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Abstract: Linking remote sensing information and ecohydrological models to improve understanding
of terrestrial biosphere responses to climate and land use change has become the subject of increased
interest due to the impacts of current global changes and the effect on the sustainability of human
lifestyles. An application to Asia and Australasia (1982–2015) is presented, revealing the following
results: (i) The broad distribution of regions with the enhanced vegetation greenness only follows
the general pattern as for the whole, without obvious dependence on regional or climate fluxes
ratios. That indicates a prevailing increasing greenness over land due to both the impacts of current
global changes and the sustainability of human lifestyles; (ii) regions with vegetation greenness
reduction reveal a unique distribution, concentrating in the water-limited domain due to the impacts of
external (climatically “dry gets drier and wet gets wetter”) and internal (anthropogenically increased
evaporation) changes; (iii) the external changes of dryness diverge at the boundary separating
energy from water-limited regimes, and the internal changes indicate large-scale afforestation and
deforestation) that occur mainly in China and Russia due to a conservation program and illegal
logging, respectively, and a massive conversion of tropical forest to industrial tree plantations in
Southeast Asia, leading to an increased evaporation.

Keywords: ecohydrological models; climate and anthropogenic induced changes; vegetation
greenness; dry gets drier and wet gets wetter

1. Introduction

Changes in vegetation greenness have been reported at regional and continental scales on the basis
of forest inventory and satellite measurements [1–4]. Long-term changes in vegetation greenness are
driven by multiple interacting direct factors (human land-use management) and indirect factors (such as
climate change, CO2 fertilization, nitrogen deposition, and recovery from natural disturbances) [5–10].

Recent satellite data reveal a greening pattern induced by direct factors (human land use), which
enhances the vegetation greenness as it is strikingly prominent in China and India, notwithstanding
the impact of indirect factors [11]. An enhanced vegetation growth has broad implications for surface
energy, water and carbon budgets, and ecosystem services across multiple scales [7,12–14]. Linking
remote sensing and climate and ecosystem models to provide improved understanding of terrestrial
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biosphere responses to climate and land use change has become the subject of increased interest due to
the impacts of current global changes and sustainability of human lifestyles [2,11,15].

The reliable detection and attribution of changes in vegetation growth are prerequisites for
the development of strategies for the sustainable management of ecosystems [3]. However, human
exploitation of land will remain a complex dynamic endeavour, and the underlying mechanisms are
not yet fully understood [5,11]. To quantify impacts of climate change and anthropogenic activities on
land surface dynamics, an ecohydrological modelling approach has been introduced [16,17], which
is based on two nondimensional flux ratios as ecohydrological variables. They separate energy and
water supply to distinguish climate from land use-induced change effects.

The application of the ecohydrological conceptual model has been proved and expanded to regional
scales by combining remote sensing vegetation information and reanalysis data in an ecohydrological
state space, spanned by relative excess energy U and excess water W [18,19]. Here, the diagnostic is
used, combined with nighttime lighted city distribution (urban) to answer the following questions:
Do the increased/decreased regions of greenness show a general pattern? Are there any differences
between the whole study regions, significant ecohydrologically changed regions (significant U,W
changes), and urban areas? How do climate changes and anthropogenic activities contribute to those
regions? The aim of the following analysis is to attribute and quantify these changes to climatic
or human-induced causes across Asia and Australasia. Our evaluation comprises ecohydrological
surface information of the changing rainfall–runoff chain jointly with remote sensing observations of
vegetation and urbanization, which, to our knowledge, has not been performed.

2. Data and Method

Data on climate, vegetation greenness, and urbanization were provided by ERA-Interim, GIMMS
NDVI (1982–2015 averages, see [20,21]) and DMSP/OLS nighttime light (2012, see [22,23]). The spatial
resolutions of the ERA-Interim and GIMMS vegetation greenness were 0.75◦ by 0.75◦ and 8 km by
8 km, respectively. The global DMSP/OLS nighttime stable light from NOAA National Geophysical
Data Center provided the information for urbanization, given the brightness range 0 < DN < 63 and
using the spatial resolution of about 1 km or 30 arc-seconds. The spatial resolutions were resampled
according to the relatively coarse resolution of ERA-Interim into 0.75◦ by 0.75◦ by bilinear resampling.

