherwise dynamic ACP domain. 

This helped in improving the resolution by 0.3-0.4 Å to ~2.8 Å. Along with this, anti-FAS 

nanobodies were found to be promising tools for conformational stabilization of large 

macromolecular complexes such as the FAS. 

The good quality of sample preparations and structural data that could be obtained using 

them allowed for gaining novel insights into the fungal type I FAS. FAS was found to have 

two distinct conformations — a rotated one with the ACP domain stalled at the AT domain 

and a non-rotated one where the ACP domain is stalled at the KS domain. These 

observations indicate at a non-stochastic model for ACP shuttling, where the FAS can 

modulate ACP movement using its dome conformation. In addition, a novel γ-subunit was 

found to co-purify along with the FAS. With the help of kinetic analysis, XL-MS and high-

resolution structures, the molecular basis underlying the ability of the γ-subunit to affect 

FAS activity and stabilize its rotated conformation was also deciphered. The γ-subunit 

spans a distance of 120 Å inside the FAS dome while interacting with the ER, ACP, MPT 

and KR domains. The N- and C-terminal segments of the γ-subunit sterically compete with 
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NADPH binding to the ER and KR domain, whereas, its negatively charged aspartate rich 

loop segment present near the MPT domain hinders malonyl-CoA binding to the MPT 

domain. Through these interactions, the γ-subunit stabilizes the rotated conformation of 

the FAS as well as reduces the affinity of FAS towards its substrates. 

These observations open the following avenues for future investigations: 

1) Applying the knowledge gained regarding sample preparation to other large 

macromolecular complexes.  

The concepts for purification and biochemical treatments applied in this thesis could be 

applied for complexes such as the mammalian FAS or polyketide synthases. These proteins 

have a similar modular arrangement and use similar mechanisms for substrate shuttling 

and catalysis as the fungal FAS (Herbst et al., 2018). If found helpful, these principles can 

then be used for more distinct and dynamic protein complexes such as oxoglutarate 

dehydrogenase or pyruvate dehydrogenase. 

2) Understanding the structural basis behind ACP shuttling.  

To build on the observations of directionality provided to the ACP domain by the FAS 

conformation, further snapshots of the FAS with ACP domain bound at the KR, DH ER and 

MPT domains are necessary. For achieving this, the phosphopantetheine arm of the ACP 

domains need to be modified with analogs for acyl chain intermediates. The use of 

nanobodies for this purpose should also be tested as preliminary tests with Nb5 show 

promising results in this direction. 

3) Determining the role of the γ-subunit in the cell 

The model proposed for the role of the γ-subunit in vivo needs to be verified using cellular 

studies for conclusive interpretation of all data that is available for this protein. This would 

also helpful in avoiding possible misinterpretation of biochemical data from future studies 

of the FAS and proteasome assembly. 
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Abbreviations 

2D two-dimensional 

3D three-dimensional 

ACP acyl carrier protein 

ADP adenosine diphosphate 

AT acetyl transferase 

ATP adenosine triphosphate 

BS3 bis(sulfosuccinimidyl)suberate  

BSA bovine serum albumin 

CoA coenzyme A 

cryo-EM 3D transmission electron cryo-microscopy  

CTF contrast transfer function  

CtFAS Chaetomium thermophilum fatty acid synthase 

DH dehydratase 

DMSO dimethyl sulfoxide  

DNA deoxyribonucleic acid  

DTT dithiothreitol 

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

EDTA ethylenediaminetetraacetic acid  

EMDB Electron Microscopy Data Bank 

ER enoylreductase 

FAS fatty acid synthase 

FSC Fourier shell correlation 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

kDa kilo Dalton 

KR ketoreductase 

LMNG lauryl maltose neopentyl glycol  

MES 2-(N-morpholino)ethanesulfonic acid  

MPT malonyl/palmitoyl transferase 
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MW molecular weight 

NADH Nicotinamide adenine dinucleotide  

NADPH Nicotinamide adenine dinucleotide phosphate 

OGNG  octyl glucose neopentyl glycol  

PCA principle component analysis  

PDB Protein Data Bank 

PEG polyethylene glycol 

PMSF phenylmethane sulfonyl fluoride  

PPT phosphopantetheine transferase 

RNA ribonucleic acid  

ScFAS Saccharomyces cerevisiae fatty acid synthase 

SDA succinimidyl 4,4’-azipentanoate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  

TRIS tris(hydroxymethyl)aminomethane 

 

 

 



112 

Supplementary Information 

A. Supplementary tables 

Table 1. Tandem Mass Spectrometry analysis of the purified FAS sample in Figure 10(ii). 

