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ON FINITE GK-DIMENSIONAL NICHOLS ALGEBRAS OF

DIAGONAL TYPE

NICOLÁS ANDRUSKIEWITSCH, IVÁN ANGIONO, ISTVÁN HECKENBERGER

Abstract. It was conjectured in arXiv:1606.02521 that a Nichols
algebra of diagonal type with finite Gelfand-Kirillov dimension has finite
(generalized) root system. We prove the conjecture assuming that the
rank is 2. We also show that a Nichols algebra of affine Cartan type has
infinite Gelfand-Kirillov dimension.

1. Introduction

In this paper we contribute to the classification of Hopf algebras with finite
Gelfand-Kirillov dimension, GKdim for short. Specifically we propose:

Conjecture 1.1. [AAH, Conjecture 1.5] If V is a braided vector space of
diagonal type and dimension θ ∈ N such that the GKdim of its Nichols
algebra B(V ) is finite, then its (generalized) root system is finite.

Since the classification of the Nichols algebras of diagonal type with finite
generalized root system is known [H2], a positive answer to the Conjecture
1.1 would imply the classification of the Nichols algebras of diagonal type
with finite GKdim. Indeed, the converse in the Conjecture is clearly true.
The defining relations of these Nichols algebras are also known [An1]. The
GKdim of these Nichols algebras can be computed (2.6). Our main result
provides partial answers to this Conjecture:

Theorem 1.2. Conjecture 1.1 holds in the following cases:

(a) V is of affine Cartan type.
(b) θ = 2.

We collect some necessary definitions and concepts in Section 2; Section
3 is devoted to general results that might be of interest elsewhere. Part (a)
is proved in Proposition 3.1. Part (b), which is Theorem 4.1, is proved in
§4.2, after some preparatory Lemmas in §4.1.
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2. Preliminaries

2.1. Conventions. Let k be an algebraically closed field of characteristic
zero. All the vector spaces, algebras and tensor products are over k. Let
N = {1, 2, . . . }, N0 = N∪0. Given θ ∈ N, we set Iθ = {1, 2, . . . , θ}, or simply
I if θ is clear from the context. In the polynomial ring Z[q], we denote

(n)q =

n−1∑

j=0

qj , (n)!
q
=

n∏

j=1

(j)q, n ∈ N0.

If q ∈ k, then (n)q, (n)
!
q are the evaluations at q.

We denote by Γ̂ the group of multiplicative characters (one-dimensional
representations) of a group Γ. Let GN be the group of roots of unity of order
N , G′

N the subset of primitive roots of order N , and G∞ =
⋃

N∈NGN .

Let H be a Hopf algebra (always with bijective antipode). A braided
Hopf algebra means a Hopf algebra in the category H

HYD of Yetter-Drinfeld

modules over H. If R is a Hopf algebra in H
HYD, then R#H is the bosoniza-

tion of R by H. Let ad be the adjoint action of R#H and adc the braided
adjoint action of R. Then adc x ⊗ id = ad(x#1) for x ∈ R. If x ∈ R is
primitive, then adc x(y) = xy −multiplication ◦ c(x⊗ y) for all y ∈ R.

If (V, c) is a braided vector space, then B(V ) = T (V )/J (V ) is the Nichols
algebra of V , see [AS1, A, AA2] for surveys on this notion.

A braided vector space of diagonal type is a pair (V, c), where V is a vector
space of dimension θ with a basis (xi)i∈Iθ , and the braiding c ∈ GL(V ⊗V ) is
given by c(xi⊗xj) = qijxj⊗xi for all i, j ∈ I; here q = (qij)i,j∈Iθ ∈ (k×)θ×θ,
qii 6= 1. Let

q̃ij := qijqji, i 6= j ∈ Iθ.

The generalized Dynkin diagram of q is a graph with set of points Iθ with
the vertex i decorated with qii; and for i 6= j ∈ Iθ, no edge between i and j
when q̃ij = 1, otherwise there is an edge decorated with q̃ij.

2.2. The Gelfand-Kirillov dimension. A comprehensive exposition is
[KL]. For further use, we recall statements from [AAH, §2.3.2] inspired by
[R, Lemma 19].

Lemma 2.1. Let B = ⊕n≥0B
n be a finitely generated graded algebra with

B0 = k. Let (yk)k≥0 be a family of homogeneous elements of B such that

(yi1 . . . yil : ij ∈ N, i1 < · · · < il)(2.1)

is a family of linearly independent elements. If there exist m, p ∈ N such
that deg yi ≤ mi+ p, for all i ∈ N, then GKdimB = ∞. �
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The following Lemma is due to Rosso [R, Lemma 14, Corollary 18]. Let
(U, c) be a braided vector space of diagonal type, with respect to a basis
x1, x2 and a matrix (qij)i,j∈I2 . We set

µk =
k−1∏

i=0

(1− qi11q̃12), yk = (adc x1)
kx2.(2.2)

Lemma 2.2. (a) If k ∈ N, then yk = 0 iff µkx
k
1 = 0, iff (k)q11 !µk = 0.

(b) If yk 6= 0 for all k ∈ N, then the set (2.1) is linearly independent.
(c) If (k)q11 !µk 6= 0 for every k ∈ N, then GKdimB(U) = ∞.
(d) If q11 = 1 and q̃12 6= 1, then GKdimB(U) = ∞. �

2.3. Nichols algebras of diagonal type. We fix a braided vector space of
diagonal type (V, c) with notation as in §2.1. We assume that the generalized
Dynkin diagram is connected.

Let (αi)i∈I be the canonical basis of Zθ. Let q be the bicharacter on Zθ

such that q(αi, αj) = qij for all i, j ∈ I; we set qαβ = q(α, β) for α, β ∈ Zθ.

Then T (V ) and B(V ) are Zθ-graded with deg xi = αi for all i ∈ I. For
each α ∈ Zθ, Bα(V ) denotes the homogeneous component of degree α.

Let Γ = Zθ. We realize V in kΓ
kΓYD by choosing the family (χi)i∈I in Γ̂

such that χj(αi) = qij for all i, j ∈ I. Then B(V ) becomes an Zθ-graded
object in kΓ

kΓYD. There are skew-derivations ∂i, i ∈ I of B(V ), such that
∂i(xj) = δij and

∂i(xy) = x∂i(y) + ∂i(x)(αi · y), x, y ∈ B(V ).

Let µk, yk = (adc x1)
kx2 as in (2.2). We notice that

∂1(yk) = 0, ∂2(yk) = µkx
k
1 , for all k ∈ N0.(2.3)

Also, it is well-known, and easy to check by a recursive argument, that

∆(yk) = yk ⊗ 1 +

k∑

i=0

(
k
i

)

q11

µk

µi
xk−i
1 ⊗ yi.(2.4)

By [Kh], there is a totally ordered subset L ⊂ B(V ) consisting of Zθ-
homogeneous elements such that

{ℓm1
1 · · · ℓmk

k | k ∈ N0, ℓ1 > · · · > ℓk ∈ L, 0 < mi < Nℓi for all i ∈ Ik}(2.5)

is a linear basis of B(V ) (a so called restricted PBW basis); here

Nℓ = min{n ∈ N : (n)qdeg ℓ,deg ℓ
= 0} ∈ N ∪∞

is called the height of ℓ.

Lemma 2.3. If B(V ) has a restricted homogeneous PBW basis with infin-
itely many PBW generators of infinite height, then GKdimB(V ) = ∞.
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Proof. By assumption there exists L as above and I ⊆ L infinite such that
Nℓ = ∞ for all ℓ ∈ I. Let d ∈ N, Fd ⊂ I with |Fd| = d and Vd the subspace
generated by 1, the xi’s and all ℓ ∈ Fd. Then (Vd)

n+1 contains the ordered

monomials in Fd of degree ≤ n + 1, hence dim(Vd)
n+1 ≥

(
n+d
d

)
. Hence

lim sup logn dim(Vd)
n+1 ≥ d. Since d is arbitrary, GKdimB(V ) = ∞. �

Assume that L is finite (the Conjecture 1.1 says that this is the case when
GKdimB(V ) < ∞). By [KL, Theorem 12.6.2], we conclude that

GKdimB(V ) = |{ℓ ∈ L : Nℓ = ∞}|.(2.6)

Let ∆V
+ = ∆+ = (deg ℓ)ℓ∈L be the family of positive roots of B(V ) (with

multiplicities). By [HS, Lemma 4.7], it is uniquely determined, i.e. it does
not depend on L.

We say that we can reflect V at i ∈ I if, for all j 6= i, there exists n ∈ N0

such that (n+ 1)qii(1− qniiqijqji) = 0. In such case, following [H1] we define
a generalized Cartan matrix (cij) by cii = 2 and

cij := −min{n ∈ N0 : (n+ 1)qii(1− qniiqijqji) = 0}, j 6= i.(2.7)

Let si ∈ GL(Zθ) be given by

si(αj) = αj − cijαi, j ∈ I.(2.8)

The reflection at the vertex i of q is the matrix Ri(q) = (tjk)j,k∈I, where

tjk := qsi(αj),si(αk) = qjkq
−cij
ik q−cik

ji q
cijcik
ii , j, k ∈ I.(2.9)

Let Ri(V ) be the braided vector space of diagonal type with matrix Ri(q).

