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ON CERTAIN ZETA INTEGRAL: TRANSFORMATION

FORMULA

MILTON ESPINOZA

Abstract. We introduce an “L-function” L built up from the integral repre-
sentation of the Barnes’ multiple zeta function ζ. Unlike the latter, L is defined
on a domain equipped with a non-trivial action of a group G. Although these
two functions differ from each other, we can use L to study ζ. In fact, the
transformation formula for L under G-transformations provides us with a new
perspective on the special values of both ζ and its s-derivative.

In particular, we obtain Kronecker limit formulas for ζ when restricted to
points fixed by elements of G. As an illustration of this principle, we evaluate
certain generalized Lambert series at roots of unity, establishing pertinent
algebraicity results. Also, we express the Barnes’ multiple gamma function at
roots of unity as a certain infinite product.

It should be mentioned that this work also considers twisted versions of ζ.

Introduction

Our starting point is the Barnes’ multiple zeta function defined via the Dirichlet
series

ζN (s, w, a) :=
∑

m∈NN

(w +m · a)−s.(1)

Here N is a positive integer called the dimension of the zeta function, and the sum
runs over all the N -tuples of non-negative integers. The parameters s, w, and the
entries aℓ of the N -dimensional (row) vector a ∈ CN are complex numbers. We
denote x · y the standard dot product between x and y, i. e.

x · y := x1y1 + · · ·+ xNyN (x, y ∈ CN ).

After choosing a suitable branch of the logarithm to define complex powers, it can
be shown that ζN (s, w, a) converges absolutely whenever Re(s) > N , Re(w) > 0,
and Re(aℓ) > 0 for all ℓ ∈ {1, . . . , N}. If we consider the tube-like domain

T +
N =

{
(w, a) ∈ C× CN

∣∣ Re(w) > 0, Re(aℓ) > 0, 1 ≤ ℓ ≤ N
}
,

then ζN is a holomorphic function on the Cartesian product {s ∈ C | Re(s) >
N}×T +

N , and the map s 7→ ζN (s, w, a) can be meromorphically continued to C for

fixed (w, a) ∈ T +
N .

Historically, ζN was introduced by Barnes [Ba] at the beginning of the 20th
century as a natural generalization of the Hurwitz zeta function. Later it was
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2 MILTON ESPINOZA

considered by Shintani [Sh1] [Sh2] who showed that it arises as a critical term
in the evaluation of Hecke L-series at s = 1. Also, a modern and more general
treatment of ζN can be found in [Ru] and [Fr-Ru].

The analytic s-continuation of ζN (s, w, a) can be performed in two steps, as it
is detailed in [Hi, §2.4]. First, one obtains an integral representation in the domain
of absolute convergence of the series (1). As it has been the case of its younger
avatars, this integral representation comes from applying the Mellin transform to
some suitable test function, namely

FN (u,w, a) :=
e−uw

(1 − e−ua1)(1 − e−ua2) . . . (1 − e−uaN )
(u ∈ C).

Then one converts the resulting integral into a contour one by means of the Hankel
contour, which gives a meromorphic function on C having at most finitely many
simple poles for each fixed (w, a) ∈ T +

N . In particular, the non-positive integers are
regular, and we can evaluate ζN (s, w, a) at these points in closed form. The special
values ζN (−k, w, a), k ∈ N, are very nice functions of (w, a) whose domains can
be easily extended. They are polynomials in w with coefficients in the field Q(a)
generated by the entries of a, and furthermore they satisfy several symmetries that
can be synthesized in a very simple transformation formula under the action of a
group GN (defined below). The above suggests the following heuristic observation:
ζN is actually a function of the three variables s, w, and a, but it gets into its best
form only if one fixes either s or (w, a). Unfortunately, this is not good enough for
some applications. For instance, if we wanted to study the s-derivative of ζN (s, w, a)
at non-positive integers, we would also be interested in knowing the behavior of
ζN (s, w, a) as s varies around these points, and hence it would be desirable to keep
track of any symmetry corresponding to the GN -action on the variable (w, a) even
when s is treated as another variable.

The aim of this article is to introduce a function LN (s, w, a) such that

• the map s 7→ LN (s, w, a) defines a meromorphic function on C for fixed
(w, a),

• the variable (w, a) ranges over a domain equipped with the action of GN ,
• the transformation formula for LN (s, w, a) under GN -transformations holds
for any s, and

• we can study the Barnes’ multiple zeta function using LN and its symme-
tries.

In order to describe the group GN in consideration, let {±1}N be the N -ary Carte-
sian power of the multiplicative group of order 2, let SN be the symmetric group on
N elements, and let C∗ be the multiplicative group of nonzero complex numbers.
Then GN is isomorphic to the product

(
{±1}N ⋊ϕ SN

)
×C∗, where {±1}N ⋊ϕ SN

denotes the (outer) semidirect product with respect to the homomorphism

ϕ : SN → Aut
(
{±1}N

)
, ϕσ(ε1, . . . , εN) = (εσ−1(1), . . . , εσ−1(N)) (σ ∈ SN ).

Moreover, we will also allow our functions to be twisted, i. e. we will introduce an
extra parameter θ ∈ RN such that the functions LN (s, w, a, θ) will handle Dirichlet
series of the form

ζN (s, w, a, θ) :=
∑

m∈NN

e(m · θ)(w +m · a)−s
(
Re(s) > N

)
.
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Here, and from now on, we write e(z) := e2πiz for all z ∈ C. Thus all of our results
will consider functions in this generality, the Barnes case being the non-twisted
specialization θ ∈ ZN .

We now briefly outline the steps in the construction of LN . First we take the
integral representation yielding the analytic continuation of ζN (s, w, a, θ), and we
note that it gives a nice function LN (s, w, a, θ) of s, which is actually defined on a
larger set DN of elements (w, a, θ) than the one considered for the sake of absolute
convergence of the series representation. Furthermore, the group {±1}N⋊ϕSN acts
on DN , and the corresponding transformation formula for LN (s, w, a, θ) generalizes
well-known symmetry relations satisfied by Bernoulli polynomials. Next, we extend

DN to a domain D̃N on which both s 7→ LN (s, w, a, θ) and the action of {±1}N ⋊ϕ
SN can be defined through a limiting process. In order to include also the action

of C∗, we take a suitable subset D̃C
∗

N of D̃N . Then the desired function follows by

taking the restriction of s 7→ LN (s, w, a, θ) to D̃C
∗

N . This function differs from ζN ,
but it can be used to compute the latter because (i) they coincide in a certain part
of their domains, and (ii) such part is, up to a well-controlled set of measure zero, a

fundamental domain for the action of {±1}N on D̃C
∗

N . Finally, the transformation
formula for LN (s, w, a, θ) under the action of the whole group

(
{±1}N ⋊ϕ SN

)
×

C∗ provides us with a new perspective on the special values of both ζ and its
s-derivative. As a consequence, we evaluate certain series of the form

∑

n

an ·
( qn1
1− ξ1qn1

)
. . .

( qnm
1− ξmqnm

)
,

establishing algebraicity results (Corollaries 9 and 10), and we express the Barnes’
multiple gamma function

ΓN (w, a) := exp

(
d

ds
ζN (s, w, a)

∣∣∣
s=0

) (
(w, a) ∈ T +

N

)
(2)

at roots of unity as an infinite product (Corollary 10).
In short, our approach exploits properties and relations offered by the test func-

tion FN , and how the integration process yielding the analytic continuation of the
Barnes’ multiple zeta function interacts with them. This can be seen as part of a
general philosophy leading to fruitful and diverse applications. For instance, Hirose
and Sato [Hi-Sa] gave functional equations for normalized Shintani L-functions,
i. e. zeta-integrals attached to certain twisted Dirichlet series parameterized by real
invertible matrices, and although they have been guided by the same idea, their
results are quite different in nature.

This article is divided into four sections. The first one is devoted to the state-
ment of the main results. We start by summarizing the analytic continuation of
ζN (s, w, a, θ) in both variables s and (w, a, θ), and then we introduce the required
notation in order to establish finally the most important outcomes of the paper.
Except for Corollaries 9 and 10, no proofs are given here, as we include them in-
stead in the following sections. More precisely, in the second section we detail the

action of GN on D̃C
∗

N . In the third one we study the integral representation of

LN , while in the fourth one we elaborate on the extension of LN to D̃N and its

transformation formula corresponding to the GN -action on D̃C
∗

N . Also, the reader
will find a summary of the most relevant domains considered in this work at the
end of the article.
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1. Main results

1.1. Analytic continuation of ζN . We briefly sum up some well-known features
of the analytic continuation of the Barnes’ multiple zeta function. Let N be a
positive integer. In order to take the parameter θ ∈ RN into account, we set

T +
N :=

{
(w, a, θ) ∈ C× CN × RN

∣∣Re(w) > 0, Re(aℓ) > 0, 1 ≤ ℓ ≤ N
}
.

Since this domain is a natural generalization of the T +
N given in the introduction,

we will keep this notation from now on. Also, we define HN := {s ∈ C |Re(s) > N}
and p as the projection of C× CN × RN onto the first two coordinates, i. e.

p : C× CN × RN → C× CN , p(w, a, θ) := (w, a).(3)

Using the principal branch of the logarithm to define complex powers, we consider
the (possibly twisted) Barnes’ multiple zeta function

ζN : HN × T +
N → C, ζN (s, w, a, θ) :=

∑

m∈NN

e(m · θ)(w +m · a)−s.(4)

It is well-defined and holomorphic as a function of (s, w, a) ∈ HN × p(T +
N ) for each

fixed θ ∈ RN . Using the test function

FN (u,w, a, θ) := e−uw
N∏

ℓ=1

(
1− e(θℓ)e

−uaℓ
)−1

,(5)

it also admits the integral representation

ζN (s, w, a, θ) =
1

Γ(s)

∫ ∞

0

FN (u,w, a, θ)us−1du, (s, w, a, θ) ∈ HN × T +
N .

Then we can transform the above integral into a contour one by means of the
Hankel contour C(ǫ) for sufficiently small ǫ > 0. Recall that C(ǫ) is defined as the
counterclockwise oriented path consisting of the interval [ǫ,+∞), and the circle of
radius ǫ centered at the origin followed by the same interval. Hence the analytic
s-continuation of ζN is given by

ζN (s, w, a, θ) =
1

Γ(s)(e(s)− 1)

∫

C(ǫ)

FN (u,w, a, θ)us−1du, (w, a, θ) ∈ T +
N .(6)

It can be shown that it is independent of ǫ, and that the integral defines an entire
function of s on C having zeros at the integers greater than N . Therefore we have
an extension ζN : (Cr{1, . . . , N})×T +

N → C, for which the elements in {1, . . . , N}
are, at most, simple poles for each fixed (w, a, θ) ∈ T +

N .

