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Abstract

In device-independent quantum information processing Bell inequalities are not only used as
detectors of nonlocality, but also as certificates of relevant quantum properties. In order for these
certificates to work, one very often needs Bell inequalities that are maximally violated by specific
quantum states. Recently, in Salavrakos et al (2017 Phys. Rev. Lett. 119 040402) a general class of Bell
inequalities, with arbitrary numbers of measurements and outcomes, has been designed, which are
maximally violated by the maximally entangled states of two quantum systems of arbitrary dimension.
In this work, we generalize these results to the multipartite scenario and obtain a general class of Bell
inequalities maximally violated by the Greenberger—Horne—Zeilinger states of any number of parties
and any local dimension. We then derive analytically their maximal quantum and nonsignaling values.
We also obtain analytically the bound for detecting genuine nonlocality and compute the fullylocal
bound for a few exemplary cases. Moreover, we consider the question of adapting this class of
inequalities to partially entangled Greenberger—Horne—Zeilinger-like states for some special cases of
low dimension and small number of parties. Through numerical methods, we find classes of
inequalities maximally violated by these partially entangled states.

1. Introduction

Bell inequalities [ 1] have traditionally been used as witnesses of nonlocality in composite quantum systems, but
with the advent of device-independent quantum information processing they gained a completely new role as
certificates of relevant quantum properties. It is nowadays a well-established fact that the violation of Bell
inequalities not only certifies the presence of entanglement in a device-independent way, but it can also certify
e.g. that true randomness has been generated in the process of measuring a quantum system [2]. Among their
certification properties, Bell inequalities may serve as device-independent witnesses of the minimal Hilbert
space dimension of the underlying quantum system [3]. The maximum exponent of their certification power is
known as self-testing [4], which allows one to determine the state and measurements performed solely from the
observation of the maximal violation of certain Bell inequalities (see, e.g. [5]).

In many of these device-independent applications, in particular in randomness certification [2] or self-
testing [4, 5], one needs Bell inequalities whose maximal quantum values are known along with the quantum
realisation (thatis, a quantum state and quantum measurements) achieving them. This is not an easy task in
general, because, phrasing alternatively, one needs Bell inequalities maximally violated by specific quantum
states and/or specific quantum measurements. While many constructions of Bell inequalities, both in the
bipartite and multipartite cases (see, e.g. [6—18]), have been proposed to date, the quantum realisation
maximally violating these inequalities is characterized only for a proper subset of them, and most of these
inequalities involve two-outcome measurements. In the bipartite case these are for instance: the Clauser—
Horne-Shimony—Holt (CHSH) Bell inequality [6], which is maximally violated by the maximally entangled state
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of two quibits, its generalization, called the tilted CHSH [7], which is maximally violated by any partially
entangled two-qubit state, and the generalizations of the CHSH Bell inequality to inequalities maximally
violated by the maximally entangled state of arbitrary local dimension and various measurements [19-21],
devised only recently. Moving to the multipartite case, examples of Bell inequalities for which the realization of
the maximal quantum violation is known are: the Mermin Bell inequality [22], the class of Bell inequalities
maximally violated by the multiqubit graph states [15] (see also [23] for the recent alternative construction), ora
class of two-setting Bell inequalities introduced in [16] and tailored to the N-partite Greenberger—Horne—
Zeilinger states of arbitrarylocal dimension

d—1
IGHZy.4) = % SN, )
i—0

for which the maximal quantum violation was determined only later in [24].

The main aim of this work is to design a new family of Bell inequalities for which one can efficiently
determine the maximal quantum violation along with the quantum realisation achieving it. We provide a
general class of multipartite Bell inequalities valid for any number of measurements and outcomes whose
maximal quantum violation is attained by the Greenberger—-Horne—Zeilinger (GHZ) state of N qudits (1). To
this end, we exploit and, at the same time extend to the multipartite scenario, the approach in [19] to construct
Bell inequalities for the maximally entangled state of two qudits |GHZ, ;). Noticeably, this approach exploits the
properties of the quantum state and measurements to derive Bell inequalities, rather than the geometry of the set
oflocal correlations. We then characterize the obtained inequalities: (i) first, we compute their maximal classical
values for the simplest multipartite scenarios (note that for N = 2 these values were already computed
analytically in [19]), (ii) we detemine their maximal quantum value by finding a sum of squares decomposition
of the corresponding Bell operator, and (iii) compute their maximal nonsignaling values. In the spirit of [19, 25],
we finally discuss generalizations of our Bell inequalities to certain partially entangled multipartite states.

Noticeably, our class of Bell inequalities reproduces the two-setting Bell inequalities introduced in [16] and
later studied in [24]. On the other hand, it belongs to a broader class of multipartite Bell functionals considered
in [26]. Nevertheless, this last work, although it reproduces notable inequalities such as the ones presented in
[27], it does not single out the class of Bell inequalities nor the properties we provide in this work. Moreover, here
we provide a different approach to compute the maximal quantum violation that is based on the sum-of-squares
decomposition of the Bell operator.

The manuscript is organized as follows. In section 2 we recall all the relevant notions for further
considerations. In section 3 we derive our family of Bell inequalities, whereas in section 4 we characterize them
by providing their maximal classical (numerically, in the simplest scenarios), quantum and nonsignaling values.
In section 5 we put forward possible generalizations of our construction to partially entangled GHZ multiqudit
states, and we present our conclusions in section 6.

2. Preliminaries

Bell scenario and correlations. Let us consider a Bell scenario in which N distant parties A, ..., Ay share some
physical system. In each round of the experiment, each party A; performs one of m measurements on their share
of this system, and each measurement yields one of d outcomes. We label the measurement choices and
outcomes of party A;byx; € {1,...,m}anda; € {0,...,d — 1}, respectively, while A; ,, denotes the
implemented measurement. Such measurements lead to correlations that are described by a collection of
conditional probability distributions

{P(ﬂb e aleb ceey xN)}al, e ANSXD ooy XN (2)
inwhich p(alx) = p(ay, ..., ay|x, ..., xy) stands for the probability of obtaining outcomes a := (aj, ..., ay)
upon performing measurements x := (x;, ..., Xy) by the parties. These probabilities are typically ordered into a
vector

— N
P = {P(ﬂb (R aNl-xl) LX) xN) }al, ey ANSXD oo XN S R(md) . (3)

By slightly abusing terminology we also call the collection (2) correlations.

