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Abstract

Completely replicable functions play an important role in number theory and
finite group theory, in particular the Monstrous Moonshine. In this paper, we give
a characterization of completely replicable functions by certain symmetries.
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1 Introduction

Conway and Norton ([CN]) introduced the replication formula for the modular invari-
ant J(q) = q−1 + 196884 q + 21493760 q2 + · · · together with the conjectural head char-
acters of the monster in the formulation of Monstrous Moonshine conjecture. Later
Norton ([N]) introduced the notion of replicability and complete replicability for a for-
mal Laurent series f (q) = q−1 + ∑∞

m=1 Hm qm. Completely replicable functions play
an important role in the proof of the Monstrous Moonshine conjecture by Borcherds
([Bo]).

Norton ([N]) stated that a (partly) completely replicable function satisfies certain
symmetries, which we generalize and call multiplicative symmetries (see Remark 2.5).
In this paper, we prove that these symmetries already characterize completely replica-
ble functions.
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We recall the definition of the bivarial transform {Hm,n}m,n≥1 of a formal Laurent
series f = q−1 + ∑m=1 Hmqm (Hm ∈ C) given by

− log
(

f (q)− f (r)
q−1 − r−1

)
= ∑

m,n≥1
Hm,nqmrn.

We say that f is replicable if the equality Hm,n = Hm′,n′ holds for (m, n), (m′, n′) ∈
(Z>0)

2 satisfying mn = m′n′ and gcd(m, n) = gcd(m′, n′). For s ≥ 1, we set H(s)
m :=

s ∑j|s µ(j)Hj−1s,jsm, where µ stands for the Möbius function. We define the s-th replicate

f (s) of f by f (s)(q) = q−1 + ∑m≥1 H(s)
m qm. We say that f is completely replicable if f (s) is

replicable for any s ≥ 1 and the equality
(

f (s)
)(t)

= f (st) holds for any s, t ≥ 1.
We say that f satisfies multiplicative symmetries if

∏
ad=N

0≤b<d

(
f (as)(q)− f (as)

(
ζb

dra/d
))

is symmetric or anti-symmetric in q and r for any s, N ≥ 1. Here ζd := exp(2πi/d).
The main result of the paper says that f is completely replicable if and only if f

satisfies multiplicative symmetries.
The paper is organized as follows. In Section 2, we recall the definitions of repli-

cability, completely replicability and multiplicative symmetries. In Section 3, we state
and prove the main result of the paper. In Section 4, we make some comments.

2 Complete replicability and multiplicative symmetries

Throughout this section, we let

f (q) = q−1 +
∞

∑
m=1

Hm qm (2.1)

be a formal Laurent series in q with coefficients in C.

2.1 Bivarial transforms

Set

F( f ; q, r) := − log
f (q)− f (r)
q−1 − r−1 (2.2)

= − log

(
1 − qr

∞

∑
m=1

Hm
qm − rm

q − r

)
,
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where q and r are indeterminates. We expand F( f ; q, r) into a formal power series in q
and r:

F( f ; q, r) =
∞

∑
m,n=1

Hm,n qmrn (2.3)

and call the sequence {Hm,n}m,n≥1 the bivarial transform of f or {Hm}m≥1 ([N]).

2.2 Replicates

For s ∈ Z>0, we define the s-th replicate f (s) of f by

f (s)(q) := q−1 +
∞

∑
m=1

H(s)
m qm, (2.4)

where
H(s)

m := s ∑
j|s

µ(j)Hj−1s, jsm. (2.5)

Note that f (1) = f since H(1)
m = H1,m = Hm.

2.3 Faber polynomials

For m ∈ Z>0, there exists a unique polynomial Pf ,m(X) in X such that Pf ,m( f (q)) ∈
q−m + q C[[q]] ([Fa]). For example, we have

Pf ,1(X) = X, Pf ,2(X) = X2 − 2H1, Pf ,3(X) = X3 − 3H1X − 3H2.

We call Pf ,m(X) the m-th Faber polynomial attached to f . The following result is easily
checked (see [Schi] for example).