2.1. Data Preprocessing

Unlike traditional sociodemographic research using administrative boundaries, population, size
or density, and economic indicators to define a city, remote sensing techniques are employed in this
study to analyze continuous spatial variation in nighttime light intensity of development or degree of
modification. To reduce the effects of overglow [22,24], only spatially contiguous lighted pixel units
(subscript “i”) with DNi ≥ 12 are identified as cities (for detailed descriptions of data quality control
and threshold selection, see Small et al. [24]). The area of each pixel within spatially contiguous lighted
areas, a(j), is defined as ai, where j corresponds to the sequence of spatially contiguous areas exceeding
the brightness threshold, and i corresponds to the number of pixels in each of these areas. Thus, a city
(numbered by “j”) size is characterized by size (j) =

∑
i ai( j).

2.2. Ecohydrological State Space Analysis

Ecohydrological analysis is a physical approach to diagnose the controlling factors of the
rainfall–runoff chain on watershed scale [16,17]. Water and energy are supplied by precipitation P and
net radiation N or potential evapotranspiration. In a climatological mean, these fluxes are balanced by
the partitioning of evapotranspiration E and runoff Ro and by evapotranspiration E and sensible heat
flux H, respectively. The energy flux units are in water flux equivalents, m yr−1.

P = E + Ro or 1 = E/P + Ro/P (1)
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N = E + H or 1 = E/N + H/N (2)

Energy and water balance equations are supplemented by an empirical equation of state, which,
in the framework of Budyko (1974 [25]), characterizes the rainfall–runoff chain. Here, Schreiber’s
equation ([26]; for a stochastic interpretation, see [27]) was used.

Ro = P exp(−N/P) (3)

For ecohydrological analysis, water and energy fluxes are separated by introducing relative excess
energy U and relative excess water W. These flux ratios characterize energy and water fluxes, which are
unused by the ecosystem (and, therefore, in excess); that is, excess energy is available for atmospheric
heating, and excess water is available for geomorphological formation [28].

U = H/N = 1 − E/N (4)

W = Ro/P = 1 − E/P (5)

U = 1 + (1 −W)/ln(W) (6)

The flux ratio of the net radiation and precipitation yields Budyko [25] dryness index:

D = N/P = (1 − U)/(1 −W) (7)

Surface climates are conveniently projected into the (U,W) space as an ecohydrological state space
spanned by flux ratios to separate energy from water flux-related excesses (Figure 1). The dryness
index D is displayed in the (U,W) space, separating energy (0 < D < 1) from water (D > 1) limited
regimes. In addition, biomes can be suitably identified ranging from tundra (D < 0.3) via forests
(0.3 < D < 1) and steppe/savanna (1 < D < 2) to semidesert (2 < D < 3) and desert (D > 3) [15,25].
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Figure 1. Ecohydrological states and their changes in (U,W) space with coordinates of relative water
excess or runoff vs. precipitation and relative energy excess or sensible heat flux vs. net radiation.
Lines of constant dryness or net radiation vs. precipitation and the graph of an ideal rainfall–runoff

chain, U = 1 + (1 −W)/log(W) (see [29,30]). Squares and circles represent the ecohydrological reference,
states (squares) representing the first period followed by subsequent second period (circles). Directions
and lengths of the vectors (arrows) connecting first and second period determine quality and magnitudes
of the causes of change (see text), as described by squares of different colors.
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In the (U,W) space, ecohydrological changes are visualized as pieces of trajectories (or vectors,
see Figure 1) whose origin and end characterize the (U,W) space representing the first and the
subsequent second averaging period. The causes of change can be attributed to a forcing induced by
contributions from external or climate and from internal or anthropogenic origin [16–18]:

(1) External (climate-induced) processes change the climate forcing, which can be visualized as the
vector components in the direction of the negative diagonal towards the second yellow or the
fourth dark blue quadrant. For example, given E = constant, for increasing (decreasing) aridity
dD > 0 (< 0), one obtains an increasing (decreasing) energy excess U = 1 − E/N and decreasing
(increasing) water excess, W = 1 − E/P;

(2) Internal (human-induced) processes change the partitioning of the fluxes balancing the forcing,
which are represented by vector components in the direction of the positive diagonal towards the
first pink or the third light blue quadrant. For example, given a constant climate forcing of P and
N, but changing evapotranspiration, then dU = −dE/N and dW = −dE/P represent an internal
change in flux partitioning (say dE) affecting the watershed, such as a change in vegetation or
land surface;

(3) In (U,W) space, the dryness ration D represents lines that, ending at (U,W) = (1,1), show slopes
with magnitudes given by the inverse aridity ratio (Equation (7)). The (inverse) initial slope at
(U1,W1) point (corresponding to the D = 1 − line) defines the attribution coordinates. Vector
components of ecohydrological states changing from a first to a second period, which are aligned
along D-lines (perpendicular to the D-lines), are attributed to internal anthropogenic control
(external climate forcing). Related orthogonalization provides quantitative measures of the
external and internal causes of change. In this sense, the attribution of the causes of change is
quantified by the lengths of the vector components projected onto (perpendicular to) the dryness
or D = 1 − line ending at (U1,W1) (for detailed calculation, see [18]).

