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Abstract

We present a high-performance solver for dense skew-symmetric matrix eigenvalue problems. Our work is motivated by appli-

cations in computational quantum physics, where one solution approach to solve the so-called Bethe-Salpeter equation involves

the solution of a large, dense, skew-symmetric eigenvalue problem. The computed eigenpairs can be used to compute the optical

absorption spectrum of molecules and crystalline systems. One state-of-the art high-performance solver package for symmetric ma-

trices is the ELPA (Eigenvalue SoLvers for Petascale Applications) library. We exploit a link between tridiagonal skew-symmetric

and symmetric matrices in order to extend the methods available in ELPA to skew-symmetric matrices. This way, the presented

solution method can benefit from the optimizations available in ELPA that make it a well-established, efficient and scalable li-

brary. The solution strategy is to reduce a matrix to tridiagonal form, solve the tridiagonal eigenvalue problem and perform a

back-transformation for eigenvectors of interest. ELPA employs a one-step or a two-step approach for the tridiagonalization of

symmetric matrices. We adapt these to suit the skew-symmetric case. The two-step approach is generally faster as memory locality

is exploited better. If all eigenvectors are required, the performance improvement is compensated by the additional back transfor-

mation step. We exploit the symmetry in the spectrum of skew-symmetric matrices, such that only half of the eigenpairs need to be

computed, making the two-step approach the favorable method. We compare performance and scalability of our method to the only

available high-performance approach for skew-symmetric matrices, an indirect route involving complex arithmetic. In total, we

achieve a performance that is up to 3.67 higher than the reference method using Intel’s ScaLAPACK implementation. Our method

is freely available in the current release of the ELPA library.

Keywords: Distributed memory, Skew-symmetry, Eigenvalue and eigenvector computations, GPU acceleration, Bethe-Salpeter,

Many-body perturbation theory

1. Introduction

A matrix A ∈ Rn×n is called skew-symmetric when A =
−AT, where .T denotes the transposition of a matrix. We are

interested in eigenvalues and eigenvectors of A.

The symmetric eigenvalue problem, i.e. the case A = AT,

has been studied in depth for many years. It lies at the core of

many applications in different areas such as electronic structure

computations. Many methods for its solution have been pro-

posed [1] and successfully implemented. Optimized libraries

for many platforms are widely available [2][3]. With the rise of

more advanced computer architectures and more powerful su-

percomputers, the solution of increasingly complex problems

comes within reach. Parallelizability and scalability become

key issues in algorithm development. The ELPA library [4]

is one endeavor to tackle these challenges and provides highly

competitive direct solvers for symmetric (and Hermitian) eigen-
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value problems running on distributed memory machines such

as compute clusters.

The skew-symmetric case [5] lacks the ubiquitous presence

of its symmetric counterpart and has not received the same ex-

tensive treatment. We close this gap by extending the ELPA

methodology to the skew-symmetric case.

Our motivation stems from the connection to the Hamilto-

nian eigenvalue problem which has many applications in con-

trol theory and model order reduction [6]. A real Hamiltonian

matrix H is connected to a symmetric matrix M via the matrix

J =

[
0 I

−I 0

]

, where I denotes the identity matrix,

M = JH.

If M is positive definite, the Hamiltonian eigenvalue problem

can be recast into a skew-symmetric eigenvalue problem using

the Cholesky factorization M = LLT. The eigenvalues of H are

given as eigenvalues of the skew-symmetric matrix LTJL and

eigenvectors can be transformed accordingly.

This situation occurs for example in [7], where a structure-

preserving method for the solution of the Bethe-Salpeter eigen-

value problem is described. Solving the Bethe-Salpeter eigen-
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value problem allows a prediction of optical properties in con-

densed matter, a more accurate approach than currently used

ones, such as time-dependent density functional theory (TDDFT)

[8]. In this application context, the condition M > 0 ultimately

follows from much weaker physical interactions represented in

the off-diagonal values [9, 10]. When larger systems are of

interest, the resulting matrices easily become very high-dimen-

sional. This calls for a parallelizable and scalable algorithm.

The solution of the corresponding skew-symmetric eigenvalue

problem can be accelerated via the developments presented in

this paper.

The remaining paper is structured as follows. Section 2

reintroduces the methods used by ELPA and points out the nec-

essary adaptations to make them work for skew-symmetric ma-

trices. The Bethe-Salpeter problem is presented in Section 3.

Section 4 provides performance results of the ELPA extension,

including GPU acceleration, and points out the speedup achieved

in the context of the Bethe-Salpeter eigenvalue problem.