Now, the set of allowed vectors p varies depending on the physical principle they obey. First, let us consider
correlations that satisfy the no-signaling principle which prohibits faster-than-light communication between
parties. Mathematically, this is equivalent to saying that the conditional probabilities p(a|x) satisfy the following
set of linear constraints
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a; aj

forall x;, x;’and ay, ..., a;_y, @i, ..., ayand Xy, ..., X;_1, Xit+1, ..., Xy and all i. Correlations obeying the no-

signaling principle form a convex polytope that we will denote by Ny .4-
The polytope Ny, 4 contains the set of quantum correlations, which are those that can be represented as

pax) = Trlpy(M, ® ... ® Mg, )] (5)

for some N-partite quantum state py of generally unconstrained dimension and local positive semi-definite
measurement operators M f;ci that define the x;th measurement (with outcome a;) performed by party A;. Since
M, arepositive-operator valued measure (POVM) elements, they form a resolution of the identity:
>, M = Il Similarly to the nonsignaling set, the quantum set Oy, 4 is also convex, however, itis nota
polytope. Moreover, as shown in [28], Q.4 is a proper subset of Ny . 4 as there exist correlations obeying the
no-signaling principle that do not have the above quantum realization (5).

Finally, the set of correlations that admit the local hidden variable (LHV) models is formed by those p for

which every p(a|x) can be written as a convex combination of product deterministic correlations, that s,

p@lx) = 3 pp, (@il A) - oo py (anlxns A). ©)
A

Here ) is some classical information (which can also be interpreted as a hidden variable or shared randomness)
and p(ajlx;, A) € {0, 1}foralla;, x;and A. In what follows we will also refer to correlations admitting the above
representation as to local or classical. Likewise the nonsignalling set, the local set is a polytope whose vertices are
product of deterministic correlations, i.e. p(alx) = p, (ailx) - ...- p, (an|xy) witheach p 4 (ailx;) € {0, 1}.

Itis important to notice that Ly, 4 is a proper subset of Qy ,, s and Bell was the first to prove that not all
quantum correlations admit an LHV model. To this end, he used the concept of Bell inequalities—linear
inequalities constraining the local polytope Ly ,, 4 that take the general form

I=3%" Txpax < G %)

where T, , is a table of real numbers, while /3, is the so-called classical bound of the Bell inequality defined as
Br = maxzer, , 1. Analogously, let us denote by 8g and Gy, respectively, the maximal quantum and
nonsignaling values of I, i.e.

Bo= sup I, By = max I, 8)

P EON,md PENNma
where the supremum stems from the fact that the set of quantum correlations is in general not closed [29].

For most of known Bell inequalities 5 < (g < (. In particular, if 3, < (g for some I, we call the
corresponding Bell inequality proper. Finally, the violation of a Bell inequality by some correlations p implies
that p does notadmit the LHV model, in which case it is called nonlocal.

In the multipartite case (N > 2), yetanother set of correlations can be considered—the set of Svetlichny
correlations [30]. To define it formally, let us group the parties A;, ..., Ay into two disjoint subsets G and
G={A,..., Ay} \G such that G, G = @. Now, the correlations ﬁ are called bilocal with respect to the
bipartition G|G if

Paic@x) =3 p(Nps(aclxe, Mpg(aclxe A, ©)
A

where ag (ag) and xg (x¢) are outcomes and measurement choices corresponding to the observers from G (G),
whereas p;(aglxg, A)areany probability distributions corresponding to the parties in G. We then call p bilocal
if p(alx) can be written as a convex combination of p;; ;(alx) that are bilocal with respect to various bipartitions
G|G. On the other hand, if p does not admit the above form, the we call such correlations genuinely multipartite
nonlocal.

In a given Bell scenario (N, m, d) bilocal correlations form a convex set Sy 4> and for a given Bell expression
I'we denote by (s its maximal value over Sy, 4, thatis, 3s = maxjcs, . ,I. Violation of I < (s by some
quantum correlations p indicates that these correlations are genuinely multipartite nonlocal.

Let us stress here that the above definition of bilocality was proven to be inconsistent with the operational
interpretation of nonlocality [31, 32], and to recover consistency it is enough to require that p(aglxg, A) and
Pa(aglxg, ) obey the no-signaling principle. Nevertheless, it is still of interest to consider the Svetlichny
definition of bilocality as any quantum correlations that are genuinely nonlocal according to it are also genuinely
nonlocal according to the definitions of [31, 32].

A particular multipartite Bell expression. Let us illustrate the above concepts with the following example of a
multipartite Bell expression introduced in [18, 26], which we state here in the probability picture as

3
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ld/2)—1 n
Iy = Z [(1 - )(]Pn - Qn):l: (10)
o d—1

where P, and Q, are expressions given explicitly by

m

Pn = Z [P(X(yl, e aN_] 11) + P(}_(al, e aN_1 ”)] (11)
g, ..., ON—1=1
and
m —_—
Q. = Z [P(Xm, Lan_ — —h — 1) + P(Xarl, Lay_, — —h — D], (12)
Qg .., an—1=1

where Xand X arelinear combinations of the variables A; ,, defined as

N
Xal, e QN_l Al,(yl + Z(_I)J_lAj,uj,lJra’jfl (13)
j=2
and
Xal, c QN _Al,a1+l + Z(_l)]Aj,aj,lJrajfl) (14)
j=2
where we use the convention that A; ,,, |, = A;, + 1foranyy = 1,...,mandanyj = 1,...,N,and ay = 1.

Moreover, all the equations X, . o, , = kor X, .. oy, = kinequations (11)and (12)are to be taken
modulo d. While, the maximal classical value of I, is in general unknown, its Svetlichny bound is straightforward
to determine and amounts to 8¢ = mM~2(m — 1)[18,26].

It was proven in [ 18] that the Bell inequality (10) is violated (but not maximally) by the N-qudit GHZ state
|GHZy,4) together with the following observables

= UBQEUS, by = ViFjQuE V), (15)
for the first two parties, and

oy = We By QqF I Wi

o MFdeF; W;, N even
N—1,x — "
WIEIQuEW,, N odd

W;F;QdFdWx, N even
ejjN,x = r (16)
W.EQuFjWS, N odd
for the remaining parties, where
1 41
F=— > wili)jl, Q= diag[l, w, ..., w ] a7)
Jd i,j=0
where w = exp(27i/d) is the dth root of unity and i* + 1 = 0. Moreover,
-1 -1 -1
U, = Z W@\, V= Z W@ NG, W, = Z w @) 1)( ], (18)
=0 =0 =0

withv,,(x) = (x — 1/2)/m, (,,(x) = x/m,and0,,(x) = (x — 1)/mforx = 1, ..., m. Notice that for the case
N = m = 2, these reproduce the optimal CGLMP observables [8] and we will use them to construct our Bell

inequalities. Moreover, for these observables and the state |[GHZy 4), all the probabilities appearing in both B,
and Q,, (see equations (11) and (12)), that s,

P(Xal, s aN_] n) and P(Xal, QN 11) (19)
are independent of the choice of cvy, ..., ayy_jand areequal foranyn = 0, ..., d — 1, thatis,
PXo, oy, = 1) = PXa, ., oy, = n)(seeappendix for the proof). We will later exploit these properties in

our construction of Bell inequalities.

