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Abstract: We consider the Brownian SYK model of N interacting Majorana fermions,

with random couplings that are taken to vary independently at each time. We study the

out-of-time-ordered correlators (OTOCs) of arbitrary observables and the Rényi-2 tripar-

tite information of the unitary evolution operator, which were proposed as diagnostic tools

for quantum chaos and scrambling, respectively. We show that their averaged dynamics

can be studied as a quench problem at imaginary times in a model of N qudits, where the

Hamiltonian displays site-permutational symmetry. By exploiting a description in terms

of bosonic collective modes, we show that for the quantities of interest the dynamics takes

place in a subspace of the effective Hilbert space whose dimension grows either linearly or

quadratically with N , allowing us to perform numerically exact calculations up to N = 106.

We analyze in detail the interesting features of the OTOCs, including their dependence on

the chosen observables, and of the tripartite information. We observe explicitly the emer-

gence of a scrambling time t∗ ∼ lnN controlling the onset of both chaotic and scrambling

behavior, after which we characterize the exponential decay of the quantities of interest to

the corresponding Haar scrambled values.
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5.2.2 The Rényi-2 entanglement entropy S
(2)
AC(¯̀) 26

5.3 Some large-N limits 28

6 Conclusions 30

A Non-interacting case: q = 2 31

B Relation between OTOCs and Rényi-2 entropies 33
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1 Introduction

The study of many body quantum chaos is currently experiencing a golden age, also due to

its implications on important aspects in many-body physics such as the thermalization [1, 2]

of isolated systems [3–8], or the scrambling of quantum information [9–11]. In fact, the
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field has already enjoyed intense research activity more than thirty years ago [12, 13], when

the relations between chaotic many-body systems and random matrix theory were first ex-

plored. Recently, a renewed interest came from the study of black hole physics and concepts

such as scrambling of quantum information, and computational complexity [14–20].

An important milestone in the recent literature is the Sachdev-Ye-Kitaev model [21–

23], which was originally proposed by Sachdev and Ye as a model of strongly correlated

electron systems, and generalized by Kitaev in 2015 who pointed out its connection to

holographic duality. This model describes N Majorana fermions or complex fermions with

random all-to-all interactions. In the work we will focus on the Majorana fermion version.

The SYK model has already drawn enormous attention from different communities, ranging

from quantum gravity [24, 25] to condensed-matter and many-body physics [26–32], due

to the concomitance of several unique features. Among these, the model has been shown

to be maximally chaotic and yet amenable to exact analysis in the large-N limit [21, 22,

26, 27, 33, 34], making it an ideal playground for the study of chaos and scrambling of

quantum information.

In the same years, the effort to better characterize quantum chaos led to the system-

atic development of reliable indicators for its diagnosis. In particular, out-of-time-ordered

correlation (OTOC) functions, historically introduced in the context of disordered super-

conductors [35], were naturally selected as ideal probes to detect the “scrambling” of lo-

cal observables [17, 21, 22, 36–38], namely the spreading of their spatial support in the

operator basis. It is important to mention that these ideas had far reaching ramifica-

tions, motivating the study of OTOCs also in many-body systems with short-range inter-

actions [30, 39–47, 47, 48, 48–53] and in spatially local “quantum unitary circuits” [54–67],

which provide minimally structured models for chaotic quantum dynamics. In fact, related

studies on information scrambling in a class of random, and in general non-local, circuits

(the so-called approximate t-designs) were already carried out within quantum informa-

tion theory [68–82], where the latter were used to provide rapid approximations to random

unitary operators. Finally, we note that OTOCs were also shown to be directly related to

the growth of the operator size, i.e. the size of its support [38, 83].

So far, computations of OTOCs in the SYK model have been carried out through field-

theoretical approaches in the large-N limit [21, 22, 24, 26]. On the other hand, despite

the many works devoted to this topic, results for finite values of N are difficult to obtain,

and remain scarce [84–86]. This is also true for numerical computations: the exponential

growth of the Hilbert space dimension, and the presence of disorder averages yield strong

limitations on the sizes of the systems that can be simulated [38, 87–89]. Still, it would be

highly desirable to develop a systematic approach to investigate the properties of the SYK

model at finite N , even numerically. Indeed, not only would this allow for inspection of

finite-size corrections to the large-N results, but also to compute quantities beyond multi-

point correlation functions, for which field-theoretical approaches might be difficult to

apply. A notable example is given by the (negative) tripartite information of the evolution

operator introduced in ref. [9] in the context of unitary circuits. This was suggested as a

valuable tool to quantify the scrambling power of a quantum channel, namely its ability to

delocalize information provided as an input. We note that, so far, this quantity has been

– 2 –



J
H
E
P
1
1
(
2
0
1
9
)
0
3
8

computed only numerically for small system sizes [9, 90] (see also refs. [91–93], where the

tripartite information of given states, and not of the channel, was studied).

Motivated by the above picture, we consider a simpler, but closely related, Brownian

SYK model, and address the problem of its exact analysis at finite sizes. The model was

introduced in ref. [94], and differs from the traditional SYK in that the random couplings

are chosen to vary independently at each time. The simplification arising in this case is

similar to the one we have in unitary circuits by choosing random gates independently

in each layer. Experience from the latter framework suggests that the main features of

the chaotic dynamics remain qualitatively unaltered by introducing an additional time-

dependence to the spatial disorder, except that random circuits and Brownian models

behave like infinite-temperature systems since they do not display energy conservation.

In this work, we focus on the development of a systematic approach to the chaotic

dynamics in the Brownian SYK model, which could also be applied, more generally, to other

time-dependent, disordered Hamiltonians with infinite-range interactions. In particular,

we aim to compute OTOCs of arbitrary local observables, and other dynamical quantities

which can be extracted from disordered averages involving up to four unitary evolution

operators. These include a Rényi-2 version of the tripartite information introduced in [9],

which has been shown to encode information about all possible OTOCs [9].

As a main result of our work, we show that the averaged dynamics of the OTOCs and

of the Rényi tripartite information can be studied as a quench problem at imaginary times

in a model of N qudits, where the Hamiltonian displays full site-permutational symmetry.

We analyze this problem by means of a description in terms of bosonic collective modes,

and prove that for the quantities of interest the dynamics takes place in a subspace of the

Hilbert space whose dimension grows either linearly or quadratically with N . This allows

us to perform numerically exact calculations up to one million particles, and, consequently,

analyze in great detail the behavior of OTOCs and of the Rényi tripartite information, high-

lighting their most interesting features. While some of our results depend on simplifications

arising in the special case of the SYK model, we expect that suitable generalizations of our

method could be successfully applied also to the study of other disordered time-dependent

Hamiltonians with all-to-all interactions.

It is useful to compare our method with that of existing studies, as some of the ideas

used in our work are related to other approaches in the literature. First, ref. [94] proposed

the Brownian SYK model as a simplified version of the original SYK, and mainly focused

on the computation of the spectral form factor [95]. For this specific quantity, it was

shown that in the Brownian SYK model an exact solution could be achieved, by means

of an elementary mapping to a classical partition function. Our results on OTOCs and

tripartite information cannot be obtained using the same approach.

Next, we discuss refs. [73, 74, 77], where a class of random quantum circuits was con-

sidered, in which at each layer a single unitary gate is applied to a pair of qudits randomly

chosen. There, it was shown that the moments of the evolution operator associated with a

time step could be mapped onto a permutational invariant Hamiltonian which generalizes

the Lipkin-Meshkov-Glick model [96]. Even though the idea underlying our method is

similar, both our mapping and the quantities studied in this paper are different.
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Figure 1. Pictorial representation of the Brownian SYK model described by the Hamiltonian (2.1),

for q = 4. At each time, all the Majorana fermions are coupled together within clusters of q particles,

with time-dependent random interactions.

We also note that the computation of OTOCs in models with a continuous-time evolu-

tion in the presence of Brownian disorder and infinite-range interactions have been already

addressed in [97, 98] (see also [99, 100]). The system studied in these works, consisting of N

qudits driven by an Hamiltonian which is bilinear in the Pauli operators, was introduced

as a chaotic toy model in ref. [15], where its scrambling time was first estimated to be

logarithmic in N (see also ref. [101], where the spectral form factor was analyzed for the

same system). The approach of [97, 98] relies on the derivation, based on an application of

Itô calculus [102], of a system of differential equations for the OTOCs of interest. Solving

the latter, numerical results were given in ref. [15] for sizes comparable to those that can

be reached with our method, while an analytical solution was found in [98] for a particular

average of OTOCs. As we will see, our approach differs from that of [97, 98], as we tackle

directly the computation of the averaged moments of the evolution operator. This allows

us to use the same formalism to also analyze the tripartite information discussed above,

which was not addressed in these studies. Finally, we note that rigorous results, relevant

to the present paper, for the scrambling properties of continuous-time evolution generated

by random Hamiltonians were recently presented in refs. [103, 104].

The organization of the rest of this paper is as follows. In section 2 we introduce

the Brownian SYK model and the quantities which will be investigated in this work. We

proceed to present the key features of our method in section 3, while our physical results are

reported in section 4. The most technical aspects of our study are consigned to section 5

and to a few appendices. Finally, our conclusions are discussed in section 6.

2 The model and the chaos quantifiers

The object of study of this work will be the Brownian SYK model, describing a set of N

Majorana fermions with q-local, all-to-all random interactions, cf. figure 1. It is defined

on a Hilbert space HN of dimension D = 2N/2, with N operators ψj acting on HN . They

are the representation of standard Majorana fermions, and thus satisfy {ψj , ψk} = 2δj,k
and ψ†j = ψj (the quantities of interest in this work will not depend on the representation

– 4 –



J
H
E
P
1
1
(
2
0
1
9
)
0
3
8

chosen for the N Majorana fermions). Its time-dependent Hamiltonian reads

HSYK(t) = iq/2
∑

1≤i1<i2<...<iq≤N
Ji1,... ,iq(t)ψi1ψi2 . . . ψiq . (2.1)

Here, the couplings Ji1,... ,iq(t) are random variables, which we assume to be Gaussian

distributed with vanishing mean and variance

Ji1...iq(t)Ji′1...i′q (t′) = δi1i′1 · · · δiqi′qδ
(
t− t′

)
σJ

(q − 1)!

N q−1
, (2.2)

where we denoted by [. . .] the average over disorder realizations. While our method could

be applied for arbitrary integer values of q, we will focus for concreteness on the case q = 4.

Furthermore, we will choose the constant σJ in such a way that

Ji1... ,i4(t)Ji′1... ,i′4 (t′) = δi1i′1 · · · δi4i′4δ
(
t− t′

) 1

N3
. (2.3)

In comparison, the original SYK Hamiltonian shares the same form of (2.1), but with

time-independent couplings. In appendix A we additionally discuss the case q = 2, which

lacks chaotic behavior as each disorder realization is non-interacting.

2.1 The OTOCs and the operator spreading

As we have already discussed in section 1, we will be mainly interested in two quantifiers

of quantum chaos and scrambling. The first one is given by OTOCs of local observables:

explicitly, given two operators O, O′, we define their OTOC on a state ρ as

FO,O′(t) = tr
[
ρO(t)O′(0)O(t)O′(0)

]
, (2.4)

where O(t) = U †(t)OU(t), and U(t) is the unitary evolution operator. In this work we

will choose the infinite-temperature Gibbs density matrix ρ = 1/2N/2, which represents a

stationary state for the time-dependent Hamiltonian (2.1).

Importantly, we recall that the OTOC (2.4) can be related to an intuitive notion of

the spreading of localized operators under unitary evolution. To this end, we choose for

simplicity O = ψj , O′ = ψk with j 6= k, and consider the quantity

C(t) =
1

2
tr
[
ρ ({ψj(t), ψk(0)})† ({ψj(t), ψk(0)})

]
, (2.5)

which measures the magnitude of the anticommutator between ψj(t) and ψk(0). At time

t = 0, one simply has C(t) = 0. On the other hand, as time increases, the spacial support

of ψj(t) will also increase; namely ψj(t) will evolve into a complicated sum of strings of

Majorana operators. Then, we see that deviations of C(t) from zero signal that the support

of ψj(t) has grown to include site k. Accordingly, C(t) can be understood as a measure of

the spatial spreading of the local operator ψj(t). The connection between the latter and

OTOCs is finally established by the simple relation

C(t) = 1 + Re [tr (ρψj(t)ψk(0)ψj(t)ψk(0))] . (2.6)

– 5 –
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U

A B C

input output

D

Figure 2. Pictorial representation of the state |U〉〉 defined in eq. (2.8). The operator U is depicted

as a box, while its legs correspond to the local Hilbert spaces hj . The output legs are bent to create

a state in a doubled Hilbert space HN ⊗H′N . Each space is partitioned into two regions: A and B

for the input space HN , and C and D for the output space H′N .

In conclusion, the discussion above allows one to view the OTOCs as a measure of chaos:

chaotic dynamics corresponds to OTOCs that vanish sufficiently rapidly with time. On the

other hand, for a non-chaotic Hamiltonian one expects information to spread coherently:

for large system sizes this results in either a slow decay or a non-vanishing asymptotics of

OTOCs [47, 48], while for small ones this causes revivals, consisting in OTOCs frequently

returning close to their original value [105].