3. Application of Ecohydrological Analysis: Asia and Australasia

Changes of the surface energy and water fluxes, which represent the changing rainfall–runoff

chain, are evaluated in the following by employing the attribution analysis to classify and quantify the
causes of change observed in Asia and Australasia. Depending on vegetation greenness increase or
decrease, two domains were selected for comparative analysis: (i) The continental domain covering
the administrative region of Asia and Australasia with significant ecohydrological (U,W) change, and
(ii) the embedded smaller scale regions affected by prominent anthropogenic activity (that is, cities
or urbanized areas). The periods of 1982–1998 and 1999–2015 are suggested by the climate warming
tendency showing high and low values during the first and second periods, respectively [30,31].

3.1. Land Surface States in (U,W) Space: Means and Changes

The climate mean state is presented in (U,W) space comprising the geographical distribution
of relative excess energy U and excess water W in terms of frequencies of pixels, each of which is
associated with a (U,W) pair. Thus, the physical states in the (U,W) space were characterized by a
number (density) of area units, associated with long-term (U,W) climate means (1982–2015) obtained
from the ERA-Interim dataset: (1) Administrative Asia and Australasia count 9782 pixels on the
ERA-interim scale (Figure 2a,c); (2) regions of significant (U,W) change exceeded a standard deviation,
std(U) or std(W), from the 34 year annual mean, covering about 17% (1661/9782) of Asia and Australasia
(Figure 2d,f); and (3) spatially contiguous lighted cities (DNi ≥ 12) covered about 3.3% (325/9782) of
Asia and Australasia (Figure 2g,i). These three states (Figure 2, upper row) were separated into two
categories of increasing and decreasing vegetation greenness change (Figure 2, middle and bottom
row, 1982–1998 versus 1998–2015).
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Figure 2. Frequency distributions of 34 year climate means in (U,W) state space spanned by relative
excess energy (sensible heat flux vs. net radiation) and excess water (runoff vs. precipitation) in Asia
and Australasia: (a–c) (U,W) climate means, (d–f) significant (U,W) change exceeding the standard
deviations std(U) or std(W) from the climate means, and (g–i) (U,W) climate means of urbanized land
surface only (that is, spatially contiguous lighted areas with DN ≥ 12 being classified as urbanized
or cities; for detailed descriptions of data quality control and threshold selection, see text). The land
surface states (upper row) are subdivided into the two categories of vegetation greenness increase or
decrease from the first to the second period (middle and bottom row, 1982–1998 versus 1999–2015).

The frequency distributions in (U,W) space characterized the climatological setting (1982–2015)
as follows:

(i) Three land surface modes (Figure 2, upper row): Asia and Australasia were characterized by a
trimodal distribution with peaks stretching from 1/3 < D < 5. Besides the peak in the very dry
region (D > 3), the mass of Asia and Australasia was concentrated in the dryness range 1/3 < D < 2,
which crossed the boundary separating energy from water-limited regimes. A similar distribution
is found in regions of significant (U,W) change with minor differences on the separation line at
D ~ 1. Nighttime lighted cities show an obvious bimodal distribution occupying wet and dry
regimes (1/3 < D < 1 and more in 1 < D < 2). Compared with the regions of significant (U,W)
change, nighttime lighted cities tended towards the origin (U = 0, W = 0) sliding away from the
Schreiber curve (Equation (6)), which represents balanced states.

(ii) Vegetation increase (Figure 2, middle row): The frequency distributions of the three land surface
states associated with regions where vegetation greenness increased in the second period followed
a general pattern as the whole regions (Figure 2, upper row) showed no obvious dependence
on regional or climate fluxes. That is in agreement with previous research, which had shown
a prevailing vegetation growth over the Earth’s lands since the early 1980s when satellite data
became available [8,11,29,32,33]. This indicates that regions of increasing vegetation greenness
were affected by similar positive climate or human impact on greenness.