Generalized correlators. For further purposes we notice that correlations (2) can also be equivalently
represented by correlators instead of conditional probabilities. However, due to the fact that here we consider an
arbitrary number of outcomes, we need to appeal to generalized correlators. These are in general complex
numbers that are defined through the N-dimensional discrete Fourier transform of the probabilities p (a|x)
according to the following formula
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(A G = 2w paalx), (20)
k
where the sum is over all N-tuples k = (ki ..., ky) witheach k; = 0, ..., d — 1.Itis then not difficult to see that
[/ (1k§c)1 -4 (Ak,“,gN> | < 1forall configurations of xy, ..., xy and ky, ..., ky. Moreover, if k; = 0 for some i, then
the no-signalling principle (see equation (4)) allows one to rewrite.
3 k 3 ki ki k
(&) Q) ) = () G ). 1)
In particular, (/") ... /(") ) = 1foranysequence of x;. The inverse transformation gives
1 @ k k
p(alx) = o Zk: W@ (7)o ). (22)

We remark that we have used a different letter to denote the new variables instead of A, ,, because the values that
these new variables take are from the regular d-gon in the complex plane, with vertices {1, ..., w1}, Note that
for d = 2, the correlators take values from [—1, 1]. We also note that for d > 2 these values are not completely
independent: for instance, since the conditional probabilities p(a|x) are real, its discrete Fourier transform will
satisfy the relations

(A®) )y = (R oy Ry (23)

Lx XN »X1 XN
where z* denotes the complex conjugate of zand the k;’s are taken modulo d.

In the case of quantum correlations p(a|x), < ., can be seen as the Fourier transform of the measurement
operators M/ , thatis,

A =3 wEML. (24)
a
Phrasing alternatively, one can think of the operators .o/ fkg withk; = 0, ..., d — lasan observable
representation of a d-outcome measurement { M. ,-‘f;’q } with outcomes labelled by 1, w, ..., wi=1, Let us also notice

thatif M, correspond to a projective measurement, then .<7 , are unitary operators with eigenvalues
k) are simply kth powers of .o7 .,

1, ..., w (or, equivalently, they satisfy .o/ fx = 1). Moreover, in such a case .o/ g,x

ie. Mka) = off

i, *

3. The construction

Let us now move on to our construction of Bell inequalities maximally violated by the GHZ states (1) of any local
dimension d and any number of parties N. To this end we follow the approach introduced in [19] to derive Bell
inequalities maximally violated by the maximally entangled states of two qudits. Moreover, we impose the
condition that the maximal quantum values of the Bell inequalities we here derive are by design obtained for the
optimal measurements (16).

3.1. The case of three observers (N = 3)
To make our considerations more accessible, we first present our construction in the case of three observers
(IN=13). As already mentioned, we now denote the parties A, B and C, whereas their outcomes and
measurements choices as a, b, ¢ and x, y, z, respectively. The departure point of our considerations is the
following generalization of the Bell expression in equation (10),
ld/2]—1
IS,m,d = Z (an]P)n - ﬁn@n)- (25)

n=0

Here, the variables defined in equations (13) and (14) simplify to

Xa,p=Aa = Basg-1+ Cp Xag = —Aas1 + Barp-1— Cs (26)
and therefore P, and QQ,, can be written as
b = ZT: [P(Aq — Batp—1 1+ Cg=mn) + P(Baspg-1 — Aar1 — Gz = n)] (27)
a,p=1
and
Q. = 2:3 [P(Aa — Batp-1+ Cs=—n—1) + P(Basp1 — Aay1 — CGg= —n — D]. (28)
a,f=1

Moreover, o, and (3, are our free parameters that we are going to determine. Notice that for
a, = B, = [1 — 2n/(d — 1)), one recovers the multipartite Bell inequalities (10). Notice also that the reason to
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consider the above generalization of (10), in which the free parameters multiply [P, and Q,, stems from the fact
that for the state (GHZy ;) and the optimal measurements (15) and (16), which we later use to find our
inequalities, all probabilities contributing to [P, and Q,, are equal (see appendix for the proof).

We now want to exploit these degrees of freedom in order to construct Bell inequalities maximally violated
by |GHZ; ;). However, in order to fully appreciate the symmetries inherent in Bell inequalities and thus
significantly simplify our considerations we will write the Bell expression (25) in terms of complex correlators
(20) instead of probabilities. After some short algebra one finds that

1] _
P(Aa = Barso1 + G = O = = 3w (A, BoL5 1 65 (29)
k=0
and
1 k k k
P(—=Aui1 + Bayp1— G =98 = 7 S Wk (g Bosi-165)- (30)
k=0
With the aid of these formulas our Bell expression (25) can be conveniently rewritten as
N — k
Lma=— >, > (s Bis 165, (31
d a,3=1k=0
where the new variables y(j) are defined as
—(k
Y = ap A* + af s (32)
with
ld/2]—1
ac= Y [auw ™ — Bt (33)
n=0

Notice here that as, due to the convention, .7, | = w.e, and therefore in the particular case of o« = m,

equation (32) reads E(n];) = a JZ{I:n + af wk,sz/{‘ . Let us also notice that the term in equation (31) corresponding
to k = 0isaconstantand therefore itis not included in the Bell expression.

Now, to fix our free parameters o, and 3, (n = 0, ..., |d/2] — 1) werequire that for the optimal
observables (16) the following conditions
Y © B, © C5GHZs 4) = |GHZsa) (34)

aresatisfied forall, 3 =1, ..., mand k = 1, ..., d — 1.In other words, we want to find such «,, and 3, that
the resulting operator Eﬁf‘ ) Bk 5-1 0 € f; stabilizes the GHZ state (GHZ; ;), or that the GHZ state is its
eigenstate with eigenvalue one. To solve the above equations we need the explicit forms of the kth powers of the
measurements (16). After simple algebra one finds that

k-1 d—1
A% = w @O SN — k + n)(n] + Wk ST — k)(nl, (35)
n=0 n=k
k—1 d—1
g;k = (,@’;)T = w@d=k¢,» Z ld — k + n)(n| + wk Ca®) Zm — k)(nl, (36)
n=0 n=k
and
k-1 d—1
G* = w @O N g — k4 n)(n] + Wk 0@ S — k)(nl. (37)
n=0 n=k