2.2 Diagnostic of scrambling: the tripartite information in fermionic systems

The OTOCs provide a physically clear definition of quantum chaos in terms of correlation

functions between local operators. Other measures probing different features intuitively

associated with chaos exist. Among these, the notion of scrambling of information, origi-

nally introduced in the study of black hole physics [14, 16], is particularly clear: a quantum

system is a good scrambler if a localized perturbation in the initial state spreads over all its

degrees of freedom, in such a way that it can no longer be detected by local measurements

at large times. In this context, it is useful to think of the unitary evolution as a quantum

channel, taking an initial state as the input, and returning the evolved state as the output.

In this logic, it was proposed in ref. [9] that the scrambling power of a channel could be

conveniently measured by the tripartite information between bipartitions of its input and

output, as we review in the following.

For simplicity, let us first consider a system of N qudits, associated with a Hilbert

space HN = h1 ⊗ . . . ⊗ hN , where hj ' CD, and a unitary operator U : HN → HN . In

order to study the scrambling properties of U , we wish to interpret it as a state in a suitable

space. To this end, we introduce a copy of the original Hilbert space H′N , and define the

maximally entangled state |I〉 ∈ HN ⊗H′N as

|I〉 =
1

DN/2

DN∑
j=1

|j〉 ⊗ |j′〉 , (2.7)

where {|j〉}DNj=1, {|j′〉}DNj′=1 are orthonormal bases for HN and H′N , respectively. Note that

we choose the basis such that |I〉 is a direct product of EPR pairs between qudits in the

– 6 –
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two systems, as is illustrated in figure 2. Then, the operator U can be interpreted as a

state in HN ⊗H′N through the Choi-Jamiolkowski mapping

U 7→ |U〉〉 = (1⊗ U) |I〉 . (2.8)

Here the operator U is depicted as a box, whose legs correspond to the local Hilbert spaces

hj ; we see that one could intuitively think of the state |U〉〉 as obtained by “bending” the

output legs, so as to treat input and output, associated with HN and H′N respectively, on

an equal footing. It should be noted that the mapping from U to |U〉〉 is not unique, as it

depends on the choice of state |I〉. However, different |I〉 are related by a local unitary trans-

formation, which does not affect the entropy-related quantities we discuss in the following.

Given |U〉〉 ∈ HN ⊗H′N , one can compute the entanglement entropy between different

spatial regions in HN and H′N . We consider in particular bipartitions of HN and H′N into

the complementary subsystems A, B and C,D respectively; in figure 2 a special choice

for these regions is shown. Given a pair of bipartitions (A,B) and (C,D), we define the

tripartite information as [9]

I3(A : C : D) = I(A : C) + I(A : D)− I(A : CD) , (2.9)

where CD denotes the union of the regions C and D. Here I(X : Y ) is the mutual

information between the regions X and Y

I(X : Y ) = SX + SY − SXY , (2.10)

where SX is the von Neumann entropy of the reduced density matrix ρX . For instance, we

have

SAC = − tr [ρAC ln ρAC ] , (2.11)

where ρAC = trBD[ρ].

The tripartite information in eq. (2.9) was suggested in ref. [9] as a natural and conve-

nient diagnostic for scrambling. In fact, as in the case of OTOCs, its underlying physical

meaning is easy to grasp. From eq. (2.9), we see that −I3(A : C : D) quantifies the amount

of information on the input region A that can be recovered by global measurements in C∪D,

but can not be obtained by probing C and D individually. Recalling that H′N = C∪D cor-

responds to the output, this is exactly a measure of scrambling: if −I3(A : C : D) is large,

it means that the information localized in a subsystem A of the input state can be recovered

only by global measurements in the output state, and information has been scrambled. Ac-

cordingly, if for any bipartition of HN and H′N , I3(A : C : D) is negative with an absolute

value close to the maximum possible value, the channel U has large scrambling power. Fi-

nally, a close connection was established in ref. [9] between the tripartite information (2.9)

and the OTOCs, which further corroborated the appeal of the former as a valuable diag-

nostic of scrambling and, more generally, of chaotic dynamics. This connection is reviewed

in appendix B, where we also discuss its generalization to the fermionic setting.

The above discussion is carried out in terms of qudits, whereas in our work we are

interested in a fermionic system. At this point, one could employ a Jordan-Wigner rep-

resentation of the Majorana operators in the Hamiltonian (2.1), interpret the resulting

– 7 –
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U

ancillas b {

system a {

A B

C D

Figure 3. Pictorial representation for the state |Iab〉 in eq. (2.12). The black bullets in the lower

and upper rows represent the original and “replica” fermions ψaj and ψbj , respectively. Each link

is a maximally entangled pair, which corresponds to the vacuum for the complex Fermi operators

cj = ψaj − iψbj . The evolution operator U , generated by the Hamiltonian (2.1), is applied only to

the original system.

evolution operator as a unitary channel acting on a system of N/2 qubits, and define the

tripartite information for the latter according to the discussion above. However, given a

correspondence between Majorana and Pauli operators via the Jordan-Wigner transforma-

tion, it is known that the reduced density matrix of disjoint intervals written in terms of

the two is not the same, leading to different results for the corresponding von Neumann

entanglement entropy [106, 107]. In our case, we stress that the physical degrees of freedom

are represented by the Majorana operators and, accordingly, the tripartite information in

eq. (2.9) should be computed in terms of the latter. In this respect, we find it useful

to discuss explicitly the generalization of the above construction for Majorana operators,

without making direct reference to the tensor-product structure of the doubled Hilbert

space associated with the input and output of the channel.

As a first ingredient, we wish to interpret the evolution operator generated by the

Hamiltonian (2.1) as a state. To this end, we introduce a system of 2N Majorana operators

ψαj , where j = 1 , . . . , N , while α is an index labeling two different species which we denote

by a and b. The maximally entangled state |Iab〉 is then defined as the vacuum state for

the complex fermions cj = ψaj − iψbj [108], namely(
ψaj − iψbj

)
|Iab〉 = 0 , ∀j . (2.12)

The operator U can now be interpreted as a state in the doubled system through the

mapping

U(t) 7→ |U(t)〉〉 = Ua(t) |Iab〉 . (2.13)

Here the superscript a indicates that the Hamiltonian generating the unitary evolution

operator Ua(t) is written in terms of the fermions ψaj . A pictorial representation of this

construction is shown in figure 3. One can now proceed to compute the fermionic reduced

density matrices for the evolved state |U(t)〉〉, and consequently the corresponding tripartite

information as in eq. (2.9). We refer the reader to section 5 for further details.

Unfortunately, despite its great interest, the computation of the tripartite informa-

tion (2.9) is a very difficult task, which so far has been carried out only numerically for

qudit systems of small sizes [6, 90]. For this reason, we study a simpler but closely related
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quantity, which is obtained from I3(A : C : D) by considering Rényi, rather than von Neu-

mann, entropies. Specifically, we will compute the following Rényi-2 tripartite information

I
(2)
3 (A : C : D) = I(2)(A : C) + I(2)(A : D)− I(2)(A : CD) , (2.14)

where

I(2)(X : Y ) = S
(2)
X + S

(2)
Y − S

(2)
XY , (2.15)

and

S
(2)
X = − ln

[
tr
(
ρ2
X

)]
. (2.16)

We note that, strictly speaking, S
(2)
X is not the averaged Rényi entropy of order 2, as the

disorder average is taken inside the logarithm. However, ref. [6] showed that the OTOC for

a pair of operators in A and C averaged over all operator choices is determined by tr
(
ρ2
AD

)
.

Therefore the averaged purity tr
(
ρ2
X

)
is a meaningful physical quantity to consider. Also,

for N not too small, one expects the effect of fluctuations in the disorder to be small, so

that S
(2)
X remains a good approximation for the Rényi-2 entropy [6, 57].

It is worth to notice that eq. (2.14) can be simplified in general. Indeed, it is easy to

show [9]

I
(2)
3 (A : C : D) =

N

2
ln(2)− S(2)

AC − S
(2)
AD , (2.17)

where we used that the dimension of the Hilbert space associated with N Majorana fermions

is D = 2N/2. Eq. (2.17) tells us that, in order to obtain the tripartite information, it is

sufficient to compute the entropies S
(2)
AC and S

(2)
AD between different regions of the input

and the output.

We conclude this section by stressing that while the Rényi tripartite information (2.14)

differs quantitatively from I3(A : C : D), based on previous studies [108], we can still expect

it to display the same qualitative features of the latter, and thus to be a suitable measure

for scrambling.

3 Exact approach from emergent permutational symmetry

Having introduced the model and the quantities of interest, we proceed by presenting the

general ideas of the method developed in this work. The physical results will be then

discussed in section 4, while we postpone the most technical details of our calculations to

section 5.

3.1 Decomposing the dynamical problem

We will begin our discussion with the concrete problem of computing the OTOC (2.4),

which we rewrite as

FO,O′(t) =
1

2N/2
tr
{
OU(t)O′U †(t)OU(t)O′U †(t)

}
. (3.1)

We recall that the time-dependent, disordered Hamiltonian (2.1) gives rise to a dynamics

which can be interpreted as the continuous limit of the discrete process defined by

U(t) = e−i∆tHSYK(tn)e−i∆tHSYK(tn−1) . . . e−i∆tHSYK(t1) , (3.2)

– 9 –
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where ∆t = t/n and tj = j∆t, while the delta function in eq. (2.3) is regularized as

Ji1... ,i4(tr)Ji′1... ,i′4 (ts) = δi1i′1 · · · δi4i′4
1

N3

δr,s
∆t

. (3.3)

In practice, one can work with the discrete form (3.2) of the evolution operator, and take

the continuum limit at the end of the calculations.

In order to compute FO,O′(t), we first introduce a resolution of the identity between

each pair of operators in (3.1), yielding

FO,O′ =
1

2N/2

∑
i,j,k,l
m,n,o,p

〈i|O|j〉〈j|U |k〉
〈
k
∣∣O′∣∣ l〉 〈l ∣∣∣U †∣∣∣m〉

× 〈m|O|n〉〈n|U |o〉
〈
o
∣∣O′∣∣ p〉 〈p ∣∣∣U †∣∣∣ i〉 . (3.4)

Here {|j〉} denotes a basis for the Hilbert space HN [introduced before eq. (2.1)] on which

the operators ψj act. Rearranging the above sum, we obtain

FO,O′ = 〈L| (U ⊗ U∗ ⊗ U ⊗ U∗) |R〉 , (3.5)

where

|L〉 =
∑
i,j,m,n

〈i|O|j〉〈m|O|n〉 |j,m, n, i〉 , (3.6)

|R〉 =
∑
k,lo,p

〈
k
∣∣O′∣∣ l〉 〈o ∣∣O′∣∣ p〉 |k, l, o, p〉 . (3.7)

Here U∗(t) denotes the complex conjugate of U(t) (which is well defined, once a basis {|j〉}
of HN is given) and we introduced the vectors |i, j, k, l〉 = |i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |l〉 ∈ H⊗4

N .

According to eq. (3.5), the dynamical information about the OTOC is uniquely encoded

in the operator U(t) ≡ U ⊗ U∗ ⊗ U ⊗ U∗, while O, O′ only affect the “left” and “right”

states |L〉, |R〉, cf. figure 4 .

From eq. (3.2), we see immediately that U(t) is written in terms of the operators

χaj := ψj ⊗ 1⊗ 1⊗ 1 , χbj := 1⊗ ψ∗j ⊗ 1⊗ 1 , (3.8)

χcj := 1⊗ 1⊗ ψj ⊗ 1 , χdj := 1⊗ 1⊗ 1⊗ ψ∗j , (3.9)

which provide a basis for all the operators in H⊗4
N . Note that, as we already stressed, ψj is

the representation of a Majorana fermion, and thus is an operator acting on HN , for which

the tensor product is defined in the usual way. Due to the tensor-product structure of

H⊗4
N , the operator χαj satisfy mixed commutation and anticommutation relations, namely[
χαj , χ

β
k

]
= 0 if α 6= β, while

{
χαj , χ

α
k

}
= 2δj,k. On the other hand, it is possible to introduce

related operators in H⊗4
N which are all anti-commuting with one another, realizing a truly

fermionic algebra. We consider for concreteness the case N ≡ 0 (mod 4) [if N ≡ 2 (mod 4),

one has a similar treatment], and introduce

Qα =

N∏
k=1

χαk , α = a , b , c , d . (3.10)
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U U*UU*

OTOC

operator-state mapping
into a bosonic Fock space;
effective imag.-time Ham. 

Perm. symm. time ev. operator

U U*UU*

O O

O'O' |R⟩

⟨L|

Figure 4. Schematic diagram summarizing our method. The dynamical information about the

OTOC is uniquely encoded in the operator U(t) ≡ U ⊗U∗⊗U ⊗U∗(t), while the observables O,O′
define the “right” and “left” states |L〉, |R〉 (cf. section 3.1). Exploiting the emergent permutational

symmetry, we can map U ⊗ U∗ ⊗ U ⊗ U∗(t) onto a state |U(t)〉〉 in a bosonic Fock space, in which the

dynamics is governed by an effective imaginary-time Hamiltonian evolution (cf. section 3.2). Finally,

we express the matrix element of U(t) with respect to |L〉 and |R〉 as the overlap between |U(t)〉〉 and

an appropriate state 〈〈WO,O′ | (cf. section 3.3). As a result, the entire computation of the OTOC can

be performed very efficiently within a bosonic space, whose dimension grows linearly with N . The

Rényi-2 entanglement entropies S
(2)
AC and S

(2)
AD are amenable to a similar treatment as the OTOCs.