 

 

Protein Identified Accession 

Number 

Molecular 

Weight 

No. of 

Peptides 

Fatty acid synthase alpha FAS2_YEAST 207  kDa 177 

Fatty acid synthase beta FAS1_YEAST 229  kDa 162 

Translation machinery-associated protein 17 TMA17_YEAST 17 kDa 114 

Glucokinase-1 HXKG_YEAST 55  kDa 33 

Probable E3 ubiquitin-protein ligase TOM1 TOM1_ASHGO 372 kDa 20 

Eukaryotic translation initiation factor 1A IF1A_YEAST 17 kDa 14 

Proteasome subunit beta type-5 PSB5_YEAST 32 kDa 12 

Eukaryotic translation initiation factor 5A-1 IF5A1_YEAST 17 kDa 11 

Proteasome subunit beta type-1 PSB1_YEAST 24 kDa 9 

Proteasome subunit beta type-3 PSB3_YEAST 23 kDa 7 

Cap-associated protein CAF20 CAF20_YEAST 18 kDa 6 

Altered inheritance of mitochondria protein 41 AIM41_YEAST 21 kDa 6 

Proteasome subunit beta type-2 PSB2_YEAST 28 kDa 6 

ADP-ribosylation factor 1 ARF1_YEAST 21 kDa 5 

Proteasome subunit beta type-4 PSB4_YEAST 23 kDa 5 

40S ribosomal protein S11-A RS11A_YEAST 18 kDa 3 

Protein transport protein SFT2 SFT2_YEAST 24 kDa 2 
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Table 2. XL-MS analysis of endogenous γ-subunit-FAS complex.  

Statistics (Crosslinked peptide spectrum matches (CSMs) and Scoremax) of the Crosslinking-MS 

data for the endogenous γ-subunit -FAS complex from S. cerevisiae. "Inter"- protein crosslinks 

between FAS and γ-subunit where numbers in the Residue 1 and 2 columns indicate the position of 

the cross-linked residue. 

Type Protein 1 
UniProt 

AC 1 
Protein 2 

UniProt 

AC 2 

Residue 

1 

Residue 

2 
CSM 

Best Score 

(max) 

BS3 
FAS alpha-

subunit 
P19097 γ-subunit Q12513 105 55 8 16.35 

     105 51 12 3.85 

     105 118 3 3.73 

     1079 118 7 18.85 

     1081 111 47 16.16 

     1081 116 17 10.64 

     1081 118 66 17.28 

     1087 118 15 13.45 

     1092 116 28 6.3 

     1092 118 47 11.95 

     1092 124 9 9.32 

 FAS beta-

subunit 
P07149 γ-subunit Q12513 877 17 18 11.43 

     879 83 17 18.75 

     1031 17 34 31.35 

Total       328 31.35 

Type Protein 1 
UniProt 

AC 1 
Protein 2 

UniProt 

AC 2 

Residue 

1 

Residue 

2 
CSM 

Best Score 

(max) 

SDA 
FAS alpha-

subunit 
P19097 γ-subunit Q12513 1741 20 2 14.03810453 

     712 22 2 10.57675413 

     106 55 2 4.003926346 

     118 55 2 12.86012091 

     119 55 3 10.83268267 

     92 55 7 9.202040356 

     93 55 2 7.935542011 

     105 57 2 13.21681131 

     62 62 2 12.89619628 

     62 63 4 18.09312647 

     64 63 3 18.75945075 

     62 64 10 22.7619539 

     64 64 5 18.64016452 

     62 65 4 18.17263073 
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     64 65 3 14.88941029 