Now here is the crux: to extend the domain of ζN with respect to T +
N , we can

proceed by considering either the series or the integral representation. The former
way goes back to Barnes [Ba] and it comes from noticing that some rotations of
the parameters w and a do not affect the absolute convergence of the series in (4).
Indeed, for every angle ω ∈ (−π/2, π/2), define

T +
N (ω) :=

{
(w, a, θ) ∈ C× CN × RN | (eiωw, eiωa, θ) ∈ T +

N

}
,

and then define the function

ζωN : (Cr {1, . . . , N})× T +
N (ω) → C, ζωN (s, w, a, θ) := eisωζN (s, eiωw, eiωa, θ).
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Writing

T ext
N :=

⋃

ω∈(−π/2,π/2)

T +
N (ω),

we have that T ext
N is simply connected, contains T +

N , and permits the analytic
continuation

ζN : (Cr {1, . . . , N})× T ext
N → C, ζN (s, w, a, θ) := ζωN (s, w, a, θ),

(w, a, θ) ∈ T +
N (ω), some ω ∈ (−π/2, π/2),(7)

as it is detailed in [Fr-Ru, §6]. One remarkable trait of the above ζN (s, w, a, θ)
is that it is a holomorphic function of (s, w, a) ∈ (C r {1, . . . , N}) × p(T ext

N ) for
each fixed θ ∈ RN . However, T ext

N has the drawback of being non-symmetric, in
the sense that it compels us to work with column matrices a having entries in a
half-plane. Furthermore, some half-planes have had to be dismissed in order to
avoid multivaluedness. In this article, we extend the domain of ζN with respect to
T +
N by considering the integral representation (6).

1.2. Statement of the main results. Let us start by fixing some notation. Let
R+ be the set of positive real numbers. Define the convex cone

C :=
{
z ∈ C

∣∣Re(z) > 0 or z ∈ i · R+

}
,(8)

and note that its interior C◦ amounts to the right half-plane and that C∪{0}∪−C =
C.

Let N be a positive integer, set PN := {1, 2, . . . , N}, and let PN be the power
set of PN . Since every v ∈ CN is actually a function v : PN → C, the inverse image
v−1[S] ∈ PN of S under v is defined for any S ⊆ C. Then we define

DN :=
{
(w, a, θ) ∈ C× CN × RN

∣∣ a−1[0] ⊆ θ−1[Rr Z]
}
.(9)

Also, we define the trace function

Tr : CN × PN → C, Tr(v,Λ) :=
∑

ℓ∈Λ

vℓ.(10)

Let F(DN ,C) be the set of all complex-valued functions on DN , and consider
the distinguished element

π : DN → C, π(w, a, θ) := w − Tr(a, a−1[−C]),(11)

which is discontinuous at points (w, a, θ) where some aℓ is a nonzero purely imag-
inary complex number. Let Aut(DN ) be the group of all homeomorphisms of DN
onto itself. Then Aut(DN ) acts on F(DN ,C) by composition on the right, and we
can consider the stabilizer subgroup

Aut(DN )π := {g ∈ Aut(DN ) |πg = π}

of Aut(DN ) with respect to π. The above induces an action of Aut(DN )π on the
set F(π−1[C],C) of all complex-valued functions on π−1[C]. From now on we set

D̃N := π−1[C] =
{
(w, a, θ) ∈ DN |π(w, a, θ) ∈ C

}
.(12)

Now we describe a finite subgroup of Aut(DN )π explicitly. For each Λ ∈ PN ,
we denote d(Λ) the N × N diagonal matrix whose (ℓ, ℓ)-entry equals either −1 if
ℓ ∈ Λ, or 1 otherwise. Then we define the function

TΛ = TΛ,N : DN → DN , TΛ(w, a, θ) :=
(
w − Tr(a,Λ) , ad(Λ) , θd(Λ)

)
.(13)
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Next, for each σ ∈ SN , consider the corresponding permutation matrix r(σ), i. e.
the N ×N matrix whose ℓ-th column equals the σ−1(ℓ)-th column of the identity
matrix of size N . Then we define the function

Rσ = Rσ,N : DN → DN , Rσ(w, a, θ) :=
(
w , ar(σ) , θr(σ)

)
.(14)

Proposition 1. The TΛ and Rσ (Λ ∈ PN , σ ∈ SN ) defined above lie in Aut(DN )π.
Furthermore, if we let TN and RN be the groups generated by the TΛ and Rσ
(Λ ∈ PN , σ ∈ SN ) respectively, then the set TNRN equipped with the operation

TΛ1
Rσ1

· TΛ2
Rσ2

= TΛ1⊕σ1(Λ2)Rσ1σ2
(Λi ∈ PN , σi ∈ SN , i = 1, 2)

is a group isomorphic to the outer semidirect product {±1}N ⋊ϕ SN with respect to

ϕ : SN → Aut
(
{±1}N

)
, ϕσ(ε1, . . . , εN ) = (εσ−1(1), . . . , εσ−1(N)).

Here and from now on the symbol ⊕ denotes the symmetric difference of sets.

In order to include the action of C∗, we define the following transformations. For
each α ∈ C∗, consider the function

Mα =Mα,N : DN → DN , Mα(w, a, θ) := (αw, αa, θ),(15)

which is clearly a homeomorphism. The groupMN generated by theMα (α ∈ C∗) is
isomorphic to C∗ in a natural way. Unlike the previous cases, MN is not contained
in Aut(DN )π , thus we consider instead the group

GN :=
[
Aut(DN )π ∩ N(MN )

]
MN ,

where N(MN ) denotes the normalizer of MN in Aut(DN ). Hence GN acts on the

set F(D̃C
∗

N ,C) by composition on the right, where

D̃C
∗

N :=
⋂

α∈C∗

(πMα)
−1[C].(16)

Proposition 2. The TΛ, Rσ, and Mα (Λ ∈ PN , σ ∈ SN , α ∈ C∗) defined above lie
in GN . Furthermore, the set GN := TNRNMN equipped with the operation

TΛ1
Rσ1

Mα1
· TΛ2

Rσ2
Mα2

= TΛ1⊕σ1(Λ2)Rσ1σ2
Mα1α2

,

for any Λi ∈ PN , σi ∈ SN , and αi ∈ C∗ (i = 1, 2), is a subgroup of GN isomorphic
to the product

(
{±1}N ⋊ϕ SN

)
× C∗.

We know that GN acts on DN by homeomorphisms, thus it seems natural to ask
about the sets

D
g
N :=

{
(w, a, θ) ∈ DN

∣∣ g(w, a, θ) = (w, a, θ)
}

(g ∈ GN )

of points fixed by elements of GN . In fact, the next proposition shows that these
sets can be characterized in terms of eigenspaces of certain matrices. For any N×N
complex matrix A and any λ ∈ C, we denote Eλ[A] := {v ∈ CN | vA = λv} the
eigenspace of A associated with λ. Note that Eλ[A] is non-trivial if and only if λ
is an eigenvalue of A.

Proposition 3. Let Λ ∈ PN , σ ∈ SN , and α ∈ C∗. Set g := TΛRσMα and
A := r(σ)d(Λ).

(i) Suppose that α = 1. Then

D
g
N =

{
(w, a, θ) ∈ DN

∣∣Tr(a,Λ) = 0 and a, θ ∈ E1[A]
}
.

Furthermore, if (w, a, θ) ∈ D
g
N , then Tr(θ,Λ) = 0 and |Λ| is even.



ON CERTAIN ZETA INTEGRAL: TRANSFORMATION FORMULA 7

(ii) Suppose that α 6= 1. Then

D
g
N =

{
(w, a, θ) ∈ DN

∣∣∣w =
1

2
Tr(a, PN ), a ∈ Eα−1 [A], and θ ∈ E1[A]

}

and we have the inclusion D
g
N ⊆ D̃C

∗

N . Furthermore, if there exists (w, a, θ) ∈
D
g
N with a 6= 0, then α is a root of unity.

Now we address the extension of ζN : (C r PN ) × T +
N → C to the domain

(C r PN ) × D̃N by using (6). This is not an analytic continuation in the variable
(s, w, a), but the resulting extension is actually holomorphic up to a well-controlled
set of measure zero.

Note that the size of the “sufficiently small ǫ > 0” considered in (6) depends on
(w, a, θ), and that there are infinitely many choices of it for each such triple. To
control this situation better, we record the following definition.

Definition 4. Let E = EN be the set of all functions ǫ : DN → R+ satisfying the
following condition: for all (w, a, θ) ∈ DN and all ℓ ∈ PN , the equation e(θℓ) = euaℓ

has no solutions u ∈ C with 0 < |u| ≤ ǫ(w, a, θ). Then we define formally

LN,ǫ(s, w, a, θ) :=
1

Γ(s)(e(s)− 1)

∫

C(ǫ(w,a,θ))

FN (u,w, a, θ)us−1du

for each ǫ ∈ E and each (s, w, a, θ) ∈ C× DN . Here we consider

us−1 = e(s−1)(log |u|+iArg(u)),

where Arg(u) = 0 when u varies on the negatively oriented interval (0,+∞), 0 <
Arg(u) < 2π when u goes counterclockwise around the origin, and Arg(u) = 2π
when u varies on the positively oriented interval (0,+∞).

Theorem 5. The function LN : (Cr PN )× D̃N → C given by

LN (s, w, a, θ) := lim
ω→0
ω<0

LN,ǫ
(
s,Meiω(w, a, θ)

)
(17)

is well-defined and independent of the choice of ǫ ∈ E. Furthermore, it satisfies the
following properties.

(i) For each fixed (w, a, θ) ∈ D̃N , the map s 7→ LN (s, w, a, θ) defines a meromor-
phic function on C having at most simple poles at PN .

(ii) For each fixed θ ∈ RN and any Λ ∈ PN , the map (s, w, a) 7→ LN (s, w, a, θ)
defines a holomorphic function on (Cr PN )× p

(
TΛ(T

+
N )

)
.

(iii) For every (s, w, a, θ) ∈ (CrPN )×C×CN×RN , we have that LN (s, w, a, θ) =
ζN (s, w, a, θ).

There are two choices in (17): ǫ and limω→0− . As the above theorem claims, the
former is irrelevant since it does not affect the outcome. In contrast, the way of
how ω approaches 0 has consequences on the values LN (s, w, a, θ) when some aℓ is
a nonzero purely imaginary complex number. Therefore, the function LN in (17)
is a sort of principal value for LN .

