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Lattice gauge theories (LGTs)1,2 are fundamental for our under-
standing of quantum many-body physics across different 
disciplines ranging from condensed matter3–6 to high-energy 

physics7. However, theoretical studies of LGTs can be extremely 
challenging—particularly in strongly interacting regimes, where 
conventional computational methods are limited8,9. To overcome 
these limitations, alternative numerical tools have been devel-
oped, which enable out-of-equilibrium and finite-density compu-
tations10–13. In parallel, the rapid progress in the field of quantum 
simulation14–17 has sparked a growing interest in designing experi-
mental platforms to explore the rich physics of LGTs18–25. State-of-
the-art experiments are now able to explore the physics of static26 
as well as density-dependent gauge fields27 and have engineered 
controlled few-body interactions28–30, which are the basis for many 
proposed schemes to realize LGTs. First studies of the Schwinger 
model have been performed with quantum-classical algorithms31 
and a digital quantum computer composed of four trapped ions32. 
The challenge for analogue quantum simulators mainly lies in the 
complexity to engineer gauge-invariant interactions between matter 
and gauge fields.

Here, we explore the dynamics of a minimal model for Z2
I

 LGTs 
coupled to matter with ultracold atoms in periodically driven dou-
ble-well potentials33. An alternative technique was recently pro-
posed for digital quantum simulation34. Z2

I
 LGTs are of high interest 

in condensed matter physics13,35–37 and topological quantum compu-
tation38. Our scheme is based on density-dependent laser-assisted 
tunnelling techniques39–42. We use a mixture of bosonic atoms in 
two different internal states to encode the matter and gauge field 
degrees of freedom. The interaction between these states is engi-
neered via resonant periodic modulation43–46 of the on-site potential 
at the inter-species Hubbard interaction47–50. By choosing suitable 
modulation parameters, the effective Floquet model exhibits a Z2

I
 

symmetry33. We present a detailed study of this effective Floquet 
model defined on a double well, which constitutes the basic build-
ing block of the LGT. We discuss the relation between the observed 

dynamics and the ideal model and reveal the potential impact of 
symmetry-breaking terms.

To understand the observed phenomena, it is instructive to con-
sider the properties of an extended one-dimensional (1D) Z2

I
 LGT, 

as captured by the Hamiltonian

ĤZ2 ¼ �P
j
Ja τ̂zhj;jþ1iâ

y
j âjþ1 þ h:c:

 
�P

j
Jf τ̂xhj;jþ1i ð1Þ

Here âyj
I

 describes the creation of a matter particle on lattice site j 
and the Pauli operators τ̂hj;jþ1i

I
, defined on the links between neigh-

bouring lattice sites, encode the gauge field degrees of freedom. The 
elementary ingredients of this Z2

I
 LGT are illustrated in Fig. 1a. Note 

that the illustrations of the Z2
I

 gauge field and Z2
I

 electric field are 
related to the physical implementation of the building block, which 
is discussed later in the text. The matter field has a charge Q̂j ¼ eiπn̂

a
j

I
 

on site j, which is given by the parity of the site occupation, with 
n̂aj ¼ âyj â
I

 the number operator. The dynamics of the matter field 
is coupled to the Z2

I
 gauge field τ̂zhj;jþ1i

I
 with an amplitude Ja. The 

energy scale associated with the electric field τ̂xhj;jþ1i
I

 is Jf.
The model Hamiltonian (equation (1)) commutes with the lat-

tice gauge transformations defined by the local symmetry operators

Ĝj ¼ Q̂j

Y

i:hi;ji
τ̂xhi;ji; Ĥ; Ĝj

 
¼ 0 8j ð2Þ

where 
Q
i:hi;ji
I

 denotes the product over all nearest-neighbour links con-

nected to lattice site j. The eigenvalues of Ĝj

I
 are gj = ±1. The dynam-

ics of the model is constrained by Z2
I

 Gauss’s law, Ĝj ψj i ¼ gj ψj i
I

, in 
analogy to electrodynamics. Since the local values gj are conserved, 
the motion of Z2