By plugging (35)—(37) into the conditions (34), one obtains the following system of linear equations for the
coefficients ay:

(38)

arw k2 gFOk/2m = 1
akw(d*k)/Zm + alzkwf(dfk)/Zm — 1’

with k = 1, ..., |d/2]. This system can be directly solved, giving

Having explicit form of a;, we can now excavate the coefficients o, and (3, from the system of equations (33).
The latter consists of | d/2 | equations involving 2 | d/2 | variables, meaning that it does not have a unique
solution, and the solution will not be real in general. To avoid this problem we equip (33) with | d,/2 ] additional
equations of the form




10P Publishing

NewJ. Phys. 21(2019) 113001 R Augusiak et al

1d/2]-1
Z (Olnwkn - ﬂnwi(wrl)k) = alzk (40)
n=0
which will enforce o, and 3, to be real. Both sets of equations (33) and (41) can be wrapped up into a single set of
the form

ld/2]—1
Z (anwikn - ﬁnwk(wrl)) = Ch (41)
n=0
inwhich ¢, = ayfork = 1, ..., |d/2]and ¢ = c* fork = —|d/2], ..., —1.In order to solve this system we

consider the cases of odd and even d separately. For odd d, (41) has the same number of equations and variables,
and thus we expect a unique solution, which after rather straightforward but tedious calculations is found to be

1 s
and
1
8, = gtan(%)[gm(n +1—1/m) + g,(d/2) (43)

withn =1, ..., |d/2]and g, (x) := cot{m[x + 1/2m)] /d}.

Then, in the case of even d the equations for k = d/2 and k = —d/2 are the same, and therefore the system
(41) consists of d — 1equations for d variables. The additional variable we then fix in such a way that the
obtained o, and (3, assume the same form as for odd d.

3.2. Generalization to an arbitrary number of parties
It turns out that the above considerations remain valid if one considers an arbitrary number of parties N.
Let us consider the same Bell expression as in (25), i.e.

|d/2]—1
IN,m,d = Z (an]P)n - 6n@n)7 (44)
n=0

in which now B, and Q,, are defined for any N'in (11) and (12). By using the discrete Fourier transform we can
rewrite it in terms of the complex correlators as

_ 1 m d—1 — N .
hma== % Z<&/23H (Aiaprar- D), (45)

ap ..., ay_1=1 k=1 i=2

. —(k I .
where a)y = 1. The variables .o/ Eh) are, as before, combinations of .o/ {()0-'1 and .o/ {(,al +1 given by

—(k
IO =ap A, 4 af S, (46)

o

for oy = 1, ..., m, where, asbefore, .4 ,,,.1 = w.o ;. The coefficients g are defined in equation (33). Notice
also that the Bell expression (66) does not contain the term corresponding to k = 0 as the latter is only a constant
that can always be moved to the classical bound; for this reason we changed the notation from Iy ;.4 to Iy .4-
The values Iy, 4 and Iy, 4 are related by the following formula

-1 1d/21-1

P Z (an = Bu)s (47)
n=0

IN,m,d = IN,m,d +

and so for a particular choice of the coefficients o, and (3, given the value of our Bell expression in one
representation, we can easily compute it in the other representation.

Now, the above form of the Bell expression suggests the conditions one needs to impose on the variables o,
and (3, in order to obtain a Bell inequality maximally violated by the N-partite GHZ state (GHZy ;). Namely, the
following system of equations

N

TV @ Q(Hiay a0V MIGHZy 4) = IGHZ4), (48)
i=2

with the same conventions as above, should hold for any sequence of «;’s and k with the measurements being

given in (16). After some tedious calculations one finds that this leads to the same system of equations for a; as we

obtained in the tripartite case (38); its solution is given in (39). Thus, our Bell inequalities for any number of

parties are determined through the same coefficients o, and (3, asin the case N = 3.

To summarize, in the probability representation our class of Bell inequalities is given by (44) with o, and 3,
stated explicitly in equations (42) and (43), respectively, while in the correlator representation it is given by (66)
with a; being of the form (39). Moreover, for this choice of o, and 3,,, we have

7
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ld/2] -1 1 T (|l d 1
S = g (an - ﬁn) - 5{1 — tan(%) COt[E(lEJ + %)]}) (49)

and consequently the Bell expression in the probability and correlator forms are related through the following
simple formula

IN,m,d = TN,m,d + (sz_ l/d)s (50)

To conclude this part, let us mention the Bell expressions obtained here belong to a more general family of
Bell expressions considered in [26], some of which independently discovered in [27]. However, in these works it
is only shown that high-dimensional GHZ states can exhibit fully random and genuinely multipartite quantum
correlations. Our method is such that the inequalities are built from the property that the multiqudit GHZ state
and given measurements maximally violate it.

4, Characterization

Here we characterize our class of Bell inequalities. We first aim at computing their local bound. As this turns out
to be a hard task, we provide the local bound only for the simplest scenarios; recall that in the bipartite case the
classical value was computed analytically in [19]. We then determine their maximal quantum value, showing at
the same time that this value is attained by the state |GHZy ;) and measurements (15) and (16). We finally obtain
the maximal nonsignaling value of Iy, 4.

4.1. Classical and Svetlichny bounds of our inequalities
Let us begin by noting that our Bell expression Iy, 4 can be written in a simpler form as

d—1
IN,m,d = Z &an (51)
n=0
where P, is given in equation (11) and &, = o, forn =0, ..., |d/2| — land &, = —F;_1_, for

n = [d/2],...,d — 1(notice thatin the odd d case oqa/2) = Bas2) = 0).

Let us also recall that to compute the maximal classical value 3 of our Bell expressions Iy, 4 it is enough to
maximize the latter over the vertices of Ly, 4, o1, in other words, over all deterministic assignments A; ,, € [d]
forx; =1,...,mandi=1,...,N,lie.

