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ABSTRACT

In a proton-electron magnetized plasma, we analyze turbulence at kinetic scales captured by a gyroki-
netic formalism. The interval of scales spans the range between the proton and the electron gyroradii,

while the use of the proper mass ratio between the two species ensures a realistic scale separation for

the nonlinear couplings. The simulation is pertinent to astrophysical conditions, employing a straight

field line magnetic geometry for the guide field, a plasma β of one and a temperature ratio between

the two species of unity. We investigate the intermittency of the distribution functions in the perpen-
dicular direction, measured over the phase space as a way to account for the velocity space structures

generated via Landau damping as well as for the nonlinear spatial mixing (i.e. the turbulent cascade).

The analysis makes use of a Hermite decomposition in the parallel velocity. Electron structures are

found to be strongly intermittent compared to weakly intermittent protons. Moreover, we find evi-
dence linking intermittency with phase mixing and electron Landau damping, as intermittent electron

structures also exhibiting strong parallel velocity structures.

1. INTRODUCTION

Turbulence in astrophysical plasma occurs over a

wide range of spatial scales Bruno & Carbone (2013);

Kiyani et al. (2015) (ℓ). While large scale dynamics can
be captured by fluid approximations Zhou et al. (2004),

the physics of turbulence on scales comparable to the

proton (ion) gyroradius and smaller requires a kinetic

description Marsch (2006); Schekochihin et al. (2009);

Howes et al. (2008, 2011) and as such, velocity space
interactions need to be considered. Moreover, the de-

parture of turbulence from self-similarity (i.e. scale in-

variance of the dynamics) leads to intermittency, which

impacts simultaneously the locality of energetic interac-
tions between scales Teaca et al. (2017) and the forma-

tion of structures in real space Frisch (1995). The emer-

gence of inhomogeneous structures is known to affect

the transport of particles and heat in turbulent media,

but at the kinetic level, as we will explore in the current
work, they can affect the balance between dynamics in

position space and velocity space.

The solar wind is the best example of this overall sce-

nario, as a mean free path on the order of an AU requires
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us to investigate the problem from the perspective of a

collisionless plasma. This means that the sink of turbu-

lent fluctuations cannot be modeled via simple viscous
terms and requires a kinetic description in a (position-

velocity) phase space, including the use of appropriate

collision operators. In fact, in the solar wind, the mag-

netohydrodynamic (MHD) turbulent cascade is found

to give way to a kinetic cascade at scales below the pro-
ton gyroradius. The kinetic range, traditionally referred

to as the dissipation range, exhibits nonlinear interac-

tions that cannot be neglected as in a viscous dissipation

range. In this range, the dynamics are further compli-
cated by the need to incorporated velocity space effects

(i.e. phase mixing).

While the name dissipation range in the solar wind is

not emblematic of the underlying nonlinear dynamics,

it is appropriate from a phenomenological perspective.
In this range we observe the general thermalization of

the plasma fluctuations (thermalization should be seen

in the broader sense, as the way phase space fluctua-

tions reach steady state through the action of collisions,
rather than classical thermodynamic equilibrium). The

general thermalization of plasma is related to the heat-

ing problem of the solar wind Bruno & Carbone (2013),

both in an entropy production sense and in the sense of
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the mechanism that leads to a temperature increase and

its anisotropization.

As the importance of kinetic turbulence in the anal-

ysis of astrophysical plasma is evident, the question
of intermittency and its interplay within the encom-

passing phase space emerges. Turbulence is typically

associated with the development of localized structures,

such as eddies, filaments and sheets, with the energy at

small scales being contained in a few energetic struc-
tures Zhdankin et al. (2015). Intermittency can thus

be seen as the tendency of small scales to be less vol-

ume filling than larger scales Frisch (1995) and we will

show this aspect in relation to the magnetic field. At
kinetic scales, the dissipation of electromagnetic fluc-

tuations is found to occur in highly localized current

sheets by a series of numerical studies Wan et al. (2012,

2015); Karimabadi et al. (2013); Tenbarge & Howes

(2013) and satellite observations of the solar wind
Perri et al. (2012b,a); Osman et al. (2012b,a, 2014b);

Sundkvist et al. (2007). At the same time, particle-

wave resonance is known to exchange energy between

the electromagnetic fields and the particle distribu-
tions Tenbarge & Howes (2013); Cerri et al. (2016);

Klein et al. (2017); Cerri et al. (2018); Kawazura et al.

(2019); Meyrand et al. (2019); Chen et al. (2019), af-

fecting the generation of velocity structures in phase

space. Analyzing the intermittency and the velocity
structures of the distribution functions is crucial for as-

sessing the correct route to collisional dissipation and

the balance that emerges between linear and nonlinear

dynamics at kinetic levels.
The tendency of plasmas to become magnetized at

smaller scales (and we emphasize that in the solar wind

this is a tendency more than the realization of a strong

magnetization) further amplifies phase mixing dynam-

ics, as the free streaming of particles along magnetic field
lines smooths out charge density fluctuations via Landau

damping and generates finer velocity space structure in

the process. The formation of intermittent spatial struc-

ture at these kinetic scales can in turn impact the loca-
tion where smaller scales are generated in velocity space

and represents the broader interest of the current work.

As this is a general problem in collisionless magnetized

plasma that can affect the temperature ratio between

plasma species, it can impact spectroscopic measure-
ments and estimates of distant objects (e.g. accretion

disks, exoplanets). At kinetic scales, intermittency can

play a much more important role than in fluid turbu-

lence, as localized patches can support different regimes
of phase space dynamics than the surrounding turbu-

lent background. This would imply that the mechanism

that leads to heating and temperature disparity between

species has a strong local character and cannot be cap-

tured fully by homogenous estimates.

1.1. A brief overview of intermittency and kinetic

scales dynamics

Dynamically, the energy exchanges between scales

(i.e. the energy cascade) and the phenomenon of in-
termittency have the same underlying cause: nonlinear

interactions. The nonlinear mixing can lead to phase

correlations between fluctuations, which generates in-

termittency. In Fourier space, which provides a natu-
ral projection of the turbulent dynamics on a hierarchy

of scales (k ∼ 1/ℓ), these correlations are contained in

the complex phases of the Fourier modes. The way the

phases are correlated with each other determines how

the energy of a mode is distributed in real space, either
in a statistically uniform manner or in a few localized

patches. A random or any uncorrelated distribution of

phases will show no spatial intermittency regardless of

the shape of the spectrum. Traditionally, structure func-
tions defined on field increments are employed for the

study of intermittency. However, in our current work

we will make use of scale functions for the analysis of

intermittency, which are based on the Fourier space rep-

resentation of scales. While this is not a widespread
approach, we cannot claim novelty as this is an expan-

sion on the idea presented in Ref. [Frisch 1995] for the

analysis of the kurtosis.