Lemma 2.1. We have

log (q ( f (q)− X)) = −
∞

∑
m=1

1
m

Pf ,m(X)qm (2.6)

and

Pf ,m( f (q)) = q−m + m
∞

∑
n=1

Hm,n qn. (2.7)

2.4 Replicable functions

We say that f (q) is replicable if the equality Hm,n = Hm′,n′ holds for any (m, n), (m′, n′) ∈
(Z>0)

2 satisfying mn = m′n′ and gcd(m, n) = gcd(m′, n′) ([N]; see also [Cu, Ma]). It is
known that

f (q) is replicable ⇐⇒ Pf ,N( f (q)) = ∑
ad=N

0≤b<d

f (a)
(

ζb
d qa/d

)
for any N ∈ Z≥0 (2.8)
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(for example see [ACMS]).

Remark 2.2. Let f (q) = q−1 + ∑M
m=1 Hmqm be a finite Laurent series. Cummins and

Norton ([CN]) showed that f (q) is replicable if and only if f (q) = q−1 + H1q (namely
Hm = 0 for m ≥ 2). In this case, we have f (s)(q) = q−1 + Hs

1 q.

2.5 Completely replicable functions

We say that f (q) is completely replicable if the s-th replicate f (s) of f is replicable for any

s ≥ 1 and the equality
(

f (s)
)(t)

= f (st) holds for any s, t ≥ 1 (see [N] and [K2]). The
monstrous moonshine functions are completely replicable ([Bo]). For the definition of
completely replicable functions, we also refer to [Ca], Section 5, Note.

Remark 2.3. In view of Remark 2.2, f (q) = q−1 + H1q is completely replicable.

2.6 Multiplicative symmetries

We say that f satisfies multiplicative symmetries if the equality

∏
ad=N

0≤b<d

(
f (as)(q)− f (as)(ζb

dra/d)
)
= ϵN ∏

ad=N
0≤b<d

(
f (as)(ζb

dqa/d)− f (as)(r)
)

(2.9)

holds for any s, N ≥ 1 with ϵN ∈ C×. It is easily seen that ϵN = ∏d|N ζ
d(d−1)/2
d =

(−1)∑d|N(d−1) if (2.9) holds.

Remark 2.4. If (2.9) holds for any s ≥ 1 and N = p, p any prime, then f satisfies
multiplicative symmetries.

Remark 2.5. The multiplicative symmetries was first introduced by Norton in [N].
He stated (without proof) that, for a prime p ,

(
f (p)(qp)− f (p)(r)

) p−1

∏
b=0

(
f (ζb

pq1/p)− f (r)
)

is symmetric in q and r if f and f (p) are replicable.

3 The main result

3.1 The main theorem

We now state the main result of the paper.
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Theorem 3.1. Let f (q) = q−1 + ∑∞
m=1 Hm qm (Hm ∈ C). Then f is completely replicable

if and only if f satisfies multiplicative symmetries (2.9) with ϵN = (−1)∑d|N(d−1).

From now on, f (s)(q) = q−1 + ∑∞
m=1 H(s)

m qm denotes the s-th replicate of f (q), and{
H(s)

m,n

}
m,n≥1

the bivarial transform of f (s).

3.2 Preparations

Let X1, X2, . . . be indeterminates. We define a family {Gm(X1, . . . , Xm)}∞
m=1 of polyno-

mials in X1, X2, . . . by

log

(
1 +

∞

∑
m=1

Xmqm

)
=

∞

∑
m=1

Gm(X1, . . . , Xm)qm. (3.1)

The following result is a direct consequence of (2.6) and (3.1).

Lemma 3.2. We have

Pf ,m(X) = −mGm (−X, H1, . . . , Hm−1) .

For d ∈ Z>0, we set

Rd(t; X1, X2, . . .) =
d−1

∏
b=0

(
1 +

∞

∑
m=1

ζbm
d Xmtm

)
. (3.2)

Later we need the following elementary fact.

Lemma 3.3. We have

Rd (t; X1, X2, . . .) ∈ 1 + dGd(X1, . . . , Xd)td + t2dC[[t]][X1, X2, . . .].

Proof. In view of (3.1), we have

Rd(t; X1, X2, . . .) = exp

(
d−1

∑
b=0

∞

∑
m=1

Gm(X1, . . . , Xm)ζ
bm
d tm

)

= exp

(
d

∞

∑
m=1

Gdm(X1, . . . , Xdm)tdm

)
,

which implies the assertion of the lemma.

Proposition 3.4. The following three conditions are equivalent:

(1) f is completely replicable.
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(2) The equality

∑
ad=N

0≤b<d

f (as)
(

ζb
d qa/d

)
= −N GN

(
− f (s)(q), H(s)

1 , . . . , H(s)
N−1

)
(3.3)

holds for any s, N ≥ 1.