ﬂﬁ = max IN,m,d) (52)
{Air€ldllicinikem
for which Iy ,, 4 given in (51) rewrites as

m

d—1
omd =3 6 D 16y oy )+ 6Cay oy ], (53)
n=0 Qay,..any_1=1
where § (-, -) denotes the Kronecker delta, whereas the variables Xand X are defined in equations (13) and (14).
To facilitate the computation of the classical value we want to express the maximum in (52) in terms of the X
and X variables, instead of A; ;.. To do this, we need to remove all the linear dependencies between X, . oy,
and X, . oy, Letusillustrate what we mean by this with the bipartite case in which the classical value was
computed analytically for any mand din [19].
Let us then assume that N = 2 and notice that the variables X, and X, are related to A, and B, by the
following formula

1
X 1
: A
Xl = 1
v Hl 4, ) (54)
d B,
- :B,,
X
where
1 0 0
b —X 1

b=(0, 0,...,0, —1)Tand X = 37 '|i) (i + 1|.Inorder to find alinearly independent set of X,, and X,,, we
want to find all linear combinations such that
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a—+ Z[gaxa + h()/)?oz] =0, (56)

wherea, g, and h,, are some coefficients to be determined. For this purpose, we want to determine the kernel of
HT, which in this case consists of a single vector (1, 1, ..., 1)T. Consequently, we arrive at the condition for the
bipartite Bell expression I ,, 4 constructed in [19], which is

m—1
> [Xo + Xo] = —1modd. (57)
a=0
As proven in [19], this allows to nest the optimization of the classical bound and use a dynamic programming
procedure to find it efficiently. Indeed, one can re-express the optimization in (52) in terms of the X,,, X,,, but
with the condition stemming from (57).
This allows us to write

/BE = max IN,m,d) (58)
{X&,)_(ae [d]:z Xo+X,=—1mod d}

@

and eliminate the variables in the optimization successively thanks to the form of (53). The corresponding
classical bound of I ,,, 4 is then found to be [19]:

amd _ L T B B 1) d
Bt = 3 tan(zm)[(Zm Dg, (0) gm(l m) 2mgm([2”]. (59)

In what follows we attempt to formalize the procedure to find the classical bound of the inequality for a
larger system size. Here we outline the steps, but several obstacles arise in the multipartite case that we currently
do not see how to overcome.

Let us consider an arbitrary number of observers N. Likewise, we wish to find all a, g, ho € Z, such that

a+ Y [g,Xa + haXal = 0modd. (60)

Note however, that now ¢ is a vector and therefore one expects the solution set to be multidimensional. In other
words, H is a square matrix only for N = 2. If N > 2 we shall have on the left hand side of (54) a

(1 + 2mN~1-component vector of X,,’s and X,,’s, whereas on the left hand side we shall have a

(1 + mN)-component vector of observables. Therefore, the number of terms in the kernel of H Twill grow
exponentially with N, implying there will be an exponential number of non-trivial constraints in the
maximization analogous to (58). In order to find them, using equations (13) and (14), the above equation can be
expanded as

N
a+ Y [8, A0 — haAia] + D (=D g, — halAia, 1+a,-1 = 0modd. (61)
a i=2 a
This gives a set of equations that make the coefficients in front of Ay ,,, , congruentto 0 mod d:
> I8, — hal = 0modd (1 < k < m). (62)
a:ay_ 1=k

Similarly, for 1 < j < N, we make the coefficient in front of A; ; congruent to 0 mod d:
> I8y — hal =0modd (1 < k < m). (63)

aaj +aj—1=k

Then, the coefficient that multiplies 4, ,, is

Y [8a—kar = Pa=k-1,0] = 0modd (1 < k < m), (64)
oo =k
where &’ = ay, ..., ay_1. We have also an equation for the constant term in equation (60). Here we have to take

into considerationthat A; ,,_; 1y = A;x + 1fork > Oandanyi =1, ..., N.

In order to appropriately do the substitutions of the X,,’sand X,,’s, one needs to perform Gauss elimination
on abasis of this kernel. However, we note that the equations (60) are over Z, which is a field only of d is a prime
number. Therefore, for some values of d, inverses may not exist, and it can be much more complicated to obtain
agood basis of ker H' . This was not a problem for N = 2 as ker H! was generated simply by a vector of ones. In
addition, itis unclear how to later exploit the properties of the g function that were used in [19] in order to find
an analytical form of LN for N > 2.

Thus, even though the procedure above helps to slightly reduce the complexity of the optimization in some
particular cases with a few number of particles, we resort to numerics in the general case. As pointed out in
theorem 1, we have that ﬁ%z’d = ﬂ%’z’d and its value is thus given by expression (59). For completeness, we
include the classical bound values in the simplest Bell scenarios in tables 1 and 2.

9
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Table 1. Maximal classical and Svetlichny values of Iy, 4 for N = 3,m = 2, 3and d = 2, 3, 4.

N=3m=2
d 2 3 4
Brd = gy2d 4.2426 3.0416 3.5953
N=3m=3 7+ 1408
3,3,d 13 1 T\ T\ pis —10+1742 + 146
Bz 5 66[13C0t(1s) 17tan(9) 4tan(9):| B S—
= 7.5056 = 6.1760 = 6.9765
B> 8.6603 7.3132 8.1115

Table 2. Maximal classical and Svetlichny values of Iy, 4 for N = 4, m = 2, 3and d = 2, 3, 4. It was not possible
for us to compute the value of 3> due to its computational complexity.

N=4m=2
4,2,d 5 m T 10 5 1 s 3T
By E[cot(g) + tan(;)] 5T 5(73 +3) g[lOCOt(E) - 5c0t(g)
+16tan (%) + tan (?—2)]
=7.0711 =4.7169 =5.8301
o 8.4853 6.0829 7.1905
N=4m=3
4,3,d 35 7 T\ _ T\ _ 2
7 N 6B[S:cot(w) 7tan(9) 2tan(9)] (n.a.)
=20.2073 =16.2537
B>l 25.9808 21.9394 24.3345

On the other hand, it is quite direct to obtain an upper bound on the maximal value of Iy ,, ; over the
Svetlichny correlations. Precisely, the results of [26] allow us to state the following theorem.

Theorem 1. The Svetlichny bound of I, 4 is bounded from above as 3Y ™% < mN=23%"™4, where 32" is the
classical bound of the bipartite Bell inequality given explicitly in (59).

Proof. The proofis given in [26]. O

It is worth mentioning that for the case N = 3and m = 2 the bound $%*“ is also saturated by fully product
probability distribution (see also table 1)

Proc @) = p, (alx) py (bly) po(cl2) (65)

such that p, (0|x) = p,(0]y) = p-(0|z) = Lforall x, y, z.So, ﬁfg’z’d is also the classical bound of the
corresponding Bell inequality. In general, however, the classical and Svetlichny bounds differ.

4.2. Quantum and nonsignaling bounds
Let us now move on to the quantum and nonsignaling bounds.

) = . =N,md
Theorem 2. The maximal quantum value of Iy, .4 is B "

= mN-1(d — 1)/d.