Now we state the second theorem of this article. Recall that GN := TNRNMN ,

FN (u,w, a, θ) := e−uw
N∏

ℓ=1

(
1− e(θℓ)e

−uaℓ
)−1

,
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and D̃C
∗

N ⊆ D̃N (see (12) and (16)). Let arg : C∗ → (−π, π] be the principal
argument function, and let sgn : R → {−1, 0, 1} be the usual sign function. For
any nonzero angle ψ ∈ [−π, π] and any (w, a, θ) ∈ DN , we define Pψ(a, θ) as the set
of nonzero poles u = u0 of FN (u,w, a, θ) satisfying either arg(u0) ∈ [0, ψ) if ψ > 0,
or arg(u0) ∈ [ψ, 0) if ψ < 0. Also, for any g = TΛRσMα ∈ GN , we define

Jg(s, θ) := (−1)|Λ|e
(
Tr

(
θ, σ−1[Λ]

))
α−s (s ∈ C, θ ∈ RN ),(18)

where we use the principal branch of the logarithm to define α−s.

Theorem 6. The function LN : (C r PN ) × D̃C
∗

N → C satisfies the following
transformation formula under GN -transformations. Let Λ ∈ PN , σ ∈ SN , and
α ∈ C∗. Set g := TΛRσMα and ψ := arg(α). Then

LN
(
s, g(w, a, θ)

)
= Jg(s, θ)

[
LN (s, w, a, θ) + ρψN (s, w, a, θ)/Γ(s)

]
(19)

for all (s, w, a, θ) ∈ (Cr PN )× D̃C
∗

N , where ρψN (s, w, a, θ) is the s-analytic continu-
ation of the function

ρψN (s, w, a, θ) := sgn(−ψ)2πi lim
R→∞

∑

u0∈Pψ(a,θ)
|u0|<R

Resu=u0

(
FN (u,w, a, θ)us−1

)

holomorphic for Re(s) < 1. Here we use the principal branch of the logarithm to
define both α−s and us−1.

Furthermore, for every k ∈ Z, the factor Jg(k, θ) defines a 1-cocycle for the ac-
tion of GN on the multiplicative group of everywhere nonzero functions in F(DN ,C).

As a consequence, for any g, h ∈ GN and any δ ∈ D̃C
∗

N , we have

ρ
ψg
N

(
k, h(δ)

)
=(20)

Jh(k, δ)

[
ρ
ψgh
N (k, δ)− ρψhN (k, δ) +

(ψg + ψh − ψgh
2π

)
· coeff

(
FN (u, δ), u−k

)]

for all k ∈ Z (except for possible poles), where ψg, ψh, and ψgh are the angles
associated with g, h, and gh respectively. Here, and from now on, coeff(f(z), zn)
denotes the coefficient of zn in the Laurent expansion of f(z) at z = 0.

Corollary 7. Let Λ ∈ PN , σ ∈ SN , and α ∈ C∗. Set g := TΛRσMα and ψ :=
arg(α). Then

LN
(
− k, g(w, a, θ)

)
= Jg(−k, θ)LN (−k, w, a, θ)

for all k ∈ N and all (w, a, θ) ∈ D̃C
∗

N . Likewise, for the s-derivative L′
N we have

that

L′
N

(
− k, g(w, a, θ)

)
=

Jg(−k, θ)
[
L′
N (−k, w, a, θ)− log(α)LN (−k, w, a, θ) + (−1)kk!ρψN (−k, w, a, θ)

]

for all k ∈ N and all (w, a, θ) ∈ D̃C
∗

N , where log(α) := log |α|+ iψ.

The above formulas unveil a straightforward relation between LN and ρN when

we restrict the elements (w, a, θ) ∈ D̃C
∗

N to lie in the set DgN of points fixed by some
g. We can refer to them as Kronecker limit formulas, in the sense that they express
the leading coefficient of LN at certain points in terms of ρN .
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Corollary 8. Let Λ ∈ PN , σ ∈ SN , and α ∈ C∗. Set g := TΛRσMα and ψ :=

arg(α). Assume that (w, a, θ) ∈ D̃C
∗

N ∩ D
g
N . Then

ρψN (s, w, a, θ) = Γ(s)
[
Jg(s, θ)

−1 − 1
]
LN (s, w, a, θ)

for all s ∈ C r PN . In particular, we have the following formulas for s = k ∈ Z.

(i) If k ≤ 0 and Jg(k, θ) = 1, then

ρψN (k, w, a, θ) =
(−1)k

(−k)!
log(α)LN (k, w, a, θ).

(ii) If k ≤ 0 and Jg(k, θ) 6= 1, then LN (k, w, a, θ) = 0 and

ρψN (k, w, a, θ) =
(−1)k

(−k)!

[
Jg(k, θ)

−1 − 1
]
L′
N (k, w, a, θ)

(iii) If k ∈ PN and Jg(k, θ) = 1, then

ρψN (k, w, a, θ) = (k − 1)! log(α)Ress=k
(
LN (s, w, a, θ)

)
.

(iv) If k ∈ PN and Jg(k, θ) 6= 1, then

Ress=k
(
ρψN (s, w, a, θ)

)
= (k − 1)!

[
Jg(k, θ)

−1 − 1
]
Ress=k

(
LN (s, w, a, θ)

)
.

(v) If k ≥ N + 1 and Jg(k, θ) = 1, then ρψN (k, w, a, θ) = 0 and

d

ds
ρψN (s, w, a, θ)

∣∣∣
s=k

= (k − 1)! log(α)LN (k, w, a, θ).

(vi) If k ≥ N + 1 and Jg(k, θ) 6= 1, then

ρψN (k, w, a, θ) = (k − 1)!
[
Jg(k, θ)

−1 − 1
]
LN (k, w, a, θ).

Example 1. Let N ≥ 3 be an odd integer, let σ be the N -cycle (12 . . .N) ∈ SN ,
let η = e(1/N), and set g = RσMη ∈ GN . Then it easily follows that g fixes
δ = (0, a, θ), where

a = (η, η2, . . . , ηN−1, 1) and θ = (c, c, . . . , c) (c ∈ R).

We assume c ∈ [0, 1) from now on.
Since N is odd, the u-poles of FN (u, δ)us−1 are simple. Thus

ρ
2π/N
N (k, δ) = −(2πi)k

[
η−k⌊N/4⌋

∑

m∈Z
m+c>0

(m+ c)k−1

∏N−1
ℓ=1

(
1− e

(
c− (m+ c)ηℓ

))

+ η−k⌊3N/4⌋
∑

m∈Z
m+c<0

(m+ c)k−1

∏N−1
ℓ=1

(
1− e

(
c− (m+ c)ηℓ

))
]

for all k ∈ Z, where ⌊ ⌋ denotes the usual floor function. Note that the right-hand
side of this equation converges absolutely for all k ∈ Z. Also, note that Jg(k, θ) = 1
if and only if N divides k.
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Remarkably, if N divides k, we get

∑

m∈Z

m+c 6=0

(m+ c)k−1

∏N−1
ℓ=1

(
1− e

(
c− (m+ c)ηℓ

)) =





(−2πi)1−k

(−k)!N · LN (k, δ) if k ≤ 0,
−(2πi)1−N (N−1)!

N ·Ress=N
(
LN (s, δ)

)
if k = N,

0 if k > N.

Hence the residue theorem allows us to succinctly write the right-hand side of the
last system of equations as

−
(2πi)1−k

N
· coeff

(
FN (u, δ), u−k

)
(k ∈ Z).

Such coefficients can be written as Q(η)-linear combinations of products of certain
generalized Bernoulli polynomials Bn(z, ξ), which are defined via the generating
function

tezt

ξet − 1
=

∞∑

n=0

Bn(z, ξ)
tn

n!
.(21)

Indeed, for all k ∈ Z,

coeff
(
FN (u, δ), u−k

)
= (−1)N−k

∑

n∈N
N

Tr(n)=N−k

ηn1η2n2 . . . ηNnN
N∏

ℓ=1

Bnℓ
(
0, e(c)

)

nℓ!
,

where Tr(n) := Tr(n, PN ) = n1 + · · ·+nN , and the empty sum is 0. We know that
Bn(0, e(c)) ∈ Q(e(c)) for all n ∈ N (cf. [Hi, p. 42, Eq. (3b)] and [Ap, Eq. (3.7)]).
Therefore coeff(FN (u, δ), u−k) lies in Q(e(c)) for all k ∈ Z, since it remains fixed
under the action of the Galois group of Q(e(c), η) over Q(e(c)). Now we summarize
the above discussion.

Corollary 9. Let N ≥ 3 be an odd integer, let η = e(1/N), and let c ∈ [0, 1). Then

(2πi)k−1
∑

m∈Z

m+c 6=0

(m+ c)k−1

∏N−1
ℓ=1

(
1− e

(
c− (m+ c)ηℓ

)) ∈ Q
(
e(c)

)

for all k ∈ NZ. Furthermore, assuming k ∈ NZ, the above series vanishes either
for all k > N if c = 0, or for all k > 0 if c 6= 0.

Example 2. Let N ≥ 2, let σ be the N -cycle (12 . . .N) ∈ SN , let η = e(1/2N),
and set g = T{1}RσMη ∈ GN . Then it follows that g fixes δ = (w, a, 0), where

w = (1− η)−1 and a = (1, η, . . . , ηN−1).

Again, the u-poles of FN (u, δ)us−1 are simple, and we get an absolutely conver-
gent series

ρ
π/N
N (k, δ) = −(2πi)kη(N−k)⌊N/2⌋

∞∑

m=1

e(−mw)
∏N−1
ℓ=1

(
1− e(−mηℓ)

)mk−1 (k ∈ Z).

In this case, Jg(k, 0) = 1 if and only if k ≡ N mod 2N .
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Suppose k ≡ N mod 2N . Using the same reasoning as in the previous example,
we obtain

∞∑

m=1

e(−mw)
∏N−1
ℓ=1

(
1− e(−mηℓ)

)mk−1 = −
(2πi)1−k

2N
· coeff

(
FN (u, δ), u−k

)
.

Then, using the generalized Bernoulli polynomials (21), we arrive at the following
expression for the above coefficient:

(−1)N−kη(1−N)N/2
∑

n∈N
N

Tr(n)=N−k

ηn2η2n3 . . . η(N−1)nN

N∏

ℓ=1

Bnℓ
(
η1−ℓw/N, 1

)

nℓ!
(k ∈ Z).

In this case, a direct Galois-theoretic approach to study coeff(FN (u, δ), u−k) seems
awkward, but at least we know that coeff(FN (u, δ), u−k) lies in Q(η) for all k ∈ Z.
Now we show that, if N is odd, then coeff(FN (u, δ), u−k) is actually a rational
number.

Suppose N is odd, and let Λ ∈ PN be the set of odd numbers in PN . Then, by
virtue of (20), we have

ρ
π/N
N (k, δ) = η−k

[
ρ
2π/N
N (k,Mη−1δ)− ρ

π/N
N (k,Mη−1δ)

]

= η−k
[
(−1)

N−1

2 ρ
2π/N
N (k, TΛMη−1δ) + ρ

π/N
N (k, T{1}Mη−1δ)

]
.