Theorem 2.4. [H1, AA1] GKdimB(Ri(V )) = GKdimB(V ). �

We say that V admits all reflections if we can reflect V at every i1 ∈
I, then we can reflect Ri1(V ) at every i2 ∈ I and so on, we can reflect
Rik . . .Ri1(V ) at every ik+1 ∈ I for all k.

If V admits all reflections, then we denote by X the collection of all
braided vector spaces of diagonal type obtained from V by a finite number of
successive reflections at various vertices. Here any two braided vector spaces
with the same braiding matrix are identified. The collection (∆U

+)U∈X is the
generalized root system of V .

Remark 2.5. If GKdimB(V ) < ∞, then we can reflect V at every i ∈ I by
Lemma 2.2 (c). Hence V admits all reflections by Theorem 2.4.

3. General results

Recall that (V, c) is of Cartan type if there exist aij ∈ Z≤0 such that

qijqji = q
aij
ii , i 6= j ∈ I.(3.1)

Set aii = 2, i ∈ I. If qii ∈ G∞, then we choose aij ∈ (− ord qii, 0], when
i 6= j; otherwise it is uniquely determined. In any case, a = (aij)i,j∈Iθ is
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an indecomposable symmetrizable generalized Cartan matrix [K]. These
matrices are of three types: finite, affine or indefinite. If (V, c) is of Cartan
type and GKdimB(V ) < ∞, then Conjecture 1.1 predicts that a is of finite
type. Here is the confirmation for the affine type.

Proposition 3.1. If a is of affine type, then GKdimB(V ) = ∞.

Proof. Let ∆re denote the set of real roots corresponding to a. There ex-
ists a positive imaginary root δ such that ∆re + δ = ∆re [K, Proposition
6.3 d)]. Let m be the height of δ and let α be a simple root. Choose a
homogeneous restricted PBW basis of B(V ). Then for all k ≥ 0 there exists
a PBW generator yk of degree α + kδ, hence deg yk = mk + 1. Therefore
GKdimB(V ) = ∞ by Lemma 2.1. �

An indecomposable generalized Cartan matrix is compactly hyperbolic if
it is of indefinite type and every proper minor is of finite type. If a ∈ Zθ×θ

is compactly hyperbolic, then θ ≤ 5. In fact, the classification of compactly
hyperbolic generalized Cartan matrices is known [C+]; there are the matrices(
2 a
b 2

)
with ab > 4; 31 matrices in Z3×3; 3 matrices in Z4×4; 1 matrix in

Z5×5. To prove Conjecture 1.1 in the Cartan case, it would be enough to
verify it for compactly hyperbolic generalized Cartan matrices with 3 ≤ θ ≤
5, as the case θ = 2 is taken care by Theorem 4.1.

Back to the general diagonal type, we distinguish three classes of Nichols
algebras. Given q as above, we say that

◦ q is of torsion class if qii, qijqji ∈ G∞ for all i 6= j ∈ I;

◦ q is generic, if qii /∈ G∞, and qijqji = 1 or qijqji /∈ G∞, for all i 6= j ∈ I.

◦ q is semigeneric if it is neither generic nor of torsion class.

Remark 3.2.

(1) If q is of torsion class, then Conjecture 1.1 says that GKdimB(V ) < ∞
implies GKdimB(V ) = 0. Indeed all roots are real by [CH], and they
would have finite non-trivial order by Lemma 2.2 (d), hence (2.6) applies.

(2) If q is of torsion class, then the set X defined after Theorem 2.4 is finite.
Indeed, there are finitely many matrices with the shape (2.9).

(3) [R, AA1] If q is generic, then GKdimB(V ) < ∞ if and only if there exists
a Cartan matrix of finite type a = (aij), with symmetrizing diagonal

matrix (di), and q /∈ G∞ such that qii = q2di and qijqji = q2diaij for all
i 6= j ∈ I. Thus Conjecture 1.1 holds in this case.

(4) A semigeneric matrix with finite generalized root system is either of
super type or else one of two exceptions of ranks 2 and 4:

q
◦

q−1 ω
◦,

q
◦

q−1 q
◦

q−1 −1
◦

−q −q−1

◦ .
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Here ω ∈ G′
3 and q /∈ G∞; the first corresponds to Yamane’s exotic

quantum groups [Y] while the second is the row 14 in [H2, Table 3].

3.1. Semigeneric diagonal type. Let us fix q = (qij)i,j∈I semigeneric
with GKdimB(V ) < ∞. Let J = {i ∈ I : qii /∈ G∞} be the set of generic
points of q and let J1, . . . Jt be the connected components of the generalized
Dynkin diagram q = (qij)i,j∈J.

Lemma 3.3. If i ∈ I and j ∈ J, then there exists h ∈ N0 such that q−h
jj =

qijqji. In particular, either qijqji = 1 or /∈ G∞.

Proof. By Lemma 2.2. �

Lemma 3.4. If i /∈ J, j ∈ J and qijqji 6= 1, then either ord qii = 2 and

qijqji = q−h
jj with h ∈ I2; or else ord qii = 3 and qijqji = q−1

jj .

Proof. First, there exists h ∈ N such that q−h
jj = qijqji by Lemma 3.3. Let

N = ord qii. We apply the reflection at i:

qii
◦

q−h
jj qjj

◦ ��

i

�� qii
◦

q2iiq
h
jj

qiiq
1−h(N−1)
jj

◦ .

Then either 1 = h(N − 1) that gives h = 1, N = 2; or else there exists

t ∈ N such that (qiiq
1−h(N−1)
jj )−t = q2iiq

h
jj by Lemma 3.3. A straightforward

analysis yields the claim. �

As a consequence we derive the corresponding version of Theorem 4.1 for
semigeneric braidings. It will be useful for the proof of the general case.

Corollary 3.5. Let V be a braided vector space of semigeneric diagonal
type and dimension 2 such that the GKdim of its Nichols algebra B(V ) is
finite. Then its generalized root system is finite.

Proof. We may assume that q11 ∈ G∞, q22 /∈ G∞ up to reflection. Indeed, if
neither q11 nor q22 belong to G∞, then V is generic by Lemma 2.2 (c). So,
either q11 ∈ G∞ or else q22 ∈ G∞. If both belong to G∞, then qijqji /∈ G∞.
Applying reflection at 1, we have that the new q22 /∈ G∞.

By Lemma 3.4, the Dynkin diagram of V is one of the following:

−1
◦

q−1 q
◦ ,

−1
◦

q−2 q
◦ ,

ζ
◦

q−1 q
◦ , q /∈ G∞, ζ ∈ G′

3.

All of them appear in [H2, Table 1], so V has a finite root system. �

3.2. Nichols algebras of indefinite Cartan type. Let A be an inde-
composable generalized Cartan matrix. Let W be the corresponding Weyl
group, see [K].

Lemma 3.6. Assume that A is of indefinite type. Let Q be the root lattice
corresponding to A and let Q+ ⊂ Q be the submonoid generated by the simple
roots. Then Wγ ∩Q+ is infinite for all γ ∈ Q+ − 0.
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Proof. Let π denote the set of simple roots. Let γ ∈ Q+ − 0. Assume
that Wγ ∩ Q+ is finite. Let β =

∑
α∈π cαα ∈ Wα ∩ Q+, where cα ≥ 0

for all α ∈ π, such that wγ − β /∈ Q+ − 0 for all w ∈ W . Then for all
α ∈ π there exists mα ≥ 0 such that sαβ = β −mαα. On the other hand,
sαβ = β −

∑
α′∈π cα′aαα′α, that is, A(cα′)α′∈π ≥ 0. Since A is of indefinite

type and (cα′)α′∈π, A(cα′)α′∈π have only non-negative entries, we have a
contradiction. �

Let V be a braided vector space of Cartan type with Cartan matrix A.

Lemma 3.7. If there exists a root γ ∈ ∆V
+ of B(V ) such that qγ,γ = 1, then

GKdimB(V ) = ∞.

Proof. The Cartan matrix A is not of finite type, since otherwise qii 6= 1
for all i and hence qγ,γ 6= 1 for all roots γ. If A is of affine type, then
GKdimB(V ) = ∞ by Proposition 3.1. We assume then that A is of in-
definite type. By [H1], sα(∆

V
+ − {α}) = ∆V

+ − {α} for all simple roots α.
Since qwγ,wγ = qγ,γ = 1 for all w ∈ W , all root vectors of degree wγ with
w ∈ W have infinite height. By Lemma 3.6, Wγ is infinite. Thus B(V )
has a restricted homogeneous PBW basis containing infinitely many PBW
generators having infinite height. The claim follows by Lemma 2.3. �

3.3. Braided coideal subalgebras. Just in this Subsection, the field k is
arbitrary. Let H be a Hopf algebra with bijective antipode.