2. Solution Method

2.1. Solving the Symmetric Eigenvalue Problem in ELPA

The ELPA library [4, 11, 12] is a highly optimized parallel

MPI-based code [13]. It shows great scalability over thousands

of CPU cores and contains low-level optimizations targeting

specific compute architectures [14]. When only a portion of

eigenvalues and eigenvectors are needed, this is exploited algo-

rithmically and results in performance benefits. We briefly de-

scribe the well-established procedure employed by ELPA. This

forms the basis of the method for skew-symmetric matrices de-

scribed in the next subsection.

ELPA contains functionality to deal with symmetric-definite

generalized eigenvalue problems. In this paper, we focus on the

standard eigenvalue problem for simplicity. This is reasonable

as it is the most common use case and forms the basis of any

method for generalized problems. We only consider real skew-

symmetric problems. The reason is that any skew-symmetric

problem can be transformed into a Hermitian eigenvalue prob-

lem by multiplying it with the imaginary unit i. This problem

can be solved using the available ELPA functionality for com-

plex matrices. For the real case this induces complex arithmetic

which should obviously be avoided, but for complex matrices

this is a viable approach.

We consider the symmetric eigenvalue problem, i.e. the or-

thogonal diagonalization of a matrix,

QTAQ = Λ,

where A=AT∈Rn×n is the matrix whose eigenvalues are sought.

We are looking for the orthogonal eigenvector matrix Q and the

diagonal matrix Λ containing the eigenvalues. The solution is

carried out in the following steps.

1. Reduce A to tridiagonal form, i.e. find an orthogonal

transformation Qtrd s.t.

Atrd = QT

trdAQtrd

is tridiagonal. This is done by accumulating Householder

transformations

Qtrd = Q1Q2 · · ·Qn−1,

where Qi = I−τiviv
T
i represents the i-th Householder trans-

formation that reduces the i-th column and row of the

updated QT

i−1 · · ·QT

1AQ1 · · ·Qi−1 to tridiagonal form. The

matrices Qi are not formed explicitly but are represented

by the Householder vectors vi. These are stored in place

of the eliminated columns of A.

2. Solve the tridiagonal eigenvalue problem, i.e. find or-

thogonal Qdiag s.t.

Λ = QT

diagAtrdQdiag.

In ELPA, this step employs a tridiagonal divide-and-con-

quer scheme.

3. Transform the required eigenvectors back, i.e. perform

the computation

Q = QtrdQdiag.

The ELPA solver comes in two flavors which define the

details of the transformation steps, i.e Steps 1 and 3. ELPA1

works as described, the reduction to tridiagonal form is per-

formed in one step. ELPA2 splits the transformations into two

parts. Step 1 becomes

1. (a) Reduce A to banded form, i.e. compute orthogonal

Qband s.t.

Aband = QT

bandAQband

is a band matrix.

(b) Reduce the banded form to tridiagonal form, i.e.

compute orthogonal Qtrd s.t.

Atrd = QT

trdAbandQtrd

is tridiagonal.

Accordingly, the back transformation step is split into two parts

3. (a) Perform the back transformation corresponding to

the band-to-tridiagonal reduction

Q̃ = QtrdQdiag.

(b) Perform the back transformation corresponding to

the full-to-band reduction

Q = QbandQ̃.

The benefit of the two-step approach is that more efficient

BLAS-3 procedures can be used in the tridiagonalization pro-

cess and an overlap of communication and computation is pos-

sible. As a result, a lower runtime can generally be observed

in the tridiagonalization, compared to the one-step approach.

This comes at the cost of more operations in the eigenvector
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back transformation due to the extra step that has to be per-

formed. Therefore, ELPA2 is superior to ELPA1 in particular

when only a portion of the eigenvectors is sought. In the context

of skew-symmetric eigenvalue problems, this becomes pivotal

as the purely imaginary eigenvalues come in pairs ±λ i, λ ∈ R.

The eigenvectors are given as the complex conjugates of each

other. It is therefore enough to compute half of the eigenvalues

and eigenvectors.

Both approaches are extended to skew-symmetric matrices

in this work.

2.2. Solving the Skew-symmetric Eigenvalue Problem

Like a symmetric matrix, a skew-symmetric matrix can be

reduced to tridiagonal form using Householder transformations.

A Householder transformation represents a reflection onto a

scaled first unit vector e1. Let H be a transformation that acts

on a vector v s.t. Hv = αe1. Obviously −v is transformed to

H(−v) =−αe1 by the same H. Therefore all tridiagonalization

methods that work on symmetric matrices, such as the ones im-

plemented in ELPA, can in principle work on skew-symmetric

matrices as well.