Using basic relations among powers of η and suitably permuting coordinates in the
rightmost expression, we get

ρ
π/N
N (k, δ) = η−k

[
(−1)

N−1

2 ρ
2π/N
N

(
k, 0, (1, η2, η4, . . . , η2(N−1)), 0

)
+ ρ

π/N
N (k, δ)

]
,

from which we easily obtain

ρ
2π/N
N

(
k, 0, (1, η2, η4, . . . , η2(N−1)), 0

)
= (−1)

N−1

2 (ηk − 1)ρ
π/N
N (k, δ) (k ∈ Z).

Note that we studied the left-hand side of this equation in the previous example.

Hence, using Corollary 9, it follows that ρ
π/N
N (k, δ) lies in 2πiQ for all k ≡ N

mod 2N . Therefore coeff(FN (u, δ), u−k) is rational for all k ≡ N mod 2N .
Now we show another natural application of our results. Since Jg(0, 0) = −1,

Corollary 8 says that ρ
π/N
N (0, δ) = −2L′

N (0, δ). In view of Theorem 5 (iii), we want
to use the transformations (13) to write L′

N (0, δ) in terms of the Barnes’ multiple
zeta function. Let γ = (v, b, 0), where

v =
1

2
Tr(b, PN ) and b =

(
η⌊N/2⌋+1−N , η⌊N/2⌋+2−N , . . . , η⌊N/2⌋

)
.

Then, since all the coordinates of b lie in the convex cone C, we have

ρ
π/N
N (0, δ) = −2L′

N(0, δ) = 2(−1)N−⌊N/2⌋L′
N (0, γ) = 2(−1)N−⌊N/2⌋ζ′N (0, γ).

On the other hand, using the geometric series and the Taylor expansion of − log(1−
z) at z = 0, we get the convergent series

(−1)N−⌊N/2⌋ρ
π/N
N (0, δ) =
∑

n∈NN−1

log
(
1− e(−w)e

(
(1 + n1)η + · · ·+ (1 + nN−1)η

N−1
))
.
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Taking exponentials and using the notation in (2), we therefore obtain

ΓN (v, b) =
∏

n∈NN−1

(
1− e(−w)e

(
(1 + n1)η + · · ·+ (1 + nN−1)η

N−1
))1/2

.

We now summarize our discussion.

Corollary 10. Let N ≥ 2, let η = e(1/2N), and let w = (1 − η)−1. Then

(2πi)k−1
∞∑

m=1

e(−mw)
∏N−1
ℓ=1

(
1− e(−mηℓ)

)mk−1 ∈

{
Q(η) if N is even,

Q if N is odd,

for all k ≡ N mod 2N . Furthermore, assuming k ≡ N mod 2N , the above series
vanishes for all k > N . On the other hand, if N is odd, then the series

∑

m∈Z

m 6=0

mk−1

∏N−1
ℓ=1

(
1− e(−mη2ℓ)

)

vanishes for all k ∈ 2NZ. Also, we have the following evaluation of the Barnes’
multiple gamma function in (2):

ΓN (v, b) =
∏

n∈NN−1

(
1− e(−w)e

(
(1 + n1)η + · · ·+ (1 + nN−1)η

N−1
))1/2

,

where v = Tr(b, PN )/2 and b = (η⌊N/2⌋+1−N , η⌊N/2⌋+2−N , . . . , η⌊N/2⌋).

2. The group G

Here our main objective is to prove Propositions 1 and 2, detailing the many

features of the TNRN -action on D̃N as well as the GN -action on D̃C
∗

N used in
the following. Unless otherwise stated, we employ the notation recorded in the
preceding section.

We start by displaying some basic relations satisfied by the trace function Tr in
(10) that will prove useful subsequently. We omit the proofs as they come rather
easily from its definition.

Lemma 11. Let N be a positive integer.

(i) For any Λ ∈ PN , the map v 7→ Tr(v,Λ) defines a linear form Tr(·,Λ) : CN →
C.

(ii) Let Λ1,Λ2 ∈ PN . For any v ∈ CN , we have

Tr(v,Λ1 r Λ2) = Tr(v,Λ1)− Tr(v,Λ1 ∩ Λ2),(22)

Tr(v,Λ1 ∪ Λ2) = Tr(v,Λ1) + Tr(v,Λ2)− Tr(v,Λ1 ∩ Λ2).(23)

(iii) Let Λ ∈ PN , set N(Λ) := N − |Λ|, and let ϕ be the unique strictly increasing
bijection between PN(Λ) and PN rΛ. For any λ ∈ PN(Λ) and any v ∈ CN , we

have Tr(vϕ, λ) = Tr
(
v, ϕ(λ)

)
.

2.1. The group MN . For each α ∈ C∗, recall the function

Mα =Mα,N : DN → DN , Mα(w, a, θ) := (αw, αa, θ),

defined in (15). We denote MN the group generated by the Mα (α ∈ C∗), which
is naturally isomorphic to C∗. Let C(MN ) and N(MN ) be the centralizer and
normalizer of MN in Aut(DN ) respectively, so C(MN ) ⊆ N(MN ).
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Lemma 12. The group MN acts on the set E described in Definition 4 by

ǫ ·Mα = ǫα : DN → R+, ǫα(w, a, θ) := |α| · ǫ(αw, αa, θ) (α ∈ C∗, ǫ ∈ E).

Furthermore,

FN
(
u,Mα(w, a, θ)

)
= FN (αu,w, a, θ) (α ∈ C∗)

for all (w, a, θ) ∈ DN and all u ∈ C such that both u and αu are away from
singularities.

Proof. We first claim that ǫα ∈ E for all ǫ ∈ E and all α ∈ C∗. Indeed, let ǫ ∈ E ,
α ∈ C∗, (w, a, θ) ∈ DN , and ℓ ∈ PN . Since ǫ ∈ E and Mα(w, a, θ) ∈ DN , we know
by definition that the equation e(θℓ) = eu(αaℓ) has no solutions u ∈ C with 0 <
|u| ≤ ǫ(αw, αa, θ). But 0 < |u| ≤ ǫ(αw, αa, θ) if and only if 0 < |αu| ≤ ǫα(w, a, θ),
so the claim follows after applying the change of variable αu = u′. Then it is easy
to prove that this defines a right action of MN on E . The last assertion follows
from the definition (5) of FN by a direct computation. �

2.2. The group RN . For each σ ∈ SN , recall the function

Rσ = Rσ,N : DN → DN , Rσ(w, a, θ) :=
(
w , ar(σ) , θr(σ)

)
,

defined in (14). Here r(σ) denotes the N × N square matrix whose ℓ-th column
equals the σ−1(ℓ)-th column of the identity matrix of size N . It is well-known
that r(σ)r(τ) = r(τσ) for all σ, τ ∈ SN . Thus we have that RτRσ = Rτσ for all
σ, τ ∈ SN , and that the group RN generated by the Rσ is isomorphic to SN .

Lemma 13. The group RN is contained in Aut(DN )π ∩ C(MN ), and it acts on
the set E described in Definition 4 by composition on the right. Furthermore,

FN
(
u,Rσ(w, a, θ)

)
= FN (u,w, a, θ) (σ ∈ SN )

for all (w, a, θ) ∈ DN and all u ∈ C away from singularities.

Proof. Let (w, a, θ) ∈ DN . We obviously have

Tr(a, a−1[−C]) = Tr
(
ar(σ) , (ar(σ))−1[−C]

)
(σ ∈ SN ),

which implies πRσ = π for all σ ∈ SN . On the other hand, it readily follows that
RσMα = MαRσ for all σ ∈ SN and all α ∈ C∗. Therefore RN is contained in
Aut(DN )π ∩ C(MN ).

Since every Rσ acts on an element (w, a, θ) ∈ DN by permuting simultaneously
the entries of both a and θ according to σ, we can see in Definition 4 that the
composition ǫRσ ∈ E for all σ ∈ SN . Then it easily follows that this defines an
action of RN on E .

Finally, we can see directly from (5) that the test function FN is invariant under
the action (by homeomorphisms) of RN on DN . �

2.3. The group TN . For each Λ ∈ PN , recall the function

TΛ = TΛ,N : DN → DN , TΛ(w, a, θ) :=
(
w − Tr(a,Λ) , ad(Λ) , θd(Λ)

)
,

defined in (13), where d(Λ) denotes the N ×N diagonal matrix whose (ℓ, ℓ)-entry
equals either −1 if ℓ ∈ Λ, or 1 otherwise. We define TN := {TΛ |Λ ∈ PN}.
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Lemma 14. The set TN is a subgroup of Aut(DN )π∩C(MN ) isomorphic to {±1}N ,
and its group operation satisfies TΛ1

TΛ2
= TΛ1⊕Λ2

(Λ1, Λ2 ∈ PN). Furthermore,
TN acts on the set E described in Definition 4 by composition on the right, and we
have

FN
(
u, TΛ(w, a, θ)

)
= (−1)|Λ|e

(
Tr(θ,Λ)

)
FN (u,w, a, θ)

for all (w, a, θ) ∈ DN and all u ∈ C away from singularities.

Proof. We first prove the composition law. Let a ∈ CN and let Λ1,Λ2 ∈ PN . Using
(22), Lemma 11 (i), and (23), it verifies that

Tr(a,Λ2) + Tr
(
ad(Λ2) , Λ1

)

= Tr(a,Λ2 r Λ1) + Tr(a,Λ1 ∩ Λ2) + Tr
(
ad(Λ2) , Λ1 r Λ2

)
+Tr

(
ad(Λ2) , Λ1 ∩ Λ2

)

= Tr(a,Λ2 r Λ1) + Tr(a,Λ1 ∩ Λ2) + Tr(a,Λ1 r Λ2) + Tr(−a,Λ1 ∩ Λ2)

= Tr(a,Λ2 r Λ1) + Tr
(
a , Λ1 r Λ2

)

= Tr(a,Λ1 ⊕ Λ2).

On the other hand, it can be easily proved that d(Λ2)d(Λ1) = d(Λ1 ⊕ Λ2). Hence
the identity TΛ1

TΛ2
= TΛ1⊕Λ2

follows immediately.
Now we prove that TN is a subgroup of Aut(DN )π∩C(MN ). First note that, for

every Λ ∈ PN , TΛ is a continuous function whose square equals the identity map on
DN . Then all the TΛ are homeomorphisms. Next observe that, for every a ∈ CN

and every Λ ∈ PN ,
(
ad(Λ)

)−1
[−C] =

(
a−1[−C]r Λ

)
∪

(
a−1[C] ∩ Λ

)
(disjoint union).

Then, using (22), Lemma 11 (i), and (23), we get

Tr(a,Λ) + Tr
(
ad(Λ) , (ad(Λ))−1[−C]

)

= Tr(a,Λr a−1[C]) + Tr(a, a−1[C] ∩ Λ) + Tr(a, a−1[−C]r Λ) + Tr
(
− a, a−1[C] ∩ Λ

)

= Tr(a,Λr a−1[C]) + Tr(a, a−1[−C]r Λ)

= Tr(a,Λ ∩ a−1[−C]) + Tr(a, a−1[−C]r Λ)

= Tr(a, a−1[−C]).

