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ON FINITE GK-DIMENSIONAL NICHOLS ALGEBRAS OF
DIAGONAL TYPE

NICOLAS ANDRUSKIEWITSCH, IVAN ANGIONO, ISTVAN HECKENBERGER

ABSTRACT. It was conjectured in larXiv:1606.02521] that a Nichols
algebra of diagonal type with finite Gelfand-Kirillov dimension has finite
(generalized) root system. We prove the conjecture assuming that the
rank is 2. We also show that a Nichols algebra of affine Cartan type has
infinite Gelfand-Kirillov dimension.

1. INTRODUCTION

In this paper we contribute to the classification of Hopf algebras with finite
Gelfand-Kirillov dimension, GKdim for short. Specifically we propose:

Conjecture 1.1. [AAH| Conjecture 1.5] If V is a braided vector space of
diagonal type and dimension 0 € N such that the GKdim of its Nichols
algebra B(V') is finite, then its (generalized) root system is finite.

Since the classification of the Nichols algebras of diagonal type with finite
generalized root system is known , a positive answer to the Conjecture
[Tl would imply the classification of the Nichols algebras of diagonal type
with finite GKdim. Indeed, the converse in the Conjecture is clearly true.
The defining relations of these Nichols algebras are also known [AnI]. The
GKdim of these Nichols algebras can be computed (2.6). Our main result
provides partial answers to this Conjecture:

Theorem 1.2. Conjecture [L1l holds in the following cases:

(a) V is of affine Cartan type.
(b) 6 =2.

We collect some necessary definitions and concepts in Section 2} Section
is devoted to general results that might be of interest elsewhere. Part @
is proved in Proposition Bl Part which is Theorem 1] is proved in
4.2 after some preparatory Lemmas in §4.11
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2. PRELIMINARIES

2.1. Conventions. Let k be an algebraically closed field of characteristic
zero. All the vector spaces, algebras and tensor products are over k. Let
N={1,2,...}, Ng = NUO. Given § € N, we set [y = {1,2,...,0}, or simply
[ if 6 is clear from the context. In the polynomial ring Z[q|, we denote

n—1 n
(n)q = Z q.j7 (’I’L); = H(])qv n e N0-
j=0 Jj=1

If g € k, then (n),, (n); are the evaluations at q.

We denote by T the group of multiplicative characters (one-dimensional
representations) of a group I'. Let Gy be the group of roots of unity of order
N, Gy the subset of primitive roots of order N, and Goo = Uy ey Gn-

Let H be a Hopf algebra (always with bijective antipode). A braided
Hopf algebra means a Hopf algebra in the category gyD of Yetter-Drinfeld
modules over H. If R is a Hopf algebra in gyD, then R# H is the bosoniza-
tion of R by H. Let ad be the adjoint action of R#H and ad. the braided
adjoint action of R. Then ad.x ® id = ad(z#1) for x € R. If z € R is
primitive, then ad. z(y) = zy — multiplication o ¢(x ® y) for all y € R.

If (V, ¢) is a braided vector space, then B(V) = T(V)/J (V) is the Nichols
algebra of V', see [AST], [Al [AA2] for surveys on this notion.

A braided vector space of diagonal type is a pair (V, c), where V is a vector
space of dimension 6 with a basis (z;)c1,, and the braiding c € GL(V®V) is
given by c(x; ®x;) = gijz;®; for all i, j € T; here q = (q;5)i jer, € (k*)?*Y,
qii 75 1. Let

Gij = 9ij % i #j €lp.

The generalized Dynkin diagram of q is a graph with set of points Iy with
the vertex i decorated with ¢;;; and for i # j € Iy, no edge between i and j
when ¢;; = 1, otherwise there is an edge decorated with g;;.

2.2. The Gelfand-Kirillov dimension. A comprehensive exposition is
[KL]. For further use, we recall statements from [AAH| §2.3.2] inspired by
[Rl Lemma 19].

Lemma 2.1. Let B = ®©,>0B" be a finitely generated graded algebra with
B =k. Let (yk)k>0 be a family of homogeneous elements of B such that

(2.1) (yil...yil2ij€N,’i1<"'<’il)

18 a family of linearly independent elements. If there exist m,p € N such
that degy; < mi+p, for all i € N, then GKdim B = oo. O
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The following Lemma is due to Rosso [Rl Lemma 14, Corollary 18]. Let
(U,c) be a braided vector space of diagonal type, with respect to a basis
x1,x2 and a matrix (¢ij)ijer,. We set

k—1 '
(2.2) we =[]0 = ¢hidr2), yk = (ade1)" .
i=0
Lemma 2.2. (a) Ifk € N, then y, = 0 iff ppa®t = 0, iff (k)qy, ' = 0.
(b) If y # 0 for all k € N, then the set ([2.1) is linearly independent.
(c) If (k)gy, \ux # O for every k € N, then GKdim B(U) = oo.
(d) If 11 = 1 and q12 # 1, then GKdim B(U) = oc. O

2.3. Nichols algebras of diagonal type. We fix a braided vector space of
diagonal type (V, ¢) with notation as in 211 We assume that the generalized
Dynkin diagram s connected.

Let (a;)ier be the canonical basis of 7?. Let q be the bicharacter on z?
such that q(a;, o) = gi; for all 4,5 € I; we set gop = q(a, 3) for o, 8 € Z°.

Then T(V) and B(V) are Z%-graded with degz; = «; for all i € I. For
each o € ZY, B*(V) denotes the homogeneous component of degree o.

Let I' = Z?. We realize V in ﬁ;yp by choosing the family (y;)ier in r
such that x;(c;) = ¢;; for all 4,5 € I. Then B(V) becomes an Z0-graded
object in {LYD. There are skew-derivations 9;, i € I of B(V), such that
8,(95]) = 5ij and

0i(ry) = 20i(y) + Oi(x)(ei - y), z,y € B(V).
Let pug, yr = (adez1)Fz9 as in (Z2). We notice that
(2.3) O1(yx) =0, Do (y) = prat, for all k € Ny.
Also, it is well-known, and easy to check by a recursive argument, that

k
k —i
(2.4 am=me1+d (F) Loy
q11

i=0 g

By [Kh], there is a totally ordered subset L C B(V) consisting of Z°-
homogeneous elements such that

(25) {0 |k eNo, by > >l € L,0<m; < Ny, for all i € I}
is a linear basis of B(V') (a so called restricted PBW basis); here

Ny =min{n € N: (n)
is called the height of £.

=0} e NU

Qdeg £,deg ¢

Lemma 2.3. If B(V) has a restricted homogeneous PBW basis with infin-
itely many PBW generators of infinite height, then GKdim B(V') = co.
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Proof. By assumption there exists L as above and I C L infinite such that
Ny=ooforall £ € I. Let d € N, F; C I with |F;| = d and V the subspace
generated by 1, the x;’s and all £ € F;. Then (V;)"*! contains the ordered
monomials in Fj of degree < n + 1, hence dim(Vy)"™! > (":lrd). Hence
lim sup log,, dim (V)" "1 > d. Since d is arbitrary, GKdim B(V) = oo. O

Assume that L is finite (the Conjecture[[Ilsays that this is the case when
GKdim B(V) < o0). By [KL, Theorem 12.6.2], we conclude that
(2.6) GKdimB(V)=|{¢ € L: Ny = co}|.

Let AY = A = (deg{)scz, be the family of positive roots of B(V) (with

multiplicities). By [HS, Lemma 4.7], it is uniquely determined, i.e. it does
not depend on L.

We say that we can reflect V at i € I if, for all j # ¢, there exists n € Ny
such that (n+1)g, (1 — ¢}t¢ijq;i) = 0. In such case, following [HI] we define
a generalized Cartan matrix (c;;) by ¢; = 2 and

(2.7)  ¢j:=—min{n € Ng: (n+1),, (1 — ¢};q:595:) = 0}, j #i.