A skew-symmetric tridiagonal matrix is related to a sym-

metric one via the following observation [5].

Lemma 1. With the unitary matrix D = diag{1, i, i2, . . . , in−1},
where i denotes the imaginary unit, α j ∈ R, it holds

−iDH







0 α1

−α1 0
.
.
.

.
.
.

.
.
. αn−1

−αn−1 0







D =







0 α1

α1 0
.
.
.

.
.
.

.
.
. αn−1

αn−1 0






. (1)

After the reduction to tridiagonal form, the symmetric tridiag-

onal system is solved using a divide-and-conquer method [11].

As a first step of the back transformation, the resulting (real)

eigenvectors have to be multiplied by the (complex) matrix D.

Then the back transformations corresponding to the tridiagona-

lization take place. Algorithm 1 outlines the process. It is iden-

tical to the method employed for symmetric eigenvalue prob-

lems with the addition of step 3.

In ELPA2 the transformation steps (1 and 4 in Algorithm 1)

are both split into two parts as described in Section 2.1.

2.3. Implementation

Extending ELPA for skew-symmetric matrices means adding

the back transformation step involving D. In contrast to sym-

metric matrices, skew-symmetric matrices have complex eigen-

vectors and strictly imaginary eigenvalues. Computationally

complex values are introduced in Algorithm 1 with D in step

3. Further transformations have to be performed for the real

and the imaginary part individually. It is preferable to set up

an array with complex data type entries representing the eigen-

vectors as late as possible, so that we can benefit from efficient

routines in double precision. The routines for the eigenvector

back transformation corresponding to tridiagonalization do not

change, because all they do is to apply Householder transfor-

mations to non-symmetric (and non-skew-symmetric) matrices.

Algorithm 1 Solution of a Skew-symmetric Eigenvalue Prob-

lem

Input: A =−AT ∈ Rn×n

Output: Unitary eigenvectors Q ∈ Cn×n, λ1, . . . ,λn ∈ R s.t

QHAQ = diag{λ1i, . . . ,λni}.
1: Reduce A to tridiagonal form, i.e. generate Qtrd s.t.

QT

trdAQtrd = Atrd =







0 α1

−α1 0
.
.
.

.
.
.

.
.
. αn−1

−αn−1 0






.

2: Solve the eigenvalue problem for the symmetric tridiago-

nal matrix −iDHAtrdD, where D = diag{1, i, i2, . . . , in}, i.e.

generate Qdiag s.t.

QT

diag







0 α1

α1 0
.
.
.

.
.
.

.
.
. αn−1

αn−1 0







Qdiag =






λ1

λ2

.
.
.

λn




.

3: Back transformation corresponding to symmetrization, i.e.

compute

Q←DQdiag ∈C
n×n

.

4: Back transformation corresponding to band-to-tridiagonal

reduction, i.e. compute

Q← QtrdQ.

The symmetric tridiagonal eigensolver can be used as is. Ma-

king it aware of the zeros on the diagonal might turn out to be

numerically or computationally beneficial.

We now examine the implementation of the two tridiago-

nalization approaches in ELPA1 and ELPA2 in more detail. At

many points in the original implementation, symmetry of the

matrix is assumed in order to avoid unnecessary computations

and to efficiently reuse data available in the cache. In this sec-

tion we recollect some details of the tridiagonal reduction in

order to point out these instances. Here, the implicit assump-

tions can be changed from “symmetric” to “skew-symmetric”

by simple sign changes.

ELPA is based on the well established and well documented

2D block-cyclic data layout introduced by ScaLAPACK for load

balancing reasons. It is therefore compatible to ScaLAPACK

and can act as a drop-in replacement while no ScaLAPACK

routines are used by ELPA itself. In general, each process

works on the part of the matrix that was assigned to it. This

chunk of data resides in the local memory of the process. Com-

munication between processes is realized via MPI. Each pro-

cess calls serial BLAS routines. Additional CUDA and OpenMP

support is available.
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2.3.1. Tridiagonalization in ELPA1

In ELPA1, the tridiagonalization is realized in one step us-

ing Householder transformations. The computation of the House-

holder vectors is not affected by the symmetry of a matrix. Es-

sentially, the tridiagonalization of a matrix comes down to a

series of rank-2 updates [15], described in the following. Given

a Householder vector v, the update of the trailing submatrix is

performed as

A← (I− τvvT)A(I− τvvT) (2)

= A+ v(0.5τ
2vTAvvT− τvTA)

︸                        ︷︷                        ︸

uT
1

+(0.5τ
2vvTAv− τAv)