Proposition 3.8. [GH, Prop. 2.1]. Let B be a bialgebra in H
HYD, let K be

a subalgebra of B and let I be a subobject of K in H
HYD, such that it is a

coideal of B, an ideal of K and

∆(K) ⊆ K ⊗K + I ⊗B.(3.2)

Then K/I inherits a structure of bialgebra in H
HYD from B.

By (3.2), K is a right coideal subalgebra of B.

Proof. The existence of ∆ is verified by usual chasing in the following com-
mutative diagram:

B
∆ //

π

����

B ⊗B

π⊗π

����

K
4 T

gg❖❖❖❖❖❖❖❖ ∆ //

π

����

K ⊗K + I ⊗B
& �

44❤❤❤❤❤❤❤❤❤❤

π⊗π
����

K/I
K k

xxqqq
qq
q

∆ //❴❴❴❴❴❴❴ K/I ⊗K/I � w

**❯❯❯
❯❯

❯❯
❯❯

B/I
∆ // B/I ⊗B/I

The associativity and compatibilities follow at once from those of B. �
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We now apply Proposition 3.8 in the following context. Recall that α1, α2

is the canonical basis of Z2. Let V = V1⊕V2 be a direct sum in H
HYD. Then

B(V ) has a unique N2
0-grading (as a Hopf algebra in H

HYD)

B(V ) =
⊕

α∈N2
0

Bα(V )

such that degV1 = α1 and deg V2 = α2. Let r ∈ Q≥0. We set

B≥r =
⊕

α=a1α1+a2α2∈N
2
0:

a1≥ra2

Bα(V ), B>r =
⊕

α=a1α1+a2α2∈N
2
0:

a1>ra2

Bα(V ),

K≥r = {x ∈ B(V ) |∆(x) ∈ B≥r ⊗ B(V )}, K>r = K≥r ∩B>r.

Proposition 3.9. Let r ∈ Q with r ≥ 0. Then the braided bialgebra struc-
ture of B(V ) induces a braided Hopf algebra structure on K≥r/K>r.

Proof. We claim that:

(i) K≥r ⊆ B≥r,
(ii) K≥r is a subalgebra of B(V ) in H

HYD,
(iii) ∆(K≥r) ⊆ K≥r ⊗K≥r +K>r ⊗ B(V ),
(iv) K>r is an ideal of K≥r and a coideal of B(V ) in H

HYD.

For (i), apply (id⊗ε) to the inclusion defining K≥r. Now (ii) follows since
the multiplication and the Yetter-Drinfeld structure of B(V ) are N2

0-graded.
For (iii), note that K≥r is a right coideal since ∆ is coassociative. Using

this fact and that ∆ is N2
0-graded,

∆(K≥r) ⊆ K≥r ⊗B≥r +K>r ⊗B(V ).

Indeed, let x ∈ K≥r of degree a1α1 + a2α2. We write ∆(x) =
∑

i yi ⊗ zi
with yi, zi N

2
0-homogeneous. If yi, zi have degree b1α1 + b2α2, c1α1 + c2α2,

then either b1 > rb2 so yi⊗ zi ∈ K>r ⊗B(V ), or else b1 = rb2, in which case
c1 = a1 − b1 ≥ ra2 − rb2 = rc2 and yi ⊗ zi ∈ K≥r ⊗B≥r. Now

(∆⊗ id)∆(K≥r) ⊆ (∆⊗ id)(K≥r ⊗B≥r +K>r ⊗ B(V ))

⊆ K≥r ⊗K≥r ⊗B≥r +K≥r ⊗K>r ⊗B(V ) +K>r ⊗ B(V )⊗ B(V ).

We apply (id⊗ id⊗ε) to the previous inclusion and get (iii).
Finally we prove (iv): Let x ∈ K>r, y ∈ K≥r, we may assume they are

homogeneous of degrees α = a1α1 + a2α2, β = b1α1 + b2α2, so a1 > ra2,
b1 ≥ rb2. Hence xy ∈ K≥r by (ii), and xy has degree α+ β = (a1 + b1)α1 +
(a2 + b2)α2 with a1 + b1 > r(a2 + b2), so xy ∈ K>r. Analogously, yx ∈ K>r.
Thus K>r is an ideal of K≥r. Now ∆(x) ∈ K≥r⊗K≥r+K>r⊗B(V ) by (iii).
For each u⊗v ∈ K≥r⊗K≥r appearing in ∆(x), u, v homogeneous of degrees
c1α1 + c2α2, d1α1 + d2α2, we have that c1 ≥ rc2, d1 ≥ rd2. As ∆ is N2

0-
graded, c1+d1 = a1, c2+d2 = a2, so either c1 > rc2 or else d1 > rd2; in other
words, either u ∈ K>r or else v ∈ K>r, so ∆(x) ∈ K≥r⊗K>r+K>r⊗B(V ).
Thus K>r is a coideal of B(V ) in H

HYD.
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Hence we may apply Proposition 3.8 andK≥r/K>r is a bialgebra in H
HYD.

Since B(V ) is N0-graded and connected and ∆ is N0-graded, K≥r and K>r

are also N0-graded. Therefore K≥r/K>r is N0-graded and connected, so it
is a Hopf algebra in H

HYD by [Mo, 5.2.10]. �

4. Rank 2

This Section contains a proof of the following result:

Theorem 4.1. Let V be a braided vector space of diagonal type and di-
mension 2 such that GKdimB(V ) < ∞. Then its generalized root system is
finite.

Let Z be a vector space and (zi)i∈I a family of vectors in Z. Then
〈zi : i ∈ I〉 denotes the subspace of Z generated by the zi’s.

4.1. Lemmas for θ = 2. We establish some properties needed in the proof
of Theorem 4.1. We keep the notation in §2.3; we assume that θ = 2 and
set as above yk = (ad x1)

kx2 ∈ B(V ). We also set:

βm = mα1 + α2, pm = qβm βm
= qm

2

11 qm12q
m
21q22, m ∈ N0.(4.1)

4.1.1. On the powers of the yn’s.

Lemma 4.2. Let r, s, t ∈ N0, r ≤ s. Then

∂t
1∂2(yrys) =

{
0, s < t;

µs(s)q11(s − 1)q11 . . . (s − t+ 1)q11 yrx
s−t
1 , r < t ≤ s.

Proof. By (2.3) we have that

∂2(yrys) = µrq
s
21q22x

r
1ys + µsyrx

s
1 for all r, s ∈ N0.(4.2)

Using (2.3) again, if t > s, then ∂t
1∂2(yrys) = 0, and if r < t ≤ s,

∂t
1∂2(yrys) = ∂t

1(µsyrx
s
1) = µs(s)q11(s− 1)q11 . . . (s− t+ 1)q11 yrx

s−t
1

by induction on t. �

Lemma 4.3. Let l ∈ N0. Assume that

x2l+1
1 6= 0, x22 6= 0, yl+1 6= 0, yl+1yl ∈ 〈yrys : 0 ≤ r ≤ s〉.

Then q
l(l+1)
11 (q̃12)

l+1q22 = 1 and

yl+1yl = q
l(l+1)
11 ql+1

12 ql21q22ylyl+1.(4.3)

Proof. The last assumption of the lemma implies that

yl+1yl ∈ 〈yrys : 0 ≤ r ≤ s, r + s = 2l + 1〉.

Using Lemma 4.2 we have that

∂l+2
1 ∂2(yl+1yl) = 0, ∂l+2

1 ∂2(yrys) ∈ kyrx
s−l−2
1 − 0,
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for all r, s ∈ N0 with r + s = 2l + 1, s ≥ l + 2 such that ys 6= 0. Thus
there exists λ ∈ k such that yl+1yl = λylyl+1. Now we apply ∂l+1

1 ∂2 to this

equation. Using that ∂l+1
1 (xl1) = 0, ∂l+1

1 (xl+1
1 ) = (l + 1)!q11 6= 0 we obtain

µl+1q
l
21q22(q

l
11q12)

l+1yl = λµl+1yl.

Thus λ = q
l(l+1)
11 ql+1

12 ql21q22, since yl+1 6= 0. Finally we apply ∂2
2 to (4.3).

Since µl+1 6= 0 and x2l+1
1 6= 0, we obtain that

ql21q22 + ql21 = q
l(l+1)
11 ql+1

12 ql21q22(q
l+1
21 q22 + ql+1

21 ).

As x22 6= 0, we have that q22 6= −1. Hence q
l(l+1)
11 (q̃12)

l+1q22 = 1. �

Lemma 4.4. Let l ∈ N. Assume that y2l ∈ 〈yrys : 0 ≤ r < s〉 and that

yl 6= 0. Then yl+1 = 0 and ql
2

11(q̃12)
lq22 = −1.