Proof. To prove that EQN s an upper bound on the maximal quantum value of Iy ,, ;s we can follow the
method of [26]. Here, however, we follow an alternative approach exploiting the sum-of-squares decompositon
of the shifted Bell operator, which might be of use for such applications of nonlocality as self-testing.
To this end, let us consider a Bell operator By, 4 constructed from the Bell expression Iy 4., with some
observables .o ,, (that is, unitary operators such that .o/ gm =1):
R (L o
Bumii=— > 2 7Y® Qa0 (66)

dal,...,aN,lzlkzl i=2

10
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. . ~N,m,d . . . . .
Our aim now is to prove that the operator 34 "1 — By,m,ais positive semi-definite for arbitrary observables
o, , with the identity operator 1 being of defined on the corresponding Hilbert space. This can be achieved by

. =Nmd . . . .
decomposing 35 - Bn.m,q into a sum of squares. To be more precise, let us first consider the simpler case
of m = 2 and introduce the following operators

N .
ng’) -1 =1- ‘57(0{(1) ® ®(in,ﬂi—1+ﬂi* 1)(_1)X71k' (67)
i=2
Then, by a direct check one finds that the following decomposition

#N,2,d 1
B N = Bau= 7 DR SN U (68)
b ano1=1 k=1

holds true. In the case of arbitrary number of measurements, the above sum of squares needs to be slightly
modified. Let us introduce the following operators

T(k):l@ké?/lz‘*‘l/akﬂlaﬂ‘f'mk&/laﬁ (69)
forao=1,...,m —2and k = 1, ..., d — 1, where the coefficients are defined as
w(aJrl)(dek)/Zm sin(ﬂ/m)
fh ) = ,
@k cos(r/2m) sin(ra/m)sin [7(a + 1) /m]
o wd=26/2m  Join [w(a + 1) /m]
ok 2 cos(m/2m) sin(mwo/m)
1 : (d—2k)/2m
- . sin(mwo /m) _ W L (70)
2cos(m/2m) \ sin[m (o + 1) /m] 4cos®*(m/2m)

fori=1,....,m — 3and k = 1,...,d — 1l,whilefori = m — 2andk = 1, ..., d — 1theyare given by
—(@=2K)/2m

Hm—2k == 2V2 cos(7r/2m)«/cos(7r/m) ’

Wk o(d—2k) /2m

Vm—2k == 272 cos(m/2m) \Jcos(x/m)
JJeos(r/m)

T2k = —————————. (71)
m2 2 cos(m/2m)
Then, the sum of squares is given by
g 1 m d—1 L . N 2 m—2d—1 . .
BE™N = Byma = PR LN b S X ITETTE. (72
Zd b an_1=1 k=1 a=1 k=1

To conclude the proof, let us notice that for the state |GHZy 4) and the measurements (15) and (16) the value of
Iy m.ais clearly mN=1(d — 1) /d, which follows from the fact that for this realisation each correlator in Iy, 4
assumes value one (see equation (48)). ﬂN md s thus the maximal quantum value of Iy, 4. 0

Theorem 3. The maximal nonsignaling value of Iy ,,. 4 equals its algebraic bound and it is given
by ﬁ%””’d = 2mN"lay,.

Proof. To prove this statement we use the form of Iy ,, 4 given in equation (51). As shown in [19] (see the
supplemental material), oy > o, forany 0 < n < d — 1, and consequently one obtains the following bound
by putting all the terms in P equal to one:

Inma < 2mN"lay,. (73)

Now, there exists a nonsignaling probability distribution for which this inequality is saturated. For the first
portion of measurement choices it is defined as

pla, ..,anlog, an +ay — 1, .., an—s + an—1 — 1, an—1)

N
_lr ;(—l)lflaizf(ab --~yOéN—1)’ 74)

0, otherwise

11
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fora; =0,...,m — landi = 1, ..., N — 1, where the function fis defined as

N-2

flan.man-) = Y (=D H(a; + @i — m — 1). (75)

i=1
with H being the discrete Heaviside step function, definedas H (x) = 1if x > 0and H (x) = 0 otherwise. This
function fis introduced to take into account the convention A; ,,.x = A;x + 1, which modifies the condition
defining the probabilities in the Bell expression. Indeed, looking at the expression (1 1), one sees that if for all
i=1,...N—2,a + a1 — 1 <m— 1,then f = 0,butiffor somej’s, o+ ajp— 1 >m— 1, thenf
could be different than 0.

Then, for the other portion of measurement choices it is defined as

p@a, ..ol + 1L, o+ — 1, ..., an—2 + an—1 — 1, an—1)
1 N ~
, —1)ila; = s ey ON—
o ;( Y~ lai = f(u an 1), (76)
0, otherwise

where the function f is defined in the same way as f; but also takes into account that oy + 1 can be larger than
m — 1. Thus

foms..an—1) = —H(ay + 1 — m) + f(Qpy....on_1). (77)

For all the remaining choices of measurements we define

1

o~ (78)

p(ab L) aN|a1) L) OéN) =
Let us now recall the no-signalling principle for many parties. For the distribution of elements
p(ay,...,anlx,. ...xn), the marginal p(a;,...,a;lx;,...,x;) for anysubset {i,...,i} of the N parties should be
independent of the measurement settings of the remaining N — k parties:

P @i Qi %15 5XN) = P(Aipy- . 8] Xy - 5X5). (79)

Itis not difficult to verify that the distribution presented above obeys the no-signaling principle. Tracing outa
single subsystem one always obtains a maximally random probability distribution. O

Let us notice that in theorem 2 we compute the maximal quantum value of our Bell expression in the
correlator representation (66), whereas in theorem 3 we compute the maximal nonsignalling value in the
probability picture. To obtain these values in the other picture one can use equation (50).

Let us also notice that both these values are related to the same values of the bipartite SATWAP Bell
inequality by a factor m™~2. Thus, the results about the relative scaling of these bounds from [19] holds for many
parties. In particular limy_, 8344 /38 ™% = (2m/7)tan(x /2m), and so the separation between the maximal
nonsignaling and quantum values becomes smaller for larger 1.

On the other hand, the classical value ﬁﬁ’ 4 does not seem to obey ﬁg mod — N *zﬁzﬁ’m’d (see tables 1 and
2), and therefore one can expect that the behaviour of the ratio ﬁg smsd / I5) IZ’ md will exhibit a behaviour for large d

or m different from Bém’d/ﬂzﬁ”"’d (see[19]).