︸                     ︷︷                     ︸

u2

vT (3)

= A+ vuT

1+ u2vT (4)

= A+
[
v u2

][
u1 v

]T
. (5)

For symmetric matrices it holds u1 = u2. This is assumed in

the original ELPA implementation. For skew-symmetric matri-

ces it holds u1 =−u2. In ELPA1, the two matrices
[
v u2

]
and

[
u1 v

]T
are stored explicitly. Actual updates are performed

using GEMM and GEMV routines. The matrices differ in the data

layout, i.e. which process owns which part of the matrix. After

the vector u1 is computed, it is transposed and redistributed to

represent u2 in
[
v u2

]
. Here, for the skew-symmetric variant,

a sign change is introduced. The skew-symmetric update now

reads

A← A+
[
v −u1

][
u1 v

]T
. (6)

During the computation of u1, symmetry is assumed in the

computation of ATv. In particular, the code assumes that an off-

diagonal matrix tile is the same as in the transposed matrix. An-

other sign change corrects this assumption for skew-symmetric

matrices.

2.3.2. Tridiagonalization in ELPA2

In ELPA2, the tridiagonalization is split into two parts. First,

the matrix is reduced to banded form, then to tridiagonal form.

For the reduction to banded form, the Householder vectors are

computed by the process column owning the diagonal block.

They are accumulated in a triangular matrix T ∈Rnb×nb, where

nb is the block size. The product of Householder matrices is

stored via its storage-efficient representation [16]

Q = H1 · · ·Hnb = I−VTVT
, (7)

where V =
[
v1 · · · vnb

]
contains the Householder vectors.

Hi = I− τiviv
T
i is the Householder matrix corresponding to the

i-th Householder transformation.

In this context, the update of the matrix A takes the follow-

ing shape, analogous to the direct tridiagonalization described

in Section 2.3.1.

A← (I−VTVT)TA(I−VTVT) (8)

= A+V (0.5TTVTAVTVT−TTVTA)
︸                                 ︷︷                                 ︸

UT
1

+(0.5VTTVTAVT −AVT )
︸                            ︷︷                            ︸

U2

VT (9)

= A+
[
V U2

][
U1 V

]T
. (10)

It holds U1 =U2 if A is symmetric, and U1 =−U2 if A is skew-

symmetric. Each process computes the relevant parts of U1 in

a series of (serial) matrix operations and updates the portion

of A that resides in its memory. Here, the symmetry of A is

assumed and exploited at various points in the implementation.

Sign changes have to be applied at these instances.

For the banded-to-tridiagonal reduction, the matrix is redis-

tributed in form of a 1D block cyclic data layout. Each process

owns a diagonal and a subdiagonal block. The reduction of

a particular column introduces fill-in in the neighboring block.

The “bulge-chasing” is realized as a pipelining algorithm where

computation and communication can be overlapped by reorder-

ing certain operations [11, 17].

The update of the diagonal blocks takes the same form as in

ELPA1 (Equations (2) to (5)). Here, no matrix multiplication is

employed but BLAS-2 routines are used working directly with

the Householder vectors. It holds u1 = u2 for symmetric A and

u1 = −u2 for skew-symmetric A. In the symmetric case, the

update is realized via a symmetric rank-2 update (SYR2). We

implemented a skew-symmetric variant of this routine which

realizes the skew-symmetric rank-2 update A← A− vuT+ uvT.

For the setup of u, a skew-symmetric variant of the BLAS rou-

tine performing a symmetric matrix vector product (SYMV) is

necessary.

The other parts of Algorithm 1 are adopted from the sym-

metric implementation without changes. The computation of

Householder vectors, the accumulation of the Householder trans-

formations in a triangular matrix and the update of the local

block during reduction to banded form do not have to be changed

compared to symmetric ELPA. This is because they act on the

lower part of the matrix so that possible (skew-)symmetry has

no effect.

3. The Bethe-Salpeter Eigenvalue Problem

Ab initio spectroscopy aims to describe the excitations in

condensed matter from first principles, i.e. without the input

of any empirical parameters. For light absorption and scatter-

ing, the Bethe-Salpeter Equation (BSE) approach is the state-

of-the-art methodology for both crystalline systems[18, 19, 20,

21, 22, 23, 24, 25, 26, 8, 27] as well as condensed molecular

systems [28, 29, 30, 31, 32, 33, 34, 35]. This approach takes

its name from the Bethe-Salpeter Equation [36], the equation

of motion of the electron-hole correlation function, as derived

from many-body perturbation theory [26, 8]. In practice, the
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problem of solving the BSE is mapped to an effective eigen-

value problem. Specifically, its eigenvalues and -states are em-

ployed to construct dielectric properties, such as the spectral

density, absorption spectrum, and the loss function [7, 27]. An

appropriate discretization scheme leads to a finite-dimensional

representation in matrix form HBS that shows a particular block

structure [25]:

HBS =

[
A B

−B̄ −Ā

]

=

[
A B

−BH −AT

]

, (11)

A = AH
, B = BT ∈ C

n×n
.