Then, we can define

ψaj = iQaχaj , ψbj = Qaχbj , (3.11)

ψcj = iQaQbQcχcj , ψdj = QaQbQcχdj . (3.12)

One can easily verify that {ψαj }j,α satisfy fermionic anticommutation relations, namely

{ψαj , ψβk } = 2δα,βδj,k, and that
(
ψαj

)†
= ψαj . Furthermore, since (Qα)2 = 1, we have∏M

k=1 χ
α
jk

=
∏M
k=1 ψ

α
jk

for any even integer M . Since the Hamiltonian (2.1) contains a sum of

products of Majorana operators with an even number of particles, it is then straightforward

to show

U(t) = Ua+(t)U b−(t)U c+(t)Ud−(t) , (3.13)

where

Uα±(t) = e∓i∆tH
α
SYK(tn)e∓i∆tH

α
SYK(tn−1) . . . e∓i∆tH

α
SYK(t1) , (3.14)

while Hα
SYK is the Hamiltonian (2.1) written in terms of the fermions ψαj . We see that U(t)

can be viewed as an evolution operator on the space of four “replica” Majorana fermions

ψαj , labeled by α = a, b, c, d. Eq. (3.13) represents the starting point for our subsequent

calculations.

The above discussion allows us to decompose the problem of computing the

OTOC (3.1) into two logically separated steps:

• compute the disorder average of the generator of the dynamics U(t), defined in

eq. (3.13) (cf. section 3.2);
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• given the operator U(t), evaluate the matrix element 〈L|U(t)|R〉, where |L〉, |R〉 were

introduced in eq. (3.5) and pictorially represented in figure 4 (cf. section 3.3).

Importantly, it is possible to show that the same procedure can be employed for the Rényi-2

tripartite information (2.14): one can express also this quantity in the form of a matrix

element 〈L|U(t)|R〉, for an appropriate choice of the vectors |L〉 and |R〉, cf. section 3.3.

We will address the two points above separately in the following subsections, for both the

OTOCs and the tripartite information, providing a complete overview of the approach

developed in this work.

3.2 The generator of the dynamics: mapping to a bosonic system

We start by addressing the computation of the average evolution operator defined in

eq. (3.13). Using that even numbers of different Majorana operators commute, and that

one can factor disorder averages at different times, we note that eqs. (3.13), (3.14) imply

U(tn) = e−i∆tHa(tn)ei∆tHb(tn)e−i∆tHc(tn)ei∆tHd(tn) × U(tn−1) . (3.15)

This allows us to write down a linear differential equation for U(t), as follows.

First, from eq. (3.3), we see that, in order to expand the first line at the first order

in ∆t, each exponential factor has to be expanded up to the second order. By doing this,

and carefully taking into account the correlations between the couplings, one obtains an

equation of the form

U(tn) = U(tn−1) + LU(tn−1)∆t+O(∆t2) , (3.16)

namely, taking the limit ∆→ 0
d

dt
U(t) = LU(t) , (3.17)

where

L =
1

N3

[
− 2

(
N

4

)
+

∑
α,β=a,b,c,d

α<β

(−1)γα,β

×
∑

i1<i2<i3<i4

(
ψαi1ψ

β
i1

)(
ψαi2ψ

β
i2

)(
ψαi3ψ

β
i3

)(
ψαi4ψ

β
i4

)]
. (3.18)

Here, the indexes a, b, c, d are ordered as a < b < c < d, while we introduced

(−1)γα,β =

{
1 (α, β) = (a, b), (a, d), (b, c), (c, d) ,

−1 (α, β) = (a, c), (b, d) .
(3.19)

We note that, since the disorder average has been already taken, the operator L is time- and

disorder-independent. Eq. (3.17) can thus be seen as a Schrodinger equation (at imaginary

times) for U(t) in the space End(H⊗4
N ) of the linear endomorphisms acting on H⊗4

N , where

the left matrix multiplication by L is interpreted as a superoperator. In the following, it

will be useful to denote by |O〉〉 the state in End(H⊗4
N ) associated with the operator O.
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In order to proceed, we note that at every time t, the operator U(t) can be written as

a linear superposition of operators of the form

Oα1
1 Oα2

2 . . .OαNN , (3.20)

where Oαjj is chosen within the set of operators

Ij = {1, ψajψbj , ψajψcj , ψajψdj , ψbjψcj , ψbjψdj , ψcjψdj , ψajψbjψcjψdj } . (3.21)

Indeed, due to the anticommutation relations of the Majorana operators and the form of

the Hamiltonian H, it is easy to see that U(t) can not contain terms with an odd number

of fermions at site ψαj . Hence, the dynamics of |U(t)〉〉 takes places in the Hilbert space

generated by the vectors

|α1 . . . αN 〉 := |Oα1
1 Oα2

2 . . .OαNN 〉〉 . (3.22)

Here, αj ∈ {1, ab, ac, ad, bc, bd, cd, abcd}, with the convention O1
j = 1, Oabj = ψajψ

b
j , . . .,

Oabcdj = ψajψ
b
jψ

c
jψ

d
j , i.e the ordered set {Oαj }abcdα=1 coincides with Ij in eq. (3.21).

Eq. (3.22) defines the previously announced mapping to a system of N qudits, as one

can interpret

|α1 . . . αN 〉 = |α1〉 ⊗ . . .⊗ |αN 〉 ∈ KN , (3.23)

where KN = h1 ⊗ . . .⊗ hN and hj ' C8 is the space generated by {|1〉 , |ab〉 , . . . , |abcd〉}.
In this picture, the differential equation (3.17) is equivalent to a quench problem in KN :

the system is prepared in the initial product state

|U(0)〉〉 = |1〉〉 = |1〉 ⊗ |1〉 ⊗ . . .⊗ |1〉 , (3.24)

and left to evolve according to the differential equation

d

dt
|U(t)〉〉 = H |U(t)〉〉 . (3.25)

Here, H [not be confused with HSYK in (2.1)] is an operator acting on KN which plays the

role of the Hamiltonian driving the imaginary-time dynamics. The precise form H in terms

of local operators can be derived by computing the action on the basis operators (3.20) of

the left multiplication by L in (3.18); however, even without doing this explicitly, it is easy

to show that H is invariant under any permutation of the sites in KN . This comes from

the fact that the operator L in (3.18) is left unchanged under the exchange of the pairs

ψαi ψ
β
i and ψαj ψ

β
j for any choice of i and j. Since the initial state (3.24) also enjoys the

same symmetry, we can conclude that the dynamics of |U(t)〉〉 takes place in the subspace

SN ⊂ KN which is invariant under arbitrary permutations of the sites. This is of course

a great simplification for our problem. The permutational symmetry of the Hamiltonian

H is “emergent” in the sense that it manifests itself only after taking averages over the

Brownian disorder, while the Hamiltonian HSYK in eq. (2.1) does not display this symmetry

for individual random realizations.
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In order to study the dynamics in this subspace, we introduce the basis vectors |O~n〉〉
for SN

|O~n〉〉= |n1 ,nab ,nac ,nad ,nbc ,nbd ,ncd ,nabcd〉=
1√

N !n1!nab!nac!nad!nbc!nbd!ncd!nabcd!
(3.26)

×
∑
π∈SN

π |1〉⊗...⊗|1〉︸ ︷︷ ︸
n1

⊗|ab〉⊗...⊗|ab〉︸ ︷︷ ︸
nab

⊗|ac〉⊗...⊗|ac〉︸ ︷︷ ︸
nac

⊗...⊗|abcd〉⊗...⊗|abcd〉︸ ︷︷ ︸
nabcd

π−1 ,

where we used the same notations as in eqs. (3.22), (3.23). Here π is the unitary operator

associated with a generic element in the symmetric group SN , whose action permutes

different sites in KN . Note that, since the sum runs over all the permutations, not all the

elements in the sum are linearly independent.

The basis vectors (3.26) of the permutation symmetric space SN are labeled by sets

of 8 integers {nj}, satisfying
∑

k nk = N , where each integer nk [with k = 1 , ab , . . . , abcd]

“counts” the number of qudits in the level associated with k. In fact, it is possible to

employ a more convenient representation, by viewing the state (3.26) as an 8-mode Fock

state generated by bosonic creation operators acting on a vacuum |Ω〉. In particular, we

have the identification

|n1, . . . , nabcd〉 =
1√

n1! · · ·nabcd!
(a†1)n1(a†ab)

nab · · · (a†abcd)nabcd |Ω〉 . (3.27)

Here, each operator a†k creates a collective mode corresponding to the level associated with

k. In this language, the initial state (3.24) is written as |U(0)〉〉 = 1√
N !

(
a†1

)N
|Ω〉.

This representation is particularly convenient, due to the fact that the Hamiltonian H

in eq. (3.25) can be written in terms of the same bosonic operators appearing in eq. (3.27):

H =
1

N3

(
−2

(
N

4

)
+

1

4!

6∑
r=1

(−1)γr
[
X4
r −X2

r (−6N + 8) + 3N(N − 2)
])

, (3.28)

where Xr is a bilinear operator of bosons. The explicit form of Xr is derived in section 5.1,

cf. eqs. (5.7)–(5.12). A formal solution to the problem of computing U(t) is then obtained as

|U(t)〉〉 = eHt |U(0)〉〉 = eHt
1√
N !

(
a†1

)N
|Ω〉 . (3.29)

From its explicit form, one can see that the Hamiltonian H commutes with the operator∑8
j=1 a

†
jaj , which “counts” the total number of bosonic modes; accordingly, the evolved

state (3.29) always belongs to the finite-dimensional Hilbert space generated by the basis

vectors (3.27). However, the dimension of the latter is D =
(
N+7

7

)
, which grows as N7,

strongly limiting any numerical computation based on a brute force implementation

of eq. (3.29). Luckily, it is possible to show that the Hamiltonian H has additional

symmetries, which are unveiled by means of an appropriate Bogoliubov transformation

an =
1√
8
Cn,mbm , (3.30)
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further reducing the dimension of the effective Hilbert space explored by the dynamics.

The matrix element Cn,m are reported in section 5.1 [cf. eq. (5.13)]. Then, from the form

of the Hamiltonian H in terms of the modes bj [cf. eqs. (5.14)–(5.19)], one obtains that

the number operators

n1,2 := b†1b1 + b†2b2 , n3,4 := b†3b3 + b†4b4 (3.31)

n5,6 := b†5b5 + b†6b6 , n7,8 := b†7b7 + b†8b8 (3.32)

are conserved, namely they commute with H. Of course, the initial state can also be

expressed in terms of the modes introduced in eq. (3.30). Using the explicit form of Cn,m,

we obtain

|U(0)〉〉 =
1

√
N !
√

8
N

(b†1 − b†2 − b†3 − b†4 + b†5 + b†6 + b†7 − b†8)N |Ω〉 (3.33)

and find that the total conserved number n1,2 + n3,4 + n5,6 + n7,8 is N .

As we will see in the next section, these formulas allow us to work with effective Hilbert

spaces whose dimensions grow either linearly or quadratically with N , and hence to provide

numerically exact results for very large system sizes.

3.3 The OTOC and the tripartite information

We now discuss the last step of our method, namely the computation of the matrix elements

of the form (3.5). Let us consider the most general OTOC

F(p,n,m)(t) =
1

2N/2
tr
{

Φ(p,n)(t)Φ(p,m)(0)Φ(p,n)(t)Φ(p,m)(0)
}
, (3.34)

where we introduced

Φ(p,n) = ψi1 · · ·ψip ψj1 · · ·ψjn , (3.35)

Φ(p,m) = ψi1 · · ·ψip ψk1 · · ·ψkm , (3.36)

and where all indices are different, i.e. the operators have only p Majorana fermions in

common. Considering eq. (3.5), we can expand U(t) = U ⊗ U∗ ⊗ U ⊗ U∗ into the basis of

operators O~n corresponding to the vector (3.26) in End(H⊗4
N ). We obtain

F(p,n,m)(t) =
∑
~n

c~n(t) 〈L| (O~n) |R〉 , (3.37)

where the sum runs over all the sets ~n = {nj} with j = 1, ab, . . . , abcd and
∑

j nj = N , while

c~n(t) are the coefficients of U(t) in the basis of the operators O~n. One can now interpret

the sum (3.37) as the scalar product between an appropriate state |W(p,n,m)〉〉 ∈ End(H⊗4
N )

and |U(t)〉〉; namely we can write

F(p,n,m)(t) = 〈〈W(p,n,m)|U(t)〉〉 . (3.38)

The whole problem of extracting the numerical value of the OTOC from the knowledge

of U(t) then boils down to writing down explicitly |W(p,n,m)〉〉. After this is done, one can

straightforwardly compute the overlap (3.38).
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Figure 5. OTOCs Fx,x(t) and Fx,y(t) of single-site Majorana fermions. Subfigures (a) and (b)

show our numerical results for increasing system sizes for operators on the same site (from top to

bottom) and on different sites (from left to right) respectively. In Subfigure (a) the black dashed

line is the analytic prediction (4.2). Subfigure (c): the two different OTOCs are reported in the

same plot, where the dynamics after the scrambling time is seen to coincide.