Let s; € GL(Z%) be given by
(2.8) Si(Oéj) =y — CjjQy, jel.
The reflection at the vertex i of q is the matrix R*(q) = (¢;);.ke1, where
(2.9) tik 7= Gsy(ay)ilon) = Gk @5 F " j kel
Let R¥(V) be the braided vector space of diagonal type with matrix R'(q).

Theorem 2.4. [HI, [AAT] GKdim B(R!(V)) = GKdim B(V). O

We say that V' admits all reflections if we can reflect V at every i1 €
I, then we can reflect R (V) at every io € I and so on, we can reflect
R* ... R1(V) at every i, € I for all k.

If V admits all reflections, then we denote by X the collection of all
braided vector spaces of diagonal type obtained from V by a finite number of
successive reflections at various vertices. Here any two braided vector spaces
with the same braiding matrix are identified. The collection (AJUF)UE x is the
generalized root system of V.

Remark 2.5. If GKdim B(V) < oo, then we can reflect V' at every i € I by
Lemma Hence V' admits all reflections by Theorem 2.4

3. GENERAL RESULTS
Recall that (V,¢) is of Cartan type if there exist a;; € Z<( such that
(3.1) @i = 4, i#£jel

Set aj; = 2,4 € I. If ¢;; € G, then we choose a;; € (—ord g, 0], when
i # j; otherwise it is uniquely determined. In any case, a = (a;j)i je1, is
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an indecomposable symmetrizable generalized Cartan matrix [K]. These
matrices are of three types: finite, affine or indefinite. If (V,¢) is of Cartan
type and GKdim B(V') < oo, then Conjecture [[LT] predicts that a is of finite
type. Here is the confirmation for the affine type.

Proposition 3.1. If a is of affine type, then GKdim B(V') = oo.

Proof. Let A™ denote the set of real roots corresponding to a. There ex-
ists a positive imaginary root ¢ such that A™ 4+ § = A [K| Proposition
6.3 d)]. Let m be the height of ¢ and let a be a simple root. Choose a
homogeneous restricted PBW basis of B(V). Then for all k£ > 0 there exists
a PBW generator y;, of degree a 4+ kd, hence degy, = mk + 1. Therefore
GKdim B(V) = oo by Lemma 211 O

An indecomposable generalized Cartan matrix is compactly hyperbolic if
it is of indefinite type and every proper minor is of finite type. If a € Z¢*¢
is compactly hyperbolic, then § < 5. In fact, the classification of compactly
hyperbolic generalized Cartan matrices is known [C+[; there are the matrices

b g with ab > 4; 31 matrices in Z3*3; 3 matrices in Z**%; 1 matrix in
7Z5%5. To prove Conjecture [1]in the Cartan case, it would be enough to
verify it for compactly hyperbolic generalized Cartan matrices with 3 < 0 <

5, as the case 6 = 2 is taken care by Theorem E.1]

Back to the general diagonal type, we distinguish three classes of Nichols
algebras. Given q as above, we say that

o q is of torsion class if ¢;;,qijqji € Goo for all i # j € I
o qis generic, if ¢;; ¢ Goo, and ¢;jqj; = 1 or ¢;jqj; ¢ Goo, for all i # j € 1.
o q is semigeneric if it is neither generic nor of torsion class.

Remark 3.2.

(1) If q is of torsion class, then Conjecture [Tl says that GKdim B(V') < oo
implies GKdim B(V) = 0. Indeed all roots are real by [CH], and they
would have finite non-trivial order by Lemma[22)[(d)] hence (2:6)) applies.

(2) If q is of torsion class, then the set X' defined after Theorem 24]is finite.
Indeed, there are finitely many matrices with the shape ([2.9]).

(3) [RLIAAT] If q is generic, then GKdim B(V) < oo if and only if there exists
a Cartan matrix of finite type a = (a;;), with symmetrizing diagonal
matrix (d;), and ¢ ¢ G such that g; = ¢*% and g;;q5; = ¢*%%i for all
i # j € I. Thus Conjecture [T holds in this case.

(4) A semigeneric matrix with finite generalized root system is either of
super type or else one of two exceptions of ranks 2 and 4:

-1 q g ¢! -1 —q —q¢!
O, (] (@] (] o .

q9 q
)
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Here w € G and ¢ ¢ G; the first corresponds to Yamane’s exotic
quantum groups while the second is the row 14 in Table 3].

3.1. Semigeneric diagonal type. Let us fix q = (gij)i jer semigeneric
with GKdimB(V) < oo. Let J = {i € I : ¢;; ¢ G} be the set of generic
points of q and let J1,...J; be the connected components of the generalized
Dynkin diagram q = (¢;;)i jeJ-

Lemma 3.3. Ifi €1 and j € J, then there exists h € Ny such that qj_jh =
¢ijqji- In particular, either ¢;jq;; =1 or ¢ Guo.

Proof. By Lemma O
Lemma 3.4. If i ¢ I, j € J and ¢;jq;i # 1, then either ordg; = 2 and
qijq5i = qj_jh with h € Ia; or else ord q;; = 3 and q;jq;; = qj_jl.

Proof. First, there exists h € N such that qj_jh = ¢;jqj; by Lemma B3] Let
N = ord g;;. We apply the reflection at i:

i

—h 1—h(N—1)
qii i G i Qiidy;
& 5 YN b o

2 h
93955

Then either 1 = A(N — 1) that gives h = 1, N = 2; or else there exists

t € N such that (q,-,-qjl.j_h(N_l))‘t = q?iq?j by Lemma A straightforward
analysis yields the claim. O

As a consequence we derive the corresponding version of Theorem [4.1] for
semigeneric braidings. It will be useful for the proof of the general case.

Corollary 3.5. Let V be a braided vector space of semigeneric diagonal
type and dimension 2 such that the GKdim of its Nichols algebra B(V') is
finite. Then its generalized root system is finite.

Proof. We may assume that q11 € G, q22 ¢ G up to reflection. Indeed, if
neither ¢11 nor ¢oo belong to G, then V' is generic by Lemma So,
either ¢1; € G or else gag € Go. If both belong to G, then g;;q;; ¢ Goo.
Applying reflection at 1, we have that the new g ¢ Go.

By Lemma B4 the Dynkin diagram of V is one of the following:

1 ¢! 1 g2 —1
R o8, 61 % 4¢Guw, CEG,
All of them appear in [H2l Table 1], so V has a finite root system. O

3.2. Nichols algebras of indefinite Cartan type. Let A be an inde-
composable generalized Cartan matrix. Let W be the corresponding Weyl

group, see [K].
Lemma 3.6. Assume that A is of indefinite type. Let Q be the root lattice

corresponding to A and let Q. C Q be the submonoid generated by the simple
roots. Then W~ N QL is infinite for all v € Q4 — 0.
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Proof. Let 7 denote the set of simple roots. Let v € @4+ — 0. Assume
that Wy N Q4 is finite. Let = Y o coa € Wan Q4, where ¢, > 0
for all @ € =, such that wy — 8 ¢ Q4 — 0 for all w € W. Then for all
«a € 7 there exists m, > 0 such that s, = 8 — mga. On the other hand,
5aB = B =Y arex CalGaa’ @, that is, A(ca/)arer > 0. Since A is of indefinite
type and (¢o/)aren, A(Car)arer have only non-negative entries, we have a
contradiction. O

Let V be a braided vector space of Cartan type with Cartan matrix A.

Lemma 3.7. If there exists a root vy € AK of B(V') such that ¢y = 1, then
GKdimB(V) = oo.

Proof. The Cartan matrix A is not of finite type, since otherwise ¢;; # 1
for all ¢+ and hence ¢,, # 1 for all roots 7. If A is of affine type, then
GKdim B(V) = oo by Proposition Bl We assume then that A is of in-
definite type. By [HI], sa(AY — {a}) = AY — {a} for all simple roots a.
Since qury,uwy = ¢y, = 1 for all w € W, all root vectors of degree wy with
w € W have infinite height. By Lemma [B.6] W+ is infinite. Thus B(V)
has a restricted homogeneous PBW basis containing infinitely many PBW
generators having infinite height. The claim follows by Lemma 23] U

3.3. Braided coideal subalgebras. Just in this Subsection, the field k is
arbitrary. Let H be a Hopf algebra with bijective antipode.