(3) We have H(s)
m,n = ∑

t| gcd(m,n)
t−1 H(st)

t−2mn for any s ≥ 1 and any (m, n) ∈ (Z>0)
2.

Proof. This fact is elementary. We present its proof for completeness.
In view of (2.8) and Lemma 3.2, (1) implies (2).
Next suppose that (2) holds. The left-hand side of (3.3) equals

q−N + N
∞

∑
m=1

∑
a| gcd(m,N)

a−1H(as)
a−2mN qm.

On the other hand, the right-hand side of (3.3) equals

PN, f (s)( f (s)(q)) = q−N + N
∞

∑
m=1

H(s)
N,m qm

by Lemma 3.2 and (2.7). It follows that

H(s)
N,m = ∑

a| gcd(m,N)

a−1H(as)
a−2mN (N, m ≥ 1),

which implies (3).
Finally suppose that (3) holds. We then have

mn = m′n′ and gcd(m, n) = gcd(m′, n′) =⇒ H(s)
m,n = H(s)

m′,n′ ,

which implies that f (s)(q) is replicable for any s ≥ 1. Furthermore we have

t ∑
j|t

µ(j)H(s)
j−1t,jtm = t ∑

j|t
µ(j) ∑

k|j−1t

k−1 H(ks)
k−2t2m

= t ∑
k|t

k−1 H(ks)
k−2t2m ∑

j|k−1t

µ(j)

= H(st)
m ,

which implies
(

f (s)
)(t)

= f (st). We thus have proved that f (q) is completely replicable.
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3.3 The proof of the “if”-part of Theorem 3.1

Suppose that f satisfies multiplicative symmetries. Denote by σ(N) the sum of the
positive divisors of N. By Lemma 3.3, we have

ϵN qσ(N) ∏
ad=N

0≤b<d

(
f (as)(ζb

d qa/d)− f (as)(r)
)

= ∏
ad=N

0≤b<d

(
1 − ζb

d qa/d f (as)(r) +
∞

∑
m=2

H(as)
m−1ζbm

d qam/d

)

= ∏
ad=N

Rd

(
qa/d;− f (as)(r), H(as)

1 , H(as)
2 , . . . ,

)
= ∏

ad=N

{
1 + dGd

(
− f (as)(r), H(as)

1 , . . . , H(as)
d−1

)
qa + O(q2a)

}
= 1 + N GN

(
− f (s)(r), H(s)

1 , . . . , H(s)
N−1

)
q + O(q2).

On the other hand, we have

qσ(N) ∏
ad=N

0≤b<d

(
f (as)(q)− f (as)(ζb

d ra/d)
)

= ∏
ad=N

0≤b<d

(
1 − f (as)(ζb

d ra/d)q + O(q2)
)

= 1 − ∑
ad=N

0≤b<d

f (as)(ζb
d ra/d)q + O(q2).

Comparing the coefficients of q, we obtain

∑
ad=N

0≤b<d

f (as)(ζb
d ra/d) = −NGN

(
− f (s)(r), H(s)

1 , . . . , H(s)
N−1

)
,

which implies that f is completely replicable by Proposition 3.4.

Remark 3.5. A similar argument shows that, if f satisfies (2.9) for s = 1 and any
N ≥ 1, then f is replicable. The converse is not necessarily true (see Section 4).

3.4 The proof of the “only if”-part of Theorem 3.1

Suppose that f is completely replicable. By Proposition 3.4, we have

H(s)
m,n = ∑

t| gcd(m,n)
t−1 H(st)

t−2mn (s ≥ 1, (m, n) ∈ (Z>0)
2). (3.4)
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For s, N ≥ 1, we set

A(s)
N (q, r) = log

 ∏
ad=N

0≤b<d

f (as)(ζb
dqa/d)− f (as)(r)

(ζb
dqa/d)−1 − r−1

 .