The derivation of the explicit form of |W(p,n,m)〉〉 is however rather technical, and for

this reason we postpone it to section 5.2. The final result, instead, is extremely simple,

and reads

|W(p,n,m)〉〉 =

√
8
N

√
N !

(−1)m(m−1)/2+n(n−1)/2+nm(−b†3)p(−b†2)n(−b†4)m(b†1)N−p−n−m|Ω〉 ,
(3.39)

where |Ω〉 and bj were introduced in eqs. (3.27) and (3.30) respectively.

Surprisingly, one can also express the Rényi-2 entropies entering in the definition of

the tripartite information (2.14) in the same form. More precisely, choosing the same

conventions as figure 2 for the bipartitions of input and output of the evolution operator,

one can write

exp
[
−S(2)

AC(¯̀)
]

= 〈〈W
S

(2)
AC(¯̀)

|U(t)〉〉 , (3.40)

exp
[
−S(2)

AD(¯̀)
]

= 〈〈W
S

(2)
AD(¯̀)

|U(t)〉〉 . (3.41)

Here ¯̀ is the length of B and D (chosen to be of the same size), while we will use ` for the

length of the regions A and C.

Once again, we refer the reader to section 5, where this is explicitly shown, while in

the following we report the final result of this analysis, which gives

|W
S

(2)
AC(¯̀)

〉〉 =

√
8
N

√
N !

1

2N
(b†1 − b†2)`(b†1 − b†4)

¯̀|Ω〉 , (3.42)

and

|W
S

(2)
AD(¯̀)

〉〉 =

√
8
N

√
N !

1

2N/2+¯̀(b†1)`(b†1 − b†2 + b†3 − b†4)
¯̀|Ω〉 . (3.43)

Similar formulas could be in principle derived also for more general choices of the biparti-

tions of input and output. This, however, would introduce additional technical difficulties,

so we don’t derive them here.
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It is now very important to comment on the form of the formulas presented above, as it

allows us to reduce the computational cost required to obtain the physical quantities of in-

terest. Let us first consider the case of the OTOC (3.34), which is conveniently rewritten as

F(p,n,m)(t) = 〈〈U(0)| exp (Ht) |W(p,n,m)〉〉∗ . (3.44)

Namely, in order to compute F(p,n,m)(t), one can evolve |W(p,n,m)〉〉 and then take the

overlap with the state |U(0)〉. This is important, as is best appreciated by looking at

the simplest instance p = 0, n = m = 1. In this case, eq. (3.39) implies that the state

|W(0,1,1)〉〉 belongs to the sector of the Hilbert space labeled by the quantum numbers

n1,2 = N − 1, n3,4 = 1, n5,6 = n7,8 = 0, where ni,i+1 were introduced in eq. (3.31)–(3.32).

Since nj,j+1 are conserved by the Hamiltonian H, the dynamics takes place in this sector

of the Hilbert space, whose dimension can be easily seen to be D = N . Accordingly, one

can conveniently represent the restricted Hamiltonian in a basis consisting of N elements,

and compute eHt|W(0,1,1)〉〉 in this basis, which allows us to go to system size one million.

Similar considerations hold for the generic OTOC |W(p,n,m)〉〉 (which belongs to the

sector n1,2 = N − p − m, n3,4 = p + m, n5,6 = n7,8 = 0) and for the Rényi-2 entropies

corresponding to (3.42), (3.43). In the latter cases, expanding

(b†1 − b†4)
¯̀

=

¯̀∑
r=0

( ¯̀

r

)(
b†1

)r (
−b†4

)¯̀−r
, (3.45)

(b†1 − b†2 + b†3 − b†4)
¯̀

=

¯̀∑
r=0

( ¯̀

r

)(
b†1 − b†2

)r (
b†3 − b†4

)¯̀−r
, (3.46)

one is left with a sum of terms, each of which requires a simulation within Hilbert spaces up

to dimensions N ¯̀∼ N2. Putting all together, we see that the computation of the quantities

of interest requires us to simulate the dynamics in a Hilbert space whose dimension grows

either linearly (for the OTOCs) or quadratically (for the tripartite information) with N .

4 The physical results

In this section we present the main physical results of our work. We begin with the

analysis of the OTOCs, and continue with the Rényi-2 tripartite information introduced

in eq. (2.14).

4.1 The OTOCs: numerical results

We start by presenting our numerical results for the simplest OTOC

Fx,y(t) =
1

2N/2
tr {ψx(t)ψy(0)ψx(t)ψy(0)} . (4.1)

Due to the infinite range of the interactions and the disorder averages, Fx,y(t) does not

depend on the precise choice of x and y, but only on whether x = y or x 6= y. Both cases

are displayed in figure 5, where we report data for increasing values of the system size

N . We see that Fx,x(t) and Fx,y(t) (with x 6= y) behave qualitatively differently at short
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Figure 6. Subfigure (a): rescaled logarithmic OTOC `N (t) [defined in eq. (4.5)]. Solid lines

correspond to increasing values of N (from bottom to top), while the dashed black line is the linear

ansatz y(t) = 4
3 t + ln(2). Subfigure (b): data collapse using the shift (4.7) for the OTOCs Fx,y(t)

(with x 6= y). Subfigure (c): data collapse for different OTOCs. The curves correspond (from

bottom to top) to the OTOCs in eq. (4.1), (4.8) and (4.9) respectively. In order to compare the three

curves, we have multiplied Fα,β by the global phase (−1)σα,β , which is −1 for (α;β) = (x, y; z, w)

and 1 otherwise.

times: the former displays an initial exponential decay, while the latter appears to remain

approximately constant. In fact, based on the formulas of the previous section, one can

make these statements more precise and show

lim
N→∞

Fx,x(t) = −1 + 2 exp

(
−2

3
t

)
, (4.2)

lim
N→∞

Fx,y(t) = −1 , (4.3)

where the convergence is point-wise in t. This is proven in section (5.3). In both OTOCs

Fx,x(t) and Fx,y(t), we see the emergence of a characteristic time t∗(N), increasing with

N , which is required before they begin to decay towards zero at large times. One naturally

interprets t∗(N) as a scrambling time, which is also consistent with our subsequent analysis

of the tripartite information. Finally, in figure 5(c) we plot together the OTOCs for x = y

and x 6= y, for different systems sizes. We see that after an initial time window, the two

OTOCs become indistinguishable, meaning that the information on the initial operators

chosen has been completely washed out by the chaotic dynamics.

In order to quantitatively characterize the dependence of the scrambling time t∗(N) on

the system size, we test the short-time behavior of Fx,y(t) against the analytical ansatz [33]

Fx,y(t) ∼ −1 + cx,y
eλx,yt

N
, (4.4)

where cx,y is a constant (independent of N). In particular, we compute

`N (t) = ln [1 + Fx,y(t)] + lnN , (4.5)

and compare the numerical data against a linear behavior. The results are shown in

figure 6(a). We clearly see that as the system size is increased, the curves for `N (t) approach

the linear fit y(t) = 4
3 t + ln(2), within an initial time interval that is also increasing with

N . In turn, this means that the ansatz (4.4) is valid, with the free parameters fixed as

λx,y = 4/3 , cx,y = 2 . (4.6)

From this result, we can identify the scrambling time with t∗(N) = 3 ln(N)/4.
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Figure 7. Subfigure (a): time evolution of different OTOCs corresponding to initial strings of

Majorana operators with the same length. Each curve is labeled by three integer numbers, according

to the convention of eq. (3.34). We see that in this case all the OTOCs quickly approach the same

curve. Subfigure (b): large-time behavior of the logarithm of the OTOC Fx,y(t).

The initial behavior in eq. (4.4), together figure 5(b), suggests that a data collapse

should take place if we consider the shifted functions

Fx,y(t+ 3 ln(N)/4) , (4.7)

where we assumed that the parameters (4.6) are exact. This is plotted in figure 6(b),

where we see a remarkable data collapse at all times. In particular, the data appear to be

perfectly collapsed already for N & 800.

Next, we have tested how robust the above predictions are, against different choices of

the local observables. We have considered in particular

Fx;y,z(t) =
1

2N/2
tr {ψx(t)ψy(0)ψz(0)ψx(t)ψy(0)ψz(0)} , (4.8)

Fx,y;z,w(t) =
1

2N/2
tr {ψx(t)ψy(t)ψz(0)ψw(0)ψx(t)ψy(t)ψz(0)ψw(0)} . (4.9)

We have verified that at short times the ansatz (4.4) is always valid, and that a data collapse

always takes place using the shift in eq. (4.7). Furthermore the exponent is universal,

namely it is independent of the observables chosen (while the prefactor is not). However,

the OTOCs corresponding to distinct choices of local operators are quantitatively different,

also after the scrambling time t∗(N), as it can be appreciated from figure 6(c). This can

be interpreted by saying that, at finite times, the system retains some information on the

initial observable chosen.

In order to investigate this point further, we plot in figure (7)(a) different OTOCs,

corresponding to distinct choices of local observables, which are labeled according to the

convention of in eq. (3.34). The curves correspond to initial operators that all have the

same length, namely that are product of the same number of fermions. In this case, we

see that all the OTOCs converge to the same function (up to small corrections) after the

scrambling time. Comparing with the results displayed in figure 6(c), we can conclude the
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Figure 8. Subfigure (a): time evolution of the Rényi-2 entropies S
(2)
AC for the subsystem A∪C, as

displayed in figure 2, with ¯̀ = 10. Solid lines correspond to increasing values of N (from bottom

to top), while the black dashed line is the analytic prediction (4.11). Subfigure (b): time evolution

of the Rényi-2 entropy S
(2)
AD for the subsystem A ∪ D, with ¯̀ = 10. Note that S

(2)
AD is shifted

by its maximum value (N/2) ln 2. Solid lines correspond to increasing values of N (from top to

bottom). Subfigure (c): time evolution of the Rényi-2 tripartite information I
(2)
3 (A : C : D), for

the bipartitions A ∪B, C ∪D displayed in figures 2 and 3 , with ¯̀= 10. Solid lines correspond to

increasing values of N (from bottom to top).

following: after the scrambling time, information regarding the specific initial observables

is lost, whereas OTOCs corresponding to operators with different initial length can still be

distinguished.

Finally, we have investigated the large-time exponential decay of the OTOCs. The

data in figure 5 suggest to consider an ansatz of the form

Fx,y(t) ∼ dx,y exp [−t/τN ] , (4.10)

where τN should be asymptotically independent of N . In figure 7(b), we plot ln(−Fx,y(t))
for large values of t, and we see that the data are indeed consistent with an exponential de-

cay of Fx,y(t). To be quantitative, we have performed a fit of ln(−Fx,y(t)) using rN (t) = a−
t/τN−b/t. For the values of time t available, we have found that the fitted τN has a weak de-

pendence on N , with τN ' 1.53±0.04 for N ' 105. The fitted value appears to be indepen-

dent of the choice of the local observables, up to the inaccuracy of the extrapolation method.

4.2 The Rényi-2 tripartite information

We finally present our results for the Rényi-2 tripartite information introduced in eq. (2.14).

As we discussed in section 3.3, for this quantity the effective dynamics to be computed

takes place in a Hilbert space whose dimension grows quadratically with N , so that we

are restricted to smaller system sizes than in the case of OTOCs. Furthermore, for large

subsystems the value of the entropy becomes very large, so that we also have to deal with

issues of numerical precision. Overall, for the computationally worst case of bipartitions

of equal size, we are able to provide data up to N ' 400. More details on the numerical

implementations are reported in appendix C.

In figure 8 we present data for the time evolution of the Rényi entropies of the subsys-

tems A∪C and A∪D, where we used the same partitions as figure 2. The plots correspond

to fixed subsystem size and increasing N . Based on the formulas of section 3, in this limit
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Figure 9. Subfigure (a): Rényi-2 entropies S
(2)
AC for the subsystem A∪C, as displayed in figure 2, for

N = 200 and different subsystem sizes ¯̀. Solid lines correspond to the times t = 0, 0.4, 1, 2, 4, 6, 15

(from bottom to top). The black dashed line is obtained by Haar average as computed in ref. [9].

Subfigure (b): Rényi-2 entropies S
(2)
AC computed at t = 1, for different subsystem sizes ¯̀. Solid

lines correspond to system sizes N = 50, 100, 200, 400 (from bottom to top). Subfigure (c): Rényi-2

tripartite information (2.14) for N = 400 and different subsystem sizes ¯̀. Solid lines correspond to

the times t = 0, 0.4, 1, 2, 4, 6, 15 (from top to bottom). The black dashed line is obtained by Haar

average as computed in ref. [9].

we are able to compute (cf. section 5.3)

lim
N→∞,`,t fix

S
(2)
AC(¯̀, t) = ` ln

2

1 + e−2t/3
. (4.11)

We see from figure 8(a) that the numerical results are in perfect agreement with this pre-

diction. For finite N , the entropy S
(2)
AC(t) displays an initial linear increase, eventually

reaching a saturation value, as expected from the traditional picture of quantum quenches.