Proposition 3.8. Prop.2.1]. Let B be a bialgebra in YD, let K be
a subalgebra of B and let I be a subobject of K in gyD, such that it is a
coideal of B, an ideal of K and

(3.2) AK)CK® K+1®B.
Then K/I inherits a structure of bialgebra in gyD from B.
By [B2), K is a right coideal subalgebra of B.

Proof. The existence of A is verified by usual chasing in the following com-
mutative diagram:

B B®B
K KoK+I®B
T lw TR TR
K/I----2_~K/I®oK/I
A
B/I B/I @ B/I

The associativity and compatibilities follow at once from those of B. O
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We now apply Proposition B.8in the following context. Recall that aq, as
is the canonical basis of Z2. Let V = V; @ V5 be a direct sum in gyp. Then
B(V) has a unique N3-grading (as a Hopf algebra in YD)

B(V)= P B(V)

aENg

such that degV; = o and deg Vo = ap. Let r € Q>0. We set

« «
BZT = @ B (V)7 B>T = @ B (V)7
a:alal—l—agageNg: a:alal—l—azazENgz
ai>rag ai1>raz

Proposition 3.9. Let r € Q with r > 0. Then the braided bialgebra struc-
ture of B(V') induces a braided Hopf algebra structure on K>, /K-x,.

Proof. We claim that:
(i) K> € B>y,
(ii) K>, is a subalgebra of B(V) in YD,
(iii) A(K>p) C Ksp @ Koy 4+ Ko @ B(V),
(iv) K-, is an ideal of K>, and a coideal of B(V) in ZYD.
For apply (id ®e) to the inclusion defining K>,. Now follows since
the multiplication and the Yetter-Drinfeld structure of B(V') are N2-graded.
For note that K>, is a right coideal since A is coassociative. Using
this fact and that A is N3-graded,

A(K>,) C K5y ® B>, + K~ @ B(V).

Indeed, let € K>, of degree aja; + agae. We write A(x) = >,y @ 2
with y;, 2; N%—homogeneous. If y;, z; have degree by + baa, c1aq + coqua,
then either by > rby so y; ® z; € K<, ® B(V), or else by = rbe, in which case
c1=a; —by >rag —rby =rcy and y; ® z; € K>, ® B>,. Now

(A ®id)A(K>,) € (A @Id)(K>r @ Bxr + Ksr © B(V))

We apply (id ® id ®e) to the previous inclusion and get

Finally we prove Let x € K+,, y € K>,, we may assume they are
homogeneous of degrees a = ajaq + asas, B = biag + boag, so a1 > ras,
by > rby. Hence 2y € K>, by and zy has degree a+ 8 = (a1 + by)ag +
(ag + bo)ag with aj + by > r(az + ba), so zy € K~,. Analogously, yz € K~,.
Thus K-, is an ideal of K>,. Now A(z) € K5, @ K>+ K=, @ B(V) by
For each u®v € K>, ® K>, appearing in A(z), u, v homogeneous of degrees
ciaq + e, diag + docn, we have that ¢; > reg, di > rds. As A s N%-
graded, ¢1+di = a1, co+ds = asg, so either ¢; > recg or else dp > rds; in other
words, either u € K+, or else v € K+, s0 A(z) € K>, @ Ksp + K5, @ B(V).
Thus K-, is a coideal of B(V) in ZYD.
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Hence we may apply Proposition B.8 and K>, /K-, is a bialgebra in gyp.
Since B(V') is Np-graded and connected and A is Ny-graded, K>, and K,
are also Ny-graded. Therefore K>,/K-, is No-graded and connected, so it
is a Hopf algebra in £YD by [Md, 5.2.10]. O

4. RANK 2

This Section contains a proof of the following result:

Theorem 4.1. Let V' be a braided vector space of diagonal type and di-
mension 2 such that GKdim B(V') < co. Then its generalized root system is
finite.

Let Z be a vector space and (z;);e; a family of vectors in Z. Then
(z; + i € I) denotes the subspace of Z generated by the z;’s.

4.1. Lemmas for 6§ = 2. We establish some properties needed in the proof
of Theorem Il We keep the notation in §2.3} we assume that 6 = 2 and
set as above yy, = (ad z1)Fze € B(V). We also set:

(A1) Bn=mai+az,  Pm=ds,.5, =4 @dian,  m €N
4.1.1. On the powers of the y,’s.

Lemma 4.2. Letr,s,t € Ng, r < s. Then

0, s <t

/‘8(3)411 (5 - 1)t111 te (8 —t+ 1)t111 yTxi_tv r<t<s.

8532(1/7«@/5) = {
Proof. By (23] we have that
(4.2) D (Yrys) = [1rG51922T1Ys + psYrT] for all r, s € No.
Using (23) again, if t > s, then &0y (y,ys) =0, and if r < t < s,

0102(yrys) = O (1syr}) = ps(8)qus (5 = gy -+ (5 — £+ D)gyy yraf ™"
by induction on t. O
Lemma 4.3. Let | € Ny. Assume that

VA0, 23#£0,  y #0, Yy € (Yeys: 0< 7 < s).

1041~
Then q1(1+1)(<J12)l+1<J22 =1 and

L(1+1) 1
(4.3) Yit1yr = <Z1(1 )(J1J2rlql21Q22ylyl+1-

Proof. The last assumption of the lemma implies that
Y1t € Wrys: 01 <5, r+s=20+1).
Using Lemma [4.2] we have that
070 (yiam) =0, 0,20 (yrys) € kypai ™77 =0,
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for all r,s € Ng with r +s = 2l + 1, s > [ + 2 such that y; # 0. Thus
there exists A € k such that y;11y; = A\yiyi+1. Now we apply 8{“82 to this
equation. Using that 8/7!(2}) = 0, 871 (z1™1) = (1 + 1), # 0 we obtain

q11

Yy = Muy1y-

,ul+1qg1Q22(ql11Q12
Thus \ = qll(ll+1)qllglqélq22, since y;11 # 0. Finally we apply 95 to ([E3).

Since ;11 # 0 and x%lﬂ =% 0, we obtain that

I l I(I4+1) 141 1 I !
421922 + G971 = <h(1 )q1J2FIQ21<J22(Q2JfIQ22 + q;fl)-
As 23 # 0, we have that goo # —1. Hence qll(lHl)(i]Vlz)lHqu =1 O

Lemma 4.4. Let | € N. Assume that y} € (y,ys : 0 < r < s) and that

y1 # 0. Then yii1 =0 and ¢k (G12)'q22 = —1.

Proof. As B(V) is Ny-graded, the last assumption says that
Y2 € (yrys: 0< 1 < s, 7+ s=2l).

Using Lemma [I.2] we have that

07 Da (i) = 0, 01 Do (yrys) € kypai ™ =0,

for all r,s € Ng with » < I, r + s = 2l, ys # 0. Thus yl2 = 0. Since [ > 0,

0= '0a(y7) = a1m1y1 + asyran

for some aj,a2 € k — 0. Since z1y; = yi+1 + qlllqlgylxl and since y;4+1 and
yiz1 are linearly independent whenever ;41 = 0, the latter equation implies
that y;.1 = 0. Therefore z1y; = qlnqlgylajl and we have that

0=02(y7) = pir(ghyqaz(dhyqr2)' + Dyt
This implies the last claim. O

We fix n > 0 and set ¢ = py,, cf. @I). Assume that ¢ € Gy for some
N > 2. In the next few Lemmas we prepare a condition for y being a root
vector. We start with some computations with g-numbers. Recall that

(tl + tg)q = (tl)q + qt1 (tg)q, for all t1,t9 € Ny.
In particular, (N), =0 and (N —t), = —¢ (), for all 0 <t < N.
Lemma 4.5. Letr € {0,1,...,N — 2} and t € Ny. Then

(t+1)q(t+2)q---(t+7’+l)q
(r+1), ’