4.3. Special cases
Let us here briefly discuss the form of our Bell expressions in the special cases of d = 2 andanym > 2,and
m = 2 andany d > 2.Inthefirst one, equation (44) simplifies to

Inm2 = o, (80)

where ag = 1/[2 cos(m/2m)] (notice also that 3y = 0). Then, in the correlator picture there is a single number
a; = ag = 1/[2 cos(m/2m)] and therefore

—a
) = (Ao, + Aoy, (81)
where ./ ,,,+1 = —4 1. Then, the Bell inequality in the correlator picture can be written as
~ I m N N
IN,m,Z = ? E ej?/l,oq H &{i,a,-,1+a,-—l + Jz/l,aﬁrl H vQ/i,a,-,lJra,'fl g 61[\3]’m’2> (82)
ag, ..., ay_1=1 i=2 i=2

where apy = 1. This a generalization of the bipartite chained Bell inequalities [33] to the multipartite scenario
(see also [27] for an extension in a similar spirit, albeit in which the GHZ state does not yield the maximal
violation in general). In fact, for N = 2, after dividing by 4, /2, one obtains

12
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TZ,m,Z - Z [<<5%a=@a’> + <<52/a+1=@a'>] g Z(m - 1)) (83)
a=1
where 7,11 = —.o/, which is the chained Bell inequality [33].
Inthe case of m = 2 and any d, Iy 4 is given in equation (44) with the coefficients in the probability picture
simplifying to

_ L 1y tan| _ L ~ (1tan|
= 2d[gz(k)—i-( 1) tan(4d)], Ok 2d[gz(k—i- 1/2) — (1) tan(4d)], (84)

whereas in the correlator picture to gy = w®~=8/4//2.

5. Classes of inequalities tailored to partially entangled states

In this section, we investigate whether Bell inequalities of the form (44) can be tailored to give a class of
inequalities maximally violated by partially entangled states. This is a natural question to ask, given that in the
case of two parties, the CGLMP [8] and the SATWAP [19] inequalities are maximally violated by different
entangled states, and are both of the form (44) with different coefficients v, and 3,,,. We first present the case
N = 2, d = 3 which was already studied in [25], and then consider extensions to new cases N = 3, 4

andd = 4.

51.N=m=2,d=3

In this special case, equation (44) gives a class of Bell inequalities involving two parameters ogPy — 3yQo < C,
where Cis the maximal classical value. However, we can always divide the whole expression by one of them, say
o (provided that it is positive), reducing the number of free parameters to one. As a result we obtain the
following class of Bell inequalities

b23(&) = P(A = B)) + P(A, = By) + P(Ai =B, — 1) + P(A; = By)
—&[P(A =B — 1)+ P(A, =B, — 1) + P(A = By) + P(A, = B, + 1)] < G5(9), (85)

parametrized by a single parameter &, defined as £ = [ /«v. It turns out that the classical bound of these
inequalities can be easily found by maximizing ], , 5(£) over all local deterministic strategies, which gives

—4¢, if €< -1,
G =493-¢& if —1<E<1, (86)
2, ifE>1

Moreover, numerical tests using the Navascués—Pironio—Acin (NPA) hierarchy [34] indicate that for £ < —1,
the Bell inequality (85) is trivial, meaning that its maximal quantum violation equals its classical bound.
Consequently, in what follows we will concentrate on the case £ > — 1. Itis not difficult to see that for £ = 1 the
class (85) reproduces the well-known CGLMP Bell inequality [8], which is known to be maximally violated by
the partially entangled state [35]:

i) = (100) + ~11) + 122)) (87)

1
V2 + 92
with v = (V11 — /3) /2, whereasfor £ = (/3 — 1) /2 it gives the SATWAP Bell inequality. In both cases the
optimal CGLMP observables (expression (15) for N = m = 2)are used.

The question we want to answer now is whether by changing £ between the above two values we can obtain
Bell inequalities maximally violated by partially entangled states (87) for various values of . To answer this
question let us first take the observables (15) and compute the value of the Bell expression for the state (85). This
gives us the following function of £ and :

_ 434923+ - &)

JE ) e

(88)

To find its maximal value for a fixed &, we need to satisfy the following condition 0 7(&, ) /0y = 0, whichis
equivalent to finding the root of a second degree polynomial in 7. The maximal value of J(¢, ) is found to be at
Y(6) = [(4€% + 4€ + 25)1/2 — 2€ — 1] /24/3, and itis given by

Toa(©) = %[5 — 26+ 25 T 4E T DEL (89)

Of course, the above derivation is not a proof that, for a given &, J;,.x(€) is the maximal quantum violation of
the Bell inequality (85), however, based on our numerical study we conjecture this to be the case. Notice first that
for ¢ = land ¢ = (v/3 — 1) /2, the expression (89) reproduces the maximal quantum violations of the
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CGLMP and SATWAP Bell inequalities, respectively. Then, we have tested our conjecture for other values of £ by
using the NPA hierarchy, which we implemented using the Yalmip toolbox [36] and the SeDuMi solver [37] in
Matlab. The NPA hierarchy provides outer approximations to the quantum set of correlations, and for a given
Bell inequality, it allows one to find an upper bound on the maximal quantum violation of the Bell esxpression.
We employed this technique for values of £ € [—0.99, 100] with the step 0.01, and for all these values of £ the
value obtained agrees with (89) up to solver precision 1078, which is a strong implication that it is the maximal
quantum violation of the corresponding inequality. Note that for £ € [—0.99, 42], thelevel 1 + AB of the
hierarchy was sufficient, while for £ € [42, 100] we used the level 2, except for a small amount of values in the
interval [85, 100] for which thelevel 2 + AAB was necessary.

In [25], we also showed how this class of inequalities can be used to self-test partially entangled states using
the method of [38].

5.2.Extensionto N = 3, 4

The extension of the last section to more parties turns out to be straightforward. We follow the same procedure:
we start from (44) for N = 3, 4, m = 2, d = 3,and divide it by one the parameters so that we obtain a one-
parameter class of Bell expressions

In23(8) = Py — £Q, (90)
with N = 3, 4 (let us notice here that both Iy and Q@ defined in equations (11) and (12) depend on N). We can
compute the classical bound of these expressions, obtaining

Cip3(§) =923 —§), if — 1<K, o1
4, ifex1

and

—16¢, if £ < —10/11,
Caps(€) =410 — 5¢, if — 10/11 < £ < 2/5, (92)
8, if £>2/5.

Let us now consider the following partially entangled GHZ states

IGHZ) = —L (0N + A1) + )N, (93)
2 + 72

Asin the previous subsection, we compute the values of 7™(&, v) (N = 3, 4) for the corresponding partially
entangled GHZ states and the measurements (15) and (16), and then we solve 0.7 ™) (, ) /8y = 0 to obtain

the optimal
JAE + 48+ 25 — 26 — 1
243 ’

which is the same value as for N = 2. Substituting (94) into the values of the Bell expressions, one obtains

TOLE) = 2(1 + 26 + 25 + 4(€ + DO), (95)

and 7@ (&) = 27 (€). We conjecture that they are the maximal quantum violations of F32(€)and J;5,(8),
respectively.