The behavior of the Rényi entropy S
(2)
AD(t) is instead not monotonic, as displayed in fig-

ure 8(b). Indeed, one has S
(2)
AD(0) = (N/2) ln 2, which is the maximum entropy possible,

so that at small times S
(2)
AD(t) has to decrease. Its dynamics is then non-trivial during

the initial scrambling time t∗(N), after which it begins an exponential decay towards its

large-time stationary value.

Figures 9 and 10 show the same quantities for all the possible values of the subsystems
¯̀, at different times and system sizes. First, we notice that the entropies and the tripartite

information are symmetric under exchange ¯̀↔ ` = N− ¯̀, as they should. Furthermore, we

see that for different values of ¯̀we have the same qualitative behavior, where at large times

an asymptotic value is always reached. In fact, it is possible to compute the latter exactly,

as it is known that unitary evolutions driven by Brownian Hamiltonians converge in the

infinite-time limit to unitary k-designs, for arbitrary positive integers k [103, 104]. As a

consequence, the asymptotic properties can be computed using Haar averages. The latter,

which were already computed in ref. [9], are reported as dashed lines in figure 9 and 10,

towards which convergence is apparent. We note that, while their infinite-time limit could

be expected, the entropies undergo non-trivial dynamics at short and intermediate times.

This is best appreciated by looking at the entropy S
(2)
AD(¯̀) in figure 10. We see that up to

the scrambling time t∗(N) it appears to be decreasing (precisely, its average over ¯̀), while

at later times it increases again. This results in the non-trivial dynamics of the tripartite

information, which can become positive at short times [cf. figure 8(c)].
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Figure 10. Time evolution of the Rényi-2 entropies S
(2)
AD for the subsystem A ∪ D, as displayed

in figure 2, for N = 200 and different values of ¯̀. Solid lines in subfigures (a) and (b) correspond,

respectively, to times t = 0, 0.2, 0.4, 1 (from top to bottom) and t = 2, 4, 6, 15 (from bottom to top).

The black dashed line in Subfigure (b) is obtained by Haar average as computed in ref. [9].

5 Deriving the key formulas

In this last section, we finally address the most technical aspects of our calculations, includ-

ing several details of the method outlined in section 3. We start by presenting the explicit

form of the Hamiltonian driving the dynamics in the four-replica space in section 5.1. Next,

we derive the key formulas (3.39), (3.42) and (3.43) in section 5.2. Finally, in section 5.3

we report the proof of eqs. (4.2) and (4.11) for the large-N limit of the OTOC Fx,y(t), and

of the Rényi entropy S
(2)
AC(¯̀).

5.1 The Hamiltonian

In this section we show how to derive the explicit form (3.28) of the Hamiltonian driving

the imaginary-time evolution in eq. (3.25), from eq. (3.18). We start with the identity

4!
∑

1≤j<k<l<m≤N
xixjxkxl = X4 −X2(−6N + 8) + 3N(N − 2) , (5.1)

with X =
∑N

i=1 xi, for commuting operators xi satisfying x2
i = −1. This can be easily

derived as follows (see e.g ref. [94]). First, define

fq = q!
∑

1≤i1<...<iq≤N
xi1 . . . xiq . (5.2)

Then, using x2
j = −1, it is straightforward to show

Xfq = fq+1 − q(N + 1− q)fq−1 , (5.3)

which immediately yields the desired identity. Eq. (5.1) allows us to write the Hamiltonian

in terms of global sums of pairs of single-site Majorana operators.

Next, suppose that for a single-site operator xi we have

xiOαi = c(α)Of(α)
i ∀α ∈ {1, ab, . . . , abcd} , (5.4)
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where Oαj have been defined after eq. (3.22). Then one can make the following identification

X =
abcd∑
α=1

c(α)a†f(α)aα , (5.5)

namely the action of X on the permutation symmetric basis (3.26) is the same as the r.h.s.

of eq. (5.5), as can be checked directly. From this, the final form of the Hamiltonian in

terms of bosonic modes aj is readily obtained, and reads

H =
1

N3

(
−2

(
N

4

)
+

1

4!

6∑
r=1

(−1)γr
[
X4
r −X2

r (−6N + 8) + 3N(N − 2)
])

, (5.6)

where (−1)γr is given in (3.19), while the operators Xr are defined as

Xab = a†aba1 − a†1aab − a†bcaac − a
†
bdaad + a†acabc + a†adabd + a†abcdacd − a

†
cdaabcd , (5.7)

Xac = a†aca1 + a†bcaab − a
†
1aac − a†cdaad − a

†
ababc − a

†
abcdabd + a†adacd + a†bdaabcd , (5.8)

Xad = a†ada1 + a†bdaab + a†cdaac − a
†
1aad + a†abcdabc − a

†
ababd − a†acacd − a

†
bcaabcd , (5.9)

Xbc = a†bca1 − a†acaab + a†abaac + a†abcdaad − a
†
1abc − a†cdabd + a†bdacd − a

†
adaabcd , (5.10)

Xbd = a†bda1 − a†adaab − a
†
abcdaac + a†abaad + a†cdabc − a

†
1abd − a†bcacd + a†acaabcd , (5.11)

Xcd = a†cda1 + a†abcdaab − a
†
adaac + a†acaad − a†bdabc + a†bcabd − a

†
1acd − a†abaabcd . (5.12)

Inspection of eq. (5.6) reveals that the Hamiltonian displays several conservation laws.

It is natural to look for a Bogoliubov transformation of the modes which makes some of

the symmetries apparent. In addition, one would also like this transformation to simplify

the convoluted a-mode expression |W(p,n,m)〉〉 for the OTOCs (5.36). Motivated by this, we

look for a transformation where the first boson b1 is associated with the macroscopically

occupied mode in eq. (5.36), and choose the other modes bj to satisfy canonical commu-

tation relations. While this can be done in different ways, it turns out that a particularly

convenient transformation is the one defined by eq. (3.30), where Cn,m is the element in

the line n and in the column m of the matrix

C =



1 −1 −1 −1 1 1 1 −1

i −i i i i −i −i −i
1 1 −1 1 −1 1 −1 −1

i i i −i −i −i i −i
i i i −i i i −i i

−1 −1 1 −1 −1 1 −1 −1

i −i i i −i i i i

−1 1 1 1 1 1 1 −1


. (5.13)

Indeed, after this Bogoliubov transformation the form of the Hamiltonian immediately

reveals the presence of additional symmetries which can be directly exploited for our com-

putations.
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It is straightforward to rewrite the operators (5.7)–(5.12), and hence the Hamilto-

nian (5.6), in terms of the new modes bj . In particular, we have

Xab = i(b†1b2 + b†2b1 + b†3b4 + b†4b3 − b†5b5 + b†6b6 + b†7b7 − b†8b8) , (5.14)

Xac = −b†1b2 + b†2b1 + b†3b4 − b†4b3 − b†5b6 + b†6b5 + b†7b8 − b†8b7 , (5.15)

Xad = −i(b†1b1 − b†2b2 − b†3b3 + b†4b4 − b†5b6 − b†6b5 − b†7b8 − b†8b7) , (5.16)

Xbc = −i(b†1b1 − b†2b2 − b†3b3 + b†4b4 + b†5b6 + b†6b5 + b†7b8 + b†8b7) , (5.17)

Xbd = b†1b2 − b†2b1 − b†3b4 + b†4b3 − b†5b6 + b†6b5 + b†7b8 − b†8b7 , (5.18)

Xcd = i(b†1b2 + b†2b1 + b†3b4 + b†4b3 + b†5b5 − b†6b6 − b†7b7 + b†8b8) . (5.19)

5.2 Extracting OTOCs and entropies

We now wish to show how to derive an explicit expression for the vectors |W(p,n,m)〉〉,
|W

S
(2)
AC(¯̀)

〉〉 and |W
S

(2)
AD(¯̀)

〉〉 in eqs. (3.39), (3.42) and (3.43), respectively. In order to simplify

this task, we start by proving the following lemma. Let

|WN 〉〉 =
∑

n1+···+nabcd=N

1√
N !n1! · · ·nabcd!

∑
π∈SN

π
N∏
x=1

αx(zx)π−1|n1, . . . , nabcd〉, (5.20)

where zx ∈ {1, ab, ac, ad, bc, bd, cd, abcd} is the operator at site x for the permutation π,

cf. (3.26) and αx(zx) constants. Then

|WN 〉〉 =
1√
N !

N∏
x=1

(
abcd∑
z=1

αx(z)a†z

)
|Ω〉 . (5.21)

The equivalence between eqs. (5.20) and (5.21) is best established by directly expanding

the product in eq. (5.21), and regrouping the different terms.

Next, we introduce some notations to handle our subsequent calculations in a compact

way. In particular, let us rewrite the basis operator O~n in eq. (3.26) as

O~n =
1√

N !n1! · · ·nabcd!
×
∑
π∈SN

πΨab
abΨ

ac
acΨ

ad
adΨ

bc
bcΨ

bd
bdΨ

cd
cdΨ

abcd
abcd π

−1 . (5.22)

Here we introduced the notations Ψab
ab =

∏
p∈Iab ψ

a
pψ

b
p, Ψac

ac =
∏
p∈Iac ψ

a
pψ

c
p, . . ., Ψabcd

abcd =∏
p∈Iabcd ψ

a
pψ

b
pψ

c
pψ

d
p , where Iab, Iac, . . . Iabcd are ordered, pairwise disjoint, subsets of

{1, 2, . . . N}, such that |Iab| = nab, . . . |Iabcd| = nabcd. In this notation, upper indexes

in Ψα
β indicate the type of single-site operators, while lower indices specify which subset of

{1, 2, . . . , N} the product of such operators runs over. Consistent with this convention, we

also introduce

Ψa
a =

∏
p∈Ia

ψap , (5.23)

where Ia is the ordered set defined by

Ia = Iab ∪ Iac ∪ Iad ∪ Iabcd , (5.24)
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and whose elements are ordered as they appear in eq. (5.24) (namely, the first nab elements

of Ia are those of Iab with the same order, followed by those of Iac, and so on). Analogously,

one can define Ψb
b, Ψc

c and Ψd
d, where

Ib = Iab ∪ Ibc ∪ Ibd ∪ Iabcd , (5.25)

Ic = Iac ∪ Ibc ∪ Icd ∪ Iabcd , (5.26)

Id = Iad ∪ Ibd ∪ Icd ∪ Iabcd , (5.27)

with the elements of Ia, Ib and Ic ordered as they appear in eqs. (5.25), (5.26) and (5.27).

Finally, let us consider two disjoint subsets A ∪B = {1 . . . N}. Then, we define

Ψab
abA =

∏
p∈Iab∩A

ψapψ
b
p , Ψab

abB =
∏

p∈Iab∩B
ψapψ

b
p , (5.28)

Ψa
aA =

∏
p∈Ia∩A

ψap , Ψa
aB =

∏
p∈Ia∩B

ψap , (5.29)

and analogously for the other cases. Using these notations, we can rewrite

O~n=N
∑
π∈SN

πΨab
abAΨac

acAΨad
adAΨbc

bcAΨbd
bdAΨcd

cdAΨabcd
abcdAΨab

abBΨac
acBΨad

adBΨbc
bcBΨbd

bdBΨcd
cdBΨabcd

abcdBπ
−1

=N
∑
π∈SN

πΨa
aBΨb

bBΨc
cBΨd

dBΨa
aAΨb

bAΨc
cAΨd

dA(−1)γA+γBπ−1

=N
∑
π∈SN

πΨa
aBΨa

aAΨb
bBΨb

bAΨc
cBΨc

cAΨd
dBΨd

dA(−1)γA+γB+δπ−1 , (5.30)

where N = (N !n1! · · ·nabcd!)−1/2 is the normalization. In order to write down the first

line, we used that even string of different fermions commute, while sorting the Majorana

operators in the second line resulted in the phases (−1)γA , (−1)γB . We will not write γA,

γB explicitly, as they will cancel at the end of the calculations. Conversely, one can easily

compute the phase (−1)δ appearing in the last line of eq. (5.30):

(−1)δ = (−1)naA(nbB+ncB+ndB)+nbA(ncB+ndB)+ncAndB

= (−1)(n2
aB+n2

bB+n2
cB+n2

dB)/2 . (5.31)

Here we have used that na = naB + naA and naB + nbB + ncB + ndB are even, which can

be seen by writing explicitly naB = nabB + nacB + nadB + nabcdB etc.

Eq. (5.30) is the starting point to derive the explicit form of the vectors |W(p,n,m)〉〉,
|W

S
(2)
AC(¯̀)

〉〉 and |W
S

(2)
AD(¯̀)

〉〉 for OTOCs and Rényi entropies respectively. These are treated

in the following, in dedicated subsections.