     62 66 2 13.52287875 

     62 68 3 27.01863449 

     62 69 3 14.53610701 

     64 69 2 23.05109824 

     62 70 8 23.18309616 

     64 70 2 13.06701918 

     62 71 15 31.69250396 

     64 71 17 25.30715308 

     62 72 6 16.76955108 

     64 72 3 17.05650548 

     62 73 2 9.640164518 

     1092 117 10 7.829738285 

     1080 118 3 12.12205305 

     1082 118 3 9.474955193 

     1092 118 8 8.104025268 

     1079 119 2 7.358525889 

     1092 119 5 8.694648631 

     1092 123 17 9.505845406 

     1097 124 2 7.605548319 

     580 148 2 12.95860731 

 FAS beta-

subunit 
P07149 γ-subunit Q12513 1031 15 14 9.970616222 

     1921 56 4 10.66554625 

     1768 63 2 21.23358715 

     879 64 3 16.075204 

     879 65 2 12.49485002 

     1768 65 2 20.49079748 

     1918 68 7 7.222573178 

     1768 69 3 11.61261017 

     879 70 2 10.5421181 

     1918 70 8 7.222573178 

     1921 70 3 6.200659451 

     879 71 5 11.61978876 

     1918 71 13 8.435333936 

     1921 71 5 15.26042766 

     838 72 4 14.47886192 

     879 72 9 10.95860731 

     1918 72 4 9.534617149 

     1921 72 2 13.94692156 

     1918 73 2 10.1414628 

     877 88 3 6.548213564 

     879 88 7 16.34678749 
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     877 97 2 12.47625353 

     877 98 3 13.1837587 

Total       277 31.69250396 

Type Protein 1 
UniProt 

AC 1 
Protein 2 

UniProt 

AC 2 

Residue 

1 

Residue 

2 
CSM 

Best Score 

(max) 

EDC 
FAS alpha-

subunit 
P19097 γ-subunit Q12513 101 51 8 4.277366077 

     106 51 3 4.298432015 

     96 55 2 3.649751982 

     101 55 15 15.6216021 

     102 55 4 9.368556231 

     106 55 5 13.59006688 

     107 55 7 14.93930216 

     96 55 7 8.575118363 

     105 57 3 12.58670024 

     105 60 3 12.36754271 

     62 61 4 14.11350927 

     64 61 2 27.32697909 

     62 64 47 31.95467702 

     64 64 9 26.60906489 

     83 64 4 10.43415218 

     62 66 12 18.99139983 

     64 66 4 19.5421181 

     62 67 5 27.63078414 

     105 69 2 10.98296666 

     62 69 12 24.26201267 

     64 69 8 25.3439018 

     83 69 3 8.354577731 

     105 70 2 9.920818754 

     62 70 18 24.09963287 

     64 70 6 14.89619628 

     62 72 25 25.26841123 

     64 72 8 16.63451202 

     101 118 3 5.744727495 

     107 118 4 9.478861916 

     1109 118 9 11.58670024 

     1092 120 7 8.728158393 

     1099 124 3 5.186419011 

     1120 129 2 11.73282827 

     1128 129 2 9.8569852 

 FAS beta-

subunit 
P07149 γ-subunit Q12513 1031 14 10 11.25026368 

     1215 25 4 7.251037139 

     1106 55 5 23.4710833 
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     1918 66 2 13.71219827 

     1918 67 11 8.386158178 

     1918 69 21 10.3705904 

     1921 69 2 6.982966661 

     1918 70 11 9.649751982 

     838 72 4 13.65169514 

     1918 72 13 10.9788107 

     877 88 6 16.30715308 

     877 101 5 21.35654732 

Total       352 31.95467702 
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Table 3. Cryo-EM data collection and refinement statistics. 
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Table 4. Crystallographic data collection and refinement statistics. 

 

Values in parenthesis denote values for the highest resolution shell. 

Number of unique reflections used in refinement is shown. No rejections were applied. 

 



       119 

 

 

Table 5. Cryo-EM data collection for conformational energy landscape analysis. 
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B. Supplementary figures 

 

Figure S1. Scheme for cryo-EM data processing for FAS. The scheme depicts the different image 

processing steps performed. (1) Motion-corrected and dose weighted micrographs were used for 

particle selection. (2) Selected, individual particles were classified in 2D for 3 rounds where particles 

belonging to bad classes (resulting from bad optical properties or low signal-to-noise) were removed 
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after each step. (3) The selected particles were then used for 3D refinement using D3 symmetry with 

the published cryo-EM structure of Saccharomyces cerevisiae FAS (EMDB – 1623) as a reference. 