To support this conjecture, we use the NPA hierarchy. With the change of scenario, it takes more time to
solve each SDP, so we do not check as many values of £ as in the section above. For N = 3, we checked values of
¢ € [—1, 5] with step 0.1 and found that the gap was of order 107 or lower. For N = 4, we checked values of
¢ € [—1, 2] with step 0.5 and found that the gap was of order 108 or lower.

YO =W =

(94

6. Conclusion

In this work, we have designed a new family of Bell inequalities in the most general scenario involving m d-
outcome measurements per observer such that the GHZ state of N qudits maximally violates it, for any Nand d.
Whereas the natural approach towards finding new, useful, families of Bell inequalities is typically based on
exploiting the geometry of the set of local correlations (i.e. trying to characterize the facets of the so-called local
polytope), tailoring Bell inequalities to quantum states of interest has proven to be a much more successful
approach towards the certification of quantum properties of these states [19, 20, 25]. This shift of approach is
perhaps surprising, as CHSH inequality, the simplest non-trivial Bell inequality, possesses many of the
properties one desires to certify in practice (e.g. self-testing the singlet state of two qubits). However, one should
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have in mind that there is no a priori reason why these desirable properties of CHSH should be inherited in more
complicated Bell scenarios, simply because local hidden variable theories have nothing to do with quantum
theory.

Therefore, in order to certify, in a device-independent manner, properties of quantum states of interest, the
roadmap we here suggest looks like a much more promising approach: one generates a probability distribution
in the set of quantum correlations that is extremal and exposed (i.e. is the unique maximizer of a Bell functional)
and certifies this maximal violation by giving a sum of squares decomposition of the Bell operator. We note that,
although in our approach the difficulty of computing the maximal quantum bound is removed, by construction,
now finding the classical bound of such inequality becomes in general a non-trivial task. In our work we have
computed it exactly in the simplest Bell scenarios with the aid of numerics. Observe, however, that in order to
certify the quantum properties of interest, it is not necessary to compute exactly the classical bound of the
inequality, and a relaxation of its value (e.g. given by an outer approximation of the local polytope e.g. [39, 40])
will suffice.

We have also shown that our method can be adapted to other families of GHZ-like states, in analogy to non-
maximally entangled states of two qudits [19, 25]. This is possible because our method is fully analytical, thus
enabling us to further introduce analytical parameters and obtain the result only using elementary differential
geometry techniques.

Finally, the inequalities we here present can be tested with currently-available technology. In the bipartite
case [19], their application had already been shown in an integrated photonics device [25].
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Appendix. Proof that the correlators in equation (19) are equal

Here our aim is to show that for the measurements (15) and (16) and the GHZ state, all the probabilities in
equations (11) and (12), that s,

P(Xal ,,,,, aN-1 — k) and P()_(al, QN1 k) (96)
withk = 0, ..., d — 1(recall that the equalities in the arguments of these probabilities are modulo d), are
independent of the choice of vy, ..., oy and areequal forany k = 0, ..., d — 1.

To this end, let us first notice that the eigenvectors of the observables (15) and (16) can be written as (see [8]
and[18])

d—1
1
|a1) xl> = —F Z wq[al—'ym(xl)]’ (97)
\/E q=0
1 d—1
|612, X2> - —F Z wfq[aszm(xz)]’ (98)
q=0
for the first two observers, and
1 1 1 N+1 0
lai, x;) = — Z WD glai— 0 (xi)] (99)
q=0

fori = 3, ..., N.Recall thatin these formulas v, (x) = (x — 1/2)/m, (,,(x) = x/m,and 6,, = (x — 1) /m.
This means that the joint probability of obtaining a; by party A; upon measuring the observable .<Z ,. on the state
|GHZy 4) reads
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play, ..., anlx, ..., xN)
B 1 N+1
Jd
N+1 | g1 . [N N
1 2mi ; 1 .
=] [ S g -t — = (-1 + AN,m]
(\/E) 4=0 { d [il m i

where we denoted Ay, = [2 — (—DN]/(2m).

Let us then concentrate on P(X,,, .., ay_, = k) and consider first the case when o;_; + o — 1 < m for
i=2,..., N — 1 Substitutingthen x; = a;, x; = @j_1 + @; — lwithi =2, ..., N — land xy = ay in
equation (100), we can write

LY e ) fom [
PCX%M~~WIk)(:ﬁ;) > E:exp{—g—q[EZ(ly+%u4A;]}

a ..., an=0, q=0 i=1

Y (=Dt la=k

2
d—1

. N N
ZCXP{?Q[Z(DHIW - ('Ym(xl) = Cula) + Z(l)"“@n(xiﬂ}
q=0 i=1

i=3

2
, (100)

2

2

>

N+1 d-1 d-1 .
(5] 5 | St a]

ap, ..., an=0, =0
S (1) ha=k
N+1 d—1 . 2
1 271
(L) e exp[_q(k+A;,,>] , (101)
(JE) e

where A/, = Ay — [1 + (—=1)N+1/(2m) = 1/(2m), and to get the last line we used the fact that the

expression under the first sum does not depend on a; and that due to the constraint there are dN~! elements in

that sum. Clearly, the expression appearing on the right-hand side of the above formula does not depend on «;.
Let us then assume that for some i, o;_; + a; — 1 > m. For all such i’s we use the convention that

Ajmiy = Ai, + 1,whichimplies that P(X,, ., oy, = k) = P(X'q,, ., ax, = k + f(a)) wherein X',

oj_1 + o — larereplacedby a_; + o — 1 — mforall those’sfor which o1 + ; — 1 > m.

N+1
1
P X,al, QN — k + = | —F
( o [2)
s 2mi | X .
> expy =—q| > (=Dtla; — f(a) + A
q=0 i=1

-1 2
X >
ap ..., an=0,

S (=D lai=k+f(a)

d

2

L -1 d—1 i
= (ﬁ) . ...,ZaN:O, q;oexp [7q(k + A’)]
Zi:(—l)"“a,:kJrf(a)
= (L)Nﬂd’\’l dilexp [z—mq(k + A’)] 2 , (102)
7 Lo

where to the third line follows from the fact that, as above, the expression under the sum does not depend on a;’s
and that there are ¥~ ! terms in that sum. Again, this formula does not depend on «;’s and equals the one in
equation (101).

In a similay way one proceeds with P(X,,,, . ay_, = k). There are, however, two differences with respect to
the previous case: first, in equation (100) one substitutes x; = oy + 1instead of x; = «, second, the condition
for outcomes in equation (101) modifies to 3°,(—1)'"'a; = —k. Nevertheless, after some calculations one finds
that P(X,,, ., ay., = k) = P(Xa, .., ay_, = k) forany kand any choice of measurements «;, which is what we
wanted to show.
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