¢
qu(l +1)q(l+2)g- (I +7)g=
1=0
Proof. Note that (r+1), # 0 since 1 <r+1 < N. We proceed by induction
on t. For ¢t = 0 the claim is trivial. For any ¢ > 0, for which the claim holds,
we obtain that
t+1

qu(l +1)g(l+2)g (I +71)q
=0
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t

:Z U+ Dgl+2)g - U+ 7)g + g HHE+2)g - (t+7+ 1),

Hl)q(HZ)qm( +T+1)"+qt+1(t+2)q(t+3)q“-(t+r+1)q

(r+1)4
(t+1)g + qu(T +1)q
= t+2),(t+3),---(t 1
r+ 1) (t+2)q(t+3)g- - (t+r+1)
(4 2)(t+3)g - (EH T+ Dyt +7+2)
(r+1)q )
This proves the claim. O
For any ¢t € {0,1,...,N — 2} let
t
. (N =t =145 :
(4.4) Y(t)=> (qhaq2)™ Ly Iy 1yl
= (7)q

In particular, Y (0) = (N — 1)i]yn+1.
Lemma 4.6. 97 "0 (yY) = —,un(n)fm(q{‘lqm)_lY(N —2).
Proof. First we obtain that

- N-1
N-1-1 1 I, N—-1—1_n, 1
=y T O (yn) s  yn = pn Y (@Biae0) yn T ety
1=0
Since 01 (y,) = 0, we have that
N-1
-1 N—1-1_. .1
8? 82(yn = q11 Z Q?l q12 Q21Q22) Un T1Yp,-
=0
The equation y,+1 = T1Yn — ¢11q12Yn21 implies that
-1
(4.5) vyl = qildhavher + > (dha) ™ Iyl ynayl-
§=0

Therefore

N-1
1 1) n-1 I, N—1-1,
07 0oy ) =pn(n)y,, Z (" Vg g gon) Y
1=0
-1

(nglmyiﬂ?l + Z((hnlQ12)l_1_jyiz_1_jyn+1y%)
=0

N—

l\)

N—

> q) ¢t aq12) ”yﬁf‘%jynﬂyﬁ;)-
=j+ —+1

>_A

Q11Q12

,_.
/N

=0 1
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Hence the Lemma follows since Zl]igl ¢' = 0and Zl]i;}rl ¢ =-(G+1), O
Forany 1 <t < N —1 let

t(l — qﬁ&l?)(n + 1)Q11
(t)q '

(4.6) dy =1— ¢ g +

Observe that d; depends on n.
Lemma 4.7. Lett € {1,2,...,N —1}. Then
RV (£)) = pn(n) gy, (ahra12) " Y (¢ = 1).

Proof. Similarly to the calculation in Lemma .6 we have that
N—t—1

t
010x(Y Z (411912) l( H (H‘i)q)'
=0

=1
(0?8 (yn)(t = Dgd ™ g g1yl i1yl
+ 070 (yn) (1 — ¢4 Gi2) (n + Dgy gyl a1yl
+ 07 0a (yn) 1)y yn 19 )-

Using (L)) this implies that
t—1 N—t—1

01OV (1)) = 05 0a(ya) Y (atrar2) 7 ( T G+id):
7=0 i=1
(—¢" )N =t + ) T a1yl ynsry,
t N—t—1
+ 070 (yn) (1 = aiaiie) (0 + Vg Y (ataar2) ™ ( T (4 10)4)d"
=0 i=1
-1
(Q?fqllzynwﬁrz i) T Iy Jyn+1yn>
7=0
t—1 _ N—t—1 ' '
+3?52(yn)Z(Q?1qlz)_J_l( IT G+ 1+i)q> (G + Dy yniay),
7=0 =1
Lemma (5] tells that
t N—t—1 N—t
Sd I t+ig=J]t+)/(N—1)g=0
=0 i=1 i=1

since 1 < t < N. Therefore the terms y x1 disappear in the above expression
for 0702(Y (t)). Moreover,

-1 N-t-1

t Z( H (I +1) ) (gtraqr2) ™7

=0 j=0 i=1
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t—1 N—t—1
=) (qhq12)” Z q( 1T l+i)q>
j=0 l=5+1 i=1
t—1 N—t—1 J N—-t-1
=> (dha2) J(qu( 11 (l+i)q>_qu< 11 (l+z)q)>
Jj=0 =0 i=1 1=0 i=1
t—1 N—t N—t
= (i) (JL+ )= TLG + ) /(N = 1),
7=0 i=1 i=1
t—1 N—t
== (ahae) (TG +0)) /(N =),
7=0 i=1
Therefore,

>_A

-1
DY (t) =072 (yn) (alrqn2) ™" > (aTiar2) ]< (j+1) >
7=0

1 on~ (L —afiqi2)(n+ )qu ) j j
1 Y1yl
( ¢ q1q12 (N — 1), + Yn+1Yn,
Thus the claim follows from this equality and (N —t), = —¢~*(t),. O

Proposition 4.8. Assume that Y = 0 and y,41 # 0. Then dy = 0 for
some 1 <t < N —2, see ([AEG]).

Proof. Lemma [4.6] implies that Y (N — 2) = 0. Thus
(07 9)N (Y (N = 2)) = 0.

By Lemma (7] either dy_o = 0 or else Y(N — 3) = 0. Recursively, if
Y (t) = 0, then either d; = O orelse Y (t—1) = 0, foreach 1 <t < N—2. Since
Y(0)=(N— 1)!qyn+1 # 0, necessarily d; = 0 for some 1 <t < N — 2. O

Lemma 4.9. If y # 0 then N, is a root of V.

Proof. By the definition of roots of B(V), either degy’ = N(naj + ag) is
a root of V or yﬁlv can be expressed as a linear combination of products
(7" -4 as in (ZH), where each ¢; corresponds either to a Lyndon word
l; greater than z7x2, or else to a power of this kind of letters.

Assume the last case holds. Then each [; starts with 12, where k < n,
and ends with 2. Since [; is a Lyndon word, any end of [; is larger than v, and
hence it contains no subword 12 with [ > k. Therefore l; = a;'flazg e x’f"xg
with kq, ...,k <nand k1 +-- -+ k, < rn. This implies that deg ¥y - - - £, #
degyN so yN = 0, a contradiction. Thus 3, has infinite height and hence
Ny, is a root of B(V). O

Lemma 4.10. Let m € Ny with y,, # 0. Then y2, = 0 if and only if
Pm = —1 and ymy1 = 0.
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Proof. 1f y2, = 0, then Lemma @4 says that y,,11 = 0 and p,, = —1.
Conversely, assume that y,,,4+1 =0, y,, # 0, and p,, = —1. Then

02(Ym) = fim (Yma " + 27" 451 4229m)
= pm (1 + (@11612) " 451 G22) ymxT" = 0.
Since 91 (ym) = 0, we conclude that y2, = 0. O

Lemma 4.11. Let m € Ny. Assume that p,, = —1 and yms+1 # 0. Then
2B is a oot of V' and qop,,28,, = 1.

Proof. As yy,11 # 0, Lemma @ I0 says that 32, # 0. Now Lemma @9 applies
and 23, is a root. Finally, qo3,,23,, = pi, = 1. O

4.1.2. On the w,,’s. We consider the following elements of B(V):
(4.7) Wi = Ym+2Ym — By s2,fm YmYm+2, m € No.
Notice that wy, is N2-homogeneous of degree 23,,+1.

Let m € Ng. Assume that y,, 12 # 0 and ¢g,,_ ., 5,,., # —1. Let
Qs B (M4 2)gy, (1 — a1 qi2)

Ym+1-
L+ 411 B "
Our next goal is to determine when w,, = 0.

(4.8) Ty = Wi

Lemma 4.12. Let m € Ny. Assume that

Ym+2 7é 07 Pm+1 7é _1, Wi S ]kyl%_;’_l, 0 S k < m.
Then the following are equivalent:
(1) win € kypyq-
(2) Wy, = 0.
(3) O (i) = 0.
(4) The following equation holds:

0 — (1 o pm—l—l) (1 + Pm+1 + pm(m + 2)5111(1 - Qﬁ§12)(1 - qﬁ+1612)>
q11 q11 (m)h, (14 qu1) (1 + pmy1)

Proof. First we compute
0o (wn) = OF (22} 5 @20 + Yot
= Qs Bm (umquEr{*zqzzmerz + ymum+2x§”+2)
!