I
 charges is coupled to a change of the Z2

I
 elec-

tric field lines on the link connecting the two lattice sites. Gauss’s  
law effectively separates the Hilbert space into different subsectors,  
which are characterized by a set of conserved quantities {gj}.  
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The two configurations sketched in Fig. 1a (lower right) belong  
to the same subsector and illustrate the basic matter–gauge  
coupling according to Gauss’s law. Lattice sites with gj = −1 are 
interpreted as local static background charges (Supplementary 
Information). Different subsectors can be explored by preparing 
suitable initial states.

To gain more insight into the physics of the 1D model (equation (1)),  
we consider a system initially prepared in an eigenstate of the 
electric field operator, with τx = +1 on all links, and a single mat-
ter particle located on site j = 0. For this initial state gj = +1, ∀j ≠ 0 
and gj = −1 for j = 0 (Fig. 1b). In the limit of vanishing electric field 
energy Jf → 0, the matter particle can tunnel freely along the 1D 
chain, thereby changing the electric field on all traversed links. For 
Jf ≠ 0, tunnelling of the matter particle is detuned due to the energy 
of the electric field and the matter particle is bound to the location 
of the static background charge at j = 0. In this regime, the energy of 
the system scales linearly with the distance between the static charge 
and the matter particle, which we interpret as a signature of confine-
ment (Supplementary Information).

Here, we engineer the elementary interactions of the Z2
I

 model 
on a two-site lattice following ref. 33. The matter and gauge fields 

are implemented using two different species denoted a and f  
particles, which are realized by two Zeeman levels of the hyperfine 
ground-state manifold of 87Rb, |a〉 ≡ |F = 1, mF = −1〉 and |f〉 ≡ |F = 1, 
mF = +1〉. We prepare one a and one f particle in each two-site sys-
tem. The matter field is associated with the a particle. The Z2

I
 gauge 

field is the number imbalance τ̂zhj;jþ1i ¼ n̂fjþ1 � n̂fj
I

 of the f particle 
and the Z2

I
 electric field corresponds to tunnelling of the f particle, 

τ̂xhj;jþ1i ¼ f̂ yj f̂
y
jþ1 þ f̂ yjþ1 f̂

y
j

I
, where ̂f yj

I
 is the creation operator of an f par-

ticle on site j and n̂fj ¼ f̂ yj f̂j
I

 is the corresponding number-occupation 
operator. An extension of our scheme to realize extended 1D LTGs 
is presented in the Supplementary Information. It requires exactly 
one f particle per link, while the density of a particles (fermions or 
hard-core bosons) can take arbitrary values.

The driving scheme is based on a species-dependent double- 
well potential with tunnel coupling J between neighbouring  
sites and an energy offset Δf only seen by the f particle. Experimen
tally, it is realized with a magnetic-field gradient, making use 
of the opposite magnetic moments of the two states |a〉 and |f〉 
(Supplementary Information). In the limit of strong on-site inter-
actions U ≫ J (where U is the on-site Hubbard interaction), first-
order tunnelling processes are suppressed but can be restored 
resonantly with a periodic modulation at the resonance frequency 
ℏω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 4J2

p
 U

I
. The full time-dependent Hamiltonian can 

be expressed as

ĤðtÞ ¼ �J ây2â
y
1 þ f̂ y2 f̂

y
1 þ h:c:

 

þU
P
j¼1;2

n̂aj n̂
f
j þ Δf n̂

f
1

þA cos ωt þ ϕð Þðn̂a1 þ n̂f1Þ

ð3Þ

where A is the modulation amplitude and ϕ is the modulation 
phase. For resonant modulation ħω ≈ U and in the high-frequency 
limit ħω ≫ J, the lowest order of the effective Floquet Hamiltonian 
contains renormalized tunnelling matrix elements for both a and 
f particles44–46. For general modulation parameters, the amplitudes 
and phases are operator-valued and explicitly depend on the site-
occupations. For certain values of the modulation phase (ϕ = 0 or 
π), however, these expressions simplify and realize the Z2

I
 model. 