Proof. As B(V ) is N0-graded, the last assumption says that

y2l ∈ 〈yrys : 0 ≤ r < s, r + s = 2l〉.

Using Lemma 4.2 we have that

∂l+1
1 ∂2(y

2
l ) = 0, ∂l+1

1 ∂2(yrys) ∈ kyrx
s−l−1
1 − 0,

for all r, s ∈ N0 with r < l, r + s = 2l, ys 6= 0. Thus y2l = 0. Since l > 0,

0 = ∂l−1
1 ∂2(y

2
l ) = a1x1yl + a2ylx1

for some a1, a2 ∈ k − 0. Since x1yl = yl+1 + ql11q12ylx1 and since yl+1 and
ylx1 are linearly independent whenever yl+1 = 0, the latter equation implies
that yl+1 = 0. Therefore x1yl = ql11q12ylx1 and we have that

0 = ∂2(y
2
l ) = µr(q

l
21q22(q

l
11q12)

l + 1)ylx
l
1.

This implies the last claim. �

We fix n > 0 and set q = pn, cf. (4.1). Assume that q ∈ G′
N for some

N ≥ 2. In the next few Lemmas we prepare a condition for yNn being a root
vector. We start with some computations with q-numbers. Recall that

(t1 + t2)q = (t1)q + qt1(t2)q, for all t1, t2 ∈ N0.

In particular, (N)q = 0 and (N − t)q = −q−t(t)q for all 0 ≤ t ≤ N .

Lemma 4.5. Let r ∈ {0, 1, . . . , N − 2} and t ∈ N0. Then

t∑

l=0

ql(l + 1)q(l + 2)q · · · (l + r)q =
(t+ 1)q(t+ 2)q · · · (t+ r + 1)q

(r + 1)q
.

Proof. Note that (r+1)q 6= 0 since 1 ≤ r+1 < N . We proceed by induction
on t. For t = 0 the claim is trivial. For any t ≥ 0, for which the claim holds,
we obtain that

t+1∑

l=0

ql(l + 1)q(l + 2)q · · · (l + r)q
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=

t∑

l=0

ql(l + 1)q(l + 2)q · · · (l + r)q + qt+1(t+ 2)q · · · (t+ r + 1)q

=
(t+ 1)q(t+ 2)q · · · (t+ r + 1)q

(r + 1)q
+ qt+1(t+ 2)q(t+ 3)q · · · (t+ r + 1)q

=
(t+ 1)q + qt+1(r + 1)q

(r + 1)q
(t+ 2)q(t+ 3)q · · · (t+ r + 1)q

=
(t+ 2)q(t+ 3)q · · · (t+ r + 1)q(t+ r + 2)q

(r + 1)q
.

This proves the claim. �

For any t ∈ {0, 1, . . . , N − 2} let

Y (t) =

t∑

j=0

(qn11q12)
−j

(N − t− 1 + j)!q
(j)!q

yt−j
n yn+1y

j
n.(4.4)

In particular, Y (0) = (N − 1)!qyn+1.

Lemma 4.6. ∂n−1
1 ∂2(y

N
n ) = −µn(n)

!
q11

(qn11q12)
−1Y (N − 2).

Proof. First we obtain that

∂2(y
N
n ) =

N−1∑

l=0

yN−1−l
n ∂2(yn)α2 · y

l
n = µn

N−1∑

l=0

(qn21q22)
lyN−1−l

n xn1y
l
n.

Since ∂1(yn) = 0, we have that

∂n−1
1 ∂2(y

N
n ) =µn(n)

!
q11

N−1∑

l=0

(q
n(n−1)
11 qn−1

12 qn21q22)
lyN−1−l

n x1y
l
n.

The equation yn+1 = x1yn − qn11q12ynx1 implies that

x1y
l
n = qnl11q

l
12y

l
nx1 +

l−1∑

j=0

(qn11q12)
l−1−jyl−1−j

n yn+1y
j
n.(4.5)

Therefore

∂n−1
1 ∂2(y

N
n ) =µn(n)

!
q11

N−1∑

l=0

(q
n(n−1)
11 qn−1

12 qn21q22)
lyN−1−l

n ·

(
qnl11q

l
12y

l
nx1 +

l−1∑

j=0

(qn11q12)
l−1−jyl−1−j

n yn+1y
j
n

)

=µn(n)
!
q11

(N−1∑

l=0

qlyN−1
n x1

+ (qn11q12)
−1

N−2∑

j=0

( N−1∑

l=j+1

ql
)
(qn11q12)

−jyN−2−j
n yn+1y

j
n

)
.
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Hence the Lemma follows since
∑N−1

l=0 ql = 0 and
∑N−1

l=j+1 q
l = −(j+1)q . �

For any 1 ≤ t ≤ N − 1 let

dt = 1− qt+1q2n11 q̃12 +
qt(1− qn11q̃12)(n+ 1)q11

(t)q
.(4.6)

Observe that dt depends on n.

Lemma 4.7. Let t ∈ {1, 2, . . . , N − 1}. Then

∂n
1 ∂2(Y (t)) = µn(n)

!
q11

(qn11q12)
−1dtY (t− 1).

Proof. Similarly to the calculation in Lemma 4.6 we have that

∂n
1 ∂2(Y (t)) =

t∑

l=0

(qn11q12)
−l
(N−t−1∏

i=1

(l + i)q

)
·

(
∂n
1 ∂2(yn)(t− l)qq

l+1qn11q21y
t−1−l
n yn+1y

l
n

+ ∂n
1 ∂2(yn)(1 − qn11q̃12)(n + 1)q11q

lyt−l
n x1y

l
n

+ ∂n
1 ∂2(yn)(l)qy

t−l
n yn+1y

l−1
n

)
.

Using (4.5) this implies that

∂n
1 ∂2(Y (t)) = ∂n

1 ∂2(yn)
t−1∑

j=0

(qn11q12)
−j
(N−t−1∏

i=1

(j + i)q

)
·

(−qt−j)(N − t+ j)qq
j+1qn11q21y

t−1−j
n yn+1y

j
n

+ ∂n
1 ∂2(yn)(1 − qn11q̃12)(n + 1)q11

t∑

l=0

(qn11q12)
−l
(N−t−1∏

i=1

(l + i)q

)
ql·

(
qnl11q

l
12y

t
nx1 +

l−1∑

j=0

(qn11q12)
l−1−jyt−1−j

n yn+1y
j
n

)

+ ∂n
1 ∂2(yn)

t−1∑

j=0

(qn11q12)
−j−1

(N−t−1∏

i=1

(j + 1 + i)q

)
(j + 1)qy

t−1−j
n yn+1y

j
n.

Lemma 4.5 tells that
t∑

l=0

ql
N−t−1∏

i=1

(l + i)q =

N−t∏

i=1

(t+ i)q/(N − t)q = 0

since 1 < t < N . Therefore the terms ytnx1 disappear in the above expression
for ∂n

1 ∂2(Y (t)). Moreover,

t∑

l=0

l−1∑

j=0

(N−t−1∏

i=1

(l + i)q

)
ql(qn11q12)

−1−j
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=
t−1∑

j=0

(qn11q12)
−1−j

t∑

l=j+1

ql
(N−t−1∏

i=1

(l + i)q

)

=
t−1∑

j=0

(qn11q12)
−1−j

(
t∑

l=0

ql
(N−t−1∏

i=1

(l + i)q

)
−

j∑

l=0

ql
(N−t−1∏

i=1

(l + i)q

))

=

t−1∑

j=0

(qn11q12)
−1−j

(N−t∏

i=1

(t+ i)q −

N−t∏

i=1

(j + i)q

)
/(N − t)q

=−
t−1∑

j=0

(qn11q12)
−1−j

(N−t∏

i=1

(j + i)q

)
/(N − t)q.

Therefore,

∂n
1 ∂2(Y (t)) =∂n

1 ∂2(yn)(q
n
11q12)

−1
t−1∑

j=0

(qn11q12)
−j
(N−t∏

i=1

(j + i)q

)
·

(
− qt+1q2n11 q̃12 −

(1− qn11q̃12)(n+ 1)q11
(N − t)q

+ 1
)
yt−1−j
n yn+1y

j
n.

Thus the claim follows from this equality and (N − t)q = −q−t(t)q. �

Proposition 4.8. Assume that yNn = 0 and yn+1 6= 0. Then dt = 0 for
some 1 ≤ t ≤ N − 2, see (4.6).

Proof. Lemma 4.6 implies that Y (N − 2) = 0. Thus

(∂n
1 ∂2)

N−2(Y (N − 2)) = 0.

By Lemma 4.7 either dN−2 = 0 or else Y (N − 3) = 0. Recursively, if
Y (t) = 0, then either dt = 0 or else Y (t−1) = 0, for each 1 ≤ t ≤ N−2. Since
Y (0) = (N − 1)!qyn+1 6= 0, necessarily dt = 0 for some 1 ≤ t ≤ N − 2. �

Lemma 4.9. If yNn 6= 0 then Nβn is a root of V .