5.2.1 The OTOCs

We wish to calculate the OTOC (3.34) of the initial operators (3.35), (3.36). Starting

from (3.5)–(3.7), we can insert (5.30) for the correlated time evolution operator, where sim-

ply A = {1 . . . N}, B = {} such that there is only one (−1)γ and no (−1)δ and we omit the

labels A,B. Since this expression involves products of even numbers of Majorana fermions
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acting on the same “replica” space, we may switch to the operators χαj in eqs. (3.8), (3.9),

and perform backwards the steps to derive eq. (3.5) from eq. (3.1). This gives

F(p,n,m) =
∑
~n

N c~n(t)
∑
π∈SN

π tr
[
Φ(p,n)ΨaΦ

(p,m)Ψ†bΦ
(p,n)ΨcΦ

(p,m)Ψ†d

]
(−1)γπ−1/2N/2 ,

(5.32)

where Φ(p,n), Φ(p,m) are defined in eqs. (3.35), (3.36). Here, we simply wrote Ψa, Ψb, Ψc

and Ψd without superscript, as we only have a single copy of the fermionic space. More

explicitly, we have, for instance

Ψa =
∏
p∈Ia

ψp , (5.33)

where Ia is defined in (5.24).

Next we move the operator pairs Φ(p,n) and Φ(p,m) together such that they cancel. Of

course, this generates phases through the anti-commutation relations of the fermions; we

obtain

F(p,n,m) =
∑
~n

N c~n(t)
∑
π∈SN

π tr
[
ΨaΨ

†
bΨcΨ

†
d

]
(−1)γ(−1)na,c({iα})+na,b({jα})+nb,c({kα})

× (−1)m(m−1)/2+n(n−1)/2+mnπ−1/2N/2 , (5.34)

where na,c ({iα}) is the number of indeces in {iα}pα=1 which also belong to Ia ∪ Ic [as

defined in eqs. (5.24), (5.26)]. Analogously, na,b ({jα}) and nb,c ({kα}) are, respectively, the

numbers of indexes in {jα}nα=1 and in {kα}mα=1 which also belong to Ia ∪ Ib and Ib ∪ Ic.
Finally, noticing

tr
[
ΨaΨ

†
bΨcΨ

†
d

]
= (−1)(nb+nd)/2 tr [ΨaΨbΨcΨd] = 2N/2(−1)(nb+nd)/2(−1)γ , (5.35)

we see that the factor (−1)γ in (5.34) is exactly canceled. We are left with an equation of

the form (5.20), setting α’s appropriately. Thus we may apply the lemma proved before

[cf. eq. (5.21)], which directly gives

|W(p,n,m)〉〉 =
1√
N !

(−1)m(m−1)/2+n(n−1)/2+nm

× (a†1 − ia†ab + a†ac − ia†ad − ia
†
bc − a

†
bd − ia

†
cd − a

†
abcd)

p

× (a†1 + ia†ab − a†ac − ia
†
ad − ia

†
bc + a†bd + ia†cd − a

†
abcd)

n

× (a†1 − ia†ab − a†ac + ia†ad + ia†bc + a†bd − ia
†
cd − a

†
abcd)

m

× (a†1 + ia†ab + a†ac + ia†ad + ia†bc − a
†
bd + ia†cd − a

†
abcd)

N−p−n−m |Ω〉 . (5.36)

The result (3.39) is finally obtained after expressing the operators a†j in terms of the

b-modes, introduced in eq. (3.30).

5.2.2 The Rényi-2 entanglement entropy S
(2)
AC(¯̀)

Next, we turn to the task of deriving the vector |W
S

(2)
AC(¯̀)

〉〉 introduced in eq. (3.40), corre-

sponding to the exponential of the second Rényi entropy S
(2)
AC(¯̀).
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As we have explained in detail in section 2.2, in order to compute S
(2)
AC(¯̀), we need to

consider the evolved state Ua |Iab〉, where |Iab〉 was introduced in eq. (2.12), while the time

evolution operator Ua acts only on the “replica” space a (cf. figure 3). For our fermionic

system, the reduced density matrix of the union of the disjoint sets A and C can then be

written as (see e.g. [107])

ρAC =
∑
FaA,F

b
C

1

2`
(F aAF

b
C)† 〈Iab|Ua†(F aAF bC)Ua|Iab〉 . (5.37)

Here we denoted by {F aA}, and {F bC} a complete basis of operators in A, C respectively;

namely F aA and F bC take value in all the possible strings of Majorana operators supported

in A and C. Here, as before, we followed the convention that upper indexes indicate the

type of single-site operators, while lower indices specify which subset of {1, 2, . . . , N} the

product of such operators runs over. Through simple manipulations, we have

tr
[
ρ2
AC

]
=

2`

22`

∑
FA,FC

〈Iab|Ua†︸ ︷︷ ︸
〈Iab|Ub−

F aAF
b
CU

a |Iab〉 〈Icd|U c†︸ ︷︷ ︸
〈Icd|Ud−

F d†C F
c†
A︸ ︷︷ ︸

F cAF
d
C(−1)α

U c |Icd〉 (5.38)

=
1

2`

∑
FA,FC

(−1)α 〈Iab| ⊗ 〈Icd| F aA ⊗ F cA Ua+U
b
−U

c
+U

d
− F

b
C ⊗ F dC |Iab〉 ⊗ |Icd〉 ,

where Uα±(t) are defined in eq. (3.14). From this equation we clearly see that, in complete

analogy with the case of the OTOCs, we can write also tr
[
ρ2
AC

]
in the form 〈L| U(t) |R〉. As

anticipated, this allows us to apply a procedure similar to the one employed for the OTOCs,

and derive the vector |W
S

(2)
AC(¯̀)

〉〉. In particular, we can use the notations introduced in

section 5.2, and exploit directly eq. (5.30). This yields straightforwardly

tr
[
ρ2
AC

]
=

1

2`
√
N !n1! · · ·nabcd!

∑
~n

c~n(t)
∑
π∈SN

π(−1)γA+γB+δ (5.39)

×
∑
FA,FC

(−1)α 〈Iab|F aAΨa
aBΨa

aAΨb
bBΨb

bAF
b
C |Iab〉〈Icd|F cAΨc

cBΨc
cAΨd

dBΨd
dAF

d
C |Icd〉︸ ︷︷ ︸

(∗)

π−1 .

Next, we compute

(∗) =
∑
FA,FC

〈Iab|Ψb
bBΨb

bAF
a
AΨa

aBΨa
aAF

b
C |Iab〉 〈Icd|Ψd

dBΨd
dAF

d†
C F

c†
A Ψc

cBΨc
cA|Icd〉

=
∑
FA,FC

〈Iab|(Ψa
bBΨa

bA)†F aAΨa
aBΨa

aAF
b
C |Iab〉 〈Icd|F d†C (Ψc

dBΨc
dA)†F c†A Ψc

cBΨc
cA|Icd〉

=
∑
FA,FC

〈Iab|Ψa†
bAΨa†

bBF
a
AΨa

aBΨa
aAF

a†
C |Iab〉 〈Icd|F cCΨc†

dAΨc†
dBF

c†
A Ψc

cBΨc
cA|Icd〉

=
∑
FA,FC

(−1)naB#FA+ndB#FA 〈I|Ψ†bA Ψ†bBΨaB︸ ︷︷ ︸
2−¯̀/2 tr Ψ†bBΨaB

FAΨaAF
†
C |I〉

× 〈I|FCΨ†dAF
†
A Ψ†dBΨcB︸ ︷︷ ︸

2−¯̀/2 tr Ψ†dBΨcB

ΨcA|I〉 (5.40)
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In (5.40), all Majorana operators are in the same system, so we leave away the doubled

system label. To extract the traces, note that those are the only operators acting on the

region B of the system. Thus the Majorana fermions on those sites B already have to

cancel in pairs, or the expectation value 〈I| · |I〉 will be zero. Similarly, the only value of

FC with non-zero contribution has

Ψ†bAFAΨaAF
†
C = ±1⇒ FC = ±Ψ†bAFAΨaA , (5.41)

which can be inserted into the second expectation value, canceling the ±1 and giving

(∗) =
1

2¯̀/2
tr
[
Ψ†bBΨaB

] 1

2¯̀/2
tr
[
Ψ†dBΨcB

]
〈I|I〉

× 〈I|Ψ†bA
∑
FA

(−1)#(ΨaAΨ†dA)#FAFAΨaAΨ†dAF
†
AΨcA|I〉

= 2−
¯̀

tr
[
Ψ†bBΨaB

]
tr
[
Ψ†dBΨcB

]
tr
[
ΨaAΨ†dA

]
tr
[
Ψ†bAΨcA

]
= 2−

¯̀
(−1)

nb+nd
2

+nbB+ndB tr [ΨaBΨbB] tr [ΨcBΨdB] tr [ΨaAΨdA] tr [ΨbAΨcA] . (5.42)

Here, in order to go from the first to the second line, we made use of the identity (B.8) in

appendix B.2. The last line of (5.42) is non-zero only for

n1 = n1B + n1A , nab = nabB , nac = 0 ,

nad = nadA , nbc = nbcA , nbd = 0 ,

ncd = ncdB , nabcd = nabcdB + nabcdA .

(5.43)

With this we see that the traces evaluate as (−1)γB+γA . Also, it shows that naB ≡ nbB ≡
nbA ≡ ncA ≡ ncB ≡ ndB (mod 2), such that (−1)δ = +1. Putting all together, we get

tr ρ2
AC =

∑
~n

c~n(t)√
N !n1! · · ·nabcd!

×
∑
π∈SN

π (−1)(nb+nd)/2δ(π)π−1 (5.44)

where the Kronecker delta δ(π) enforces the constraints (5.43). This expression can also

be cast into the form (5.20) by setting some α’s to zero. Then eq. (5.21) gives us

|W
S

(2)
AD(¯̀)

〉〉 =
1√
N !

[
ia†ab + ia†cd + (a†1 − a†abcd)

]` [
ia†ad + ia†bc + (a†1 − a†abcd)

]¯̀

|Ω〉 . (5.45)

Transformation to b-modes (3.30) finally yields the result anticipated in eq. (3.42).

An analogous treatment can be carried out for the case of the entropy S
(2)
AD. Since the

technical steps are very similar, we report them in appendix D.

5.3 Some large-N limits

In this section, we finally show how one can compute the limit N → ∞, while keeping

time t fixed, for the OTOCs and the Rényi-2 entropies, and derive in particular eqs. (4.2)

and (4.11).

We start with the case of OTOCs, and consider eq. (3.44). As a first simplification, we

only need to keep modes b1 through b4 in the Hamiltonian and initial state 〈〈U(0)| as the
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others are not present in |W(p,n,m)〉〉. Next, we switch to ladder operators with an unusual

normalization, specifically

b̃†i |ni〉b̃ = |ni + 1〉b̃ , b̃i |ni〉b̃ = ni |ni − 1〉b̃ . (5.46)

This now allows us to take the leading order in N for each term of the exponential eHt,

using that b̃1 ∼ N as p, n,m� N . We obtain

lim
N→∞

〈〈U(0)|eHt|W(p,n,m)〉〉 =

∞∑
m=0

〈〈U(0)|
(

lim
N→∞

H

)m
|W(p,n,m)〉〉tm/m! , (5.47)

with

lim
N→∞

H = HA +HB +HC , (5.48)

HA =
2

3
(b̃†22 b̃

2
1/N

2 − 1)b̃†2b̃2, (5.49)

HB =
2

3N3
b̃†32 b̃

3
1b̃
†
4b̃3, (5.50)

HC = −2

3
b̃†3b̃3 . (5.51)

As 〈〈U(0)| (b̃†22 b̃
2
1/N

2 − 1) = 0 at the highest order in N , terms with HA do not contribute

at the leading order. For the OTOC Fx,y(t), also HB and HC cannot occur, because

|Wx,y〉〉 (3.39) does not contain any b3-modes. The asymptotic result is then the constant

Fx,y(t) → 〈〈U(0)|1|Wx,y〉〉 = −1, as reported in (4.3). In contrast, for the OTOC Fx,x(t),

the state |Wx,x〉〉 does contain one b3-mode such that HB can appear at most once. The

remaining Hamiltonian is still simple enough to finally derive the exponential decay (4.2).

We stress that we can only expect these limits to be point-wise in t due to the exchange of

limits in (5.47); in fact, convergence is clearly not uniform, as can be seen from the exact

numerical results.

The case of the entropy S
(2)
AC(t) is treated along similar lines. We first perform a further

mode transformation

c1 = (b1 − b2)/
√

2 , c2 = (b1 + b2)/
√

2 ,

c3 = (b3 + b4)/
√

2 , c4 = (b4 − b3)/
√

2 , (5.52)

such that

|W
S

(2)

AC(¯̀)

〉〉 =
2N√
N !

1

2¯̀(c†1)`(c†1 + c†2 − c†3 − c†4)
¯̀ |Ω〉 . (5.53)

We may now follow the same procedure as for the OTOCs. In fact, the Hamiltonian has

the exact same form in terms of the modes bj and cj . Taking ¯̀� N , eq. (5.48) is therefore

valid, after substituting the modes b̃j with c̃j . Now, the initial state

〈〈U(0)| = 〈Ω| (c1 − c3)N
1√
N !2N

(5.54)

annihilates both HA and HB ensuing in a very simple (quadratic) asymptotic Hamiltonian

HC . From this, eq. (4.11) follows straightforwardly.
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6 Conclusions

In this work, we have developed an approach to analyze the chaotic dynamics in the

Brownian SYK model, a system of N Majorana fermions coupled together via random,

time-dependent interactions. We have shown that the OTOCs and the tripartite informa-

tion of the unitary evolution can be studied as a quench problem (at imaginary times) in

a system of N qudits, which can be conveniently investigated in terms of bosonic modes,

due to an emergent permutational symmetry. Exploiting the latter, we were able to pro-

duce numerically exact results up to N = 106, and to study several features of the chaotic

dynamics at finite size.