The driving scheme can be understood by considering the individ-
ual photon-assisted tunnelling processes of a and f particles in situ-
ations, where one of the two particles is localized on a particular 
site of the double well. This generates an occupation-dependent 
energy offset for the other particle, which is equal to U (Fig. 2a). 
For all configurations, tunnelling is resonantly restored for energy 
differences νħω between neighbouring sites with renormalized  
tunnelling JJ νðχÞeiνϕ

I
; here ν is an integer, J ν

I
 is the νth-order 

Bessel function of the first kind and χ = A/(ħω) the dimensionless 
driving parameter.

For ϕ = 0, we find that the strength of a particle tunnelling is 
density-independent Ja ¼ JjJ ± 1ðχÞj

I
, however, depending on the 

position of the f particle, the on-site energy difference between 
neighbouring sites is either +U or −U (Fig. 2a). This results in a 
sign-dependence of the renormalized tunnelling ±Ja, which stems 
from the property of odd Bessel functions J�νðχÞ ¼ ð�1ÞνJ νðχÞ

I
 

(Supplementary Information) and is central to our implementation 
of the Z2

I
 symmetry33. It allows us to write the renormalized hopping 

of a particles as Ja τ̂zh1;2i
I

. Note that we drop the link index from now 
on to simplify notations, τ̂  τ̂h1;2i

I
.

Tunnelling of f particles becomes real-valued, with an ampli-
tude that only weakly depends on the position of the a particle. 
Due to the species-dependent tilt Δf = U, the on-site energy differ-
ence between neighbouring sites is either Δf − U = 0 or Δf + U = 2U  
(Fig. 2a). Therefore, tunnelling is renormalized via zero- and  
two-photon processes, resulting in the real-valued tunnelling matrix 

0

naj
1

40–440–4
0.4

0.2

0

j j

+1 –1 +1 +1

+1 +1 +1

b

2 charge

Local 2 symmetry 2 Gauss’s law

2 gauge field

Ja

j = 0

Jf /Ja = 0.1

J a
t /
h

Jf /Ja = 2.0

+1–1

j
gj gj+1

2 electric fielda

a f

τz = –1

i:⟨i,j ⟩

i

τx

τx = +1

τx = +1

τx = –1

Qj = eiπna
j

τx⟨i,j ⟩Gj = Qj Π

Fig. 1 | 1D Z2
I

 lattice gauge theory coupled to matter. Circles indicate 
lattice sites, which are empty (grey) or occupied by a matter particle 
(blue). Red circles and the thickness of red links illustrate the expectation 
value of the link operators, τz and τx. a, Elementary ingredients: Z2

I
  

charge Q̂j ¼ eiπn̂
a
j

I
, Z2
I

 gauge field τ̂zhj;jþ1i
I

, Z2
I

 electric field τ̂xhj;jþ1i
I

, and local 
symmetry operator Ĝj

I
 with conserved quantities gj. Here i:〈i, j〉 denotes  

all lattice sites i connected to site j via a nearest-neighbour link, denoted  
as 〈i, j〉. Matter and gauge fields are implemented using two different 
species, denoted as a (blue) and f (red). Matter–gauge coupling occurs 
with strength Ja. b, Dynamics of the 1D model (equation (1)) for different 
values of Jf/Ja calculated with exact diagonalization of a system with  
13 sites based on equation (1). The initial state is a single matter  
particle located on site j = 0 and the gauge field is in an eigenstate of  
the electric field.
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elements JJ 0ðχÞ
I

 and JJ 2ðχÞ
I

. To lowest order, the effective double-
well Hamiltonian takes the form

Ĥeff ¼ �Ja τ̂
z ây2â

y
1 þ ây1â

y
2

� �
� Ĵf τ̂

x ð4Þ

where Ĵf
I

 depends on the position of the a particle

Ĵf ¼ JJ 0ðχÞn̂a1 þ JJ 2ðχÞn̂a2 ð5Þ

The density dependence of Ĵf
I

 can be avoided by choosing the dimen-
sionless driving strength χ such that J 0ðχ0Þ ¼ J 2ðχ0Þ

I
, which occurs, 

for example, at χ0 ≈ 1.84. Then, equation (4) reduces to the two-site 
version of the Z2

I
 LGT described by Hamiltonian (equation (1)).  