(m+2)g, o om 2 2
— (g — x
1 +Q11 ( 1Ym 911 912Ym 1)

|
+ Mm(m)qll (1 - q6m+2 Bm qﬁm Bm+2 )ym+2 .
Similarly, we compute

= Um+24B,, Bm

8?182(1/5”1) = fimy1(m + 1)5111 (4B Bss Ym+2 + (L + Pt Yms121),
see also the calculation in the proof of Lemma .10
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(@) = ([@). Using the previous formulas one obtains quickly that

O 0o (win) = Hint25, 11 5 (M + 2) gy, Y1
8{”“82(@/72”“) = Mm+1(m + 1)5111 (14 Pms1)Yms1-
Since ymr1 # 0, this implies the claim.
@) = @). Trivial.
@) <= [@). We notice that
T m — @17 GaYm®T = Ymr2 + (L + 1)@ 12Yms121.

Since Yt2 and Y4121 are linearly independent in B(V'), the formulas at
the beginning of the proof imply that () is equivalent to

pm(m + 1)411 (m + 2)411 (1 - Qﬁam)(l - qﬁ+1qu2)
I+qn

_ ql_llpmpm-‘rl(m + Dgyi (m 4+ 2)g,, (1 — ¢f1q12)(1 — qﬁ+lal2)
1+ Pm+1

This gives the equivalence between ([B]) and ().
@) = ([@). We prove by induction on k that

(4.9) IR0y (W) = 0 for all 0 < k < m.

If so, then 0;(w,,) = 0 for i« = 1,2 and then w,, = 0.
For k = 0, (£9) holds by assumption. Now let & > 0 and assume the
statement holds for j < k. Notice that

ker 9y N B TRt Renter — ey o

- 8{”_]“82({177”) = byYm ko for some b € k.

2 2
+1—aq17 P

= 0.

We may assume that y,, 112 7# 0, otherwise the induction step holds.
Let ¢ : V' — V™ be the linear isomorphism with x; — 9; for ¢« € I. Then ¢ is

an isomorphism of braided vector spaces and hence induces an isomorphism
between the Hopf algebras B(V') and B(V*) in £)D. Notice that

(4.10) W Ymi) (W) = B a(Wy) = 0 for all 0 < j < k,
since y; = m{m—i— terms ending in x; and 0;(w,,) = 0. Hence

L(Wim—) (W) = t(Ym—k+2Ym—k = UBr_pr2.Bm—i Ym—kYm—k+2) (W)
= t(Um—t+2)t(Ym—1) (Wm) = b(Ym—t+2) Ym+r+2)

(m+k+2),,

(m—k+2)

q11

= ba{n_k+252(ym+k+2) = bltmtk+2
On the other hand, using that w,,_, = am_ky?n_kﬂ for some a,,_; € k and
the inductive hypothesis,

U W) (W) = Gt (Y2 1) (@) = G et (Yrm— 1) 07 F T (W) = 0.

Hence b = 0, which completes the inductive step. O
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Remark 4.13. In the following cases, the right hand side of the equation in
Lemma [A.12] ({]) is equal to the following:

(i) m=0: (14 ga2)(1 — q12g22)(1 + q1147922) (1 + q11G12922) L.
(ii) m = 1, qo2 = —1:

(14 ¢/1Gi5) (1 — ¢11012) (3)—quigin (1 + qF1G12) -

(iii) m =1, qiaqee = 1:

(1= ai1@12) (1) g2 (3) g2, 71, (1 + a1 d12)
(iv) m =1, q11qhq22 = —1:

(1 +¢7)(1 = g3 )1 =gl iq2)(1 —qu) ™"
(V) m=2, g =—1:

(1+ @) (1 — a1 q12) 3) 5.

(4171 + (af1 + 001)d@is — B)any €1 + (g1 + ¢1)d2 +1).

(Vi) m =2, Giagz2 =1, qfy = —1: 1 — iy
(vii) m =2, G12q22 =1, (3)_¢2,5,, = O:

(1 + Qil1(712)(1 - Qil1(712)(1 - Qi)lal2)(5)¢hl (3)—Q11(1 + qsl)lq~122)_1-

Recall the definition of w,,, m € Ny, given in (L8). We study in the next
Lemmas when w,, # 0 for small values of m.

Lemma 4.14. Assume that ys # 0, p1 # —1. Then wg = 0 if and only if
(G12g22 — 1)(g22 + 1)(q11G12g22 + 1) = 0.
Proof. The claim follows by Lemma and Remark ELT3)[(i)] O

Next we give conditions on the matrix q which are equivalent to the
equation wy = 0.

Lemma 4.15. Assume that y3 # 0, po # —1.
(a) If g2 = —1, then wy = 0 if and only if

(1= ¢h1@12)(g}1d2 + 1DB3)—gng = 0-
(b) If Gi2q22 = 1, then wy = 0 if and only if
(1 — g} 1q12) (a3, + 1)(3)—[1%1(712 = 0.
(¢) If Q11415922 = —1, then w1 = 0 if and only if (1 — ¢3,q12)(¢, + 1) = 0.
Proof. As we assume y3 # 0, we have that (3)5111/‘3 # 0. That is,
q11 ¢ G2 UGs, dhqie #1, k=012

Assume that qo2 = —1, so we have that p1 = —q11¢q12 # —1. Hence wy = 0
by Lemma .14l Now [(a)] follows by Lemma .12 and Remark LT3
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To prove @ we assume that qrogeo = 1. Again we have that p1 = q11 #
—1, so wg = 0 by Lemma 14l Now we can apply Lemma [£12] and Remark
4.13] and the claim follows.

Finally, if q11G5¢e2 = —1, then p; = —¢15' # —1, so @y = 0 by Lemma
ET4. Hence [(c)| follows by Lemma and Remark O

4.2. Proof of Theorem [.1]. First we extend Lemma [3.7] to any braided
vector space of diagonal type and dimension two.

Proposition 4.16. Assume that V is of dimension two and q1o # 1. If
there is a root vy of V' such that ¢y~ =1, then GKdim B(V') = occ.

Proof. If V' does not admit all reflections, then GKdim B(V) = oo by Re-
mark

Now we assume that V' admits all reflections. If V is generic, then V is
of Cartan type. As 7 cannot be a real root since ¢, = 1, V is not of finite
type. Then GKdim B(V') = oo by Remark B.2] (B]).

If V' is semigeneric, then GKdim B(V) = oo. Indeed if we suppose that
GKdim B(V') < oo, then all roots J satisfy gz 3 # 1 since the root system is
finite by Corollary B.5] and this gives a contradiction.

Finally, if V' is of torsion class, then the set X" is finite by Remark 3.2 (2)).
If the orbit of ~ is infinite, then GKdim B(V') = oo since there are infinitely
many roots 0 of V' with ¢s5 = 1. Now assume that v has finite orbit. Let
s1, 82 be the simple reflections corresponding to V, cf. (2.8]). Then there
exists k > 0 such that (sys2)*(y) = v and (R'R?)¥(V) = V. Thus 1 is an
eigenvalue of (s1s2)% € Aut(Z?). Since det(sysz) = 1, the other eigenvalue
is also 1. Thus either (s1s2)" = id, or else (s152)" is a shear mapping.
The first case implies that the set of real roots is finite, hence the Weyl
groupoid is finite by [CH], and consequently all roots § of V' are real [CH],
a contradiction.

In the second case there exist ¢; € Z such that (s152)" () = a; + ¢;y for
i =1,2. Hence, each 3, := (s152)"(;) = o + ¢;ny is a real root for n € N
and GKdim B(V') = oo by Lemma 211 O

As a consequence of Proposition [4.16] we have:

Corollary 4.17. Let p € kX such that p* # 1. Assume that q11 = p and
G12 = o2 = p*. Then GKdim B(V) = oo.