Proof. By the definition of roots of B(V ), either deg yNn = N(nα1 + α2) is
a root of V or yNn can be expressed as a linear combination of products
ℓm1
1 · · · ℓmk

k as in (2.5), where each ℓi corresponds either to a Lyndon word
li greater than xn1x2, or else to a power of this kind of letters.

Assume the last case holds. Then each li starts with 1k2, where k ≤ n,
and ends with 2. Since li is a Lyndon word, any end of li is larger than v, and
hence it contains no subword 1l2 with l > k. Therefore li = xk11 x2 · · · x

kr
1 x2

with k1, . . . , kr ≤ n and k1+ · · ·+ kr < rn. This implies that deg ℓ1 · · · ℓm 6=
deg yNn so yNn = 0, a contradiction. Thus yn has infinite height and hence
Nβn is a root of B(V ). �

Lemma 4.10. Let m ∈ N0 with ym 6= 0. Then y2m = 0 if and only if
pm = −1 and ym+1 = 0.
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Proof. If y2m = 0, then Lemma 4.4 says that ym+1 = 0 and pm = −1.
Conversely, assume that ym+1 = 0, ym 6= 0, and pm = −1. Then

∂2(y
2
m) = µm(ymxm1 + xm1 qm21q22ym)

= µm(1 + (qm11q12)
mqm21q22)ymxm1 = 0.

Since ∂1(ym) = 0, we conclude that y2m = 0. �

Lemma 4.11. Let m ∈ N0. Assume that pm = −1 and ym+1 6= 0. Then
2βm is a root of V and q2βm 2βm

= 1.

Proof. As ym+1 6= 0, Lemma 4.10 says that y2m 6= 0. Now Lemma 4.9 applies
and 2βm is a root. Finally, q2βm 2βm

= p4m = 1. �

4.1.2. On the wm’s. We consider the following elements of B(V ):

wm = ym+2ym − qβm+2,βm
ymym+2, m ∈ N0.(4.7)

Notice that wm is N2
0-homogeneous of degree 2βm+1.

Let m ∈ N0. Assume that ym+2 6= 0 and qβm+1 βm+1 6= −1. Let

w̃m = wm −
qβm+1 βm

(m+ 2)q11(1− qm+1
11 q̃12)

1 + qβm+1 βm+1

y2m+1.(4.8)

Our next goal is to determine when w̃m = 0.

Lemma 4.12. Let m ∈ N0. Assume that

ym+2 6= 0, pm+1 6= −1, wk ∈ ky2k+1, 0 ≤ k < m.

Then the following are equivalent:

(1) wm ∈ ky2m+1.
(2) w̃m = 0.
(3) ∂m

1 ∂2(w̃m) = 0.
(4) The following equation holds:

0 =
(
1−

pm+1

q11

)(
1 +

pm+1

q11
+

pm(m+ 2)!q11(1− qm11q̃12)(1− qm+1
11 q̃12)

(m)!q11(1 + q11)(1 + pm+1)

)
.

Proof. First we compute

∂m
1 ∂2(wm) = ∂m

1

(
µm+2x

m+2
1 qm21q22ym + ym+2µmxm1

)

− qβm+2 βm

(
µmxm1 qm+2

21 q22ym+2 + ymµm+2x
m+2
1

)

= µm+2qβm βm

(m+ 2)!q11
1 + q11

(x21ym − q2m11 q212ymx21)

+ µm(m)!q11(1− qβm+2 βm
qβm βm+2)ym+2.

Similarly, we compute

∂m
1 ∂2(y

2
m+1) = µm+1(m+ 1)!q11

(
qβm βm+1ym+2 + (1 + pm+1)ym+1x1

)
,

see also the calculation in the proof of Lemma 4.10.



ON FINITE GK-DIMENSIONAL NICHOLS ALGEBRAS OF DIAGONAL TYPE 15

(1) =⇒ (2). Using the previous formulas one obtains quickly that

∂m+1
1 ∂2(wm) = µm+2qβm+1 βm

(m+ 2)!q11ym+1,

∂m+1
1 ∂2(y

2
m+1) = µm+1(m+ 1)!q11(1 + pm+1)ym+1.

Since ym+1 6= 0, this implies the claim.
(2) =⇒ (3). Trivial.
(3) ⇐⇒ (4). We notice that

x21ym − q2m11 q212ymx21 = ym+2 + (1 + q11)q
m
11q12ym+1x1.

Since ym+2 and ym+1x1 are linearly independent in B(V ), the formulas at
the beginning of the proof imply that (3) is equivalent to

pm(m+ 1)q11(m+ 2)q11(1− qm11q̃12)(1− qm+1
11 q̃12)

1 + q11
+ 1− q−2

11 p
2
m+1

−
q−1
11 pmpm+1(m+ 1)q11(m+ 2)q11(1− qm11q̃12)(1− qm+1

11 q̃12)

1 + pm+1
= 0.

This gives the equivalence between (3) and (4).
(3) =⇒ (1). We prove by induction on k that

∂m−k
1 ∂2(w̃m) = 0 for all 0 ≤ k ≤ m.(4.9)

If so, then ∂i(w̃m) = 0 for i = 1, 2 and then w̃m = 0.
For k = 0, (4.9) holds by assumption. Now let k > 0 and assume the

statement holds for j < k. Notice that

ker ∂1 ∩ B(m+k+2)α1+α2 = kym+k+2

=⇒ ∂m−k
1 ∂2(w̃m) = b ym+k+2 for some b ∈ k.

We may assume that ym+k+2 6= 0, otherwise the induction step holds.
Let ι : V → V ∗ be the linear isomorphism with xi 7→ ∂i for i ∈ I. Then ι is

an isomorphism of braided vector spaces and hence induces an isomorphism
between the Hopf algebras B(V ) and B(V ∗) in H

HYD. Notice that

ι(ym−j)(w̃m) = ∂m−j
1 ∂2(w̃m) = 0 for all 0 ≤ j < k,(4.10)

since yj = xj1x2+ terms ending in x1 and ∂1(w̃m) = 0. Hence

ι(wm−k)(w̃m) = ι(ym−k+2ym−k − qβm−k+2,βm−k
ym−kym−k+2)(w̃m)

= ι(ym−k+2)ι(ym−k)(w̃m) = bι(ym−k+2)(ym+k+2)

= b∂m−k+2
1 ∂2(ym+k+2) = bµm+k+2

(m+ k + 2)!q11
(m− k + 2)!q11

.

On the other hand, using that wm−k = am−ky
2
m−k+1 for some am−k ∈ k and

the inductive hypothesis,

ι(wm−k)(w̃m) = am−kι(y
2
m−k+1)(w̃m) = am−kι(ym−k+1)∂

m−k+1
1 ∂2(w̃m) = 0.

Hence b = 0, which completes the inductive step. �
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Remark 4.13. In the following cases, the right hand side of the equation in
Lemma 4.12 (4) is equal to the following:

(i) m = 0: (1 + q22)(1− q̃12q22)(1 + q11q̃
2
12q22)(1 + q11q̃12q22)

−1.
(ii) m = 1, q22 = −1:

(1 + q311q̃
2
12)(1− q311q̃12)(3)−q11 q̃12(1 + q211q̃12)

−1.

(iii) m = 1, q̃12q22 = 1:

(1− q311q̃12)(4)q11(3)−q211 q̃12
(1 + q411q̃12)

−1.

(iv) m = 1, q11q̃
2
12q22 = −1:

(1 + q211)(1 − q̃ −1
12 )(1 − q311q̃12)(1 − q11)

−1.

(v) m = 2, q22 = −1:

(1 + q811q̃
3
12)(1 − q411q̃12)(3)

−1
q311 q̃12

·
(
q1011 q̃

4
12 + (q711 + q611)q̃

3
12 − (3)q11q

4
11q̃

2
12 + (q411 + q311)q̃12 + 1

)
.

(vi) m = 2, q̃12q22 = 1, q211 = −1: 1− q̃412.
(vii) m = 2, q̃12q22 = 1, (3)−q211 q̃12

= 0:

(1 + q411q̃12)(1− q411q̃12)(1− q511q̃12)(5)q11(3)−q11(1 + q911q̃
2
12)

−1.

Recall the definition of w̃m, m ∈ N0, given in (4.8). We study in the next
Lemmas when w̃m 6= 0 for small values of m.

Lemma 4.14. Assume that y2 6= 0, p1 6= −1. Then w̃0 = 0 if and only if

(q̃12q22 − 1)(q22 + 1)(q11q̃
2
12q22 + 1) = 0.

Proof. The claim follows by Lemma 4.12 and Remark 4.13 (i). �

Next we give conditions on the matrix q which are equivalent to the
equation w̃1 = 0.

Lemma 4.15. Assume that y3 6= 0, p2 6= −1.

(a) If q22 = −1, then w̃1 = 0 if and only if

(1− q311q̃12)(q
3
11q̃

2
12 + 1)(3)−q11 q̃12 = 0.