Note that the double-well model defined in equation (4) is Z2
I

-sym-
metric for all values of the driving strength χ.

The experimental set-up consists of a 3D optical lattice gener-
ated at wavelength λs = 767 nm. Along the x axis an additional 
standing wave with wavelength 2λs = 1,534 nm is superimposed 
to create a superlattice potential. For deep transverse lattices and 
suitable superlattice parameters, an array of isolated double-well 
potentials is realized, where all dynamics is restricted to the two 
double-well sites (Supplementary Information). The periodic drive 
is generated by modulating the amplitude of an additional lattice 
with wavelength 2λs, whose potential maxima are aligned relative 
to the double-well potential to modulate only one of the two sites. 
This enables the control of the modulation phase, which is set to 
ϕ = 0 or π.

We first study the renormalization of the tunnelling matrix ele-
ments for the relevant ν-photon processes49,51–54 with a single atom 
on each double well (Fig. 2b). For every measurement, the atom is 
initially localized on the lower-energy site with a potential energy 
difference Δν ≈ νħω to the higher-energy site, where ν ∈ {0, 1, 2}. 
Then, the resonant modulation is switched on rapidly at frequency 
ω and we evaluate the imbalance I = n2 − n1 as a function of the evo-
lution time, where nj is the density on site j. These densities were 
determined using site-resolved detection methods29. Note, this tech-
nique provides an average of this observable over the entire 3D array 
of double-well potentials. Hence, an overall harmonic confinement 
and imperfect alignment of the lattice laser beams introduces an 

inhomogeneous tilt distribution Δ(x, y, z), which leads to dephasing 
of the averaged dynamics. The renormalized tunnelling amplitude 
is obtained from the oscillation frequency of the imbalance and  
by numerically taking into account the tilt distribution Δ(x, y, z)  
(Fig. 2b). We find that our data agree well with the expected 
Bessel-type behaviour for the ν-photon processes (Supplementary 
Information). Moreover, these measurements enable us to directly 
determine the value of the modulation amplitude, for which 
J 0ðχ0Þ ¼ J 2ðχ0Þ
I

, as indicated by the vertical line in Fig. 2b.
To study the dynamics of the Z2

I
 double-well model (equation (4)),  

we prepare two different kinds of initial states, where the gauge field 
particle is either prepared in an eigenstate of the electric field τ̂x

I
 

(Fig. 3) or the gauge field operator τ̂z
I
 (Fig. 4a). In both cases the 

matter particle is initially localized on site j = 1.
First, we consider the state ψx

0

 
¼ ja; 0i  jf ; 0i þ j0; f ið Þ=

ffiffiffi
2

p

I
 

(Fig. 3a), where the gauge-field particle is in a symmetric superposi-
tion between the two sites. This state is an eigenstate of Ĝj

I
 defined in 

equation (2). The corresponding eigenvalues are g1 = −1 and g2 = +1. 
After initiating the dynamics by suddenly turning on the resonant 
modulation, we expect that the matter particle starts to tunnel to the 
neighbouring site (j = 2) according to the matter–gauge coupling. 
Depending on the energy of the electric field Jf, this process can be 
energetically detuned and the matter particle does not fully tunnel 
to the other site. Solving the dynamics according to Hamiltonian 
(equation (4)) analytically, gives:

Q̂1ðtÞ
 

¼ �
J2f þ J2a cos 2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2f þ J2a

q 

J2f þ J2a
ð6Þ

The maximum value of hQ̂1i
I

 is limited to ðJ2a � J2f Þ=ðJ2a þ J2f Þ
I

. The 
experimental configuration is well suited to explore the regime 
Jf =Ja ¼ J 0ðχ0Þ=J 1ðχ0Þ  0:54
I

, which corresponds to an interme-
diate regime between the two limiting cases discussed in Fig. 1c.  
These cases can also be understood at the level of the two-site 
model. In the weak electric field regime (Jf /Ja ≪ 1) the matter parti-
cle tunnels freely between the two sites, while in the limit of a strong 
electric field (Jf /Ja ≫ 1) the matter particle remains localized.

In the experiment we can directly access the value of the charge 
operator Q̂j ¼ eiπn̂

a
j

I
 and the link operator τ̂z ¼ n̂f2 � n̂f1

I
 via site- and 
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Fig. 2 | Driving scheme for Z2
I

 LGTs on a double well. a, Effective tunnelling processes for the matter-field (blue, a) and gauge-field (red, f) particle. For 
ϕ = 0, hopping of a particles occurs for resonant one-photon processes at ħω ≈ U with an effective amplitude JJ 1ðχÞ

I
, where U is the interspecies on-site 

interaction. Depending on the position of the f particle, the a particle acquires a phase shift of π, which realizes the matter–gauge coupling. Tunnelling of 
the f particle is renormalized by zero- or induced via two-photon processes, with amplitudes JJ 0ðχÞ

I
 and JJ 2ðχÞ

I
 depending on the a particle’s position. 

b, Experimental results for the renormalization of the tunnel couplings J νðχÞ
I

 for single-particle ν-photon processes ν = {0, 1, 2}, with ω = 2π × 4,122 Hz 
and J/h ≈ 0.5 kHz. The solid lines are the Bessel functions, where χ was calibrated by fitting the zeroth-order Bessel function to the dark red data points 
(Supplementary Information). The time traces of the imbalance I are fitted with sinusoidal functions taking into account an inhomogeneous tilt distribution 
(solid black line) and shown for exemplary traces at χp = 1.28 (dashed vertical line, left panel) on the right. The solid grey vertical line marks the value 
χ0, where J 0ðχ0Þ ¼ J 2ðχ0Þ

I
. The error bars and the grey shading are the 1σ confidence interval obtained from a bootstrap analysis of 1,000 repetitions 

(Supplementary Information).
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state-resolved detection techniques29. They provide direct access to 
the state-resolved density on each site of the double well naj

I
 and nfj

I
, 

averaged over the entire 3D array of double-well realizations. The 
experimental results are shown in Fig. 3b for U/J = 6.6 and ϕ = 0. 
As expected, we find that the charge oscillates, while the dynamics 
of the f particle is strongly suppressed. We observe a larger char-
acteristic oscillation frequency for the a particle compared to the 
prediction of equation (6) (grey line, Fig. 3b). This is predominantly 
caused by an inhomogeneous tilt distribution Δ(x, y, z) present in 
our system. Taking the inhomogeneity into account, the numeri-
cal analysis of the full time-dependence according to equation (3) 
(solid blue line, Fig. 3b) shows good agreement with the experimen-
tal results. The fast oscillations both in the data and the numerics 
are due to the micromotion at non-stroboscopic times.

The f particle is initially prepared in an eigenstate of the elec-
tric field operator τ̂x

I
, which corresponds to an equal superposition 

of the particle on both sites of the double-well potential, that is, 
hτ̂zðt ¼ 0Þi ¼ 0
I

. The Z2
I

 electric field follows the oscillation of the 
matter particle in a correlated manner to conserve the local quantities 
gj. At the same time the expectation value of the gauge field hτ̂zðtÞi

I
 

is expected to remain zero at all times. This is a non-trivial result, 
which is a direct consequence of the Z2

I
-symmetry constraints. In 

contrast, a resonantly driven double-well system with Δf = 0, which 
does not exhibit Z2

I
 symmetry, would show dynamics with equal 

oscillation amplitudes for the a and f particles. In the experiment we 
clearly observe suppressed dynamics for the f particle, which is a sig-
nature of the experimental realization of the Z2

I
 symmetry (Fig. 3b). 