Since

∏
ad=N

0≤b<d

(
(ζb

dqa/d)−1 − r−1
)
= ϵN ∏

ad=N

(
q−a − r−d

)
,

it is sufficient to show the symmetry of A(s)
N (q, r) in q and r for any s, N ≥ 1. For

s, N, m, n ≥ 1, set
H(s)

N (m, n) := ∑
k| gcd(m,N)

k−1H(ks)
mN/k2, n. (3.5)

We have

A(s)
N (q, r) = − ∑

ad=N
0≤b<d

F
(

f (as); ζb
d qa/d, r

)

= − ∑
ad=N

0≤b<d

∞

∑
m, n=1

H(as)
m, n(ζ

b
d qa/d)m rn

= − ∑
ad=N

d
∞

∑
m, n=1

H(as)
dm, nqam rn

= − N
∞

∑
m, n=1

 ∑
a| gcd(m,N)

a−1H(as)
mN/a2, n

 qm rn

= − N
∞

∑
m, n=1

H(s)
N (m, n)qm rn.

It now remains to show the symmetry of H(s)
N (m, n) in m and n, which follows from

the next two lemmas.

Lemma 3.6. We have

H(s)
N (m, n) = ∑

(k, l)∈XN(m,n)
(kl)−1 H(kls)

(kl)−2mnN . (3.6)

Here
XN(m, n) :=

{
(k, l) ∈ (Z>0)

2 | k| gcd(m, N), l| gcd
(

mN
k2 , n

)}
. (3.7)

Proof. This follows from (3.4).
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Lemma 3.7. For (k, l) ∈ XN(m, n), we let

φ(k, l) :=
(

gcd (l, N/k) ,
kl

gcd (l, N/k)

)
.

Then φ defines a bijection from XN(m, n) to XN(n, m).

Proof. Let (k, l) ∈ XN(m, n) and set (κ, λ) := φ(k, l). We first show that (κ, λ) ∈
XN(n, m). Since κ|l and l|n, we have κ|n and hence κ| gcd(n, N). It follows from kl|ml,
kl|(mN/k) and λ = kl/κ that κλ divides gcd(ml, mN/k) = mκ and hence λ|m. Since
nN
κ2λ

=
k−1N

κ

n
l
∈ Z, we have λ| gcd(nN/κ2, m). Thus (κ, λ) ∈ XN(n, m) and hence φ

defines a mapping from XN(m, n) to XN(n, m). It is straightforward to see that

ψ(κ, λ) :=
(

gcd (λ, N/κ) ,
κλ

gcd (λ, N/κ)

)
((κ, λ) ∈ X(n, m))

is a mapping from XN(n, m) to XN(m, n) and that ψ ◦ φ (respectively φ ◦ ψ) is the
identity map on XN(m, n) (respectively XN(n, m)). This completes the proof of the
lemma.

4 Comments

1. We give an example of a replicable function which does not satisfy multiplicative
symmetries and hence is not completely replicable (this example is given in [N]).

Let J(q) = q−1 + ∑∞
m=1 Hmqm (H1 = 196884, H2 = 21493760, . . .) be the modular

invariant and let g(q) = −J(−q) = q−1 + ∑∞
m=1 Gmqm (Gm = (−1)m+1Hm). Denote

by {Hm,n} (respectively {Gm,n}) the bivarial transform of J (respectively g). Since
Gm,n = (−1)m+nHm,n and J is replicable, g is also replicable. We have g(2)(q) =

q−1 + ∑∞
m=1 G(2)

m qm with G(2)
m = 2H4m + 2H2m+1 + ∑2m−1

j=1 HjH2m−j. A numerical com-
putation shows that (2.9) does not hold for f = g, s = 1 and N = 2. It follows that g is
not completely replicable. This also shows that replicability for f does not necessarily
imply multiplicative symmetries for s = 1:

∏
ad=N

0≤b<d

(
f (a)(q)− f (a)(ζb

dra/d)
)
= ϵN ∏

ad=N
0≤b<d

(
f (a)(ζb

dqa/d)− f (a)(r)
)

.

2. In [K1, K2], Kozlov studied the relation between complete replicability and modular
equations. Cummins and Gannon, using the theory of modular equations, showed that
a completely replicable function (satisfying some additional conditions) is a Haupt-
modul or a function of the form q−1 + ζq for ζ either zero or a twenty-fourth root of
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unity ([CG], Section 8). It would be interesting to study relations between multiplica-
tive symmetries and modular equations. We note that the modular equations for J(q)
are characterized by one single multiplicative symmetry ([HKM]).

3. Carnahan ([Ca]) related replicability and complete replicability to Hecke-monicity. It
would be also interesting to relate multiplicative symmetries to Hecke-monicity.
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