(b) If q̃12q22 = 1, then w̃1 = 0 if and only if

(1− q311q̃12)(q
2
11 + 1)(3)−q211 q̃12

= 0.

(c) If q11q̃
2
12q22 = −1, then w̃1 = 0 if and only if (1− q311q̃12)(q

2
11 + 1) = 0.

Proof. As we assume y3 6= 0, we have that (3)!q11µ3 6= 0. That is,

q11 /∈ G2 ∪G3, qk11q̃12 6= 1, k = 0, 1, 2.

Assume that q22 = −1, so we have that p1 = −q11q̃12 6= −1. Hence w̃0 = 0
by Lemma 4.14. Now (a) follows by Lemma 4.12 and Remark 4.13 (ii).
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To prove (b), we assume that q̃12q22 = 1. Again we have that p1 = q11 6=
−1, so w̃0 = 0 by Lemma 4.14. Now we can apply Lemma 4.12 and Remark
4.13 (iii) and the claim follows.

Finally, if q11q̃
2
12q22 = −1, then p1 = −q̃−1

12 6= −1, so w̃0 = 0 by Lemma
4.14. Hence (c) follows by Lemma 4.12 and Remark 4.13 (iv). �

4.2. Proof of Theorem 4.1. First we extend Lemma 3.7 to any braided
vector space of diagonal type and dimension two.

Proposition 4.16. Assume that V is of dimension two and q̃12 6= 1. If
there is a root γ of V such that qγ γ = 1, then GKdimB(V ) = ∞.

Proof. If V does not admit all reflections, then GKdimB(V ) = ∞ by Re-
mark 2.5.

Now we assume that V admits all reflections. If V is generic, then V is
of Cartan type. As γ cannot be a real root since qγ γ = 1, V is not of finite
type. Then GKdimB(V ) = ∞ by Remark 3.2 (3).

If V is semigeneric, then GKdimB(V ) = ∞. Indeed if we suppose that
GKdimB(V ) < ∞, then all roots β satisfy qβ β 6= 1 since the root system is
finite by Corollary 3.5, and this gives a contradiction.

Finally, if V is of torsion class, then the set X is finite by Remark 3.2 (2).
If the orbit of γ is infinite, then GKdimB(V ) = ∞ since there are infinitely
many roots δ of V with qδ,δ = 1. Now assume that γ has finite orbit. Let
s1, s2 be the simple reflections corresponding to V , cf. (2.8). Then there
exists k > 0 such that (s1s2)

k(γ) = γ and (R1R2)k(V ) = V . Thus 1 is an
eigenvalue of (s1s2)

k ∈ Aut(Z2). Since det(s1s2) = 1, the other eigenvalue
is also 1. Thus either (s1s2)

k = id, or else (s1s2)
k is a shear mapping.

The first case implies that the set of real roots is finite, hence the Weyl
groupoid is finite by [CH], and consequently all roots δ of V are real [CH],
a contradiction.

In the second case there exist ci ∈ Z such that (s1s2)
k(αi) = αi + ciγ for

i = 1, 2. Hence, each βn := (s1s2)
nk(αi) = αi + cinγ is a real root for n ∈ N

and GKdimB(V ) = ∞ by Lemma 2.1. �

As a consequence of Proposition 4.16 we have:

Corollary 4.17. Let p ∈ k× such that p4 6= 1. Assume that q11 = p and
q̃12 = q22 = p4. Then GKdimB(V ) = ∞.

Proof. If p is a root of 1 and p4 6= 1, then V is of Cartan type. Let A =
(aij)i,j∈I2 be the Cartan matrix of V . Recall that mα1 + α2 is a root if and
only if 0 ≤ m ≤ −a12. We study three cases according with the order of p:

• If p ∈ G′
4N , N ≥ 2, then −a12 = 4N − 4. Thus γ = β2N−2 is a root. As

qγ γ = q
(2N−2)2

11 q̃ 2N−2
12 q22 = p4N

2
= 1,

GKdimB(V ) = ∞ by Proposition 4.16.
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• If p ∈ G′
4N+2, N ≥ 1, then −a12 = 4N − 2. In particular, γ = β2N−1 is a

root. Now 2β2N−1 is a root by Lemma 4.11, since y2N 6= 0 and

p2N−1 = qγ γ = q
(2N−1)2

11 q̃ 2N−1
12 q22 = p(2N+1)2 = −1.

Thus GKdimB(V ) = ∞ by Proposition 4.16.
• If p ∈ G′

2N+1, N ≥ 1, then −a21 = 2N . Thus γ = Nα2+α1 is a root, and

qγ γ = qN
2

22 q̃ N
12 q11 = p(2N+1)2 = 1,

GKdimB(V ) = ∞, again by Proposition 4.16.

Finally, if p is not a root of 1, then B(V ) does not admit all reflections
and hence GKdimB(V ) = ∞. �

We apply next Corollary 4.17 in the braided Hopf algebraK≥m+1/K>m+1.
Since xk1 ∈ K>m for all k,m ∈ N, (2.4) implies that ym ∈ K≥m is a primitive
element of N2

0-degree βm in K≥m/K>m for all m ∈ N. Then (2.4) and (2.4)
leads to the following shape of the coproduct of wm and y2m:

∆(wm) = wm ⊗ 1 + 1⊗ wm

+ (m+ 2)q11(1− qm+1
11 q̃12)qβm+1 βm

ym+1 ⊗ ym+1

+ terms x⊗ y, degx = kα1 + lα2, k ≥ l(m+ 1) + 1;

(4.11)

∆(y2m) ∈ y2m ⊗ 1 + (1 + pm)ym ⊗ ym + 1⊗ y2m +B>m ⊗ B(V ).(4.12)

Assume that pm+1 6= −1. By (4.11) and (4.12), w̃m is a primitive element
of N2

0-degree 2βm+1 in K≥m+1/K>m+1.

Lemma 4.18. Let m ∈ N0 be such that pm+1 6= −1. If w̃m 6= 0, then
GKdimB(V ) = ∞.

Proof. The subalgebra of K≥m+1/K>m+1 generated by ym+1 and w̃m is a
pre-Nichols algebra of diagonal type. Let W be the k-span of ym+1 and w̃m,
p = qβm+1 βm+1 . The braiding matrix of W is

(
p p2

p2 p4

)

If p4 = 1 then 2βm+1 is a root of V of infinite height. Thus GKdimB(V ) =
∞ by Proposition 4.16.

If p4 6= 1, then W satisfies the assumptions of Corollary 4.17 and hence
GKdimB(W ) = ∞. Since B(W ) is a subquotient of K≥m+1/K>m+1, and
this is a subquotient of B(V ), we have that GKdimB(V ) = ∞. �

We now apply Lemma 4.18 combined with the Lemmas in §4.1.

Lemma 4.19. Assume that

q̃12 6= 1, (2)q11(1− q11q̃12) 6= 0, (2)q22(1− q̃12q22) 6= 0, q11q̃
2
12q22 6= −1.

Then GKdimB(V ) = ∞.
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Proof. By Lemma 2.2, y2 6= 0. If p1 = −1, then 2β1 is a root of V by
Lemma 4.11, so GKdimB(V ) = ∞ by Proposition 4.16.

Assume now that p1 6= −1. Then

∆(y21) = y21 ⊗ 1 + 1⊗ y21 + (1 + p1)y1 ⊗ y1

in K≥1/K>1 and hence w̃0 is primitive in K≥1/K>1. By Lemma 4.14 w̃0 is
non-zero. Now we apply Lemma 4.18. �

Without loss of generality, we assume that |aV12| ≥ |aV21| > 0. We find a
bound for aV12, a

V
21 to reduce the possibilities.

Lemma 4.20. Let V be a braided vector space of diagonal type and dimen-
sion 2 such that a12, a21 ≤ −3. Then GKdimB(V ) = ∞.

Proof. Suppose that GKdimB(V ) < ∞. Then w̃0 = 0, so by Lemma 4.14
we have that q11q̃

2
12q22 = −1. As y3 6= 0, Lemma 4.15(c) implies that

(1 − q311q̃12)(1 + q211) = 0, so a12 = −3 and analogously a21 = −3. We
exclude the case q211 = q222 = −1: if this happens, then 1 = q211q̃

4
12q

2
22 = q̃ 4

12, so
q̃12 ∈ G4, but this gives a contradiction since aV12 = aV21 = −3. Hence we may
assume q322q̃12 = 1. Let r = q22, so q̃12 = r−3. As −1 = q11q̃

2
12q22 = r−5q11,

we have that q11 = −r5.
First we assume that q311q̃12 = 1. Hence q311 = r3 so either q11 = r ∈ G′

8

or q11 = r17 ∈ G′
24. We compute dt as in (4.6) when n = 1, for each case:

• If q11 = r ∈ G′
8, then p1 = r7, so N = 8 and

dt = 1− r7t+6 +
r7t(1− r−2)(1 + r)

(t)r7

= 1− r7t+6 +
r7t−3(r2 − 1)2

1− r7t
= 1− r7t+6 +

2r7t+3

1− r7t
.