Hence we easily obtain πTΛ = π for all Λ ∈ PN . On the other hand, using the
linearity of Tr in the first variable, it is straightforward to verify that MαTΛ =
TΛMα for all α ∈ C∗ and all Λ ∈ PN . Therefore the above shows that TN is
a subgroup of Aut(DN )π ∩ C(MN ). In order to prove that TN is isomorphic to
{±1}N , it suffices to consider the mapping TΛ 7→ (1, 1, . . . , 1)d(Λ).

Now we prove that TN acts on E by composition on the right. We first show
that ǫTΛ ∈ E for all Λ ∈ PN and all ǫ ∈ E . Let ǫ ∈ E , Λ ∈ PN , (w, a, θ) ∈ DN ,
and ℓ ∈ PN . Since ǫ ∈ E , the equation e

(
(θd(Λ))ℓ

)
= eu(ad(Λ))ℓ has no solutions

u ∈ C with 0 < |u| ≤ ǫTΛ(w, a, θ). But e
(
(θd(Λ))ℓ

)
= eu(ad(Λ))ℓ if and only if

e(θℓ) = euaℓ , so ǫTΛ ∈ E . Then it readily verifies that the above defines an action
of TN on E . Finally, the last assertion follows from the definition (5) of FN by a
direct computation. �

Proof of Propositions 1 and 2. By virtue of Lemmas 13 and 14, it only remains to
show that RσTΛR

−1
σ = Tσ(Λ) for all Λ ∈ PN and all σ ∈ SN .
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For any set X and any subset S ⊆ X , let

1S : X → {0, 1}, 1S(x) :=

{
1 if x ∈ S,

0 if x /∈ S,
(24)

be the usual indicator function. Let Λ ∈ PN and σ ∈ SN . Since

ar(σ−1) = (aσ(1), . . . , aσ(N)) and ad(Λ) =
(
(−1)1Λ(1)a1, . . . , (−1)1Λ(N)aN

)

for any a ∈ CN , we have

Tr(ar(σ−1),Λ) = Tr(a, σ(Λ)) and r(σ−1)d(Λ)r(σ) = d(σ(Λ)).(25)

Then the desired identity follows easily by using (13) and (14). �

3. The integral representation of L

In this section our main objective is twofold: to prove Proposition 3, and to
establish the integral representation of L. In order to address the latter part, we
start by defining a set of parameters to give a meaning to the formal definition of
L (see Definition 4).

For any positive integer N , let

DN :=
{
(w, a, θ) ∈ DN

∣∣π(w, a, θ) ∈ C◦ and a ∈ [C r i · R∗]N
}
,(26)

where R∗ := R r {0}, π as in (11), and DN as in (9). To consider also the case
N = 0, let

P0 := ∅, P0 := {∅}, D0 := C, and D0 = T +
0 := {w ∈ C | Re(w) > 0},(27)

where ∅ denotes the empty set.

3.1. A family of projections. In order to begin with the study of DN , we intro-
duce a family of projections where the distinguished element π fits in naturally.

Definition 15. Let N ∈ N and Λ ∈ PN . Set N(Λ) := N − |Λ|.

(i) If Λ = ∅, we define πΛ = πΛ,N : DN → DN(Λ) to be the identity map.
(ii) If Λ = PN 6= ∅, we define πΛ = πΛ,N : DN → DN(Λ) by

πΛ(w, a, θ) := w − Tr(a, a−1[−C]), (w, a, θ) ∈ DN .

(iii) If Λ is a non-empty proper subset of PN , we define πΛ = πΛ,N : DN → DN(Λ)

by

πΛ(w, a, θ) :=
(
w − Tr(a,Λ ∩ a−1[−C]) , âΛ , θ̂Λ

)
, (w, a, θ) ∈ DN .

Here, for every v ∈ CN , we write v̂Λ ∈ CN(Λ) for the composition vϕ :
PN(Λ) → C, where ϕ is the unique strictly increasing bijection between PN(Λ)

and PN r Λ.

We remark that π corresponds to πPN in this setting. However, we will usually
keep on writing π in place of πPN for the sake of simplicity.

Lemma 16. Let N ∈ N and Λ ∈ PN .

(i) If {(Wn, An,Θn)}n∈N is a sequence in DN converging to (w, a, θ) ∈ DN , then

lim
n→∞

πΛ(Wn, An,Θn) = πΛ(w, a, θ).
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(ii) The set DN is path-connected and contains T +
N . Furthermore, if N ≥ 1, its

interior

D◦
N =

{
(w, a, θ) ∈ DN

∣∣ a−1[0] = ∅
}

(28)

can be decomposed into 2N simply-connected components D◦
N,Λ (Λ ∈ PN ),

where

D◦
N,Λ :=

{
(w, a, θ) ∈ D◦

N

∣∣ a−1[−C] = Λ
}
.

Proof. We assume that Λ is non-empty (so N ≥ 1) since otherwise both (i) and (ii)
follow trivially. We first prove (i). Since {An}n∈N converges to a and Re(aℓ) = 0
only if aℓ = 0 (ℓ ∈ PN ), we have

a−1[−C] = a−1[−C◦] = A−1
n [−C]r a−1[0] (for all big enough n).

Then, using (22), it follows that

Tr
(
An , Λ ∩ A−1

n [−C]
)
= Tr

(
An , Λ ∩ a−1[−C]

)
+Tr

(
An , Λ ∩ A−1

n [−C] ∩ a−1[0]
)

for all big enough n. Since Tr is continuous in the first variable (see Lemma 11 (i)),
the first term in the right-hand side of the last equation converges to Tr

(
a,Λ ∩

a−1[−C]
)
as n approaches infinity. On the other hand, we have

lim
n→∞

∣∣Tr
(
An , Λ ∩ A−1

n [−C] ∩ a−1[0]
)∣∣ ≤ lim

n→∞

∑

ℓ∈a−1[0]

|An,ℓ| = 0.

Hence Tr(An,Λ∩A−1
n [−C]) converges to Tr(a,Λ∩a−1[−C]) as n approaches infinity.

Then (i) follows directly from the definition of πΛ.
Now we prove (ii). Recall that (w, a, θ) ∈ T +

N only if Re(w) and Re(aℓ) are

positive for all ℓ ∈ PN . Then, for all (w, a, θ) ∈ T +
N , we have π(w, a, θ) = w ∈ C◦

and a ∈ [C◦]N since C◦ is nothing but the right half-plane. This proves T +
N ⊆ DN .

Let δ = (w, a, θ) be an arbitrary element in DN , and let δ0 = (w0, a0, θ0) be
the element with w0 = 1, a0ℓ = 0, and θ0ℓ = 1/2 for all ℓ ∈ PN . We claim that
there exists a path in DN connecting δ and δ0. Indeed, we construct such a path
by composing at most two line segments. First consider the one joining δ and
δ1 = (w1, a1, θ1), where w1 = 1, a1ℓ = 1a−1[0](ℓ), and θ1ℓ = 1/2 for all ℓ ∈ PN .
Here 1a−1[0] is the indicator function defined in (24). Then consider the line segment
joining δ1 and δ0. It can be easily shown that both lie entirely in DN proving thus
our claim. Since δ is arbitrary, this implies that DN is path-connected.

To prove (28), first note that
{
(w, a, θ) ∈ DN | a−1[0] = ∅

}
= π−1[C◦] ∩

(
C× [C r i · R]N × RN

)
,

where the set in the right-hand side is open since the restriction of π to DN is
continuous by virtue of (i). Then

{(w, a, θ) ∈ DN | a−1[0] = ∅} ⊆ D◦
N .

To prove the reverse inclusion, take δ = (w, a, θ) ∈ DN such that a−1[0] 6= ∅. Then
there exists ℓ ∈ PN such that aℓ = 0, and so any neighborhood of aℓ will contain
nonzero purely imaginary complex numbers. This implies that any neighborhood
of δ will contain elements lying outside DN . This proves (28).

To prove the last statement of (ii), note that we can easily write D◦
N as the

disjoint union of the D◦
N,Λ (Λ ∈ PN). Also, note that the map v 7→ v−1[−C] defines

a locally constant function from [Cr i ·R]N to PN , which implies that every D◦
N,Λ
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is open. Finally, we prove that each D◦
N,Λ is convex (and so simply-connected). Let

Λ ∈ PN and define

DN,Λ :=
{
(w, a, θ) ∈ DN

∣∣ a−1[−C] = Λ
}
.

For any pair of elements δ0 = (w0, a0, θ0) and δ1 = (w1, a1, θ1) of D◦
N,Λ, consider

δt := (1− t)δ0 + tδ1 for every t ∈ [0, 1]. Since both a0 and a1 belong to [Cr i ·R]N

and satisfy a−1
0 [−C] = a−1

1 [−C] = Λ, it readily follows that δt is contained in
DN,Λ for all t ∈ [0, 1]. On the other hand, the restriction of π to DN,Λ is given by
π(w, a, θ) = w−Tr(a,Λ), so π(δt) = (1−t)π(δ0)+tπ(δ1) for all t ∈ [0, 1]. Since both
π(δ0) and π(δ1) lie in the convex set C◦, we obtain that π(δt) ∈ C◦ for all t ∈ [0, 1].
This proves that the line segment joining δ0 and δ1 lies entirely in D◦

N,Λ. �

Proposition 17. Let N ∈ N and Λ ∈ PN . Set N(Λ) := N − |Λ|.

(i) For any λ ∈ PN(Λ), we have πλπΛ = πϕ(λ)∪Λ, where ϕ is the unique strictly
increasing bijection between PN(Λ) and PN r Λ.

(ii) The function πΛ is surjective, and its restriction to DN induces a continuous
surjective map πΛ : DN → DN(Λ) that sends {(w, a, θ) ∈ DN | a−1[0] = Λ}
onto D◦

N(Λ).

(iii) The function Re[π] : DN → R given by Re[π](w, a, θ) := Re(π(w, a, θ)) is
continuous and surjective.

Proof. To prove (i), we will make use of the identity

ϕ
(
(vϕ)−1[S]

)
= v−1[S]r Λ (v ∈ CN , S ⊆ C).(29)

We assume that Λ is a non-empty proper subset of PN and that λ is non-empty
since otherwise the equality πλπΛ = πϕ(λ)∪Λ holds trivially. Note that

Tr
(
a , Λ ∩ a−1[−C]

)
+Tr

(
aϕ , λ ∩ (aϕ)−1[−C]

)

= Tr
(
a , Λ ∩ a−1[−C]

)
+Tr

(
a , ϕ(λ) ∩ (a−1[−C]r Λ)

)
[Lemma 11 (iii) and (29)]

= Tr
(
a , (ϕ(λ) ∪ Λ) ∩ a−1[−C]

)
[by using (22) repeatedly]

for all (w, a, θ) ∈ DN . On the other hand, if λ 6= PN(Λ), let N(Λ, λ) := N−|Λ|−|λ|,
and let ϕ be the strictly increasing bijection from PN(Λ,λ) onto PN(Λ) r λ. Then it

verifies that ϕϕ is the strictly increasing bijection from PN(Λ,λ) onto PNr
(
ϕ(λ)∪Λ

)
.