Here .H denotes the Hermitian transpose of a matrix, while .T

denotes the regular transpose without complex conjugation.

In general, we are interested in all eigenpairs of the Hamil-

tonian, as they contain valuable information on the excitations

of the system. Specifically, they describe the bound excitons,

localized electron-hole pairs that form due to correlation be-

tween excited electron and hole. The BSE eigenstates are used

to reconstruct the excitonic wavefunction and obtain the exci-

tonic binding energy.

In this paper, we present a solution strategy for the most

general formulation of the BSE problem. As such, A and B are

generally dense and complex-valued, which holds in the case of

excitations in condensed matter.

HBS belongs to the slightly more general class of J-sym-

metric matrices [37]. This class of matrices display a symmetry

(λ ,−λ ) in the spectrum. The additional structure in HBS leads

to an additional symmetry (λ ,−λ , λ̄ ,−λ̄) and a relation be-

tween the corresponding eigenvectors. Following [7], we con-

sider the definite Bethe-Salpeter eigenvalue problem. HBS is

called definite when the property
[

In 0

0 −In

]

HBS =

[
A B

B̄ Ā

]

> 0 (12)

is fulfilled, which often holds in practice. In this case, the eigen-

values are real and therefore come in pairs (λ ,−λ ).
We aim for a solution method that preserves this structure

under the influence of inevitable numerical errors, i.e. that guar-

antees that the eigenvalues come in pairs or quadruples, respec-

tively. General methods for eigenvalue problems, such as the

QR/QZ algorithm, destroy this property. In this case it is not

clear anymore which eigenpairs correspond to the same excita-

tion state.

A structure-preserving method running in parallel on dis-

tributed memory systems is developed in [7] and has been made

available as BSEPACK. It relies on assumption (12) and ex-

ploits a connection to a Hamiltonian eigenvalue problem given

in the following Theorem.

Theorem 2. Let Q = 1√
2

[
I −iI

I iI

]

, then Q is unitary and

QH

[
A B

−B̄ −Ā

]

Q = i

[
Im(A+B) −Re(A−B)
Re(A+B) Im(A−B)

]

=: iH,

where H is real Hamiltonian, i.e. JH = (JH)T with

J =

[
0 I

−I 0

]

.

Let

M = JH =

[
Re(A+B) Im(A−B)
− Im(A+B) Re(A−B)

]

(13)

be the symmetric matrix associated with the Hamiltonian ma-

trix H. Its positive definiteness follows from property (12). The

method described in [7] performs the following steps.

1. Construct M as in (13).

2. Compute a Cholesky factorization M = LLT.

3. Compute eigenpairs of the skew-symmetric matrix LTJL,

where J =

[
0 I

−I 0

]

.

4. Perform eigenvector back transformation associated with

Cholesky factorization and transformation to Hamilto-

nian form (Theorem 2).

The eigenvalues and eigenvectors can be used to compute

the optical absorption spectrum of the material in a postpro-

cessing step.

The main workload is given as the solution of a skew-sym-

metric eigenvalue problem (Step 3). As a proof of concept,

solution routines for the symmetric eigenvalue problem from

the ScaLAPACK reference implementation [3] were adapted to

the skew-symmetric setting. The matrix is reduced to tridiag-

onal form using Householder transformations. The tridiagonal

eigenvalue problem is solved via bisection and inverse iteration.

The ScaLAPACK reference implementation is not regarded

a state-of-the art solver library. When performance and scal-

ability are issues, one generally turns to professionally main-

tained and optimized libraries such as ELPA [4] or vendor-

specific implementations such as Intel’s MKL. Within BSE-

PACK, ScaLAPACK can be substituted by ELPA working on

skew-symmetric matrices. The resulting performance benefits

are discussed in Section 4.2.

4. Numerical Experiments

4.1. ELPA Benchmarks

In this section we present performance results for the skew-

symmetric ELPA extension. All test programs are run on the

mechthild compute cluster, located at the Max Planck Institute

for Dynamics of Complex Technical Systems in Magdeburg,

Germany. Up to 32 nodes are used, which consist of 2 Intel

Xeon Silver 4110 (Skylake) processors with 8 cores each, run-

ning at 2.1 GHz. The Intel compiler, MPI library and MKL

in the 2018 version are used in all test programs. The com-

putations use randomly generated skew-symmetric matrices in

double-precision.