During the 3D refinement, a mask was placed around the central wheel to focus the refinement 

around the most stable part of the protein. (4) The alignment parameter of the particles from the 

previous step were used for classifying the particles into 15 classes. For classification, only the dome 

of the FAS was considered to sort out the major movements of this molecule. (5) Particles from the 

best 3D class with a non-rotated dome conformation were selected followed by another round of 3D 

refinement and classification as described above. (6) Particles from classes with resolutions below 4 

Å after 3D classification were refined again. (7-8) CTF refinement of the respective particles 

belonging to the class with the most uniform resolution was performed followed by a final 3D 

refinement. The final 3D maps obtained had an overall resolution of 2.9 Å for the non-rotated FAS 

conformation (grey) and 3.2 Å for the rotated FAS conformation (blue).  

 

 

 

Figure S2. Analysis of the FAS X-ray dataset for anisotropic diffraction using the 

STARANISO server. (i) Diffraction intensity plots along the three crystallographic axes. Note the 

strongest diffraction is along the a*-axis (2.8 Å), followed by the c*-axis (3.0 Å) and the weakest 

diffraction is along the b*-axis (3.1 Å). Since the crystal is nearly isometric in all three dimensions, 

this mild anisotropy is likely to represent the difference in unit cell numbers along the three 

crystallographic axes. (ii) B-factor distribution of main chain atoms of the refined FAS model against 

data spherically truncated at 2.9 Å (left) and anisotropically truncated as indicated in (i) (right). A 

distinct drop in mean B-factors is visible upon anisotropic truncation of the data. 
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Figure S3. Comparison between the cryo-EM FAS model and the published X-ray 

crystallographic FAS structure. The RMSD between the cryo-EM from this study and the 

published FAS structure (PDB 2UV8) was less than or equal to 7 Å. The AT domains residues 5-

150 along with MPT domain residues 1737-1750 and 1850-1970 contributed towards 20-30% of the 

total deviations among the structures. RMSD values calculated excluding the aforementioned 

residues are indicated within brackets. 
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Figure S4. Scheme for cryo-EM data processing for FAS Holoenzyme complex. The scheme 

depicts the different image processing steps performed. The processing pipeline was identical to the 

one used for the FAS complex (Supplementary figure S1). For this dataset, after CTF refinement, 

particle polishing was performed in Relion for the particles used in the final 3D refinement step. The 

final 3D map obtained for this complex had an overall resolution of 2.8 Å as determined by the FSC 

0.143 criterion. 
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Figure S5. XL-MS validation of the γ-subunit model. Crosslinks mapped on the final FAS 

holoenzyme structure for BS3 (top right), SDA (bottom left) and EDC (bottom right) are shown. 

The crosslinks are indicated by the blue rods. Only the crosslinks between residues within the 

distance threshold of 20 Å for the modelled part of the γ-subunit and 30 Å for the un-modelled part 

of the γ-subunit are depicted. 
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Figure S6. Overlay of FAS models from the non-rotated and rotated conformation. (i) Shown 

are overlays of domains of the non-rotated (grey) vs. the rotated conformation of the FAS (blue) when 

the two structures are aligned with respect to the central wheel. (ii) When the isolated domains are 

aligned to each other, it is notable that all domains superpose well, aside from minute rigid body 

shifts seen in the MPT domain. This allows the conclusion that the conformational change in the 

FAS is elicited by rigid-body motions, rather than re-structuring of enzymatic domains. 
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Figure S7. Comparison of ACP- and PPT- domain models in the FAS and FAS holoenzyme 

structures, as determined by X-ray crystallography and cryo-EM. (i) ACP domain models 

with their corresponding density from the crystallographic and cryo-EM structures of FAS (yellow) 

and the FAS holoenzyme (blue). In contrast to the previously published structures of the yeast FAS 

(Anselmi et al., 2010; Johansson et al., 2008; Leibundgut et al., 2007), the full phosphopantetheine 

prosthetic group attached to Ser180 was visible in the FAS crystallographic structure and the FAS 

holoenzyme cryo-EM structure reported herein. (ii) PPT domain (red) models with their 

corresponding density from the crystallographic and cryo-EM structures of FAS (left) and FAS 

holoenzyme (right). The C-terminal segment of the α-subunit comprising of an α-helical segment 

(Ala1747-Ser1765) and the PPT domain (Asn1776-Lys1886) present here, were elusive in the 

previous reported high resolution structures of the fungal FAS (Jenni et al., 2007; Leibundgut et al., 

2007). 
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