For kinetic turbulence and its rigorous gyrokinetic
(GK) Brizard & Hahm (2007); Krommes (2012) limit

in strongly magnetized plasmas, the distribution func-

tions of the plasma species represent the dynamical

quantities of interest. The role of the self-consistent

electromagnetic fields, obtained from moments of the
particles’ distributions, is to mediate the nonlinear in-

teractions between structures in the distribution func-

tions Tatsuno et al. (2009). This represents the un-

derlying mechanism for the development of intermit-
tency at the kinetic level. The kinetic dynamics oc-

cur in a position-velocity phase space Schekochihin et al.

(2008) involving couplings between velocity space struc-

tures Hammett et al. (1992); Plunk & Tatsuno (2011);

Plunk et al. (2010) in addition to those between spatial
scales Navarro et al. (2011). Unlike in fluid representa-

tions, at the kinetic level there is no immediately evident

mechanism for the direct correlation of the phases of the

fields. The intermittency exhibited by the fields can be
seen as being inherited from the dynamics of the distri-

bution functions. This interpretation can be seen as the

most robust one as it holds true regardless of the kinetic

limits or models employed Eyink (2018).
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Alternatively, a ’hybrid’ approach can be considered,

where, following an appropriate Hermite (and Laguerre)

decomposition of the distribution functions into a series

of velocity moments, similar to Zocco & Schekochihin
(2011); Hatch et al. (2014); Parker & Dellar (2015);

Kanekar et al. (2015); Mandell et al. (2018), the equa-

tions for the Alfvénic fluctuations (and density fluctu-

ations of the plasma) can be explicitly tracked. The

nonlinear self-interaction between Alfvénic like fluctua-
tions are now explicit in form. The reduced distribution

function (basically the leftover of the original distribu-

tion once the first few moments have been subtracted)

are seen as being passively advected by the Alfvénic fluc-
tuations, e.g. Kunz et al. (2016); Meyrand et al. (2019).

While different numerical schemes may be preferred for

different implementations, we see the two approaches

as being effectively equivalent and a reader should not

be confused by the ’hybrid’ label nor discouraged by it.
We mention this to emphasize that the conceptual dif-

ference lies in the physical interpretation, as the latter

approach tracks separately Alfvénic fluctuations (richer

in phenomenological meaning) from the rest of the arbi-
trarily large number of Hermite modes, while the former

approach interprets the dynamics from the perspective

of phase space interactions (useful in the mathematical

description of kinetic systems).

1.2. Article structure

In this work, we study intermittency of turbulence at

kinetic scales, accounting for phase space structures in

the GK limit. After we introduce the simulation details

in Section 2, we start our study in Section 3 by defin-

ing our diagnostics and look at the intermittency in the
perpendicular direction of the familiar magnetic fluctua-

tions as a way to build confidence in the approach. The

importance of velocity structures are showcased in Sec-

tion 4 and the Hermite representation for the parallel
velocity is introduced in Section 5. We then compute in

Section 6 scaling functions directly on the proton (ion)

and electron distributions, which account for velocity

space fluctuations and their mixing in phase space. In

Section 7, we discuss the intermittent electron structures
from the perspective of linear phase mixing, indirectly

showing that smaller structures in the parallel velocity

are generated in the high intensity spatial structures.

We end in Section 8 by looking at the dependence of the
perpendicular spatial cascade with the scale size of the

parallel velocity structures, determined through the use

of scale filtering in Hermite space, before drawing our

conclusions in Section 9.

2. SIMULATION DETAILS

In this study we use gyrokinetic simulations of magne-

tized proton-electron plasmas. This formalism assumes

low frequencies (compared to the ion, here proton, cy-

clotron frequency) and small fluctuation levels to remove
the particles’ fast gyro-motion, effectively reducing the

relevant phase space to five-dimensions Brizard & Hahm

(2007); Howes et al. (2006). While it neglects cyclotron

resonance, gyrokinetics captures the crucial dynamics

Told et al. (2016) of kinetic Alfvén wave (KAW) turbu-
lence in three spatial dimensions Podesta (2013); Howes

(2015).

In a slab equilibrium magnetic geometry (pointing in

the ez direction), a ”δf” perturbed approach is em-
ployed for a constant and local Maxwellian background

distribution Fσ with background density nσ and temper-

ature Tσ, around which fluctuations develop in the gyro-

center distribution functions hσ = hσ(x, y, z, v‖, µ, t),

where µ = mv2⊥/2B0 is the magnetic moment contain-
ing the perpendicular velocity information (µ = v2⊥ in

normalized units) and σ is the plasma species index.

The nonlinear gyrokinetic system of equations is

solved with the Eulerian code GENE Jenko et al.
(2000). Up to a first order in the GK ordering, the

non-dimensional GK equations have the form,

∂

∂t

[
hσ−qσχ̄σ

Fσ

Tσ

]
+[ez×∇χ̄σ]·∇hσ + v‖v

th
σ

∂hσ
∂z

=
[hσ
∂t

]
c
,

(1)

where the
[
hσ

∂t

]
c
term represents the change of hσ due

to the action of a linearized collision operator (here a

linearized Landau-Boltzmann collision operator is be-

ing used Navarro et al. (2016)), vthσ =
√
2Tσ/mσ is the

thermal velocity, qσ is the electric charge and mσ the

particle mass.

The (gyro-averaged) gyrokinetic potential is defined

as

χ̄σ = φ̄σ +
µ

qσ
B̄‖,σ − v‖v

th
σ Ā‖,σ , (2)

where the overbar refers to a species dependent gyro-

average Merz (2009), while φ is the first order self-

consistent electrostatic potential, B‖ is the first order
magnetic fluctuation in the parallel direction and A‖ is

the first order magnetic potential in the parallel direc-

tion. These fields are obtained from their respective field

equations,

∇2
⊥φ = −4π

∑

σ

qσnσ (3)

∇2
⊥A‖ = −4π

c

∑

σ

j‖,σ (4)

B‖ = − 4π

B0

∑

σ

p⊥,σ (5)



4

for sources (nσ, j‖,σ, p⊥,σ) obtained from the velocity

moments of the perturbed distribution function at the

particle position (i.e. δfσ = hσ−qσφFσ

Tσ
).

The data used in this work is taken from the simu-
lation presented in Told et al. (2015), and it is briefly

summarized in the following: The physical parameters

of the simulations are chosen to be close to the solar

wind conditions at 1 AU, with βi = 8πniTi/B
2
0 = 1

and Ti/Te = 1. Proton and electron species are in-
cluded with their real mass ratio of mi/me = 1836.