Consequently, (i) follows from Definition 15.
Now we prove (ii). We assume that Λ is non-empty since otherwise the assertion

holds trivially. Note that this assumption implies N ≥ 1. We first show that both
πΛ and its restriction to DN are onto.

Suppose that Λ = PN . For each w ∈ D0, take the element (w, a, θ) ∈ DN such
that aℓ = 0 and θℓ = 1/2 for all ℓ ∈ PN . Then π(w, a, θ) = w by (11). Finally, in
view of (26) and (27), we have that (w, a, θ) ∈ DN if and only if w ∈ D0.

Suppose that Λ 6= PN . For each v ∈ CN(Λ) and each α ∈ C, we define vΛ[α] to
be the unique element in CN such that

• the coordinates of vΛ[α] indexed by elements of Λ are all equal to α, and
• the projection of vΛ[α] onto the coordinates indexed by elements of PN rΛ
is v.

Now, for each (w, a, θ) ∈ DN(Λ), take the element (w, aΛ[0], θΛ[1/2]) ∈ DN . It
follows that πΛ(w, aΛ[0], θΛ[1/2]) = (w, a, θ). Then, from (i) and (26), we get that
(w, aΛ[0], θΛ[1/2]) ∈ DN if and only if (w, a, θ) ∈ DN(Λ).
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It is clear that Lemma 16 (i) implies that πΛ : DN → DN(Λ) is continuous. The
last statement in (ii) is a consequence of the description of D◦

N(Λ) given in (28) and

the definition of πΛ.
Finally, to prove (iii), first note that Re[π] is onto since it is the composition of

two surjective functions. To prove continuity, let {(Wn, An,Θn)}n∈N be a sequence
in DN converging to (w, a, θ) ∈ DN . Then we have

a−1[−C◦] = A−1
n [−C]r a−1[i · R] (for all big enough n).

Thus (22) implies that

Tr
(
An , A

−1
n [−C]

)
= Tr

(
An , a

−1[−C◦]
)
+Tr

(
An , A

−1
n [−C] ∩ a−1[i · R]

)

for all big enough n. Since Tr is continuous in the first variable, the first term in
the right-hand side of the last equation converges to Tr(a, a−1[−C◦]) as n → +∞.
For the second term we have

lim
n→∞

∣∣∣Re
(
Tr

(
An , A

−1
n [−C] ∩ a−1[i · R]

))∣∣∣ ≤ lim
n→∞

∑

ℓ∈a−1[i·R]

∣∣Re(An,ℓ)
∣∣ = 0.

Hence

lim
n→∞

Re
(
Tr

(
An , A

−1
n [−C]

))
= Re

(
Tr

(
a, a−1[−C◦]

))
= Re

(
Tr

(
a, a−1[−C]

))
,

and so Re[π](Wn, An,Θn) converges to Re[π](w, a, θ) as n → +∞, which proves
continuity. �

3.2. The integral representation of L. Now we establish the integral represen-
tation of LN . First, in order to treat the case N = 0, we set

F0(u,w) := e−uw (u,w ∈ C).

Then an elementary computation shows that

w−s =
1

Γ(s)(e(s)− 1)

∫

C(ǫ)

F0(u,w)u
s−1du (w ∈ D0, s ∈ C)

for every small enough ǫ > 0, where the complex power w−s is defined using the
principal branch of the logarithm. Consequently we define

L0 : C×D0 → C, L0(s, w) := w−s,

which is clearly a holomorphic function on C×D0.

Proposition 18. Let N be a positive integer. The function LN : (CrPN )×DN →
C,

LN (s, w, a, θ) :=
1

Γ(s)(e(s) − 1)

∫

C(ǫ(w,a,θ))

FN (u,w, a, θ)us−1du,

is well-defined and independent of the choice of ǫ ∈ E. Furthermore, it satisfies the
following properties.

(i) For any (w, a, θ) ∈ DN , the map s 7→ LN (s, w, a, θ) defines a meromorphic
function on C having at most simple poles at PN .

(ii) For any (s, w, a, θ) ∈ (Cr PN )× T +
N , we have LN (s, w, a, θ) = ζN (s, w, a, θ).

(iii) For any (s, w, a, θ) ∈ (Cr PN )×DN , we have

LN (s, w, a, θ) = LN(a−1[0])

(
s, πa−1[0](w, a, θ)

)
·

∏

ℓ∈a−1[0]

(
1− e(θℓ)

)−1
.
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Proof. Take ǫ ∈ E and (w, a, θ) ∈ DN . We claim that the integral

IN (s, w, a, θ) :=

∫

C(ǫ(w,a,θ))

FN (u,w, a, θ)us−1du (s ∈ C)(30)

defines a holomorphic function of s on C independent of the choice of ǫ in E .
Indeed, conditions a ∈ [C r i · R∗]N (see (26)) and a−1[0] ⊆ θ−1[R r Z] (see
(9)), together with Definition 4, imply that FN (u,w, a, θ) is a regular function of
u on C(ǫ(w, a, θ)). Condition π(w, a, θ) ∈ C◦ implies that the absolute value of
FN (u,w, a, θ) decays exponentially as u goes to +∞ along the real line. Hence
IN (s, w, a, θ) is a holomorphic function of s on C. To prove that it is independent
of the choice of ǫ in E , first note that u = 0 is the only possible singularity of
FN (u,w, a, θ) having absolute value ≤ ǫ′(w, a, θ), for all ǫ′ ∈ E . Then we can use
Cauchy’s integral formula to finish the proof of our claim.

The above paragraph says that the singularities of s 7→ LN (s, w, a, θ) come from
the factor Γ(s)−1(e(s)−1)−1. Since the residue theorem implies that IN (k, w, a, θ) =
0 for every integer k ≥ N + 1, we have that those singularities are at most simple
poles lying in PN . This proves (i).

Assertion (ii) follows from (6) and Lemma 16 (ii), while (iii) follows readily from
the definitions of FN (see (5)) and LN . �

3.3. Transformation formula. In this subsection we prove that DN is invariant
under TNRN -transformations, and we provide the corresponding transformation
formula for LN . In addition, even though the group C∗ does not act on DN , as
it is clear from definition (26), we derive a transformation formula for LN under
C∗-transformations from assuming certain conditions.

Proposition 19. Let N be a positive integer.

(i) The group TNRN acts on both DN and D◦
N by homeomorphisms. Further-

more, TΛD◦
N,∅ = TΛT

+
N = D◦

N,Λ for all Λ ∈ PN ; in other words, T +
N is a

fundamental domain for the TN -action on D◦
N .

(ii) Let Λ ∈ PN and σ ∈ SN . Set g = TΛRσ, and let Jg(θ) = Jg(s, θ) be the
element defined in (18). Then

LN
(
s, g(w, a, θ)

)
= Jg(θ)LN (s, w, a, θ)

for all s ∈ Cr PN and all (w, a, θ) ∈ DN .
(iii) For each θ ∈ RN and each Λ ∈ PN , the map (s, w, a) 7→ LN (s, w, a, θ) defines

a holomorphic function on (C r PN )× p(D◦
N,Λ), with p as described in (3).

Proof. We first prove (i). In view of Lemmas 13 and 14, it verifies that πTΛRσ(δ) =
π(δ) ∈ C◦ for all Λ ∈ PN , σ ∈ SN , and δ ∈ DN . On the other hand, we have that
both [C r i · R∗]N and [C r i · R]N are invariant under the right action of the
matrices r(σ) and d(Λ) (Λ ∈ PN , σ ∈ SN ). Then the fact that TNRN acts on both
DN and D◦

N follows immediately from (26) and (28). The last assertion in (i) is a
consequence of Lemma 16 (ii). Indeed, the latter implies that the TΛ permute the
connected components of D◦

N .
(ii) is a consequence of Proposition 18, Lemma 13, and Lemma 14. Finally, to

prove (iii), first note that (i), (ii), and Proposition 18 (ii) imply that

LN (s, w, a, θ) = JTΛ
(θ)−1ζN (s, TΛ(w, a, θ))

(
s ∈ C r PN , (w, a) ∈ p(D◦

N,Λ)
)
.
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Hence the map (s, w, a) 7→ LN (s, w, a, θ) defines a holomorphic function since
(s, w, a) 7→ (s, pTΛ(w, a, θ)) is a smooth change of variables and the map (s, w, a) 7→
ζN (s, w, a, θ′) defines a holomorphic function for any θ′ ∈ RN . �

An inspection of the denominator of the test function FN in (5) shows us that,
for any (w, a, θ) ∈ DN , the u-singularities of FN (u,w, a, θ) are poles located at

P(a, θ) :=
{
u ∈ C

∣∣∣u = uℓ(m) :=
2πi

aℓ
(m+ θℓ), ℓ ∈ a−1[C∗], m ∈ Z

}
.(31)

Thus, if we fix any ℓ ∈ a−1[C∗], they lie along the same straight line passing through
the origin as m varies.

For any nonzero angle ψ ∈ [−π, π], recall the set Pψ(a, θ) of all nonzero elements
u ∈ P(a, θ) such that either arg(u) ∈ [0, ψ) if ψ > 0, or arg(u) ∈ [ψ, 0) otherwise.
Also, we define

DN (ψ) := DN ∩ M−1
eiψ

[DN ] ∩
⋂

0<sgn(ψ)·t<|ψ|

(πMeit)
−1[C].(32)

Thus, for example, DN (0) = DN .

Proposition 20. Let N be a positive integer, and let α ∈ C∗. Take ψ ∈ [−π, π] such
that ψ ∈ arg(α) + 2πZ, and write α−s = e−s(log |α|+iψ). Then, for all s ∈ C r PN
and all (w, a, θ) ∈ DN (ψ), we have

LN
(
s,Mα(w, a, θ)

)
= α−s

[
LN (s, w, a, θ) + ρψN (s, w, a, θ)/Γ(s)

]
,(33)

where ρψN (s, w, a, θ) is the s-analytic continuation of the function

ρψN (s, w, a, θ) := sgn(−ψ)2πi lim
R→∞

∑

u0∈Pψ(a,θ)
|u0|<R

Resu=u0

(
FN (u,w, a, θ)us−1

)
(34)

holomorphic for Re(s) < 1. Here we use the principal branch of the logarithm to
define us−1.