We have analyzed in detail the dependence of the OTOCs on the observables chosen,

highlighting the pieces of information on the initial operators which are not washed out by

the chaotic dynamics. In particular, after the scrambling time t∗(N) ∼ lnN , the OTOCs

of distinct operators converge to the same curve if they have the same length, namely if

they are written as products of the same number of Majorana fermions, whereas the curves

of different OTOCs can be distinguished after the scrambling time t∗(N) if the length

is different. Furthermore, we have verified that the exponent of the initial exponential

growth of the OTOCs is universal and performed a data collapse for increasing system

sizes. Regarding the tripartite information, we have shown that its evolution is non-trivial

during the initial scrambling time, while at large times it always decays exponentially to

the corresponding Haar-scrambled value; this result is consistent with the rigorous recent

findings of refs. [103, 104]

The approach developed in this paper can be generalized to other models where the

Hamiltonian displays all-to-all random interactions, with time-dependent Brownian disor-

der. Indeed, one can straightforwardly follow the steps outlined in section 3, and study

the dynamics of OTOCs and tripartite information as a quench problem in a qudit system

with site permutational symmetry. In turn, this implies that the effective imaginary-time

dynamics takes place in a Hilbert space whose dimension grows as a polynomial in N .

Of course, one would need to investigate for each case whether a further reduction of the

effective dimension takes place, as for the Brownian SYK model studied in this paper.

It is possible that the final formulas obtained with our method (which have been

used in this work mainly for efficient numerical computations) could be simplified further

and evaluated to exact analytic expressions in the large-N limit. In fact, by means of a

different approach, an exact result for a suitable average of OTOCs was found in ref. [98]

for the Brownian dynamics generated by a disordered Hamiltonian in a qudit system. It

would be interesting to see whether ideas related to the work [98] could be used here, to

obtain analytic expressions for the OTOCs of arbitrary observables and for the tripartite

information, in the large-N limit.

Finally, the approach presented in this paper could also be applied to compute quan-

tities involving higher moments of the evolution operator U(t), such as Rényi entropies of

higher order, or the Rényi-2 operator entanglement entropy of local observables [109, 110].

In these cases, however, the application of our method would be inevitably more compli-

cated. More importantly, it is not granted that a reduction of the Hilbert-space dimension
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could be achieved by means of a transformation analogous to (3.30). In any case, it would

be certainly interesting to investigate these points further.
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A Non-interacting case: q = 2

In this section, we study the Brownian SYK model (2.1) for q = 2. We choose the constant

σJ in (2.2) such that the disorder’s correlations are given by

Jij(t)Ji′j′(t′) = δii′δjj′δ(t− t′)
1

N
. (A.1)

Each disorder realization is governed by a free Hamiltonian, therefore we do not expect

any scrambling of operators or decay of OTOCs.

The method developed in this article can be applied to arbitrary q and we may study

the non-interacting case within its framework. The states

|W(p,n,m)〉〉, |WS
(2)
AC(¯̀)

〉〉, |W
S

(2)
AD(¯̀)

〉〉, and |U(0)〉〉 (A.2)

representing the OTOC (3.39), Rényi-2 entanglement entropies (3.40) and (3.41), and

initial time evolution operator (3.33) are independent of q as long as q is even. However,

the effective Hamiltonian reflects the change of q and is simpler. Along the same lines as

for q = 4 (see section 3.2), we can compute

d

dt
U(t) = LU(t), (A.3)

L =
1

N

−2

(
N

2

)
−

∑
α,β=a,b,c,d

α<β

∑
i<j

(ψαi ψ
β
i )(ψαj ψ

β
j )

 . (A.4)

The corresponding representation of the effective Hamiltonian after operator-state

mapping in bosonic modes is

|U(t)〉〉 = eHt |U(0)〉〉, (A.5)

H =
1

N

[
−2

(
N

2

)
− 3N − 1

2

cd∑
r=ab

X2
r

]
(A.6)

= − 4

N
(b†1b

†
3 − b†2b†4)(b1b3 − b2b4), (A.7)
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Figure 11. OTOCs Fx,x(t) (solid lines) and Fx,y(t) (dashed lines) for single site Majorana fermions.

We show the analytical results (A.9) and (A.8) for various system sizes N . At long times, they

decay to the same value −1 + 2
N 6= 0, indicating the absence of scrambling.

where the six Xr operators are the same as in the corresponding expression (3.28) for q = 4.

For the two simple OTOCs Fx,y(t) and Fx,x(t) the dynamics only explores the two-

level subspace spanned by |N − 1, 0, 1, 0〉 and |N − 2, 1, 0, 1〉. Therefore we can compute

these OTOCs analytically and obtain

Fx,y(t) = −1 +
2

N
− 2

N
e−4t , (A.8)

Fx,x(t) = −1 +
2

N
+

2

N
e−4t(N − 1) . (A.9)

The curves are plotted in figure 11. As expected, the OTOCs do not decay to zero at long

times, as the non-interacting model is not chaotic. Since the tripartite information can be

written as an average of OTOCs [9], it too will lack the characteristics of scrambling.

We now make a comment on the so-called “length” of the operator ψj(t), see e.g. [38].

At any time t, we can always write

ψj(t) =
∑
s

∑
{kj}

ψk1 · · ·ψks︸ ︷︷ ︸
length s

cs,{kj}(t) , (A.10)

and define the average length L(t) as

L(t) =
∑
s

s
∑
{kj}

|cs,{kj}|2 . (A.11)

It can be shown that the average length is related to an appropriate average over OTOCs,

namely [38]

L(t) =
N + Fx,x(t) + (N − 1)Fx,y(t)

2
. (A.12)

Using this relation, if follows from our results (A.8)–(A.9) that the length is constant

1. This is expected because the Gaussian dynamics preserves the length of products of

Majorana operators.
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Figure 12. For the free case (q = 2), we show the time behavior of the entanglement entropies

S
(2)
AC (a), S

(2)
AD (b) and tripartite information I

(2)
3 (c) for several system sizes N and fixed subsystem

size ¯̀= 10. In (a), we also indicate the limit (A.13). The tripartite information is always positive,

which means that the non-interacting system does not scramble quantum information.
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Figure 13. The entanglement entropies S
(2)
AC (a) and S

(2)
AD (b) for various subsystem sizes ¯̀ and

several times t in the free case. The black dotted lines show the values reached with Haar-scrambling.

Next, we can calculate the entanglement entropies numerically, just like in the interact-

ing case. We present the results in figure 12. In the limit N →∞, ¯̀, t fixed, we can derive

lim
N→∞,¯̀,t fix

S
(2)
AC(¯̀, t) = ¯̀ln

2

1 + e−4t
, (A.13)

along the same lines as in section 5.3. While the entropy S
(2)
AC(¯̀) saturates to its maximal

Haar value at large N and t, the behavior of S
(2)
AD(¯̀) is qualitatively different from the

interacting case (figure 8). This leads to the tripartite information being positive at all

times and system sizes, indicating the absence of scrambling.

As for the interacting case, we can also study the entanglement entropies’ dependence

on the subsystem size, see figure 13. Comparing against figures 9 and 10, we see that in

the free case, the entanglement entropies do not reach the maximal Haar scrambled values

at finite ratios ¯̀/N .

B Relation between OTOCs and Rényi-2 entropies

In this appendix we review the relation between OTOCs and Rényi-2 entropies in the

case of unitary evolution operators defined on qubit systems, and generalize the latter for
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fermionic (Majorana) systems. We focus on the configuration displayed in figure 2, taking

the regions A and C of the same size and position (and analogously for B and D).

B.1 The case of Pauli matrices

We start by giving a derivation of the aforementioned relation for a system of qubits, along

the lines of the one in ref. [9]. First, we can write the reduced density matrix ρAC as

ρAC =
1

2a+c

∑
j,k

(
OAj O

C
k

)† 〈I|U †ABOAj OCk UAB|I〉 , (B.1)

where the sum is over the complete bases {OAj } and {OCk } of strings of Pauli operators in

A and C, while a and c are equal to the number of sites in A and C. The state |I〉 is the

maximally entangled state connecting A ∪B and C ∪D, satisfying

OCj |I〉 =
(
OAj
)T |I〉 , (B.2)

while UAB is the evolution operator acting non-trivially only on the system A ∪B. Then,

using the orthogonality of the Pauli operators, and after simple simplifications, we have

tr
[
ρ2
AC

]
= 2−a−c−2N

∑
j,k

tr
[
U †ABO

A
j UABO

A
k

]
× tr

[
OAk U

†
ABO

A
j UAB

]
. (B.3)

Consider now the sum

2−a−c−3N
∑
j,k,j̃,k̃

tr
[
OA
j̃
OB
k̃

(
U †ABO

A
j UABO

A
k

)
OA
j̃
OB
k̃

(
OAk U

†
ABO

A
j UAB

)]
. (B.4)

Using the identity [9] ∑
j

AjOAj = |A| trA{O} , (B.5)

(here Aj are a complete basis of operators for the Hilbert space associated with A, while

|A| is its dimension), one immediately obtains that the r.h.s. of eq. (B.3) is equal to (B.4).

Therefore

tr
[
ρ2
AC

]
= 2−a−c−3N

∑
j,k,j̃,k̃

tr
[
OA
j̃
OB
k̃

(
U †ABO

A
j UABO

A
k

)
OA
j̃
OB
k̃

(
OAk U

†
ABO

A
j UAB

)]
=

1

23N−a+c

∑
j,l

tr
[
OBl O

A
j (t)OBl O

A
j (t)

]
(B.6)

In the last step, we summed over k, used once again the identity (B.5), and finally renamed

the indexes k̃ = l. Putting all together, we find

1

4a+d

1

2N

∑
j,k

tr
[
OAj (t)ODk (0)OAj (t)ODk (0)

]
= 2N−a−d−S

(2)
AC . (B.7)

This is exactly the same result as in [9]. An analogous derivation holds for the case of

S
(2)
AD. This equation encodes a close connection between the tripartite information and the

OTOCs, and allows one to establish that chaos, as measure by small values of all OTOCs,

implies scrambling [9]. In the next section we show that a similar relation, with the addition

of proper signs, holds in the case of fermionic systems.
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B.2 The case of Majorana operators

For Majorana operators one needs a different treatment. Indeed, the identity (B.5) is no

longer valid, but should be modified as follows. Let O be an operator with a well defined

parity of Majorana operators, i.e. O is the sum of strings of operators that are either all even

or all odd. Then, by expanding in the operator basis of Majorana operators, one can prove∑
j

(−1)`j`OAjOA†j = |A| trA{O}. (B.8)

Here `j is the length of the operator Aj . For example, if Aj = ψ1ψ4 then `j = 2.

Analogously, `O is the length of one of the terms in O. Since all these terms have the same

parity, it does not matter which one we choose. We can then proceed as in the previous

sections, now paying attention to the order of the operators involved in the calculations.

First, we have

ρAC =
1

2a+c

∑
j,k

(
OAj O

C
k

)† 〈I|U †ABOAj OCk UAB|I〉 , (B.9)

where now a and c are half the number of sites in A and C. Proceeding as before, we have

tr
[
ρ2
AC

]
= 2−a−c−2n

∑
j,k

tr
[
U †ABO

A
j UAB

(
OAk
)†]× tr

[
OAk U

†
AB

(
OAj
)†
UAB

]
, (B.10)

where n = N/2. Consider now the sum

2−a−c−3n
∑
j,k,j̃,k̃

(−1)`j̃(`j+`k)+`k̃(`j+`k)

× tr

[
OA
j̃
OB
k̃

(
U †ABO

A
j UAB

(
OAk
)†)(

OB
k̃

)† (
OA
j̃

)† (
OAk U

†
AB

(
OAj
)†
UAB

)]
. (B.11)

Noticing now that the evolution operator can always be written as sum of even strings

of Majorana operators, one can directly apply the identity (B.8) to prove that the r.h.s.

of (B.10) is equal to (B.11). On the other hand, using

`j̃(`j + `k) + `k̃(`j + `k) = `j(`j̃ + `k̃) + `k(`j̃ + `k̃) , (B.12)

we can sum over k by employing once again the identity (B.8), and finally rename k̃ = r.

Putting all together, we obtain

tr
[
ρ2
AC

]
=

1

23n−a+c

∑
j,r

(−1)`j`rtr
[
OBr O

A
j (t)

(
OBr
)† (

OAj (t)
)†]

. (B.13)

We see that additional signs appear in the sum over the OTOCs with respect to the case

of Pauli matrices. However, the Rényi-2 entropy still encodes global information about

the sum of the OTOCs over extended regions of the system.
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C Details on the numerical implementation

In this section, we explain a few details for the numerical computation. For the OTOCs,

we implement (3.44) in terms of the modes b1, b2, b3, b4, as explained in the main text. For

the entropies however, we use different modes. While we could likewise implement (3.40)

and (3.41) in b-modes, this introduces large numerical error as N increases, due to can-

cellations of large numbers. Instead we have found that for the entropy S
(2)
AC , a numerical

calculation in terms of modes c1, c2, c3, c4 (5.52) is most stable. For the entropy S
(2)
AD, we

found that using the modes b1, b2, c3, c4 gives the most stable results. For our numerical

calculation we have therefore transformed initial state |U(0)〉〉 (3.33), effective Hamiltonian

H (5.6) and |W
S

(2)
AC,BD(¯̀)

〉〉 (3.42)–(3.43) into these modes.