Proof. If p is a root of 1 and p* # 1, then V is of Cartan type. Let A =
(@ij)ijer, be the Cartan matrix of V. Recall that ma; + a3 is a root if and
only if 0 < m < —aq9. We study three cases according with the order of p:

o If pe Gy, N > 2, then —ajp =4N — 4. Thus v = fon_2 is a root. As

2N—-2)2 2N 2 NZ
Qy~r = Q§1 ) 412 422 = p4 =1,

GKdim B(V) = oo by Proposition
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o If p € G)nyy9 N > 1, then —ajp = 4N — 2. In particular, v = foy_1 is a
root. Now 28on_1 is a root by Lemma [£1T] since yan # 0 and

2N-1)2 ~aN -1 N+1)?
P2N-1 = Gyy = q§1 ) Q12 422 = pENTD" = 1,

Thus GKdim B(V') = oo by Proposition
e lfpe G’2N+1, N > 1, then —ag; = 2N. Thus v = Nas + a4 is a root, and
2 2
Gy = a3 G qu = p*N T =1
GKdim B(V) = oo, again by Proposition

Finally, if p is not a root of 1, then B(V') does not admit all reflections
and hence GKdim B(V') = oo. O

)

We apply next Corollary [.17]in the braided Hopf algebra K11/ Ksmt1.
Since 2} € K,y for all k,m € N, ([24) implies that y,,, € K>, is a primitive
element of N2-degree B, in K>,,/Ksp, for all m € N. Then (Z4) and ([24)
leads to the following shape of the coproduct of w,, and y2:

A(Wp) = Wy @14+ 1 Q@ wy,
(4.11) +(m+2)q, (1= @77 012)88,001 Yt @ Yt
+ terms x ®y, degz = kag + lag, k > 1(m + 1) + 1;
(412)  A@WR) € yh @14+ (1 + pm)ym @ Ym + 1 @ yp, + Bopm @ B(V).
Assume that p,, 11 # —1. By [@II) and (@I2), w,, is a primitive element

of Ng—degree 2841 in Kspmg1/Ksmg1.

Lemma 4.18. Let m € Ny be such that pp11 # —1. If w,, # 0, then
GKdimB(V) = oo.

Proof. The subalgebra of K>y, 41/Kspm+1 generated by yp,+1 and w,, is a
pre-Nichols algebra of diagonal type. Let W be the k-span of y,,11 and w,,,
P = 4B, 11 By~ Lhe braiding matrix of W is

(e 5
p* pt

If p* = 1 then 23,,,1 is a root of V of infinite height. Thus GKdim B(V) =
oo by Proposition

If p* # 1, then W satisfies the assumptions of Corollary 1T and hence
GKdim B(W) = oo. Since B(W) is a subquotient of K>p41/Ksmy1, and
this is a subquotient of B(V'), we have that GKdim B(V') = occ. O

We now apply Lemma .18 combined with the Lemmas in §4.1]

Lemma 4.19. Assume that

G2 # 1, (g, (1= qu112) # 0, (2)gea (1 — G12g22) # 0, qu1G12q22 # —1.
Then GKdim B(V) = oc.
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Proof. By Lemma 221 yo # 0. If p; = —1, then 23y is a root of V by
Lemma (1T} so GKdim B(V') = co by Proposition
Assume now that p; # —1. Then

AlyD) =yi@1+1@yf + (L +p1)y1 @ i

in K>1/K~1 and hence wy is primitive in K>/K~;. By Lemma [.14] wy is
non-zero. Now we apply Lemma I8l O

Without loss of generality, we assume that |a},| > |a¥;| > 0. We find a
bound for al,, a; to reduce the possibilities.

Lemma 4.20. Let V be a braided vector space of diagonal type and dimen-
sion 2 such that a12,a21 < —3. Then GKdim B(V') = co.

Proof. Suppose that GKdim B(V') < oo. Then wy = 0, so by Lemma .14
we have that q11G5q22 = —1. As y3 # 0, Lemma implies that
(1 - ¢1q12)(1 + ¢3)) = 0, so aja = —3 and analogously as; = —3. We
exclude the case q%l = q§2 = —1: if this happens, then 1 = q%1q~142q§2 = q~142, SO
q12 € G4, but this gives a contradiction since a}é = agl = —3. Hence we may
assume g5,q12 = 1. Let r = goz, 50 q12 = 773, As —1 = q11q15q22 = 7 °qu1,
we have that q1; = —7°.

First we assume that ¢§,q12 = 1. Hence ¢}, = r® so either ¢11 = r € G}

or g =1’ e Gh,. We compute d; as in (L) when n = 1, for each case:
e If g3 =7 € G}, then p; =77, s0 N = 8 and

r (1 —r72)(147)

(t)r7
rit A —1)2 1 pTt6
1— 7Tt n 1 — Tt

Hence dy = 0 <= (1 —r™*0)(1 — ™) = 297 Now we check the
validity of this equation for 1 <t < N —2 =6:

3

dt =1- 7’7t+6 +

27,7t+3
=1— 7,7t+6 4

t=1: (L—72)(1 —7r7) # 2r5;
t=2: (1—7M(1 —r% =21 — %) # 27
t=3: (1—r)(1 —1P) # 20"
t=4: (1 =731 —rh) =21 —r?) # 2%
t=5: (1—r)(1—1%) #2r%
t=6: (1—1)(1—7r%) =0%#2r.

Thus d; # 0 for all 1 <t < 6 so y§ # 0 by Proposition .8 and hence
831 is a root by Lemma This implies that GKdim B(V) = oo by
Proposition

o If g1 =77 € G}, then p; = 7%, so N = 8 and

T15t(1 +T2)(1 +T17)(1 +T3)

_ 15t—2
dt =1-r + 1 _ 15t
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Hence dy = 0 <= (1 —7%72)(1 —p15) = 13 (1 4 92) (1 +r17) (1 4 13).
Now we check the validity of this equation for 1 <t < N — 2 = 6:
T e (R E (R (CR R (Rt
— O £ rB1 (1 + 7‘17)(1 + 13);

b=2: (1—rH(a -1

t=3:  (1=r=r) A1+
t=4: 201 =719 # (1+r?) 1+ 7)1 +r%);
t=5: (=)L =r%) #rP1+ )+ (1 +r7);
t=6: (1 =791 =) £ 751+ (1 + 7)1 +13).

Thus d; # 0 for all 1 <t < 6 so y§ # 0 by Proposition I8 and hence

861 is a root by Lemma This implies that GKdimB(V) = oo by

Proposition

The last case is ¢11 € G). Thus r® = —qu1. As aYQ = —3 we have that
r € Ghy. Again we compute d; for n = 1. Here, p; = 713, so N = 20 and

P31 4+ r2) (1 4+ r12) (1 +3)
1— r13t :

Hence d; = 0 <= (1 —r13)2 = #3551 4+ ¢2)(1 +75)(1 + r?). Now we
check the validity of this equation for 1 <t < N —2 =18:

dt:1—r13t—|—

t=1: T+ £ B+ 7)1+ ) (1 +1°);
b=2: (1 =% # rH L+ ) (1 + 7)1+ %),
t=3: (L4792 £ rt 1+ 7)1+ 75) (1 +r3);
t=4; (4022 #7041+ )
=5 201 #7014+ (1 %) (14 1%);
t=6: (1+7%2 £ 31+ 1)1+ 7)1+ %),
=T (L+7)2 2 71901+ 72) (14 07)(1+12);
b=8: (L= £+ )L+ )1+ %),
t=9: (L+r)2 £ 21+ 1)1+ 7)1+ %),
=10z 4# P14+ )L+ ) (1 + %)
t=11: (L= # 31+ )L+ ) (L + %)
t=12: (1492 # r(1 4071471+ )
=13 (1= 2 P (14?14 %) (1 + %),
t=14: (1= £ (1411 + 7)1+ %)
t=15: 2r £ (L+r2)(1+1°)(1 +r%);

t=16: (1= # e )+ 7)1+ 7%);
t=17: (L =72 £+ )L +r) 1+ %)
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t=18: (1 +rH2 AP0 +r2) A 4+ r°)(1 +73).
Thus d; # 0 for all 1 < ¢ < 18 so 32 # 0 by Proposition I8 and hence 203;
is a root by Lemma L9l Again, GKdim B(V') = co by Proposition O

We finally assume that B(V') has finite GK-dimension. By Remark 25|
V admits all reflections. We consider all possible cases with ag; € {—1, -2},
not covered by previous arguments, and conclude that the root system is
finite—i. e. the Dynkin diagram appears in [H2| Table 1].