The electron collisionality is chosen to be νe = 0.06ωA0

(with νi =
√
me/miνe), and ωA0 being the linear fre-

quency of the slowest Alfvén wave in the system. The
evolution of the gyrocenter distribution is tracked on

a grid with the resolution {Nx, Ny, Nz, Nv‖ , Nµ, Nσ} =

{768, 768, 96, 48, 15, 2}, where (Nx, Ny) are the perpen-

dicular, (Nz) parallel, (Nv‖) parallel velocity, and (Nµ)

magnetic moment grid points, respectively. This covers
a perpendicular dealiased wavenumber range of 0.2 ≤
k⊥ρi ≤ 51.2 (or 0.0047 ≤ k⊥ρe ≤ 1.19) in a domain

Lx = Ly = 10πρi , with ρσ =
√
Tσmσc/eB. In

the parallel direction, a Lz = 2πL‖ domain is used,
where L‖ ≫ ρi is assumed by the construction of gy-

rokinetic theory. A velocity domain up to three ther-

mal velocity units is taken in each direction. Last, the

fluctuations in the system are driven to a steady state

via a magnetic antenna potential, which is prescribed
solely at the largest scale in accordance with critical

balance and evolved in time according to a Langevin

equation TenBarge et al. (2014).

3. DIAGNOSTICS & MAGNETIC
INTERMITTENCY

While the main purpose of this work is to an-

alyze the intermittency of the distribution func-

tions in phase space, we first introduce the diag-

nostics employed using the magnetic field fluctua-
tions (denoted by B) to provide both an example

of our approach and reference existing electromag-

netic intermittency works Wan et al. (2012, 2015);

Karimabadi et al. (2013); Tenbarge & Howes (2013);

Perri et al. (2012b,a); Osman et al. (2012b,a, 2014b);
Sundkvist et al. (2007); Osman et al. (2014a); Hnat et al.

(2005); Kiyani et al. (2007); Wan et al. (2016); Coburn et al.

(2014, 2015). The literature is vast on this subject of

magnetic intermittency and we do not attempt to ex-
plore it here.

To quantify spatial intermittency in the direction per-

pendicular to the magnetic guide field, we use k high-

pass filtered quantities Frisch (1995). For example, the

high-pass perturbed magnetic field is simply defined as

δB>
k (x) =

∫

|q|>k

B̂(q, z)ei(qxx+qyy)dq (6)

The perpendicular scaling functions of order p are now

defined as

Sp(k) =

∫ [
|δB>

x,k(x)|p + |δB>
y,k(x)|p

]
dx . (7)

From this definition we see that the scaling functions are

related to the Lp-space norms ([Sp(k)]
1/p) for the scale

filtered quantities. We use the name scaling functions for

Sp(k) to differentiate them from the structure functions

traditionally defined on field increments. However, their

interpretation and use is the same, as we see next.

For turbulence within an ideal inertial range, the scal-
ing functions are expected to scale with k as Sp(k) =

Cpk
−ζp , where ζp = pm + γp and the coefficients γp

measure the degree of intermittency. In the absence of

intermittency, for which the self-similarity of the fields
is exact, the anomalous γp coefficients are zero and the

scaling of the scaling functions depends only on their

order p and the unique scaling factor m = ζ3/3. In gen-

eral, the Cp and ζp coefficients for different orders p do

not need to be related to each other (e.g. (Cp)
2 6= C2p),

nor be universal. While scaling functions can be linked

to the energy spectra and the scale flux of energy, the

normalized scaling functions, defined as

Ap(k) =
Sp(k)

[S2(k)]p/2
(8)

are more useful for the study of intermittency. In the

absence of intermittency Ap(k) is independent of k. This

can be easily seen for any self-similar scale transforma-

tion, e.g. δB>
λk=λ

−mB>
k . However, k independence for

Ap(k) is also observed for a real space Gaussian distri-

bution, which has sometimes led to the mistaken notion

that intermittency is a departure from a Gaussian dis-

tribution rather than a departure from scale invariance
Hnat et al. (2003). For strongly intermittent k-intervals,

the Ap(k) curves exhibit an explosive separation for dif-

ferent orders p.

In FIG. 1-a) we depict the tendency for small scale

structures to be less volume filling than larger scales,
exemplified by the magnetic field. This is the main

effect associated with intermittency in real space. In

FIG. 1-b) we plot the same data in the same way, except

for randomizing the Fourier modes’ phases to showcases
the importance of phase correlation in the development

of intermittency. See Maron & Goldreich (2001) for a

similar depiction of the importance of Fourier phases in

MHD turbulence.
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Figure 1. Real space visualization of the norm of perpendicular magnetic fluctuations. In all four panels, the same slice
through the z direction is taken, the magnetic field is normalized to its respective maximal value and values less than 0.1% of
the maximum are set to zero (black color). The four panels show the real space data, high-pass filtered beforehand in Fourier
space (here kmax = 51 in units of 1/ρi). a) The fact that small scales are less space filling is evident by the progressive increase
in the black color. b) We randomized the phases while keeping the same spectral density for the norm of δBk to showcase that
in the absence of phase correlations we do not have intermittency.

In FIG. 2 we plot the corresponding Ap(k) for the

magnetic field and the scaling index ζp, determined by

a linear regression of log(Sp) = −ζp log(k)+log(Cp) in

the interval kρi ∈ [1, 10]. The qualitative intermittency
results found for the magnetic field are consistent with

multi-fractal intermittency (ζp has an increased devia-

tion from the diagonal line for larger p). Multi-fractal

intermittency is typically found for turbulent cascade
processes. Here, the kinetic Alfvén wave (KAW) cas-
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Figure 2. For the perpendicular magnetic field, a) the ζp
determined by linear regression in the interval delimited by
the two dotted lines in the b) plot of Ap(k).

cade, proceeding at scales smaller than ρi, Howes et al.

(2008), Schekochihin et al. (2009), Howes et al. (2011)

can be seen as being responsible for the observed multi-

fractal intermittency scaling of the perpendicular mag-
netic field fluctuations. This emphasizes the importance

of nonlinear phase space interaction at kinetic scales.

We will return in Section 9 – Discussions and Conclu-

sions to the interpretation of results found for magnetic
intermittency and its astrophysical context, after we ex-

plore the broader phase space picture.

4. ON PHASE SPACE MIXING DYNAMICS

We concentrate hereon the underlying kinetic dynam-

ics. For GK turbulence, the five-dimensional dynam-
ics involve the generation of small scales in the par-

allel (linear phase mixing Watanabe & Sugama (2006);

Zocco & Schekochihin (2011); Schekochihin et al. (2016))

and perpendicular (nonlinear phase mixing Tatsuno et al.
(2009); Schekochihin et al. (2008); Hammett et al.