Proof. It is easy to see that we can divide the proof into two stages by writing α
in polar coordinates. Hence, we will first assume that α is a positive real number,
and then we will assume that it is a complex number of norm 1.

Suppose that α is a positive real number, so ψ = 0. Then, in view of Lemma 12,
we obtain

LN
(
s,Mα(w, a, θ)

)
= α−sLN (s, w, a, θ) (α ∈ R+)

by using the change of variable αu = u′ directly in the definition of LN (see Propo-
sition 18). This proves the proposition in the first case.

Suppose that α lies in the unit circle and α 6= 1, so α = eiψ with ψ 6= 0.
Also, suppose that Re(s) < 1. For any R > 0, let C(R,ψ) be the counterclockwise
oriented circular arc having endpoints at R and Reiψ. Recall the integral IN defined
in (30), which satisfies

IN (s, w, a, θ) = Γ(s)(e(s) − 1)LN (s, w, a, θ) and

IN (s,Meiψ(w, a, θ)) = Γ(s)(e(s)− 1)LN (s,Meiψ(w, a, θ))(35)

since both (w, a, θ) and Meiψ(w, a, θ) belong to DN . Take any ǫ ∈ E , and write
ǫ′ = (ǫMeiψ)(w, a, θ) for simplicity. In view of Lemma 12, we can use ǫ′ to compute
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both integrals in (35). Then, using Lemma 12 again, an elementary computation
shows that

IN (s,Meiψ(w, a, θ)) − e−iψsIN (s, w, a, θ)

= e−iψs(1− e(−s))
( ∫ ∞eiψ

ǫ′eiψ
−

∫ ∞

ǫ′
−

∫

C(ǫ′,ψ)

)
FN (u,w, a, θ)us−1du

if ψ < 0, where the argument of u is considered to lie in the interval (0, 2π] to define
us−1. By the same token, we have

IN (s,Meiψ(w, a, θ)) − e−iψsIN (s, w, a, θ)

= e−iψs(1− e(s))
( ∫ ∞

ǫ′
−

∫ ∞eiψ

ǫ′eiψ
−

∫

C(ǫ′,ψ)

)
FN (u,w, a, θ)us−1du

if ψ > 0, where now the argument of u is considered to lie in [0, 2π). We remark
that no poles of FN (u,w, a, θ) lie on the integration contours since (w, a, θ) ∈ D(ψ).

Now our objective is to use the residue theorem in order to compute the right-
hand sides of the last two equations. Take an increasing sequence {Rn}n∈N of
positive real numbers approaching to +∞ such that all circles of radius Rn (n ∈ N)
centered at the origin are away from the u-singularities of FN (u,w, a, θ) (see (31)).
We claim that

lim
n→∞

∫

C(Rn,ψ)

FN (u,w, a, θ)us−1du = 0,

where the argument of u in us−1 is considered to lie either in (0, 2π] if ψ < 0, or
in [0, 2π) otherwise. Indeed, there exists a positive real number K = K(ψ,w, a, θ),
not depending neither on t nor on n, such that

|FN (Rne
it, w, a, θ)| ≤ K · e−Rn·fw,a(t), fw,a(t) := Re

(
(πMeit)(w, a, θ)

)
,

for all t ∈ R with 0 ≤ sgn(ψ) · t ≤ |ψ|. Suppose that ψ < 0. Hence the zeroes of
Re(eitaℓ) give us a subdivision

ψ = t0 < t1 < · · · < td−1 < td = 0

of [ψ, 0] such that

e−it(πMeit)(w, a, θ) = w − Tr
(
a, (eita)−1[−C]

)

is constant and non-zero on each (ti−1, ti] as a function of t. This implies that
f ′′
w,a(t) = −fw,a(t) on each (ti−1, ti). Therefore, in view of (32), we conclude
that fw,a(t) is concave on each (ti−1, ti), and that it can only vanish at the ti
(1 ≤ i ≤ d− 1). As a consequence, we can construct a polygonal chain in the plane
lying below the graph of fw,a : [ψ, 0] → R in order to estimate the integral in the
right hand side of

∣∣∣
∫

C(Rn,ψ)

FN (u,w, a, θ)us−1du
∣∣∣ ≤ K ·Rsn ·

∫ 0

ψ

e−Rn·fw,a(t)e−Im(s)·tdt.

In fact, this integral turns out to be O(R−1
n ) as n → +∞. Then our claim follows

by taking the limit as n→ +∞. Similarly, we obtain the same result when ψ > 0.
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The residue theorem implies that

IN (s,Meiψ(w, a, θ)) − e−iψsIN (s, w, a, θ)

= e−iψs(e(s)− 1)sgn(−ψ)2πi lim
R→∞

∑

u0∈Pψ(a,θ)
|u0|<R

Resu=u0

(
FN (u,w, a, θ)us−1

)

for Re(s) < 1, where the argument of u in us−1 is considered to lie in (−π, π]. From
the proof of Proposition 18 (i), we know that the left-hand side of this equation
is actually an entire function of s having zeroes at the integers greater than N ,
and now we have proved that it also has zeroes at the non-positive integers. Then

ρψN(s, w, a, θ), as defined in (34), is holomorphic for Re(s) < 1, and it can be
analytically continued to CrPN . Finally, dividing the last equation by Γ(s)(e(s)−
1), and using (35), the transformation formula (33) holds for all s ∈ C r PN . �

Before addressing Proposition 3, we describe a handy subset of the domain

D̃C
∗

N =
⋂

α∈C∗

(πMα)
−1[C]

given in (16). In fact, we define

D̃C
∗

N,Pol :=
{
(w, a, θ) ∈ DN

∣∣w = x · a, x ∈ [0, 1]N r {0, 1}N
}
.(36)

It can be easily seen that D̃C
∗

N,Pol ⊆ D̃C
∗

N by using the convexity of C. Indeed, for

any α ∈ C∗ and any (x · a, a, θ) ∈ D̃C
∗

N,Pol, we have

(πMα)(x · a, a, θ) =
∑

ℓ∈(αa)−1[C]

xℓ(αaℓ)−
∑

ℓ∈(αa)−1[−C]

(1− xℓ)(αaℓ) ∈ C

since x /∈ {0, 1}N , i. e. x is not a vertex of the hypercube [0, 1]N .

Proof of Proposition 3. Let Λ ∈ PN , σ ∈ SN , and α ∈ C∗. Set g := TΛRσMα

and A := r(σ)d(Λ). We have to find the solutions (w, a, θ) ∈ DN of the equation
g(w, a, θ) = (w, a, θ), so we must solve

(w, a, θ) =
(
αw − αTr(a, σ−1[Λ]) , αaA , θA

)
.(37)

It can be verified that a = αaA and θ = θA if and only if

aℓ = α(−1)1Λ(ℓ)aσ−1(ℓ) and θℓ = (−1)1Λ(ℓ)θσ−1(ℓ) (∀ℓ ∈ PN ),(38)

where 1Λ denotes the usual indicator function (see (24)). If (38) holds, an ele-
mentary computation shows that Tr(αa, σ−1[Λ]) = −Tr(a,Λ) and Tr(θ, σ−1[Λ]) =
−Tr(θ,Λ).

Suppose that α = 1. Then it readily follows that (37) holds if and only if
Tr(a,Λ) = 0 and a, θ ∈ E1[A]. This proves the first statement in (i). To prove
the last one, suppose that (37) holds. Then Proposition 19 (ii) implies (1 −
Jg(cθ))LN (s, w, a, cθ) = 0 for all s ∈ C r PN and all c ∈ R close enough to 1.
Therefore Jg(cθ) = 1, and so

e
(
cTr(θ,Λ)

)
= (−1)|Λ|,

for all c ∈ R close enough to 1. But this is possible only if |Λ| is even and Tr(θ,Λ) =
0.
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Suppose that α 6= 1. If (38) holds, then

(α− 1)

2
Tr(a, PN )

=
1

2

[
αTr(a, PN )− Tr(a, PN )

]

=
α

2

[
Tr(a, PN ) + Tr(a, σ−1[Λ])− Tr(a, σ−1[PN r Λ])

]
[by (38)]

=
α

2

[
Tr(a, PN ) + Tr(a, σ−1[Λ])− Tr(a, PN ) + Tr(a, σ−1[Λ])

]
[by (22)]

= αTr(a, σ−1[Λ]).

Hence (37) holds if and only if w = Tr(a, PN )/2, a ∈ Eα−1 [A], and θ ∈ E1[A], and

we have inclusions D
g
N ⊆ D̃C

∗

N,Pol ⊆ D̃C
∗

N (see (36)). Finally, the last statement in

(ii) amounts to say that any eigenvalue of A is a root of unity, which is clear. �

4. The function L

In this final section we prove Theorems 5 and 6. Then Corollaries 7 and 8 follow
by elementary arguments of complex analysis.

4.1. On Theorem 5. We start by addressing the extension of LN (N ≥ 1) to

the domain (C r PN ) × D̃N , where D̃N = π−1[C] as defined in (12). In fact,
since every element δ ∈ DN satisfies π(δ) ∈ C◦ by definition (see (26)), we have

DN ⊆ D̃N . To get the desired extension, we first prove that every element in D̃N
can be approximated by elements in DN .

Lemma 21. Let N be a positive integer, and let (w, a, θ) ∈ D̃N . There exists
ω0 < 0 such that

ω0 ≤ ω < 0 =⇒ Meiω(w, a, θ) ∈ DN (∀ω ∈ R).

Proof. Note that π(w, a, θ) ∈ C. We choose ω0 < 0 such that

eiωπ(w, a, θ) ∈ C◦ and eiωa ∈ [C r i · R∗]N
(
∀ω ∈ [ω0, 0)

)
.

Consequently we have

a−1[−C] = (eiωa)−1[−C◦] = (eiωa)−1[−C]
(
∀ω ∈ [ω0, 0)

)
,

and so (πMeiω )(w, a, θ) = eiωπ(w, a, θ) lies in C◦ for all ω ∈ [ω0, 0). In view of (26),
this ends the proof. �

Proof of Theorem 5. Recall the function LN : (Cr PN )× D̃N → C defined in (17)
by

LN (s, w, a, θ) := lim
ω→0
ω<0

LN,ǫ
(
s,Meiω(w, a, θ)

)
.

In view of Proposition 18 and Lemma 21, we know that the right-hand side of the
last equation is actually independent of the choice of ǫ ∈ E . Therefore the next step
is to show that the limit exists.