Deviations between the time-dependent numerical analysis and the 
experimental results are most likely to be due to an imperfect initial 
state, residual energy offsets and finite ramp times.

In a second set of experiments we study the dynamics where 
the gauge field particle is initialized in an eigenstate of the gauge 
field operator τ̂z

I
, while the matter particle is again localized on 

site j = 1, ψ z
0

�� �
¼ ja; 0i  j0; f i

I
 (Fig. 4a). Here, the system is in a 

coherent superposition of the two subsectors with g1 = −g2 = ±1 
and the expectation value of the locally conserved operators are 
hĜ1i ¼ hĜ2i ¼ 0
I

. Note that there is no coupling between differ-
ent subsectors according to Hamiltonian (equation (4)). The basic 
dynamics can be understood in the two limiting cases of the model. 
For J f ≪ Ja the electric field vanishes and the system is dominated 
by the gauge field τ̂z

I
. In this limit, a system prepared in an eigen-

state of τ̂z
I
 will remain in this eigenstate because τ̂z

I
 commutes with 

Hamiltonian (4) for Jf = 0. In the opposite regime (J f ≫ Ja), where the 
electric field dominates, hτ̂zi

I
 oscillates between the two eigenvalues.  

The dynamics of the Z2
I

 charge on the other hand is still determined 
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Fig. 3 | Dynamics of the matter–gauge system prepared initially in an 
eigenstate of the electric field τ̂x

I
. a, Illustration of the gauge-invariant 

initial state ψ x
0

 
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ffiffiffi
2

p

I
 and the expected dynamics 

according to Hamiltonian (equation (4)). b, Measured expectation values 
of the Z2

I
 charge hQ̂1i

I
 (blue points) and Z2

I
 gauge field hτ̂zi

I
 (red points) for 

ω = 2π × 4,320 Hz. Each data point represents the mean of at least three 
individual experimental results and the error bars denote the standard 
deviation. The blue and red lines and shadings show a numerical analysis 
using time-dependent exact diagonalization, which includes averaging 
of the observables in the presence of an inhomogeneous tilt distribution 
Δ(x, y, z) approximated by a normal distribution with standard deviation 
Δσ /h = 0.44(2) kHz, which was independently calibrated (Supplementary 
Information). The blue and red solid lines are the median and the shading 
represents the 1σ confidence interval obtained with a bootstrap analysis of 
1,000 repetitions. All calculations are performed using the independently 
calibrated experimental parameters, J/h = 587(3) Hz, Δf /h = 4.19(3) kHz, 
U/h = 3.85(7) kHz and taking into account additional terms that appear in 
the extended Bose–Hubbard model (Supplementary Information). The grey 
solid lines are the ideal dynamics according to equations (4) and (6).
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I
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ψ z
0

�� �
¼ a;0j i  0; fj i

I
 and the expected dynamics. Brightness of the red 

circles illustrate the expectation value of τ̂z
I
. b, Measured expectation 

values of the Z2
I

 charge hQ̂1i
I

 (blue points) and the Z2
I

 gauge field hτ̂zi
I

 (red 
points) for ω = 2π × 4,314 Hz. Each data point represents the mean of at 
least three individual experimental results and the error bars denote the 
standard deviation. The blue and red lines and shadings show a numerical 
analysis using time-dependent exact diagonalization, with J/h = 578(3) Hz, 
Δf /h = 4.19(3) kHz, U/h = 3.85(7) kHz and Δσ /h = 0.46(2) kHz as explained 
in the caption of Fig. 3b and the Supplementary Information. The blue and 
red solid lines are the median and the shading represents the 1σ confidence 
interval obtained with a bootstrap analysis of 1,000 repetitions. The grey 
solid lines are the ideal dynamics according to equations (4) and (6).