(1992); Plunk & Tatsuno (2011); Plunk et al. (2010))

velocity directions. The nonlinear phase mixing re-

sponsible for generating structures in the perpendicular
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Figure 3. Real space visualization in a (x, y) plane at a
fixed z of (left) |

∫

δh>
k=10

dVv| and (right)
∫

|δh>
k=10

|dVv,
computed for the electrons, normalized to their respective
in-plane maximal value. Example of a structure present in
one but not in the other quantity is highlighted by a dotted
circle.

velocity direction occurs as part of the same nonlin-
ear interactions that are responsible for the generation

of small spatial structures and the emergence of in-

termittency, namely the advection by drift velocities

of the gyro-center distribution function (hσ). Inter-
mittency emerges solely as a result of these nonlinear

interactions, however, their balance with linear inter-

actions does matter, as linear terms can suppress or

enhance nonlinear couplings. The linear phase mixing

term (∼v‖∂hσ/∂z) cannot alone generate intermittency,
however, it is the term that leads to linear Landau

damping Plunk (2013) (see Villani (2014) for a non-

linear Landau damping treatment) and the generation

of ever-smaller parallel velocity structures Chust et al.
(2009); Bratanov et al. (2013); Li et al. (2015). In par-

ticular, we are concerned in our current work with the

parallel velocity scales developed by the electron dis-

tribution function (the perpendicular velocity mixing

should be small compared with the ion, as kρe < 1 for
most of the scales investigated here).

To showcase phase space structures we make use of

a simple diagnostic, presented here for the electron

species. In FIG. 3 we plot at a given z the x, y density of
the integral of the absolute value of hσ, i.e.

∫
|δh>k |dVv

(which can be seen as giving un upper bound to the

fluctuations developed in hσ and which exhibits more

eddy like structures) and compare it to the absolute

value of the integral, i.e. |
∫
δh>k dVv| (which can be seen

as the intensity of the lowest velocity moment), with

dVv = 2πB0/mσdv‖dµ the velocity space volume ele-

ment for the GK problem and with δh>k defined formally

in Eq. (13) later in the article. In the latter case, the ve-
locity space integration naturally leads to cancelations.

This happens especially for all odd order moments and,

more importantly, for the charge density and electric

current from which the self-consistent electromagnetic

fields are computed. This simple diagnostic emphasizes

the need to analyze kinetic scales turbulence at the level

of the distribution functions, when interested in phase

space structures, and not over-rely on fluid moments of
different orders to avoid inadvertently averaging out dy-

namical effects.

5. PARALLEL VELOCITY DECOMPOSITION

In addition to spatial intermittency, we want to ac-

count for structures developed in the parallel velocity
for the ion and electron gyrokinetic (non-adiabatic) dis-

tribution functions, i.e. h(v‖), where we suppress de-

pendencies to simplify the notations.

We use a Hermite representation, see Grant and Feix
(1967); Armstrong (1967); Hammett et al. (1993) and

more recently Hatch et al. (2013, 2014); Loureiro et al.

(2013); Numata & Loureiro (2015); Schekochihin et al.

(2016); Servidio et al. (2017), employing the Hermite

functions

ψn(v‖) =
(
2nn!

√
π
)−1/2

ev
2

‖/2
(
− d

dv‖

)n

e−v2

‖ (9)

which are orthonormal
∫∞

−∞
ψn(v‖)ψm(v‖) dv‖ = δnm,

with δnm the Kronecker delta. The n-filtered parallel

velocity is defined here as

hn(v‖) = ĥnψn(v‖), (10)

where

ĥn =

∫ +∞

−∞

h(v‖)ψn(v‖)dv‖, (11)

are Hermite amplitudes related to velocity moments

of the distribution function; n = {0, 1, 2} relate

respectively to fluctuations of the particle density,
bulk velocity and particle kinetic energy and are

seen as fluid like contributions Loureiro et al. (2013);

Numata & Loureiro (2015); Schekochihin et al. (2016).

The original distribution function is simply obtained as

a sum over all possible n-filtered contributions, i.e.

h(v‖) =

∞∑

n=0

hn(v‖). (12)

While h0(v‖) has a simple Gaussian form in v‖, for
ever larger values of the integer n we select ever smaller

scales in v‖. Velocity scales represented by n ≥ 3 can

be seen as kinetic only contributions that are not cap-

tured by simple fluid closures (e.g. for Grad’s 13 mo-
ment equations Grad (1949)) and are deemed to have n-

independent dynamics Parker & Carati (1995) (i.e. the

evolution equations for n ≥ 3 have the same form).

To observe the influence of these kinetic only velocity
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structures, we designate h≥3(v‖) as the sum over all

n ≥ 3 contributions, i.e. h≥3(v‖) =
∑∞

n=3 hn(v‖) =

h(v‖)− h0(v‖)− h1(v‖)− h2(v‖).

6. KINETIC STRUCTURE FUNCTIONS

The high-pass filters for hσ, omitting the σ species

index to simplify the notations, are found as

δh>k (x, y, z, v‖, µ) =

∫

|q|>k

ĥ(q, z, v‖, µ)e
i(qxx+qyy)dq .

(13)

The scaling functions of order p for a given species σ are
defined as

Sp(k) =

∫
|δh>k (x, y, z, v‖, µ)|pdV , (14)

where dV = dx dy dz dVv is the five-dimensional phase

space volume element. Considering |δh>k | ensures that

velocity space cancelations do not occur during integra-

tion. Here, we take a single given plane in z. The def-
inition of Ap(k) is still given by Eq. (8), with the same

interpretation.

We plot the normalized structure functions Ap(k)

computed for the ions (protons) in FIG. 4 and for the
electrons in FIG. 5. In the panels below each figure we

show the p-scaling of the exponents ζp, computed as for

the magnetic field in the k-intervals separated by vertical

dotted lines. Here, we are interested in the qualitative

form of the ζp/ζ3 curves and a refinement of our choice of
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k-intervals does not impact this aspect in a meaningful

way.

For the end of the fluid range (kρi<1), we see an ab-

sence (or a strong attenuation) of intermittency. In this
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|h≥3|
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value. b) velocity structures for h21 at a given spatial point of high intensity in panels-a (coordinates {x, y} ≈ {15, 12.5}),
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the same spatial point as above, normalized to the maximal value in each case. d) the ζp scaling for the interval kρi ∈ [1, 10]
computed for the phase randomized electrons.

range, fluctuations in the electrons’ Ap(k) are present.