Sensors 2019, 19, 4693 6 of 11

(iii) Vegetation decrease (Figure 2, bottom row): Unlike regions of increased vegetation greenness
(Figure 2, middle row), climate change and anthropogenic activity contributed negatively to the
three land surface modes associated with vegetation greenness reduction, and they revealed
unique distribution patterns: Asia and Australasia were characterized by a trimodal distribution
with one mode aligned along D = 1 and the other two modes separated by dryness differentiation
(1 < D < 2 and D > 3). The dominant mode of Asian and Australasian greenness decrease
was concentrated in the water-limited domain, and a similar distribution could be found in the
nighttime lighted cities. That is, cities located in the water-limited domain were more likely to
show decreasing vegetation greenness. The mass of significant (U,W) change was concentrated in
the water-limited domain, but tended to move closer to the Schreiber (Equation (6)) curve.

In general, the pixel distributions of the three climate mean states in (U,W) space (Figure 2, upper
row) showed structurally similar patterns without considering vegetation greenness change and for
increased greenness regions (Figure 2, middle row). However, decreasing vegetation greenness regions
(Figure 2, bottom row) showed different energy–water dependence and urbanization dependence
as noted in the above. Thus, it is reasonable to attribute state change trajectories in (U,W) space to
external (or climate) and internal (or anthropogenic) causes over the decreasing vegetation greenness
regions and diagnose the underlying negative climate vegetation and urbanization relations.

3.2. Attribution of Change: Regions of Decreased Greenness

Regions of greenness change associated with three land surface states, (i) administrative climate
mean, (ii) ecohydrological significant change, and (iii) nighttime lighted urbanization, being attributed
to external and internal causes are partitioned into four quadrants and first displayed geographically
and statistically (Figure 3). Then, changes in (U,W) space are represented by pieces of trajectories to
highlight and visualize vegetation greenness decreasing from the first period to the second period
(Figure 4).
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(a) (b) 

Vegetation (NDVI) 
Region 

Attribution(%) 
Total Significant City 

External Internal External Internal External Internal 
Increase 18.03 8.56 19.23 0.36 25.00 4.01 
Decrease 9.64 4.50 9.89 0.30 11.73 0.00 

Internal External Internal External Internal External 
Increase 9.92 30.38 13.32 35.08 15.74 25.00 
Decrease 5.73 13.24 6.93 14.89 6.48 12.04 

Figure 3. Distributions and statistics of attribution classes of (a) ecohydrological and (b) significant
ecohydrological change in Asia and Australasia separating internal from external causes in three land
surface states, characterizing the mean and its change and the mean of urbanization of the land surface.
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Attribution of external and internal causes (Figure 3): Changes in the three land surface states show
both a similar percentage of area cover affected by increased versus decreased vegetation greenness
(around 70% versus 30%) and regions predominantly affected by external processes (between 70% and
80%). Of the external controlling regions, the fourth dark blue quadrant and second orange quadrant
represent decreasing and increasing aridity associated with increasing and decreasing W and decreasing
and increasing U, respectively. Thus, geographically, most regions of Russia, from Southwest China to
India, the islands in Southeast Asia, and Western Australia indicate a decreasing aridity.

Of the internally affected regions, large-scale afforestation (third light blue quadrant) occurs mainly
in China, which is in agreement with previous research about the largest net gain of forest [11,34].
Deforestation (first pink quadrant) could be detected by the ecohydrological model in Russia where
illegal logging is a serious issue, especially in remote areas. The extent of illegal logging is estimated
to affect between 5 and 30 percent of the boreal forest [34,35]. For Southeast Asia, with a massive
conversion of tropical forest to industrial tree plantations [36], this attribution analysis identifies few
pixels in pink as deforestation (but more in light blue as afforestation). The possible reason is that
industrial tree plantations evaporate more than tropical forests (see also Röll et al. [37]).
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Directions and lengths of arrows connecting first with second period provide the attribution of change
of the internal/anthropogenic and external/climate partitioning (see text): (a,b) Internal-external
partitioning in regions with significant (U,W) change (exceeding the std(U) or std(W)); and
(c,d) internal-external partitioning in urbanization (nighttime lighted) areas of Asia and Australasia.
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Trajectories of changes (Figure 4): The causes of change can be separated into anthropogenic and
climate contributions (upper and lower rows, respectively). For reduced vegetation greenness, the
trajectories, which visualize the significant change from the first period to the second period in (U,W)
space, reveal the following results:

(i) Anthropogenic (internal) induced changes: Regions of significant (U,W) change (Figure 4a) and
spatially contiguous lighted cities (Figure 4c) in Southeast Asia (Figure 3) were subjected to
change in forestation (light blue arrows). Conversions of (tropical) forests to industrial tree
plantations and the greening of cities led to increasing evaporation (dE > 0). Thus, discarding
climate control (N and P constant), the anthropogenic or internal change of the flux partitioning is
dU = −dE/N and dW = −dE/P. Thus, if evaporation increases (dE > 0), both dU and dW decrease,
which leads to the light blue trajectories (Figure 4) and the light blue quadrants (Figure 3), which
both characterize the conversion of forest to industrial tree plantations and the greening of cities;

(ii) Climate (external) induced changes: The regions of significant (U,W) change revealed a general
pattern of dry remaining dry or getting dryer and wet remaining wet or getting wetter, which is
accompanied with a dryness change by crossing the (D = 1) threshold of energy to water-limited
regimes. Associated with the changing density distribution in Figure 2f, it appears that the peak
in the water-limited region is enhanced, and the less obvious peak aligned along D = 1 will move
towards the energy-limited region. Unlike regions with significant (U,W) changes, the spatially
contiguous lighted cities did not show obvious general patterns.

Attribution analysis employed for the 30% of the area of Asia and Australasia where vegetation
greenness has changed provided the following results for decreasing vegetation: (i) Significant
anthropogenic or internally induced land surface changes (light blue arrows, Figure 4a) were caused
by large-scale afforestation and deforestation mainly in China and Russia supported by a conservation
program and illegal logging, respectively, while the tropical Southeast Asia was subjected to a massive
conversion of forestation of the industrial tree plantation. All of these changes were associated with
increasing evaporation; (ii) climate-controlled or externally changed (Figure 4b) areas show that the
yellow and dark blue arrows were tending to regimes of enhanced dryness or wetness, respectively.
Furthermore, an excess water ration of W = 1 − E/P − 0.4 may be identified as a critical threshold from
which the direction of climate change diverges, tending towards drier/wetter regimes (characterized by
larger/smaller dryness D or less/more excess water, respectively). In this sense, climate change forces
regions from a dry to a drier and from a wet to a wetter regime.

4. Conclusions

An attribution analysis of the causes of ecohydrological change was employed to determine
(1) the climate-induced external impact in terms of water and energy supply as external forcing,
which is distinguished from (2) the internal processes due to anthropogenic influence modifying the
partitioning of the surface fluxes compensating the climate-induced forcing [18].

This study applied the ecohydrological model analysis in relation to vegetation greenness change
and urbanization characterized by nighttime lighted cities. This diagnostic reveals how regions
suffering vegetation greenness reduction show different patterns of energy–water dependence. The
results of the attribution analysis of change, which are conditional to vegetation greenness change
and urbanization, support a shift from traditional management of resources and risks to an integrated
monitoring and holistic response across wide ranges of space–time scales by linking remote sensing,
climate, and ecosystem model analysis. The following results are presented as samples for possible
management:

(1) Regions where vegetation greenness increased in the second period indicate similar distribution
in (U,W) space (as for the whole region). That is, a prevailing increase of vegetation growth
could be found over the whole of Asia and Australasia since the early 1980s and did not show
regional or climate flux dependence. However, regions of decreasing vegetation greenness were



Sensors 2019, 19, 4693 9 of 11

concentrated in the water-limited regime, both in the administrative Asia and Australasia regions
of significant (U,W) change and spatially contiguous nighttime lighted cities.

(2) The attributions of change to external/climate and internal/human-induced effects indicated
large-scale afforestation and deforestation occurring mainly in China and Russia, respectively,
which is in agreement with previous research about the largest net gain and loss by illegal logging
of forest [11,35,36]. Southeast Asia, where a massive conversion of tropical forest to industrial
tree plantations [37] occurred, showed few pixels in pink as deforestation (but in light blue as
afforestation). The possible cause is that industrial tree plantations there evaporate more than
tropical forests, just like forests evaporate more than bare land as observed after afforestation in
China (light blue).

(3) Significant changes in (U,W) space, which were associated with decreasing vegetation greenness,
showed that dry areas remained dry or got dryer, and wet regions remained wet or got wetter,
and these changes were separated at the (D = 1) threshold line.

In general, complementing geographical presentation of remote sensing information and climate
and ecosystem models provides improved understanding of terrestrial biosphere responses to climate
and land use change. It will help shift traditional management of resources and risks to integrated
monitoring and holistic responses across wide ranges of space–time scales.
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