D The Rényi-2 entanglement entropy S
(2)
AD(¯̀)

In this appendix, we turn to the task of deriving the vector |W
S

(2)
AD(¯̀)

〉〉 introduced in

eq. (3.41), corresponding to the exponential of the second Rényi entropy S
(2)
AD(¯̀). The

discussion goes along the same lines of the one presented in section 5.2.2 for the entropy

S
(2)
AC(¯̀). Writing out the partial trace as done for the other entropy, we get

ρAD =
∑
FaA,F

b
D

1

2N/2
(F aAF

b
D)† 〈Iab|Ua†(F aAF bD)Ua|Iab〉 , (D.1)

where we denoted by {F aA} and {F bD} a complete basis for the operators in A, D respec-

tively; namely F aA and F bD take value in all the possible strings of Majorana operators

supported in A and D. We can continue along the same lines as for the other entropy,

giving

tr
[
ρ2
AD

]
=

1

2N/2
√
N !n1! · · ·nabcd!

∑
~n

c~n(t)
∑
π∈SN

π(−1)γA+γB+δ (∗)π−1 . (D.2)

Here the term (∗) can be evaluated as for the other entropy up until (5.40). Then, however,

Ψa†
bB and Ψa

aB are not the only parts in the first expression acting on this subspace, now F aD
also does. So, continuing from (∗) and dropping the doubled system label as all operators

are in the same system, we have

(∗) =
∑
FA,FD

〈Iab|Ψa†
bAΨa†

bBF
a
AΨa

aBΨa
aAF

a†
D |Iab〉 〈Icd|F cDΨc†

dAΨc†
dBF

c†
A Ψc

cBΨc
cA|Icd〉

=
∑
FA,FD

〈I|Ψ†bAFAΨaAΨ†bBΨaBF
†
D|I〉 〈I|FDΨ†dBΨcBΨ†dAF

†
AΨcA|I〉 . (D.3)

The left side is only non-zero for

Ψ†bAFAΨaA = ±1⇒ F †A = ±ΨaAΨ†bA (D.4)

Ψ†bBΨaBF
†
D = ±1⇒ FD = ±Ψ†bBΨaB (D.5)
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such that we can evaluate the sum
∑

FA,FD
, inserting these in the right side. We get

(∗) = 〈I|I〉 〈I|Ψ†bBΨaBΨ†dBΨcB Ψ†dAΨaAΨ†bAΨcA|I〉
= tr Ψ†bBΨaBΨ†dBΨcB/2

¯̀/2 tr Ψ†dAΨaAΨ†bAΨcA/2
¯̀/2

= tr ΨdBΨcBΨbBΨaB/2
¯̀/2 tr ΨaAΨbAΨcAΨdA/2

¯̀/2(−1)
nb+nd

2
+nbB+ndB

= tr(ΨaBΨbBΨcBΨdB)†/2
¯̀/2 tr ΨaAΨbAΨcAΨdA/2

¯̀/2(−1)
nb+nd

2
+nbB+ndB

× (−1)(naB(naB−1)+nbB(nbB−1)+ncB(ncB−1)+ndB(ndB−1))/2 (D.6)

= (−1)γA+γB (−1)(nb+nd)/2(−1)(naB(naB−1)+nbB(nbB+1)+ncB(ncB−1)+ndB(ndB+1))/2 .

The traces now give (−1)γA and (−1)γB , respectively. Inserted back into (5.40), these

cancel, and the δ partially cancels the other phases,

tr
[
ρ2
AD

]
=

1

2N/2
√
N !n1!···nabcd!

∑
~n

c~n(t)
∑
π∈SN

π(−1)(nb+nd)/2(−1)(−naB+nbB−ncB+ndB)/2π−1 .

(D.7)

Again, this has the form (5.20) with suitable choices of α’s. Then, according to eq. (5.21)

we obtain

|W
S

(2)
AC(¯̀)

〉〉 =
1

2N/2
√
N !

[
a†1 + ia†ab + ia†ad + ia†bc + ia†cd − a

†
abcd + a†ac − a†bd

]`
×
[
a†1 + ia†ab + ia†ad + ia†bc + ia†cd − a

†
abcd − a†ac + a†bd

]¯̀

|Ω〉 . (D.8)

Finally, the transformation to b-modes in (3.30) results in eq. (3.43).

Open Access. This article is distributed under the terms of the Creative Commons
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[13] H.-J. Stoöckmann, Quantum chaos: an introduction, Cambridge University Press,

Cambridge, U.K. (2007).

[14] Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096]

[INSPIRE].

[15] N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast

scrambling conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

[16] P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random

subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

[17] S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296]

[INSPIRE].

[18] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at

Fundamental Physics Prize Symposium, University of California, Santa Barbara, CA,

U.S.A., 12 February 2014.

[19] L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44

[arXiv:1403.5695] [INSPIRE].

[20] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and

black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[21] A. Kitaev, A simple model of quantum holography (part 1), talk at KITP strings seminar

and Entanglement 2015 program, University of California, Santa Barbara, CA, U.S.A., 7

April 2015.

[22] A. Kitaev, A simple model of quantum holography (part 2), talk at KITP strings seminar

and Entanglement 2015 program, University of California, Santa Barbara, CA, U.S.A., 27

May 2015.

[23] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg

magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

[24] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94

(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[25] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two

dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]

[INSPIRE].

[26] J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04

(2016) 001 [arXiv:1601.06768] [INSPIRE].

– 38 –

https://doi.org/10.1103/PhysRevLett.112.011601
https://arxiv.org/abs/1305.7244
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,112,011601%22
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://arxiv.org/abs/1511.04021
https://inspirehep.net/search?p=find+J+%22JHEP,1602,004%22
https://doi.org/10.1038/s41586-019-0952-6
https://arxiv.org/abs/1806.02807
https://inspirehep.net/search?p=find+J+%22Nature,567,61%22
https://doi.org/10.1073/pnas.1811033116
https://doi.org/10.1073/pnas.1811033116
https://arxiv.org/abs/1805.08215
https://inspirehep.net/search?p=find+J+%22Proc.Nat.Acad.Sci.,116,6689%22
https://doi.org/10.1007/978-1-4612-0983-6
https://doi.org/10.1088/1126-6708/2008/10/065
https://arxiv.org/abs/0808.2096
https://inspirehep.net/search?p=find+J+%22JHEP,0810,065%22
https://doi.org/10.1007/JHEP04(2013)022
https://arxiv.org/abs/1111.6580
https://inspirehep.net/search?p=find+J+%22JHEP,1304,022%22
https://doi.org/10.1088/1126-6708/2007/09/120
https://arxiv.org/abs/0708.4025
https://inspirehep.net/search?p=find+J+%22JHEP,0709,120%22
https://doi.org/10.1007/JHEP12(2014)046
https://arxiv.org/abs/1312.3296
https://inspirehep.net/search?p=find+J+%22JHEP,1412,046%22
http://online.kitp.ucsb.edu/online/joint98/kitaev/
https://doi.org/10.1002/prop.201500093
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+J+%22FortschritteDerPhysik,64,24%22
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D93,086006%22
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
https://doi.org/10.1103/PhysRevLett.70.3339
https://arxiv.org/abs/cond-mat/9212030
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,70,3339%22
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D94,106002%22
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01857
https://doi.org/10.1007/JHEP04(2016)001
https://doi.org/10.1007/JHEP04(2016)001
https://arxiv.org/abs/1601.06768
https://inspirehep.net/search?p=find+J+%22JHEP,1604,001%22


J
H
E
P
1
1
(
2
0
1
9
)
0
3
8

[27] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum

mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

[28] R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric

transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and

holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].

[29] I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the

Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].

[30] Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized

Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

[31] X.-Y. Song, C.-M. Jian and L. Balents, Strongly correlated metal built from

Sachdev-Ye-Kitaev models, Phys. Rev. Lett. 119 (2017) 216601 [arXiv:1705.00117]

[INSPIRE].

[32] D. Chowdhury, Y. Werman, E. Berg and T. Senthil, Translationally invariant non-Fermi

liquid metals with critical Fermi-surfaces: solvable models, Phys. Rev. X 8 (2018) 031024

[arXiv:1801.06178] [INSPIRE].

[33] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106

[arXiv:1503.01409] [INSPIRE].

[34] D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions

in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].

[35] A. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity,

Sov. Phys. JETP 28 (1969) 1200 [Zh. Eksp. Teor. Fiz. 55 (1969) 2262].

[36] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067

[arXiv:1306.0622] [INSPIRE].

[37] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051

[arXiv:1409.8180] [INSPIRE].

[38] D.A. Roberts, D. Stanford and A. Streicher, Operator growth in the SYK model, JHEP 06

(2018) 122 [arXiv:1802.02633] [INSPIRE].

[39] D.A. Roberts and B. Swingle, Lieb-Robinson bound and the butterfly effect in quantum field

theories, Phys. Rev. Lett. 117 (2016) 091602 [arXiv:1603.09298] [INSPIRE].

[40] I.L. Aleiner, L. Faoro and L.B. Ioffe, Microscopic model of quantum butterfly effect:

out-of-time-order correlators and traveling combustion waves, Annals Phys. 375 (2016) 378

[arXiv:1609.01251] [INSPIRE].

[41] B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev.

B 95 (2017) 060201 [arXiv:1608.03280] [INSPIRE].

[42] N. Yunger Halpern, Jarzynski-like equality for the out-of-time-ordered correlator, Phys. Rev.

A 95 (2017) 012120 [arXiv:1609.00015] [INSPIRE].

[43] A.A. Patel and S. Sachdev, Quantum chaos on a critical Fermi surface, Proc. Nat. Acad.

Sci. 114 (2017) 1844 [arXiv:1611.00003] [INSPIRE].

[44] I. Kukuljan, S. Grozdanov and T. Prosen, Weak quantum chaos, Phys. Rev. B 96 (2017)

060301 [arXiv:1701.09147] [INSPIRE].
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[109] T. Prosen and I. Pižorn, Operator space entanglement entropy in a transverse Ising chain,

Phys. Rev. A 76 (2007) 032316.

[110] J. Dubail, Entanglement scaling of operators: a conformal field theory approach, with a

glimpse of simulability of long-time dynamics in 1 + 1d, J. Phys. A 50 (2017) 234001

[arXiv:1612.08630] [INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevX.9.031048
https://doi.org/10.1103/PhysRevX.9.031048
https://arxiv.org/abs/1805.05376
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.05376
https://doi.org/10.1103/PhysRevB.100.064305
https://arxiv.org/abs/1808.09812
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.09812
https://doi.org/10.1007/JHEP07(2018)124
https://arxiv.org/abs/1803.08050
https://inspirehep.net/search?p=find+J+%22JHEP,1807,124%22
https://doi.org/10.1007/978-3-0348-0566-7
https://doi.org/10.1103/PhysRevX.7.041015
https://arxiv.org/abs/1704.03041
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,X7,041015%22
https://doi.org/10.1007/s00220-017-2950-6
https://arxiv.org/abs/1606.01914
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,355,905%22
https://doi.org/10.1103/PhysRevLett.122.040404
https://arxiv.org/abs/1806.09637
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,122,040404%22
https://doi.org/10.1209/0295-5075/89/40001
https://doi.org/10.1209/0295-5075/89/40001
https://doi.org/10.1088/1742-5468/2010/04/p04016
https://doi.org/10.1088/1742-5468/2010/04/p04016
https://doi.org/10.1007/JHEP09(2017)120
https://arxiv.org/abs/1708.00871
https://inspirehep.net/search?p=find+J+%22JHEP,1709,120%22
https://doi.org/10.1103/physreva.76.032316
https://doi.org/10.1088/1751-8121/aa6f38
https://arxiv.org/abs/1612.08630
https://inspirehep.net/search?p=find+J+%22J.Phys.,A50,234001%22

	Introduction
	The model and the chaos quantifiers
	The OTOCs and the operator spreading
	Diagnostic of scrambling: the tripartite information in fermionic systems

	Exact approach from emergent permutational symmetry
	Decomposing the dynamical problem
	The generator of the dynamics: mapping to a bosonic system
	The OTOC and the tripartite information 

	The physical results
	The OTOCs: numerical results
	The Rényi-2 tripartite information

	Deriving the key formulas
	The Hamiltonian
	Extracting OTOCs and entropies
	The OTOCs
	The Rényi-2 entanglement entropy S**(2)(AC)(barl)

	Some large-N limits

	Conclusions
	Non-interacting case: q=2
	Relation between OTOCs and Rényi-2 entropies
	The case of Pauli matrices
	The case of Majorana operators

	Details on the numerical implementation
	The Rényi-2 entanglement entropy S**(2)(AD)(barl)