In FIG. 5 they take the form of the two small bumps

due to the normalization of Ap(k) to Ap(kmin) that col-
lapses the curves of different p-value. Their increase is

not unbounded and they show no impact on the overall

intermittency. This is clear from the ζp scaling in the

respective interval. At kρi=1 we see a clear sign in the

change of the dynamics as the fluid range transitions to
the kinetic one.

Considering the kinetic scales (kρi > 1), the ions

(Fig. 4) show a strong intermittent behavior at the

smallest of scales (captured by the divergence of Ap(k)
curves and the departure of the ζp scaling from the non-

intermittency line). The electrons (Fig. 5) exhibit a

multi-fractal intermittency in the range kρi∈ [1, 10] and

a non-intermittent behavior (mono-fractal or at least

very weak multi-fractal scaling) at the smallest scales
(captured best by the ζp scalings). These regimes seem

to correspond with the peak of free energy dissipation

for each species (see FIG. 4 in Told et al. (2015)). In

analogy with classical fluid turbulence, multi-fractal in-
termittency indicates a local breaking of scale invariance

and is to be expected close to dissipation ranges. How-

ever, we note that the dissipation is different in nature

for the two species, as the electron dissipation is mainly

due to parallel velocity collisions Navarro et al. (2016).

In FIG. 6, we show the same analysis performed on
the kinetic only velocity scale contributions, given by

h≥3(v‖), for which we mention that the correspond-

ing ζp scalings remain qualitatively the same. For the

ions, looking at the kinetic only velocity contributions

h≥3(v‖), we do not see the break in the scaling of Ap at
kρi≈1. While this break does not influence the anoma-

lous scaling of ζp, it shows that the non-universal Cp

coefficients (e.g. C8 6= C2
4 , as Cp are not just a function

of p) are sensitive to fluid-like velocity contributions.
The fluid-like velocity contributions have a stronger im-

pact on the electrons, attenuating their intermittency at

large spatial scales (kρi < 1). Considering the absence

of a break in the dynamics at kρi = 1 (for ions in par-

ticular), we can only conclude that this break in the full
distribution is mainly due to fluid moments and the ki-

netic contributions are mainly insensitive to a transition

between different kρi scale regimes.

Overall an intriguing picture is formed. Electrons are
multi-fractal in a scale range where collisions in the par-

allel velocity dominate (96% of the total electron dissipa-

tion Navarro et al. (2016)), but quickly lose this charac-
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ter past this range, indicating a change in the nature of

the subsequent electron cascade towards the smallest of

scales (that just ”sweeps away” any remaining energy).

The presence of strong parallel velocity collisions in a
given kρi range requires a strong flux of energy in the

parallel velocity. This flux is caused by the linear phase

mixing, as clearly showcased by Meyrand et al. (2019).

We can thus correlate the transition for electrons from

a multi-fractal to a mono-fractal scaling at the small-
est of scales to the presence or absence of a strong linear

phase mixing. We speculate on the implications of phase

mixing on intermittency in Section 9 – Discussions and

Conclusions.
At the smallest of scales, and only at these scales, the

ions (which here exhibit a weak linear phase mixing ef-

fect at all scales) are found to be strongly multi-fractal.

We know that ions dissipate mainly due to collisions in

the perpendicular direction Navarro et al. (2016) and we
know that due to nonlinear phase mixing fine structures

in the perpendicular velocity generate fine structures in

the perpendicular spatial direction as the two are linked

Plunk et al. (2010). The amplification of velocity and
position space gradients (that localizes ion structures

in the perpendicular direction) at an increased rate to

achieve energy dissipation is something to be expected.

Using the arguments of Schekochihin et al. (2009) and

the critical balance condition for the antenna as means
to estimate the frequency of the outer scale, we define

kνiρi ∼ (ωA0/νi)
1/2 as the scale where the transition be-

tween the dominance of the nonlinear phase space cas-

cade and the ion collisional dissipation occurs, finding
kνiρi ≈ 26. This coincides with the change in the na-

ture of intermittency depicted by the ions.

The species dependent velocity space anisotropy,

which influences collisional dissipation, could underlie

anisotropic heating in astrophysical plasma. Moreover,
we see that phase mixing cannot be separated from the

analysis of spatial scales, as an enhanced Landau damp-

ing route towards parallel dissipation can impact the

nature of intermittency of the turbulent cascade, even
if it cannot generate it directly.

7. VELOCITY SPACE STRUCTURES

Next, keeping only perpendicular spatial scales
smaller than the ion gyroradius (i.e. kρi > 1), we look

at velocity space structures developed by the ions and

electrons. In addition, we consider the electron case

for which we randomize the Fourier modes’ phases in
Eq. (13) while keeping the same spectral energy density.

By doing so we destroy the nonlinear correlations. In

FIG. 7-a) we plot the
∫
|h≥3|2dVv for the three cases,

visually observing that the electrons kinetic structures

are highly intermittent compared to the ions and that

they occupy a smaller volume. Randomizing the Fourier

phases for the electrons destroys their real space struc-

tures and suppresses intermittency. This is clearly seen
from FIG. 7-d), as the exponent ζp computed in the

range kρi ∈ [1, 10] lost its multi-fractal scaling once the

phases are randomised.

For spatial points located in high intensity structures

(>90% value in the FIG. 7-a) plots), we look in FIG. 7-
b) at the velocity space (v‖, v⊥) for h21, see Eq. (10).

Selecting only one parallel velocity scale avoids cancel-

lations (or smudging) from taking place during v‖ inte-

gration and provides a much clearer message. The n=21
parallel velocity scale determines the structure size in v‖
and is here an arbitrary choice. The dominance of non-

linear phase mixing (the case for ions) can be seen as

the structures in v⊥ become apparent (v⊥=
√
µ in nor-

malized units). By comparison, the dominance of linear
phase mixing for the electrons manifests as the absence

of v⊥ structures (except for an exponential decay for

large values) and the emergence of long structures of

given sign. We mention that non-intense points for the
electrons in FIG. 7-a) exhibit velocity space structures

similar to those seen for the ions, however, with an in-

tensity smaller by one order of magnitude than points

exhibiting linear phase mixing. The linear phase mixing

role for the electrons is clear from FIG. 7-c), as large
scale velocity structures (low n) are smoothly trans-

formed into smaller scales (here only odd values of n are

shown for clarity). We mention that this picture is lost

when phases are randomized (in this case, the picture
would look qualitatively similar to the figure depicting

the ions).