Figure 1 shows the resulting performance and the scaling

properties of ELPA for a medium sized skew-symmetric ma-

trix (n = 20000). As an alternative to the approach described

in this work, the skew-symmetric matrix can be multiplied with

the imaginary unit i. The resulting complex Hermitian matrix

can be diagonalized using available methods in ELPA or In-

tel’s ScaLAPACK implementation shipped with the MKL. This

represents the only available approach to solve skew-symmetric
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16 32 64 128 256 512
1

10

100

1000

Number of cores

R
u

n
ti

m
e

in
s

Complex ELPA1, 100% Complex ELPA1, 50%

Complex ELPA2, 100% Complex ELPA2, 50%

Complex MKL 100% Complex MKL 50%

Skew-Symmetric

ELPA1, 100%

Skew-Symmetric

ELPA1, 50%

Skew-Symmetric

ELPA2, 100%

Skew-Symmetric

ELPA2, 50%

Figure 1: Scaling of the ELPA solver for skew-symmetric matrices. For com-

parison the runtimes for the alternative solution method via complex Hermitian

solvers is included. Here, ELPA and Intel’s MKL 2018 routines pzheevd and

pzheevr are used. The matrix has a size of n = 20000.

Table 1: Execution time speedups achieved by different aspects of the solution

approach.

#Cores Compl.
ELPA2

100% vs.
Compl.

MKL 100 %

Compl.
ELPA2 50%
vs. Compl.
MKL 50 %

Skew-Sym.
ELPA2 50%
vs. Compl.

ELPA2 50%

Skew-Sym.
ELPA2 50%
vs. Compl.
MKL 50%

16 1.10 1.41 2.33 3.28

32 1.29 1.41 2.30 3.24

64 1.11 1.40 2.32 3.25

128 1.18 1.33 2.20 2.93

256 1.17 1.28 2.16 2.76

512 1.21 1.51 1.87 2.82

eigenvalue problems in a massively parallel high-performance

setting.

For skew-symmetric matrices, only 50% of eigenvalues and

eigenvectors need to be computed, as they are purely imaginary

and come in pairs ±λ i,λ ∈ R. The runtime measurements for

100% are included for reference.

Figure 1 shows that all approaches display good scalability

in the examined setting. Skew-symmetric ELPA runs 2.76 to

3.28 times faster than the complex MKL based solver, where

both only compute 50 % of eigenpairs. The data gives fur-

ther insight into how this improvement is achieved. Table 1

compares the runtimes for different solvers and presents the

achieved speedups. When we compare complex 100% solvers,

ELPA already improves performance by a factor of 1.1 to 1.29

(column 2 in Table 1). When all eigenpairs are computed, EL-

PA1 and ELPA2 yield very similar runtime results which is why

only ELPA2 is considered in Table 1. The two-step approach
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Figure 2: Scaling of the tridiagonalization in two steps (ELPA2) and one step

(ELPA1). We compare it to the runtimes of the tridiagonalization routine for

skew-symmetric matrices PDSSTRD available in BSEPACK [7] for different

block sizes NB. The matrix size is n = 20000.

employed by ELPA2 pays off in particular when not all eigen-

pairs are sought, which is the case here. When complex 50%

solvers are compared (ELPA2 vs. MKL, column 3 in Table

1), the achieved speedup increases to a value between 1.28 and

1.51. The largest impact on the performance is caused by avoid-

ing complex arithmetic. This is represented by the speedup

achieved by the skew-symmetric 50 % ELPA2 implementation

compared to the complex 50% ELPA2 implementation (column

4 of Table 1). This accounts for an additional speedup of 1.87

to 2.33.

The tridiagonalization is an essential step in every consi-

dered solution scheme and contributes a significant portion of

the execution time. The fewer eigenpairs are sought, the more

dominant it becomes with respect to computation time. Figure 2

displays the runtimes and scalability of available tridiagonaliza-

tion techniques for skew-symmetric matrices. As an alternative

implementation to the presented approaches there is a tridiago-

nalization routine PDSSTRD shipped in BSEPACK [7]. It is an

adapted version of the ScaLAPACK reference implementation.