Hence dt = 0 ⇐⇒ (1 − r7t+6)(1 − r7t) = 2r7t+7. Now we check the
validity of this equation for 1 ≤ t ≤ N − 2 = 6:

t = 1 : (1− r5)(1 − r7) 6= 2r6;

t = 2 : (1− r4)(1 − r6) = 2(1 − r6) 6= 2r5;

t = 3 : (1− r3)(1 − r5) 6= 2r4;

t = 4 : (1− r2)(1 − r4) = 2(1 − r2) 6= 2r3;

t = 5 : (1− r)(1− r3) 6= 2r2;

t = 6 : (1− 1)(1 − r2) = 0 6= 2r.

Thus dt 6= 0 for all 1 ≤ t ≤ 6 so y81 6= 0 by Proposition 4.8, and hence
8β1 is a root by Lemma 4.9. This implies that GKdimB(V ) = ∞ by
Proposition 4.16.

• If q11 = r17 ∈ G′
24, then p1 = r15, so N = 8 and

dt = 1− r15t−2 +
r15t(1 + r2)(1 + r17)(1 + r3)

1− r15t
.
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Hence dt = 0 ⇐⇒ (1− r15t−2)(1− r15t) = −r15t(1 + r2)(1+ r17)(1 + r3).
Now we check the validity of this equation for 1 ≤ t ≤ N − 2 = 6:

t = 1 : (1− r13)(1 − r15) 6= r3(1 + r2)(1 + r17)(1 + r3);

t = 2 : (1− r4)(1− r6) 6= r18(1 + r2)(1 + r17)(1 + r3);

t = 3 : (1− r19)(1 − r21) 6= r9(1 + r2)(1 + r17)(1 + r3);

t = 4 : 2(1 − r10) 6= (1 + r2)(1 + r17)(1 + r3);

t = 5 : (1− r)(1− r3) 6= r15(1 + r2)(1 + r17)(1 + r3);

t = 6 : (1− r16)(1 − r18) 6= r6(1 + r2)(1 + r17)(1 + r3).

Thus dt 6= 0 for all 1 ≤ t ≤ 6 so y81 6= 0 by Proposition 4.8, and hence
8β1 is a root by Lemma 4.9. This implies that GKdimB(V ) = ∞ by
Proposition 4.16.

The last case is q11 ∈ G′
4. Thus r5 = −q11. As aV12 = −3 we have that

r ∈ G′
20. Again we compute dt for n = 1. Here, p1 = r13, so N = 20 and

dt = 1− r13t +
r13t(1 + r2)(1 + r15)(1 + r3)

1− r13t
.

Hence dt = 0 ⇐⇒ (1 − r13t)2 = r13t+5(1 + r2)(1 + r5)(1 + r3). Now we
check the validity of this equation for 1 ≤ t ≤ N − 2 = 18:

t = 1 : (1 + r3)2 6= r18(1 + r2)(1 + r5)(1 + r3);

t = 2 : (1− r6)2 6= r11(1 + r2)(1 + r5)(1 + r3);

t = 3 : (1 + r9)2 6= r4(1 + r2)(1 + r5)(1 + r3);

t = 4 : (1 + r2)2 6= r17(1 + r2)(1 + r5)(1 + r3);

t = 5 : 2r15 6= r10(1 + r2)(1 + r5)(1 + r3);

t = 6 : (1 + r8)2 6= r3(1 + r2)(1 + r5)(1 + r3);

t = 7 : (1 + r)2 6= r16(1 + r2)(1 + r5)(1 + r3);

t = 8 : (1− r4)2 6= r9(1 + r2)(1 + r5)(1 + r3);

t = 9 : (1 + r7)2 6= r2(1 + r2)(1 + r5)(1 + r3);

t = 10 : 4 6= r15(1 + r2)(1 + r5)(1 + r3);

t = 11 : (1− r3)2 6= r8(1 + r2)(1 + r5)(1 + r3);

t = 12 : (1 + r6)2 6= r(1 + r2)(1 + r5)(1 + r3);

t = 13 : (1− r9)2 6= r14(1 + r2)(1 + r5)(1 + r3);

t = 14 : (1− r2)2 6= r7(1 + r2)(1 + r5)(1 + r3);

t = 15 : 2r5 6= (1 + r2)(1 + r5)(1 + r3);

t = 16 : (1− r8)2 6= r13(1 + r2)(1 + r5)(1 + r3);

t = 17 : (1− r)2 6= r6(1 + r2)(1 + r5)(1 + r3);
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t = 18 : (1 + r4)2 6= r19(1 + r2)(1 + r5)(1 + r3).

Thus dt 6= 0 for all 1 ≤ t ≤ 18 so y201 6= 0 by Proposition 4.8, and hence 20β1
is a root by Lemma 4.9. Again, GKdimB(V ) = ∞ by Proposition 4.16. �

We finally assume that B(V ) has finite GK-dimension. By Remark 2.5,
V admits all reflections. We consider all possible cases with a21 ∈ {−1,−2},
not covered by previous arguments, and conclude that the root system is
finite–i. e. the Dynkin diagram appears in [H2, Table 1].

4.2.1. aV12 = aV21 = −1. We have that

(q11q̃12 − 1)(2)q11 = 0, (q22q̃12 − 1)(2)q22 = 0.

The four possible diagrams appear in [H2, Table 1, Rows 1 & 2].

4.2.2. aV12 = −2, aV21 = −1. We have that

(q211q̃12 − 1)(3)q11 = 0, (q22q̃12 − 1)(2)q22 = 0.

If q22q̃12 = 1, then we have [H2, Table 1, Rows 3 & 5].
Now we assume that q22 = −1. If q211q̃12 = 1, then we get [H2, Table 1,

Row 4]. Let q11 ∈ G′
3. For simplicity we set q = q11, r = q̃12. Let (tij)i,j∈I

be the braiding matrix of R2(V ): its Dynkin diagram is
−qr
◦

r−1 −1
◦ . We

study the possible values of a := a
R2(V )
12 . Notice that a ≤ −2.

◦ a = −2. If 1 = t211t̃12 = q2r, then V appears in [H2, Table 1, Row 4].
Otherwise 1 = t311 = −r3, so r = −q±1. As 1 6= t11 = −qr, we have that
r = −q and V appears in [H2, Table 1, Row 6].

◦ a = −3. Either 1 = t311t̃12 = −r2, in which case r ∈ G′
4 and V appears in

[H2, Table 1, Row 8], or else 1 = t411 = qr4, in which case r ∈ G′
12 and V

appears in [H2, Table 1, Row 7].

◦ a ≤ −4. Notice that w̃0 = 0 by Lemma 4.14, and w̃1 = 0 by Lemma 4.15
(a) since −t11t̃12 = q ∈ G′

3. Hence we may apply Lemma 4.12: as w̃2 = 0,
the scalar in Remark 4.13 (v) is zero. That is,

0 = (1 + q2r5)(1− qr3)(1 + q2r2)(1 + q2r4).

If q2r5 = −1, then −r ∈ G′
15 and V belongs to [H2, Table 1, Row 15]. If

qr3 = 1, then r ∈ G′
9 and V is in [H2, Table 1, Row 9]. If q2r2 = −1,

then r ∈ G′
12, q = −r2 and V belongs to [H2, Table 1, Row 7]. Otherwise

q2r4 = −1, in which case r ∈ G′
24 with q = −r4, and V is in [H2, Table 1,

Row 12].

4.2.3. aV12 = −3, aV21 = −1 with q22 = −1. First we assume q311q̃12 = 1. Set
q = q11, so q̃12 = q−3. Let (tij)i,j∈I be the braiding matrix of R2(V ): its

Dynkin diagram is
−q−2

◦
q3 −1

◦ .

◦ If a
R2(V )
12 = −2, R2(V ) appears in §4.2.2, so R2(V ) has finite root system

and then V too.
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◦ If a
R2(V )
12 = −3, then then either t11 ∈ G′

4, in which case q ∈ G′
8 and V

belongs to [H2, Table 1, Row 11]; or else t311t̃12 = 1, in which case q ∈ G′
6

and V is of Cartan type G2 [H2, Table 1, Row 10].

◦ If a
R2(V )
12 ≤ −4, then Remark 4.13 (v) says that (1+q7)(1−q5)(5)−q−2 = 0.

If q7 = −1, then V belongs to [H2, Table 1, Row 16]. If q5 = 1, then V
belongs to [H2, Table 1, Row 13]. If −q2 ∈ G′

5, then V belongs to [H2,
Table 1, Row 14].

Finally, if q311q̃12 6= 1, then q11 = η ∈ G′
4. Set q = q̃12. By Lemma 4.15(a),

◦ either η3q2 = −1, so q2 = −η and V belongs to [H2, Table 1, Row 11];

◦ or else −ηq ∈ G′
3, in which case a

R2(V )
12 = −2, a

R2(V )
21 = −1 since the

diagram of R2(V ) is
−ηq
◦

q−1 −1
◦ . Hence R2(V ) appears in §4.2.2 and

thus R2(V ) has finite root system.