The most striking result (FIG. 7-b), right panel) is ob-

served for the phase randomized electrons, for which the

accentuated linear mixing in velocity space is destroyed.
The nonlinear phase correlations are responsible for the

emergence of intermittent coherent structures, in which

linear mixing is found to dominate. This indicates that a

balance between the linear phase mixing and the nonlin-
ear interactions emerges at sub-gyroradius scales, as was

shown in Hatch et al. (2013, 2014); Tenbarge & Howes

(2013) and proposed by Schekochihin et al. (2016) at

kρi ≪ 1 in drift kinetic turbulence. When phases are

randomized, the coherent intermittent structures are de-
stroyed and so is the accentuated linear parallel mixing

in velocity space at those locations. We emphasize that

phase randomization is not creating perpendicular mix-

ing. Destroying the balance between the nonlinear struc-
tures and the linear mixing and the suppression of the

latter simply allows for the weak perpendicular veloc-

ity structure to become apparent. Accounting for the
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results presented, a stronger conjecture can be made

regarding the balance between the linear and nonlin-

ear effects: linear phase mixing, which includes Landau

damping, dominates in intermittent structures. While
evidence to support this is presented in the current work,

our conjecture is far from being proven, which will make

the object of a future study.

8. INFLUENCE OF THE VELOCITY SCALES ON

THE PERPENDICULAR CASCADE

In this section we will use the electrons to showcase
how velocity scales influence the perpendicular cascade.

We mention that for this section alone we used a Hermite

polynomial representation Hatch et al. (2013, 2014) for

the analysis, i.e. Hn(v‖) relates to Hermite functions as

Hn(v‖) = ψn(v‖)e
v2

‖/2 (thus H0(v‖) ∼ 1, H1(v‖) ∼ v‖,

100 101
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Figure 8. Hermite space spectrum for the electrons. A
n−1/2 scaling is expected for a pure linear Landau damping
case and a steeper scaling emerges due to nonlinear decorre-
lation. The n = 0 mode is found to dominate.
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etc.). Here,

h̃n =

∫ +∞

−∞

h(v‖)Hn(v‖)dv‖, (15)

h(v‖) =

∞∑

n=0

h̃nHn(v‖)e
−v2

‖ . (16)

In FIG. 8, we show the spectrum of |h̃n|2 for the elec-
trons. Considering that a n−1/2 scaling is expected for a

pure linear Landau damping case Zocco & Schekochihin

(2011), the −2/3 exponent found indicates that the elec-

trons exhibit a strong linear Landau damping tempered
just a little by the nonlinear decorrelation.

While we expect the largest of scales to be dominated

by Landau damping, to understand the impact of the

cascade we make use of the high-pass filter for hσ. In

FIG. 9, we plot the (high-pass cumulative) spectra of
|δh>k⊥

(v‖)|2, see Eq. (13), were we integrate over all other
directions. For larger values of k⊥ we remove more and

more the large scale contributions. Concentrating more

and more on large k⊥ values (thus accounting for more
and more of the nonlinear decorrelation at small scales)

changes the v‖ shape of the system (flatter ’tails’ com-

pared to the rounder Gaussian bell like shape at low

k⊥). This is only possible if the system departs further

and further from the n = 0 Hermite contribution in the
distribution function (a stronger departure from equilib-

rium in a way). Here, for the electrons, this change in

behavior from the fluid like (low velocity moments) at

outer scales to the kinetic like (higher velocity moments)
at smaller scales occurs very fast.

This behavior is best seen from FIG. 10, where we

plot the (density) k⊥ spectrum for the electron com-

ponent of the free energy and the contribution to this
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spectrum from various n Hermite modes. The scaling of

the n = 0, 1 Hermite contributions is steeper compared

to the k⊥ scaling of the n ≥ 2. This means that, cu-

mulatively, the n ≥ 2 contributions will dominate after
a certain k⊥ value (here ∼ 5). As higher n contribu-

tions dominate, we can interpret this as a stronger non-

equilibrium state (accentuated departure from a Gaus-

sian distribution) at smaller spatial scales. More impor-

tantly, fine parallel velocity structures (corresponding to
higher n) become more significant at smaller k⊥ scales.

We note that this transition occurs in the interval where

the electrons are intermittent. Last, we mention that

the −4/3 and −10/3 scalings match exactly the values
found by Tatsuno et al. (2009) and Plunk et al. (2010)

for the scaling of the ’electrostatic’ and ’entropy’ con-

tributions to free energy in two-dimensional gyrokinetic

turbulence (two-dimensional referring to a lack of par-

allel fluctuations, i.e. lack of z and v‖).

9. DISCUSSIONS AND CONCLUSIONS

We analyzed large resolution GK simulations, perti-
nent to kinetic Alfvén wave turbulence. The Alfvén

wave turbulent cascade, together with its kinetic con-

tinuation at scales smaller than the ion gyroradius, is

known to play an important role in the thermalization

of ions and electrons in astrophysical plasmas. As ki-
netic effects such as Landau damping in particular and

phase mixing in general become dynamically important

and determine the route towards free energy dissipa-

tion (entropy production), investigating structures in
the broader position-velocity phase space becomes nec-

essary. Restricting the analysis to low-order velocity

moments (that give the sources for the electromagnetic

fluctuations) is not sufficient to form a complete picture.

At the scale interaction level, intermittency in turbu-
lence manifests itself as an increase in the nonlocal con-

tributions made to the energetic interactions between

two scales Laval et al. (2001). From the perspective

of scale interactions, the emergence of various degrees
of volume filling structures in real space represents an

effect of which couplings (local or nonlocal) dominate.

Scale locality studies have been performed in the past

for GK turbulence Teaca et al. (2012, 2014), including

ones Teaca et al. (2017); Told et al. (2015) performed on
the same data analyzed here (these studies are available

to interested readers, but we do not attempt to link the

non-locality and intermittency levels here).

To better understand the self-organization of plasma
turbulence at kinetic scales and the emergent intermit-

tency due to the nonlinear interactions, we measured a

series of scaling functions directly from the plasma dis-

tribution functions. We have found that the electrons

are strongly intermittent at kinetic scales (kρi ∈ [1, 10]),

while the ions show little to no intermittent behavior in

the same range and only show signs of intermittency at

much smaller scales (kρi ≥ 10). This is not surpris-
ing as the electron dissipation peaks in the kρi ∈ [1, 10]

interval Told et al. (2015) and it is dominated by par-

allel velocity collisions that require an accentuated lin-

ear mixing Navarro et al. (2016), while ions were found

to dissipate in the perpendicular direction at predomi-
nantly high kρi.

For the simulations analyzed here (β = 1), the ion in-

ertial scale corresponds to ρi in value. At scales smaller

than the ion inertial scale, the magnetic field is decou-
pled from the ions and embedded in the electron flow,

exhibiting structures similar to he and developing a sim-

ilar multi-fractal intermittent distribution of real space

structures as depicted by the electrons. This link in-

cludes (but not shown explicitly here) a mono-fractal
picture for the magnetic field at scales kρi ≥ 10, as the

one exhibited by the electrons.