All discussed implementations are based on the 2D-block-

cyclic data distribution established by ScaLAPACK. Here the

matrix is divided into blocks of a certain size NB. The blocks

are distributed to processes organized in a 2D grid in a cyclic

manner. Typically, the block size is a parameter chosen once

in a software project. The data redistribution to data layouts

defined by other block sizes is avoided as this involves expen-

sive all-to-all communication. The main disadvantage of the

PDSSTRD routine is that it is very susceptible to the chosen

block size, both with regard to scalability and overall perfor-

mance. This makes it less suitable to be included in larger soft-

ware projects, where the block size is a parameter predefined

by other factors. ELPA (both the one and two-step version) on

the other hand does not have this problem and performs equally
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Figure 3: Runtimes for solving eigenvalue problems of larger sizes. 256 CPU

cores were used, i.e. 16 nodes on the mechthild compute cluster.

Table 2: Execution time speedups achieved by different aspects of the solution

approach.

Matrix

size

Compl.
ELPA2

100% vs.
Compl.

MKL 100 %

Compl.
ELPA2 50%
vs. Compl.
MKL 50 %

Skew-Sym.
ELPA2 50%
vs. Compl.

ELPA2 50%

Skew-Sym.
ELPA2 50%
vs. Compl.
MKL 50%

50 000 1.17 1.45 2.32 3.35

75 000 1.16 1.46 2.39 3.50

100 000 1.17 1.47 2.42 3.57

125 000 1.17 1.49 2.46 3.67

well for all data layouts [38].

Figure 2 also displays the advantage of the two-step tridiag-

onalization over the one-step approach. Here the performance

is dominated by the first step, i.e. the reduction to banded form.

In the context of electronic structure computations, the matri-

ces of interest can become extremely large. Figure 3 displays

the achieved runtime improvements for larger matrices up to a

size of n = 125000. The individual speedups are presented in

Table 2. For large matrices we achieve a speedup of up to 3.67

compared to the available MKL routine.

4.1.1. GPU Acceleration

For the 1-step tridiagonalization approach (ELPA1), there

is a GPU-accelerated version available that gets shipped with

the ELPA library [39]. The design approach is to stick with the

same code base as the CPU-only version, and offload compute-

intense parts, such as BLAS-3 operations, to the GPU in or-

der to benefit from its massive parallelism. This is done using

the CUBLAS library provided by NVIDIA. Because ELPA2

employs more fine-grained communication patterns, this ap-

proach works best for ELPA1. Here, the performance can ben-
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Figure 4: Runtimes for solving eigenvalue problems on one node on the

mechthild compute cluster employing a GPU.

efit when the computational intensity is high enough, i.e. when

big chunks of data are being worked on by the GPU.

Figure 4 shows the performance that can be achieved on one

node of the mechthild compute cluster, that is equipped with

an NVIDIA P100 GPU as an accelerator device. The GPU ver-

sion is based on ELPA1 and therefore does not benefit from the

faster tridiagonalization in ELPA2 (see Figure 2 and the dis-

cussion in the previous section). Despite this fact, the GPU-

accelerated ELPA1 version eventually outperforms the ELPA2

CPU-only version, if the matrix is large enough. In our case

the turning point is at around n = 15000. For smaller matrices

the additional work of setting up the CUDA environment and

transferring the matrix compensates any possible performance

benefits and results in a larger runtime. For matrices of size

n = 32768 employing the GPU can reduce the runtime from

570 seconds to 328 seconds, i.e. by 41%.

The take-away message of these results is the following. If

nodes equipped with GPUs are available and to be utilized, it is

important to make sure each node has enough data to work on.

This way, the available resources are used most efficiently.

4.2. Accelerating BSEPACK

We consider the performance improvements that can be a-

chieved by using the newly developed skew-symmetric eigen-

value solver in the BSEPACK [7] software, described in Sec-

tion 3. In this procedure, Step 3, the computation of eigenpairs

of the skew-symmetric matrix LTJL, is now performed by the

ELPA library.

To demonstrate the speedup, we consider the example of

hexagonal boron nitride at a fixed size of the BSE Hamiltonian.

The excitations in hexagonal boron nitride are widely studied

both experimentally and theoretically [40, 41, 42, 43, 44, 45,

46], as its wide band gap and the layered geometrical structure

yields strong effects of electron-hole correlation, such as the

formation of bound excitons. Previous studies have shown that

the BSE approach yields the optical absorption and excitonic

7
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Figure 5: Scaling of the direct, complex BSEPACK eigenvalue solver for com-

puting the optical absorption spectrum of hexagonal boron nitride. The Bethe-

Salpeter matrix (11) has a size of 51200.

properties with high accuracy. In our calculations, the BSE

Hamiltonian is constructed on a 16× 16× 4 k-grid in the 1st

Brillouin zone, the 5 highest valence and 5 lowest conduction

bands are employed to construct the transition space, leading to

a matrix size of 2×16×16×4×5×5= 51200. In the calcula-

tion of the BSE Hamiltonian, single-particle wavefunctions and

the static dielectric function is expanded in plane waves with a

cut-off of 387 eV and 132 eV, respectively. The static dielec-

tric function are obtained from ABINIT [47], while the BSE

Hamiltonian is constructed using the EXC code [48].