4.2.4. aV12 = −3, aV21 = −1 with q22q̃12 = 1. If q311q̃12 = 1, then V is of Cartan
type G2 and the root system is finite [H2, Table 1, Row 10]. Otherwise,
q11 = η ∈ G′

4. For simplicity we call q = q22 so q̃12 = q−1. Let (tij)i,j∈I

be the braiding matrix of R1(V ): its Dynkin diagram is
η
◦

−q q−2η
◦ . By

Lemma 4.20, a
R1(V )
21 ≥ −2.

◦ If a
R1(V )
21 = −1, then either t22 = −1, in which case q2 = −η and V

belongs to [H2, Table 1, Row 11]; or else t22t̃12 = 1, in which case q = −η
and V is of Cartan type G2.

◦ If a
R1(V )
21 = −2, then either 1 = t222t̃12, in which case q3 = 1, or else 1 = t322,

which implies q6 = −η. For the first case, we compute p1 = q−1, which
has order N = 3, and by (4.6), d1 = −ηq 6= 0. Hence y31 6= 0 by Proposi-
tion 4.8. By Lemma 4.9, 3β1 is a root of R1(V ), thus GKdimB(R1(V )) =
∞ by Proposition 4.16. For the second case, q ∈ G′

24 and V belongs to
[H2, Table 1, Row 12].

4.2.5. aV12 ≤ −4, aV21 = −1 with q22 = −1. For simplicity we set q = q11,
r = q̃12. Let (tij)i,j∈I be the braiding matrix of R2(V ): its Dynkin diagram

is
−qr
◦

r−1 −1
◦ . As q3r 6= 1, Lemma 4.15 (a) says that either q3r2 = −1 or

else −qr ∈ G′
3.

◦ If q3r2 = −1, then t311t̃12 = −q3r2 = 1 so a
R2(V )
12 = −3. Hence R2(V ) has

a finite root system by §4.2.3, and V too.

◦ If −qr ∈ G′
3, then a

R2(V )
12 = −2. Hence R2(V ) has a finite root system by

§4.2.2, and V too.

4.2.6. aV12 ≤ −4, aV21 = −1 with q22q̃12 = 1. For simplicity set q = q11,
r = q22, so q̃12 = r−1. By Lemma 4.15 (b), t := −q2r−1 ∈ G′

3 since
aV12 ≤ −4. As y4 6= 0 we may apply Lemma 4.12 and Remark 4.13 (vii):

0 = (1− q4r−1)(1 + q4r−1)(1− q5r−1)(3)−q(5)q.
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◦ If q4r−1 = 1, then V is of affine Cartan type and GKdimB(V ) = ∞ by
Proposition 3.1, a contradiction.

◦ If q4r−1 = −1, then q2 = (−q4r−1)(−q2r−1)−1 = t2, so q = ±t, r = −t.
If q = t, then aV12 ≥ −2; otherwise q = −t and q11q̃12 = qr−1 = 1 so
aV12 = −1. In any case we obtain a contradiction with aV12 ≤ −4.

◦ If q5r−1 = 1, then q3 = −t−1 ∈ G′
6. Hence −q ∈ G′

9 and p3 = q9r−3r =
q−1 ∈ G′

18. Now we compute dl as in (4.6) for n = 3:

dl = 1− q−l−1q6r−1 +
q−l(1− q3r−1)(4)q

(l)q−1

= 1− q−l +
q−l(1− q−2)(4)q

(l)q−1

Thus dl = 0 if and only if ql+3(1−q−l)2 = (q2−1)(q4−1), but this equality
does not hold for 1 ≤ l ≤ 16. Hence 18β3 is a root of V by Proposition
4.8 and Lemma 4.9, so GKdimB(V ) = ∞ by Proposition 4.16.

◦ If −q ∈ G′
3, then either t = −q or else t = −q−1. Both are not possible

since aV12 ≤ −4.
◦ If q ∈ G′

5, then r = −t−1q2 ∈ G′
30. This is the case in [H2, Table 1, Row

15].

4.2.7. aV12 = aV21 = −2. We have that (q11q̃12−1)(2)q11(q22q̃12−1)(2)q22 6= 0,

(q211q̃12 − 1)(3)q11 = 0, (q222q̃12 − 1)(3)q22 = 0.

If q211q̃12 = 1 = q222q̃12, then V is of affine Cartan type, a contradiction with
Proposition 3.1. Hence we may assume that q11 ∈ G′

3. By Lemma 4.14,
q11q̃

2
12q22 = −1. Let (tij)i,j∈I be the braiding matrix of R1(V ):

t22 = q22q̃
2
12q

4
11 = q22q̃

2
12q11 = −1,

so R1(V ) appears in §4.2.2 since GKdimB(R1(V )) < ∞. Thus R1(V ) has
a finite root system, and V too.

4.2.8. aV12 ≤ −3, aV21 = −2. As w̃0 = 0, q11q̃
2
12q22 = −1 by Lemma 4.14.

As w̃1 = 0, either q311q̃12 = 1 or else q211 = −1 by Lemma 4.15 (c). Hence
a12 = −3. We analyze the possible 4 cases.

If q311q̃12 = 1 = q222q̃12, then V is of indefinite Cartan type and

−q211q22 = (q11q̃
2
12q22)q

2
11q22 = q311q̃12q

2
22q̃12 = 1,

thus q22 = −q−2
11 , and 1 = q222q̃12 = q−7

11 , so q11 ∈ G′
7. Let r := q22 ∈ G′

14, so
q11 = r10, q̃12 = r12. We compute dt as in (4.6) for n = 1. Here, p1 = r9, so
N = 14 and

dt = 1− r9t+13 +
r9t(1 + r)(1− r3)(1 + r2)

1− r9t
.

Hence dt = 0 ⇐⇒ (1 − r9t+13)(1 − r9t) = r9t(1 + r)(r3 − 1)(1 + r2). Now
we check the validity of this equation for 1 ≤ t ≤ N − 2 = 12:

t = 1 : (1 + r)(1 + r2) 6= r9(1 + r)(r3 − 1)(1 + r2);

t = 2 : (1− r3)(1 − r4) 6= r4(1 + r)(r3 − 1)(1 + r2);
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t = 3 : (1 + r5)(1 + r6) 6= r13(1 + r)(r3 − 1)(1 + r2);

t = 4 : 2(1 + r) 6= r8(1 + r)(r3 − 1)(1 + r2);

t = 5 : (1− r2)(1 − r3) 6= r3(1 + r)(r3 − 1)(1 + r2);

t = 6 : (1 + r4)(1 + r6) 6= r12(1 + r)(r3 − 1)(1 + r2);

t = 7 : 2(1 − r6) 6= −(1 + r)(r3 − 1)(1 + r2);

t = 8 : (1− r)(1− r2) 6= r2(1 + r)(r3 − 1)(1 + r2);

t = 9 : (1 + r3)(1 + r4) 6= r11(1 + r)(r3 − 1)(1 + r2);

t = 10 : (1− r5)(1 − r6) 6= r6(1 + r)(r3 − 1)(1 + r2);

t = 11 : 0 6= r(1 + r)(r3 − 1)(1 + r2);

t = 12 : (1 + r2)(1 + r3) 6= r10(1 + r)(r3 − 1)(1 + r2).

Thus dt 6= 0 for all 1 ≤ t ≤ 12 so y141 6= 0 by Proposition 4.8, and hence 14β1
is a root by Lemma 4.9. Therefore GKdimB(V ) = ∞ by Proposition 4.16.

Assume that q11 = η ∈ G′
4, q222q̃12 = 1: to simplify the notation, set

q = q22, so q̃12 = q−2. Then −1 = q11q̃
2
12q22 = ηq−3, so q3 = −η. The matrix

(tij)i,j∈I of R
1(V ) has diagram

η
◦

−q2 −q−2

◦ . Thus a
R1(V )
21 = −1 and then

R1(V ) has finite root system, since GKdimB(R1(V )) = GKdimB(V ) < ∞.
Assume now q311q̃12 = 1, q22 = ζ ∈ G′

3. Let q = q11 so q̃12 = q−3. The ma-

trix (tij)i,j∈I of R
2(V ) has diagram

−1
◦

ζ2q3 ζ
◦ . Thus a

R1(V )
12 = −1 and then

R2(V ) has finite root system, since GKdimB(R2(V )) = GKdimB(V ) < ∞.
If q11 = η ∈ G′

4, q22 = ζ ∈ G′
3, then −1 = q11q̃

2
12q22 = ηq2ζ, where q = q̃12.

Hence the matrix (tij)i,j∈I of R
2(V ) has diagram

−1
◦

q−1ζ2 ζ
◦ . Thus R2(V )

has finite root system, and V too.
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