Nature Physics | VOL 15 | NOVEMBER 2019 | 1168–1173 | www.nature.com/naturephysics 1171

http://www.nature.com/naturephysics


Articles Nature PHysics

by equation (6). In the experiment we probe the intermediate 
regime at Jf /Ja ≈ 0.54 for U/J = 6.7 and ϕ = π (Fig. 4b). The dynamics 
agrees with the ideal evolution (grey line, Fig. 4b) for short times. 
For longer times it deviates due to the averaging over the inhomo-
geneous tilt distribution Δ(x, y, z), which is well captured by the full 
time dynamics according to Hamiltonian (equation (3)) (red and 
blue lines, Fig. 4b). Notably, hτ̂zi

I
 exhibits a non-zero average value.

An important requirement for quantum simulations of gauge 
theories is the exact implementation of the local symmetry con-
straints to assure that Ĝj

� �

I
 is conserved for all times. Since we do 

not have direct access to Ĝj
� �

I
 experimentally, we study the implica-

tions of symmetry-breaking terms numerically. The dominant con-
tribution stems from the inhomogeneous tilt distribution Δ(x, y, z), 
which, however, can be avoided in future experiments by generat-
ing homogeneous box potentials. The second type of gauge-variant 
terms is coupling processes that do not fulfill the constraints of 
Gauss’s law. These are correlated two-particle tunnelling and near-
est-neighbour interactions, which are known to exist in interacting 
lattice models55. For our experimental parameters these terms are 
on the order of 0.03J and can be neglected for the timescale of the 
observed dynamics (Supplementary Information). The same gauge-
variant processes appear in the higher-order terms of the Floquet 
expansion for finite U/J (refs. 44–46). We study them analytically by 
calculating the first-order terms of the expansion and compar-
ing them to numerics (Supplementary Information). In Fig. 5 we 
show the numerically calculated dynamics for the initial state jψx

0i
I

 
(Fig. 3a) according to the full time-dependent Hamiltonian (equa-
tion (3)) for U/J = 7, similar to the experimental values (Fig. 5). We 
find that in this regime the driving frequency is crucial and defines 
the timescale for which the Z2

I
 symmetry of the model remains. In 

particular, there is an optimal value around ħω ≈ 1.01U, where the 
value of hĜ1i

I
 deviates by <10% even for long evolution times.

In summary, we have studied the dynamics of a minimal model 
for Z2

I
 LGTs. Our observations are well described by a full time-

dependent analysis of the 3D system. Moreover, we find non-trivial 
dynamics of the matter and gauge field in agreement with predic-
tions from the ideal Z2

I
 LGT. We further reached a good under-

standing of relevant symmetry-breaking terms. The dominant 
processes we identified are species-independent energy offsets 
between neighbouring sites and correlated two-particle tunnelling 
terms55, which can be suppressed in future experiments. We have 
also provided important insights into the applicability of Floquet 
schemes. While the Floquet parameters can be fine-tuned in  
certain cases to ensure gauge invariance, this complication can 
be avoided by reaching the high-frequency limit44–46 to minimize 

finite-frequency corrections. In experiments this could be achieved 
using Feshbach resonances to increase the inter-species scattering 
length. This, however, comes at the cost of enhanced correlated tun-
nelling processes, which in turn can be suppressed by increasing 
the lattice depth (Supplementary Information). Numerical studies 
further indicate that certain experimental observables are robust to 
gauge-variant imperfections56,57, which may facilitate future experi-
mental implementations. We anticipate that the double-well model 
demonstrated in this work will serve as a stepping stone for experi-
mental studies of Z2

I
 LGTs coupled to matter in extended 1D and 

2D systems, which can be realized by coupling many double-well 
links along a 1D chain (Supplementary Information) or in a ladder 
configuration33. Finally, the use of state-dependent optical lattices 
could further enable an independent tunability of the matter- and 
gauge-particle tunnelling terms.
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