4.2.1. aly = a¥; = —1. We have that

(q11q12 = 1)(2)g, =0, (g22q12 = 1)(2)g2o = 0.
The four possible diagrams appear in [H2, Table 1, Rows 1 & 2].

4.2.2. afy = —2, a¥; = —1. We have that

(q%1§12 - 1)(3)Q11 =0, (Q22Z]vl2 - 1)(2)1122 =0.
If go0q12 = 1, then we have Table 1, Rows 3 & 5.
Now we assume that go2 = —1. If g3 ¢12 = 1, then we get Table 1,
Row 4]. Let gi1 € Gf. For simplicity we set ¢ = qi1, 7 = qi2. Let ()i jer

—qr p—1

be the braiding matrix of R?(V): its Dynkin diagram is o
2
study the possible values of a := ag )| Notice that a < =2.

oa=—2 If 1 =t3ty = ¢°r, then V appears in Table 1, Row 4].

-1
o . We

Otherwise 1 = t3; = —13, so r = —¢*'. As 1 # t;; = —qr, we have that
r = —q and V appears in Table 1, Row 6].
o a = —3. Bither 1 = t3,t19 = —r2, in which case r € G/, and V appears in

Table 1, Row 8], or else 1 = ¢}, = ¢r*, in which case 7 € G}, and V
appears in Table 1, Row 7].

o a < —4. Notice that wg = 0 by Lemma .14l and w; = 0 by Lemma [LI5]
@ since —t11t12 = q € Gj. Hence we may apply Lemma [L12} as wy = 0,
the scalar in Remark EI31[(v)] is zero. That is,

0=(1+¢r")1—g®)1+¢*r*)(1+¢r).

If ¢>° = —1, then —r € G5 and V belongs to [H2, Table 1, Row 15]. If
qr® =1, then r € Gj and V is in [H2, Table 1, Row 9]. If ¢*r? = —1,
then r € G),, ¢ = —r? and V belongs to [H2, Table 1, Row 7]. Otherwise
¢?r* = —1, in which case 7 € G), with ¢ = —r*, and V is in Table 1,
Row 12].

4.2.3. aly = =3, a¥; = —1 with gz = —1. First we assume ¢3,¢12 = 1. Set
q = qu1, 50 Q12 = ¢ >. Let (tij)ijer be the braiding matrix of R?(V): its
2 ¢ 1

Dynkin diagram is o

o If agz(v) = —2, R?(V) appears in §£.2.2] so R%(V) has finite root system
and then V too.

o .
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o If ag(v) = —3, then then either ¢;; € G), in which case ¢ € G§ and V
belongs to [H2, Table 1, Row 11]; or else #3,£15 = 1, in which case ¢ € Gg
and V is of Cartan type G [H2, Table 1, Row 10].

o If af;(v) < —4, then Remark @ I3|[(v)]says that (14+¢")(1—¢°)(5)_,2 = 0.
If ¢ = —1, then V belongs to Table 1, Row 16]. If ¢° = 1, then V
belongs to Table 1, Row 13]. If —¢? € G, then V belongs to
Table 1, Row 14].

Finally, if ¢3,q12 # 1, then q11 = n € G/. Set ¢ = g12. By Lemma

o either n%¢?> = —1, so ¢> = —n and V belongs to [H2, Table 1, Row 11];

R2(V) R2(V)

o or else —ng € Gf, in which case aj, = =2, ay = —1 since the

—nq q*
(@]

diagram of R2(V) is o . Hence R%(V) appears in §£.2.2] and
thus R%(V) has finite root system.

4.2.4. aYy = -3, a¥; = —1 with gaaqa2 = 1. 1f¢},G12 = 1, then V is of Cartan
type Go and the root system is finite Table 1, Row 10]. Otherwise,
q11 = n € G/. For simplicity we call ¢ = g22 50 g12 = ¢~ . Let (tij)ijer

—q ¢ %n
(0]

be the braiding matrix of R*(V): its Dynkin diagram is 3
Lemma 20 a;zll(\/) > 2.
o If a;zll(\/) = —1, then either t9p = —1, in which case ¢> = —n and V

belongs to Table 1, Row 11]; or else togt1o = 1, in which case ¢ = —7
and V is of Cartan type Gb.

. By

1 ~
o If a?l V) — —2, then either 1 = t%ztlg, in which case ¢ = 1, orelse 1 = t;’z,
which implies ¢® = —7. For the first case, we compute p; = ¢~!, which

has order N = 3, and by (@), d; = —ng # 0. Hence 33 # 0 by Proposi-
tion @8 By Lemma[], 34 is a root of R'(V), thus GKdim B(R'(V)) =
oo by Proposition For the second case, ¢ € G, and V belongs to
Table 1, Row 12].

4.2.5. aYy < —4, a¥; = —1 with gz = —1. For simplicity we set ¢ = qi1,
7 = q12. Let (tij)ije1 be the braiding matrix of R?(V): its Dynkin diagram

—qr p—1

is o o . As ¢*r # 1, Lemma !Ilﬂ says that either ¢3r? = —1 or
else —qr € Gf.
3.2 _ 37 _ 392 _ RA(V) _ 2
o If ¢°r® = —1, then t},t12 = —¢°r* =10 a;5 =~ = —3. Hence R*(V) has
a finite root system by §4.2.3] and V too.

2
o If —gr € G, then a71z2 V) = _2. Hence R%(V) has a finite root system by
§4.22] and V too.
4.2.6. a5 < —4, a¥; = —1 with gaaqi2 = 1. For simplicity set ¢ = qi1,
r = @g2, S0 q12 = 7 '. By Lemma 15 t = —¢*>r~! € G} since

aly < —4. As y4 # 0 we may apply Lemma ET2] and Remark
0=(1—g"r (1 +gr (1 —ar )B)=4(5)q
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o If ¢*r=! = 1, then V is of affine Cartan type and GKdim B(V) = oo by
Proposition B.1] a contradiction.
o If ¢*r! = —1, then ¢ = (—¢*r V)(—¢*r )" =12, 50 ¢ = £t, r = —t.

If ¢ = ¢, then aYQ > —2: otherwise ¢ = —t and ¢11G12 = ¢r~* = 1 so
a}y = —1. In any case we obtain a contradiction with aj, < —4.

o If ¢>r=! =1, then ¢ = —t~! € Gj;. Hence —q € G} and p3 = ¢"r3r =
¢! € Glg. Now we compute d; as in (@0 for n = 3:

I e [C e e C e [CP
P S

Thus d; = 0 if and only if ¢/*3(1—¢~")? = (¢*> —1)(¢* — 1), but this equality
does not hold for 1 <[ < 16. Hence 18f3 is a root of V' by Proposition
and Lemma [£.9] so GKdim B(V') = oo by Proposition

o If —q € Gj, then either t = —q or else ¢t = —g~'. Both are not possible
since a}, < —4.

o If ¢ € G, then r = —t~1¢? € Gj,. This is the case in Table 1, Row
15].

d=1—q 151 4+

4.2.7. aYQ = a¥1 = —2. We have that (¢11¢12 —1)(2)q,, (g22q12 — 1)(2) 405 # 0,
(at1d12 — 1)(3)gy =0, (@212 — 1)(3)g5, = 0.