Figure 5 displays the achieved runtimes of BSEPACK for

this fixed-size matrix for different core counts. We compare the

original version and a version that employs ELPA. The perfor-

mance of the original solver is highly dependent on the chosen

block size (see also Figure 2). This parameter determines how

the matrix is distributed to the available processes in form of a

2D block-cyclic data layout. The default is given as NB = 64,

but choosing a larger block size can increase the performance

dramatically, as can be seen in Figure 5 for NB = 256. Typ-

ically, software packages (e.g. [49, 27]) developed for elec-

tronic structure computations are large and contain many fea-

tures, implementing methods for different quantities of interest.

The block size is typically predetermined by other considera-

tions. It would mean a serious effort to change it, in order to

optimize just one building block of the software. Furthermore

the optimal block size of the original BSEPACK is probably de-

pendent on the given hardware and the given matrix size. Auto-

tuning frameworks could help, but are also very costly and im-

pose an additional implementation effort. A software, that does

not show this kind of runtime dependency is greatly preferable.

Employing ELPA for the main computational task in BSEP-

ACK fulfills this requirement. The performance of ELPA is

independent of the chosen NB, because the block size on the

node level for optimal cache use is decoupled from the block

size defining the multi-node data layout.

The ELPA-accelerated version is up to 9.22 times as fast

as the original code with the default block size. Even when

the block size is increased, using the new solver always yields

a better performance. In the case of NB = 256, the ELPA-

version still performs up to 2.76 times as fast. Choosing even

larger block sizes has in general no further positive effect on the

performance of the original BSEPACK. Employing ELPA also

leads to an improved scalability over the number of cores.

5. Conclusions

We have presented a strategy to extend existing solver li-

braries for symmetric eigenvalue problems to the skew-sym-

metric case. Applying these ideas to the ELPA library, makes

it possible to compute eigenvalues and eigenvectors of large

skew-symmetric matrices in parallel with a high level of ef-

ficiency and scalability. We benefit from the maturity of the

ELPA software project, where many optimizations have been

realized over the years. All of these, including GPU support,

find their way into the presented skew-symmetric solver. As far

as we know, no other solvers dedicated to the skew-symmetric

eigenvalue problem exist in a HPC setting. It is always possible

to solve a complex Hermitian eigenvalue problem instead of a

skew-symmetric one. Our newly developed solver outperforms

this strategy, implemented via Intel MKL Scalapack, by a factor

of 3. We also observe an increase in performance concerning

the Bethe-Salpeter eigenvalue problem. Here we improve the

runtime of available routines by a factor of almost 10, making

the BSEPACK library with ELPA a viable choice as a building

block for larger electronic structure packages.

6. Acknowledgment

We thank Francesco Sottile for fruitful discussion and his

support in generating the BSE Hamiltonian for hexagonal BN.

References

[1] G. H. Golub, C. F. Van Loan, Matrix Computations, 4th Edition, Johns

Hopkins Studies in the Mathematical Sciences, Johns Hopkins University

Press, Baltimore, 2013.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. So-

rensen, LAPACK Users’ Guide, SIAM, Philadelphia, PA, 2nd Edition

(1995). doi:10.1137/1.9780898719604 .

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,

J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,

D. Walker, R. C. Whaley, ScaLAPACK User’s Guide, Vol. 4 of Soft-

ware, Environments and Tools, SIAM Publications, Philadelphia, PA,

USA, 1997. doi:10.1137/1.9780898719642 .

[4] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,

A. Heinecke, H.-J. Bungartz, H. Lederer, The ELPA library: scalable

parallel eigenvalue solutions for electronic structure theory and compu-

tational science, Journal of Physics: Condensed Matter 26 (21) (2014)

213201. doi:10.1088/0953-8984/26/21/213201 .

[5] R. C. Ward, L. J. Gray, Eigensystem computation for skew-symmetric

and a class of symmetric matrices, ACM Trans. Math. Softw. 4 (3) (1978)

278–285. doi:10.1145/355791.355798 .

[6] P. Benner, D. Kreßner, V. Mehrmann, Skew-Hamiltonian and Hamil-

tonian eigenvalue problems: Theory, algorithms and applications,
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