Let (w, a, θ) ∈ D̃N . Lemma 21 implies that Meiω(w, a, θ) ∈ DN for all negative
ω close enough to 0 (abbr. for all ω → 0−). Since (eiωa)−1[0] = a−1[0], Propo-
sition 18 (iii) allows us to assume a−1[0] = ∅. Consequently, Proposition 19 (i)
implies the existence of Λ ∈ PN such that (TΛMeiω)(w, a, θ) ∈ T +

N for all ω → 0−.
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Then, in view of Proposition 19 (ii), Proposition 18 (ii), and the holomorphicity of
ζN on (C r PN )× p(T ext

N ) (see (7)), we have

lim
ω→0
ω<0

LN
(
s,Meiω(w, a, θ)

)
= (−1)|Λ|e

(
− Tr(θ,Λ)

)
lim
ω→0
ω<0

ζN
(
s, (TΛMeiω)(w, a, θ)

)

= (−1)|Λ|e
(
− Tr(θ,Λ)

)
ζN

(
s, TΛ(w, a, θ)

)
(39)

for all s ∈ C r PN . This proves that the limit exists and also proves (i). (ii)
was already established in Proposition 19 (iii), while (iii) follows from (39) and
Proposition 18 (ii). �

4.2. On Theorem 6. We first use Lemma 21 to show that the transformation
formula for LN under the TNRN -action on DN can be extended to D̃N . In fact,
Lemmas 13 and 14 state that the group TNRN is contained in Aut(DN )π∩C(MN ).

Then TNRN acts on D̃N and

LN
(
s, (TΛRσ)(w, a, θ)

)
= lim

ω→0
ω<0

LN
(
s, (MeiωTΛRσ)(w, a, θ)

)

= lim
ω→0
ω<0

LN
(
s, (TΛRσMeiω)(w, a, θ)

)
= JTΛRσ(θ) lim

ω→0
ω<0

LN
(
s,Meiω(w, a, θ)

)

= JTΛRσ (θ)LN (s, w, a, θ)(40)

for all s ∈ C r PN , (w, a, θ) ∈ D̃N , Λ ∈ PN , and σ ∈ SN .

The fact that TNRN also acts on D̃C
∗

N is an immediate consequence of the inclu-

sion TNRN ⊆ Aut(DN )π ∩C(MN ), while the MN -action on D̃C
∗

N is guaranteed by

definition. Hence (40) also holds if we replace D̃N by D̃C
∗

N . However, proving that
we can transfer the transformation formula for LN under MN -transformations is
more subtle. In fact, we would like to use Proposition 20 together with Lemma 21
as before, but then we must still take care of the set

DN (ψ) = DN ∩ M−1
eiψ

[DN ] ∩
⋂

0<sgn(ψ)·t<|ψ|

(πMeit)
−1[C] (ψ ∈ [−π, π])

given in (32). To this end we define, for each nonzero angle ψ ∈ [−π, π], the set

D̃N (ψ) :=
⋂

0≤sgn(ψ)·t≤|ψ|

(πMeit)
−1[C] and D̃N (0) := D̃N .(41)

Lemma 22. Let N be a positive integer, let ψ ∈ [−π, π], and let (w, a, θ) ∈ D̃N (ψ).
There exists ω0 < 0 such that

ω0 ≤ ω < 0 =⇒ Meiω(w, a, θ) ∈ DN (ψ) (∀ω ∈ R).

Proof. Using Lemma 21, we choose ω0 < 0 such that both Meiω(w, a, θ) and
MeiψMeiω(w, a, θ) lie in DN for all ω ∈ R with ω0 ≤ ω < 0. In particular, we
have that Meiω(w, a, θ) and MeiψMeiω(w, a, θ) lie in π−1[C◦] for all such ω (see
(26)). Since Re[π] is continuous (see Proposition 17 (iii)), the above implies that
Meiω(w, a, θ) and MeiψMeiω(w, a, θ) lie in π−1[C] for all ω ∈ R with ω0 ≤ ω ≤ 0.

Suppose that ψ > 0, and let ω be a real number such that ω0 ≤ ω < 0. The
above paragraph shows that Meiω(w, a, θ) ∈ (πMeit)

−1[C] for all t ∈ [0,−ω]. For

t ∈ (−ω, ψ] we obtain the same result by using the inclusion (w, a, θ) ∈ D̃N (ψ).
Suppose that ψ < 0, and let ω be as above. In the first paragraph we proved

that Meiω(w, a, θ) ∈ (πMeit)
−1[C] for all t ∈ [ψ, ψ−ω]. For t ∈ (ψ−ω, 0] we obtain
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the same result by using again the inclusion (w, a, θ) ∈ D̃N (ψ). The case ψ = 0 is
Lemma 21. �

Proof of Theorem 6. Let s ∈ CrPN , (w, a, θ) ∈ D̃C
∗

N , and α ∈ C∗. Set ψ := arg(α).
The convexity of C implies that the set (πMβ)

−1[C] (β ∈ C∗) depends only on the
argument of β. Then, from (41), we see that

D̃C
∗

N :=
⋂

α∈C∗

(πMα)
−1[C] =

⋂

η∈(−π,π]

D̃N (η).

Hence by Lemma 22 we know thatMeiω(w, a, θ) ∈ DN (ψ) for all ω < 0 close enough
to 0. Therefore, invoking Proposition 20 and taking the limit as ω → 0−, we obtain

lim
ω→0
ω<0

ρψN
(
s,Meiω(w, a, θ)

)
= Γ(s)

[
αsLN

(
s,Mα(w, a, θ)

)
− LN (s, w, a, θ)

]
,(42)

where αs := es(log |α|+iψ).
Suppose that Re(s) < 1. As it can be seen in (31), the u-poles of the function

FN (u,Meiω(w, a, θ))u
s−1 are actually the u-poles of FN (u,w, a, θ)us−1 times e−iω.

Then an elementary computation shows that the respective residues differ by a
factor of e−iωs for all ω → 0−. On the other hand, since Meiω(w, a, θ) ∈ DN (ψ)
for all ω → 0−, we have Pψ(eiωa, θ) = Pψ(a, θ) for all such ω. Taking the limit as
ω → 0− in equation (34), we see that

lim
ω→0
ω<0

ρψN
(
s,Meiω(w, a, θ)

)
= ρψN (s, w, a, θ),(43)

where ρψN (s, w, a, θ) is the function in Theorem 6. Hence, we obtain (19) by com-
bining (40), (42), and (43).

Now we prove the cocycle property of J . Let k ∈ Z, δ = (w, a, θ) ∈ D̃C
∗

N , and
gj = TΛjRσjMαj ∈ GN for j = 1, 2. Set

Jgj (δ) := Jgj (k, θ) = (−1)|Λj|e
(
Tr(θ, σ−1

j [Λj])
)
α−k
j (j = 1, 2).

We must show that Jg1g2(δ) = Jg1(g2(δ)) ·Jg2(δ). First, using (22) and (23), we get

Tr
(
θ, (σ1σ2)

−1[Λ1 ⊕ σ1(Λ2)]
)

= Tr
(
θ, (σ1σ2)

−1[Λ1]r σ−1
2 [Λ2]

)
− Tr

(
θ, (σ1σ2)

−1[Λ1] ∩ σ
−1
2 [Λ2]

)
+Tr

(
θ, σ−1

2 [Λ2]
)
.

Then the right-hand side of the last equation equals

Tr
(
θd(σ−1

2 [Λ2]), (σ1σ2)
−1[Λ1]

)
+Tr

(
θ, σ−1

2 [Λ2]
)
,

since d(σ−1
2 [Λ2]) acts on θ by changing the signs of the coordinates indexed by

σ−1
2 [Λ2]. Hence (25) implies

Tr
(
θ, (σ1σ2)

−1[Λ1 ⊕ σ1(Λ2)]
)
= Tr

(
θr(σ2)d(Λ2), σ

−1
1 [Λ1]

)
+Tr

(
θ, σ−1

2 [Λ2]
)
.(44)

Therefore, Proposition 2 and (44) show that

Jg1g2(δ) = (−1)|Λ1|α−k
1 (−1)|Λ2|α−k

2 e
(
Tr

(
θ, (σ1σ2)

−1[Λ1 ⊕ σ1(Λ2)]
))

= (−1)|Λ1|α−k
1 (−1)|Λ2|α−k

2 e
(
Tr

(
θr(σ2)d(Λ2), σ

−1
1 [Λ1]

))
e
(
Tr

(
θ, σ−1

2 [Λ2]
))

= Jg1(g2(δ)) · Jg2(δ).
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Finally, in order to prove (20), we first note that (19) implies

LN
(
s, gh(δ)

)
= Jgh(s, δ)

[
LN (s, δ) + ρ

ψgh
N (s, δ)/Γ(s)

]
,

LN
(
s, gh(δ)

)
= Jg

(
s, h(δ)

)[
Jh(s, δ)

[
LN (s, δ) + ρψhN (s, δ)/Γ(s)

]
+ ρ

ψg
N

(
s, h(δ)

)
/Γ(s)

]
,

for all s ∈ C r PN . Combining these two equations, we obtain
[
1−

Jg
(
s, h(δ)

)
Jh(s, δ)

Jgh(s, δ)

]
Γ(s)LN (s, δ)

=
Jg

(
s, h(δ)

)
Jh(s, δ)

Jgh(s, δ)
ρψhN (s, δ) +

Jg
(
s, h(δ)

)

Jgh(s, δ)
ρ
ψg
N

(
s, h(δ)

)
− ρ

ψgh
N (s, δ)

(45)

for all s ∈ CrPN . Note that the function in the left-hand side of the above equation
is entire in the variable s. Let k be an integer which is not a pole of any of the ρN
appearing in (45). Then, taking the limit as s→ k, the desired result follows from
elementary computations. �

Summary of domains

Since one of the main points of this article is to extend domains, we supply a
summary of the most relevant ones for further reference.

The domain containing all the others is

DN :=
{
(w, a, θ) ∈ C× CN × RN

∣∣ a−1[0] ⊆ θ−1[Rr Z]
}
,

which gives a natural set of parameters for the test function FN to be defined.
The domain

T +
N =

{
(w, a, θ) ∈ DN

∣∣ Re(w) > 0, Re(aℓ) > 0, 1 ≤ ℓ ≤ N
}

provides a set of parameters for the absolute convergence of the series defining ζN .
If we extend ζN by means of its series representation, we arrive at

T ext
N =

⋃

ω∈(−π/2,π/2)

T +
N (ω),

T +
N (ω) =

{
(w, a, θ) ∈ DN | (eiωw, eiωa, θ) ∈ T +

N

} (
−
π

2
< ω <

π

2

)
.

If we extend ζN by using its integral representation, we obtain

DN =
{
(w, a, θ) ∈ DN

∣∣ π(w, a, θ) ∈ C◦ and a ∈ [Cr i · R∗]N
}
,

where π and C are defined in (11) and (8) respectively. Then we add some limit
points to get

D̃N =
{
(w, a, θ) ∈ DN |π(w, a, θ) ∈ C

}
.

Finally, we take the subset

D̃C
∗

N =
⋂

α∈C∗

(πMα)
−1[C]

of D̃N stable under the action of C∗ (see (15)).
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