If ¢2,q12 = 1 = q35q12, then V is of affine Cartan type, a contradiction with
Proposition Bl Hence we may assume that ¢i1 € G5. By Lemma [AI4]
711415922 = —1. Let (ti;)ijer be the braiding matrix of R (V):

tas = qaadipdis = qa2dipan = —1,
so RY(V) appears in §£2.2 since GKdim B(R'(V)) < co. Thus R (V) has
a finite root system, and V' too.
4.2.8. aly < =3, a¥; = —2. As Wy = 0, 114522 = —1 by Lemma T4l
As wy = 0, either ¢3,g12 = 1 or else ¢7; = —1 by Lemma [LTH Hence

a12 = —3. We analyze the possible 4 cases.
If qif16712 =1= q§2q~12, then V' is of indefinite Cartan type and

— g2 = (1135022) T a2 = ¢ G1205012 = 1,

thus qQ%OZ —ql_12, and 1 = q§2q~12 = ql_17, SO q11 € G’7. Let r := qoo € G’14, SO

qi1 = ', G2 = r'2. We compute d; as in (&8 for n = 1. Here, p; = r°, so
N =14 and
rgt(l +7r)(1— 7‘3)(1 + 7“2)
1—r9 ’
Hence d; = 0 <= (1 — 913 (1 — r9%) = ¢ (1 4+ 7)(r3 — 1)(1 + r?). Now
we check the validity of this equation for 1 <t < N —2 =12:
t=1: A+r) 1+ £Ar2Q +r) (3 - 1)A +r2);

t=2: (1 =71 =7 £ A+ )3 - 1) +r2);

dp =1 — 913
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t=3: (L)1 +7%) # B+ ) = DA +r?);
t=4: 2(1+7) £r3(1+7)(r® = 1)1 +77);
t=>5: A=) 1 =73 £r3A+r)(3 - 1)1 + %),
t=6: L4+ A+7%) £ rP 1+ r)(r® = 1) (1 +7%);
t=17: 201 =% # (1 +7)(r* = 1)(1 + r?);
b=8: (=)@ =r?) #r2(1+r) (" = 1) +7%);
t=9: L+ A+ £ r 14 r)(r® = 1)1+ %)
t=10: (1 =721 =79 £ r8(1 +7) (1 — 1) (1 +r?);
t=11: 0#r(1+r)(r®—1)(1+7r%);

t=12: I+ A+ A0 +r)(r® 1)1 +1r?).

Thus d; # 0 for all 1 < ¢ < 12 s0 y1* # 0 by Proposition E8 and hence 143;
is a root by Lemma [£.9] Therefore GKdim B(V') = oo by Proposition [4.10]
Assume that ¢11 = 7 € G/, ¢3q12 = 1: to simplify the notation, set

q = 22,50 q12 = q 2. Then —1 = Q11q~1ZQQ22 = 77q_3, s0 ¢° = —n. The matrix
g2 g2 1
(tij)ijer of R'(V) has diagram 3 © . Thus a?l V) = 1 and then

RY(V) has finite root system, since GKdim B(R(V)) = GKdim B(V) < oc.
Assume now q:l)’liflg =1, g2 =C € Gj. Let ¢ =q11 80 q12 = ¢~3. The ma-

4 2.3
trix (¢i7)i jer of R?(V) has diagram o £ & Thus ag(v) = —1 and then

R%(V) has finite root system, since GKdim B(R?*(V)) = GKdim B(V) < oc.
If g11 = 1 € G}, gaa = ¢ € Gj, then —1 = g11Gfhg22 = 19°C, where ¢ = Gi2.

=142
Hence the matrix (;); jer of R?(V) has diagram o T § . Thus RA(V)

has finite root system, and V too.

REFERENCES

[A] N. Andruskiewitsch. An Introduction to Nichols Algebras. In Quantization, Geom-
etry and Noncommutative Structures in Mathematics and Physics. A. Cardona, P.
Morales, H. Ocampo, S. Paycha, A. Reyes, eds., Springer (2017), 135-195.

[AA1] N. Andruskiewitsch, I. Angiono. On Nichols algebras with generic braiding, in Mod-
ules and Comodules, T. Brzezinski; J. L. Gémez Pardo; 1. Shestakov; P. F. Smith
(Eds.). Trends in Mathematics (2008), 47-64.

[AA2] N. Andruskiewitsch, I. Angiono. On Finite dimensional Nichols algebras of diagonal
type. Bull. Math. Sci. 7 (2017), 353-573.

[AAH] N. Andruskiewitsch, I. Angiono, I. Heckenberger. On finite GK-dimensional
Nichols algebras over abelian groups. larXiv:1606.02521.

[AS1] N. Andruskiewitsch, H.-J. Schneider. Pointed Hopf algebras, New directions in Hopf
algebras, MSRI series Cambridge Univ. Press (2002), 1-68 .

[Anl] I. Angiono. A presentation by generators and relations of Nichols algebras of di-
agonal type and convex orders on root systems, J. Europ. Math. Soc. 17 (2015),
2643-2671.


http://arxiv.org/abs/1606.02521

ON FINITE GK-DIMENSIONAL NICHOLS ALGEBRAS OF DIAGONAL TYPE 25

[C+] L. Carbone, S. Chung, C. Cobbs, R. McRae, D. Nandi, Y. Naqvi, D. Penta. Classi-
fication of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits. J. Phys.
A: Math. Theor. 43 (2010) (15): 155209.

[CH] M. Cuntz, I. Heckenberger. Weyl groupoids with at most three objects. J. Pure Appl.
Algebra 213 (2009), 1112-1128.

[GH] M. Grana, 1. Heckenberger. On a factorization of graded Hopf algebras using Lyn-
don words. J. Algebra 314 (2007), 324-343.

[H1] 1. Heckenberger. The Weyl groupoid of a Nichols algebra of diagonal type, Inven-
tiones Math. 164 (2006), 175-188.

[H2] 1. Heckenberger. Classification of arithmetic root systems, Adv. Math. 220 (2009),
59-124.

[HS] 1. Heckenberger, H.-J. Schneider. Root systems and Weyl groupoids for Nichols
algebras, Proc. London Math. Soc. 101 (2010), 623-654.

[Kh] V. Kharchenko. A quantum analog of the Poincare-Birkhoff-Witt theorem, Algebra
and Logic 38 (1999), 259-276.

K] V. Kac. Infinite-dimensional Lie algebras. Third edition. Cambridge University
Press, Cambridge, 1990. xxii+400 pp.

[KL] G. Krause, T. Lenagan,. Growth of algebras and Gelfand-Kirillov dimension. Re-
vised edition. Graduate Studies in Mathematics, 22. American Mathematical So-
ciety, Providence, RI, 2000. x4+212 pp

[Mo] S. Montgomery. Hopf algebras and their action on rings, CBMS Regional Confer-
ence Series 82 (1993).

[R] M. Rosso. Quantum groups and quantum shuffles. Invent. Math. 133 (1998), 399—
416.

[Y]  H. Yamane. Representations of a Z/3Z-quantum group. Publ. Res. Inst. Math. Sci.
43 (2007), 75-93.

FAMAF-CIEM (CONICET), UNIVERSIDAD NACIONAL DE CORDOBA, MEDINA A-
LLENDE $/N, CIUDAD UNIVERSITARIA, 5000 CORDOBA, REPUBLICA ARGENTINA.
E-mail address: (andrus|angiono)@famaf.unc.edu.ar

PHILIPPS-UNIVERSITAT MARBURG, FACHBEREICH MATHEMATIK UND INFORMATIK, HANS-
MEERWEIN-STRASSE, D-35032 MARBURG, GERMANY.
E-mail address: heckenberger@mathematik.uni-marburg.de



	1. Introduction
	2. Preliminaries
	2.1. Conventions
	2.2. The Gelfand-Kirillov dimension
	2.3. Nichols algebras of diagonal type

	3. General results
	3.1. Semigeneric diagonal type
	3.2. Nichols algebras of indefinite Cartan type
	3.3. Braided coideal subalgebras

	4. Rank 2
	4.1. Lemmas for = 2
	4.2. Proof of Theorem ??

	References