A mono-fractal scaling is found in solar wind measure-

ments Kiyani et al. (2009) and fluid-kinetic simulations
Leonardis et al. (2016) for the smallest scales of mag-

netic fluctuation (kρi > 1). The same mono-fractal scal-

ing is found by us in a range decade smaller compared

to the aforementioned studies. We believe the existence

of the strong parallel mixing exhibited by the electrons
in the kρi ∈ [1, 10] range (that imprint their character

to the magnetic field) is responsible for our magnetic

observations. As Leonardis et al. (2016) is using fluid

electrons, this effect cannot be captured by their simula-
tions even if their parameters would support strong par-

allel mixing. However, their (fluid electrons simulation)

agreement with solar wind measurements Kiyani et al.

(2009) does give credence to the idea of fluidization of

kinetic scale turbulence in some astrophysical plasmas
Meyrand et al. (2019). For our discussion, we view the

fluidization of kinetic turbulence in its simplest form,

that of the perpendicular dissipation channel (which

triggers the k⊥ cascade) dominating over the parallel
velocity one. For us, this is the case for the ions but not

the electrons.

For electrons, the region of intermittency observed by

us matches the region where linear-mixing dominates

Navarro et al. (2016). More correctly, the kinetic re-
gion where the fluidization character of the electrons is

perturbed by the emergence of a linear Hermite space

flux, as presented in Meyrand et al. (2019), corresponds

to the observed multi-fractal interval. We speculate that
strong linear-mixing triggers multi-fractal intermittency.

This could be due to a change in the dimension of the

fractal space as the dynamics now fill effectively a larger
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space by populating more v‖ scales. This may represent

a naturally occurring case (but in the opposite direction,

increasing rather than decreasing the dimension of the

fractal space) as the game presented by Lanotte et al.
(2015) for fluid turbulence and deserves a separate in-

vestigation.

The absence of this effect in solar wind observations

Kiyani et al. (2009) would imply that the MHD cas-

cade continues past the kρi = 1 ’knee’ in a (mono-
fractal) kinetic form that preserves a fluid character.

Meyrand et al. (2019) qualify their work in the context

of accretion disks of highly magnetized plasma and it

may be that the pronounced linear mixing can only be
observed for strongly magnetized astrophysical plasmas.

If an enhanced liner phase mixing can develop without

triggering multi-fractal intermittency, or if the two are

always linked is an equally important problem. Velocity

space measurements that would accompany field mea-
surements in the solar wind Kiyani et al. (2009) would

help clarify this aspect for plasma physics in general.

The generation of intermittent structures for the elec-

trons is caused by the same nonlinear term responsible
for the cascade to small scales and the perpendicular

nonlinear phase mixing in velocity space. Yet, unlike

the surrounding background, the most intense and inter-

mittent structures in the electron distribution function

exhibit a clear parallel velocity structure, indicative of
linear phase mixing (Landau damping) being dominant

at those locations (consistent with why magnetic islands

are places found to be dominated by Landau damp-

ing Loureiro et al. (2013); Numata & Loureiro (2015)).
This shows evidence that nonlinear correlations play a

role in supporting a strong linear mixing channel, which

is achieved in intermittent structures for the electrons.

The existence of a fine parallel velocity structure by it-

self does not necessarily imply dissipation Hatch et al.
(2013, 2014); Plunk & Parker (2014), nor does it contra-

dict the idea of fluidization of kinetic scale turbulence

in astrophysical plasma Meyrand et al. (2019) (as the

concept of stochastic echo and indeed the suppression

of Landau damping by any mechanism, imply a zero

net n-flux, not zero n amplitudes). However, the emer-

gence of intermittent structures at kinetic scales that
can increase the local linear phase mixing character of

the plasma can lead to a drastic point-wise change in

the preferred channel for the dissipation of phase space

fluctuations. This would change the type of mechanism

preferred for the damping of electromagnetic fluctua-
tions in an abrupt way. More work is required in this

direction before conclusions can be properly drawn.

Last, an implication to in-situ space plasma mea-

surements can be stated: in addition to the measure-
ment of field fluctuations, particle-field correlation as

proposed by Klein & Howes (2016); Klein et al. (2017);

Howes et al. (2017) that can assess velocity space mix-

ing channels are needed to form a complete picture of

the physics at kinetic scales. Moreover, reliable point-
wise measurements are needed to determine the change

in the nature of the preferred dissipation route, parallel

or perpendicular to the magnetic guid field, once inter-

mittency emerges.

ACKNOWLEDGMENTS

We acknowledge the Max-Planck Princeton Center for

Plasma Physics for facilitating the discussions that lead

to this paper and Greg Hammett in particular for shar-
ing his insight on the problem of plasma turbulence.

B. Teaca would like to thank Gregory Eyink for dis-

cussions of the topic of turbulence in kinetic plasmas.

B. Teaca is partially supported by EPSRC grant No.
EP/P02064X/1. The gyrokinetic simulations presented

in this work used resources of the National Energy Re-

search Scientific Computing Center, a DOE Office of

Science User Facility supported by the Office of Science

of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

Software: GENE(local version, Jenko et al. (2000)) .

REFERENCES

Armstrong, T. P. 1967, Phys. Fluids, 10, 1269

Bratanov, V., Jenko, F., Hatch, D., & Brunner, S. 2013,

Phys. Plasmas, 20, 022108

Brizard, A. J., & Hahm, T. S. 2007, Rev. Mod. Phys., 79,

421

Bruno, R., & Carbone, V. 2013, Living Reviews in Solar

Physics, 10, doi:10.12942/lrsp-2013-2

Cerri, S. S., Califano, F., Jenko, F., Told, D., & Rincon, F.

2016, The Astrophysical Journal Letters, 822, L12

Cerri, S. S., Kunz, M. W., & Califano, F. 2018, The

Astrophysical Journal Letters, 856, L13

Chen, C. H. K., Klein, K. G., & Howes, G. G. 2019, Nature

Communications, 10, 740

Chust, T., Belmont, G., Mottez, F., & Hess, S. 2009, Phys.

Plasmas, 16, 092104

Coburn, J. T., Forman, M. A., Smith, C. W., Vasquez,

B. J., & Stawarz, J. E. 2015, Philosophical Transactions

of the Royal Society A: Mathematical, 373, 20140150



13

Coburn, J. T., Smith, C. W., Vasquez, B. J., Forman,

M. A., & Stawarz, J. E. 2014, The Astrophysical Journal,

786, 52

Eyink, G. L. 2018, Physical Review X, 8, 041020

Frisch, U. 1995, Turbulence, Cambridge University Press

Grad, H. 1949, Comm. Pure Appl. Math., 2, 331

Grant, F. C., & Feix, M. R. 1967, Phys. Fluids, 10, 696

Hammett, G. W., Dorland, W., & Perkins, F. W. 1992,

Physics of Fluids B, 4, 2052

Hammett, G. W., Beer, M. A., & Dorland, W., et al. 1993,

Plasma Phys. Control. Fusion, 35, 973

Hatch, D. R., Jenko, F., Bratanov, V., & Navarro, A. B.

2014, J. Plasma Phys., 80, 531

Hatch, D. R., Jenko, F., Navarro, A. B., & Bratanov, V.

2013, Phys. Rev. Lett., 111, 175001

Hnat, B., Chapman, S. C., & Rowlands, G. 2003, Physical

Review E, 67, 056404

Hnat, B., Chapman, S. C., & Rowlands, G. 2005, Phys.

Rev. Lett., 94, 204502

Howes, G. G., Cowley, S. C., Dorland, W., et al. 2006, The

Astrophysical Journal, 651, 590

Howes, G. G., Cowley, S. C., Dorland, W., et al. 2008, J.

Geophys. Res., 113, A05103

Howes, G. G., Dorland, W., Cowley, S. C., et al. 2008,

Phys. Rev. Lett., 100, 65004

Howes, G. G., Tenbarge, J. M., Dorland, W., et al. 2011,

Phys. Rev. Lett., 107, 35004

Howes, G. G. 2015, J. Plasma Phys., 81, 325810203

Howes, G. G., Klein, K. G., & Li, T. C. 2017, J. Plasma

Phys. 83, 705830102

Jenko, F., Dorland, W., Kotschenreuther, M., & Rogers,

B. N. 2000, Phys. Plasmas, 7, 1904

Kanekar, A., Schekochihin, A. A., Dorland, W., & Loureiro,

N. F. 2015, J. Plasma Phys., 81, 305810104

Karimabadi, H., Roytershteyn, V., Wan, M., et al. 2013,

Phys. Plasmas, 20, 012303

Kawazura, Y., Barnes, M., & Schekochihin, A. A. 2019,

Proc Natl Acad Sci USA, 116, 771

Kiyani, K., Chapman, S. C., Hnat, B., & Nicol, R. M. 2007,

Phys. Rev. Lett., 98, 211101

Kiyani, K., Chapman, S. C., Khotyaintsev, Yu. V., et al.

2009, Phys. Rev. Lett., 103, 075006

Kiyani, K., Osman, K., & Chapman, S. 2015, Phil. Trans.

R. Soc. A, 373, 2041

Klein, K. G., & Howes, G. G. 2016, The Astrophysical

Journal Letters, 826, 1

Klein, K. G., Howes, G. G., & TenBarge, J. M. 2016, J.

Plasma Phys. 83, 535830401

Krommes, J. A. 2012, Annual Review of Fluid Mechanics,

44, 175

Kunz, M. W. , Schekochihin, A. A., Chen, C. H. K., et al.

2015, J. Plasma Phys., 81, 325810501

Laval, J.-P., Dubrulle, B., & Nazarenko, S. 2001, Physics of

Fluids, 13, 1995

Leonardis, E., Sorriso-Valvo, L., Valentini, F., et al. 2016,

Phys. Plasmas, 23, 022307

Li, T. C., Howes, G. G., Klein, K. G., & TenBarge, J. M.

2015, arXiv, astro-ph.SR, 1510.02842v1

Loureiro, N. F., Schekochihin, A. A., & Zocco, A. 2013,

Phys. Rev. Lett., 111, 025002

Lanotte, A. S., Benzi, R., Malapaka, S. K. 2013 , et al.

2015, Phys. Rev. Lett., 115, 264502

Mandell, N. R., Dorland, W., & Landreman, M. 2018, J.

Plasma Phys., 84, 905840108

Maron, J., & Goldreich, P. 2001, The Astrophysical

Journal, 554, 1175

Marsch, E. 2006, Living Reviews in Solar Physics, 3

Merz, F. 2009, Ph.D. thesis, Universität Münster

Meyrand, R., Kanekar, A., Dorland, W., & Schekochihin,

A. A. 2019, Proc Natl Acad Sci USA, 116, 1185

Navarro, A. B., Morel, P., Albrecht-Marc, M., et al. 2011,

Phys. Rev. Lett., 106, 55001

Navarro, A. B., Teaca, B., Told, D., et al. 2016, Phys. Rev.

Lett., 117, 245101

Numata, R., & Loureiro, N. F. 2015, J. Plasma Phys., 81,

305810201

Osman, K. T., Kiyani, K. H., Chapman, S. C., & Hnat, B.

2014a, The Astrophysical Journal Letters, 783, L27

Osman, K. T., Matthaeus, W. H., Gosling, J. T., et al.

2014b, Phys. Rev. Lett., 112, 215002

Osman, K. T., Matthaeus, W. H., Hnat, B., & Chapman,

S. C. 2012a, Phys. Rev. Lett., 108, 261103

Osman, K. T., Matthaeus, W. H., Wan, M., & Rappazzo,

A. F. 2012b, Phys. Rev. Lett., 108, 261102

Parker, J. T., & Dellar, P. J. 2015, Journal of Plasma

Physics, 81, 305810203

Parker, S. E., & Carati, D. 1995, Phys. Rev. Lett., 75, 441

Perri, S., Carbone, V., Vecchio, A., et al. 2012a, Phys. Rev.

Lett., 109, 245004

Perri, S., Goldstein, M. L., Dorelli, J. C., & Sahraoui, F.

2012b, Phys. Rev. Lett., 109, 191101

Plunk, G. G. 2013, Phys. Plasmas, 20, 032304

Plunk, G. G., Cowley, S. C., Schekochihin, A. A., &

Tatsuno, T. 2010, J. Fluid Mech., 664, 407

Plunk, G. G., & Tatsuno, T. 2011, Phys. Rev. Lett., 106,

165003

Plunk, G. G., & Parker, J. T. 2014, Eur. Phys. J. D, 68,296

Podesta, J. J. 2013, Solar Physics, 286, 529

Schekochihin, A. A., Cowley, S. C., Dorland, W., et al.

2008, Plasma Phys. Control. Fusion, 50, 4024



14

Schekochihin, A. A., Cowley, S. C., Dorland, W., et al.

2009, The Astrophysical Journal Supplement, 182, 310

Schekochihin, A. A., Parker, J. T., Highcock, E. G., et al.

2016, J. Plasma Phys., 82, 905820212

Servidio, S., Chasapis, A., Matthaeus, W., et al. 2017,

Phys. Rev. Lett., 119, 205101
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