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Summary

A new method is introduced to solve the turbulent diffusion equation with
depth-dependent current. Some simple models are derived from it, which especially
discuss the influence of nonlinear current profiles, boundaries and depth-dependence
of the exchange coefficients.

Einige losbare Scherdispersionsmodelle (Zusammenfassung)

Eine neue Methode zur Losung der turbulenten Diffusionsgleichung mit
tiefenabhingiger Geschwindigkeit wird entwickelt. Damit werden einige einfache
Modelle aufgestellt, die besonders den EinfluB von nichtlinearen Stromprofilen,
undurchdringlichen Wéanden und Tiefenabhingigkeit der Austauschkoeffizienten
darstellen.

Sur quelques modéles resolubles de la dispersion de cisaillement (Résumé)

On présente une nouvelle méthode pour résoudre 'équation de la diffusion de
la turbulence avec un courant dépendant de la profondeur. Quelques modeles simp-
les en dérivent, qui représentent surtout l'influence de profils de courants non
linéaires, des limites imperméables et de la dépendance a la profondeur des coeffi-
cients d’échange.

List of symbols

A,; exchange coefficient

AXJV, Ay,, Az, element of power series expansion of 4, A,, or As;

Ay, Ay maximum of 4, A3,

Ax et effective exchange coefficient (for definition see section 4.2)
a, coefficient of power series expansion of velocity u

b, coefficient of power series expansion of the velocity

C calibrated concentration '

Cy approximated calibrated concentration

¢y discrete Fourier transform coefficient of the velocity gradient
f function (see Appendix 1)

g coefficient of the power series expansion of f

H depth of the channel

h half the depth of the channel

i -1

J index for space co-ordinates (j =1, 2, 3)

K maximum of the vertical exchange coefficient (section 4.2)
k,l,m indices giving the degree of the moments with respect to x, y, z
M total mass

N, Ny, Ny, N,, N, boundaries of summation

Nav Brunt-Viisdld frequency

n index for space co-ordinate (n =1, 2, 3)

P QO dimensionless functions (see section 3.4)

0,4, r summation indices (see Appendix 1)

Ry Lagrangian correlation fugetton
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S source term
T.(Tix, Tiz) Lagrangian integral time scale (with respect to x or z)
t time
U characteristic velocity
u velocity component in x direction
u; velocity in x; direction
V Volume
v velocity-component in y direction
Wio wind velocity in 10 m altitude
w vertical velocity
Wop Okubo-Pritchard diffusion velocity
X horizontal co-ordinate (x; = x)
X; space co-ordinate
y horizontal co-ordinate (x, = y)
z vertical co-ordinate (x; = z), z positive upwards
o power series expansion of the moments with respect to time ¢
B phase
¥ Hay-Pasquill transformation factor
o Dirac-Delta function
v, i, summation indices
3 arbitrary quantity
a(oy, 07) variance (in x, z direction)
Oyxs shear generated part of oy
Oxn part of oy generated by horizontal turbulence
W angular frequency
@
{9} [ 9CdV weighted mean of 9
— 0

1 Introduction

In the discussion of the consequences of environmental pollution on the marine ecosy-
stem it is an important factor to know the spread of the pollutant. The mixing process is
often dominated by the effect of shear dispersion (Kullenberg [1974]).

Basic work on modelling this effect has been carried out by Taylor [1953], Bowden
[1965], Okubo [1967], Fennel [1979] and Young, Rhines and Garrett [1982], who
all consider the case of a momentaneous source.

In the following sections, a new method of solving the shear dispersion problem is
introduced and some simple models, describing various basic aspects, are derived from it.

2 The method

In this section, a method is developed, that reduces the turbulent diffusion equation
with depth-dependent current to a closed system of linear ordinary differential equations for
the moments.

The semi-empirical turbulent diffusion equation is

oC oC ) oC

gy = - b= 8(x)6(r— 1) 1

al j 6xj aXn < nj axj> ( ]) ( O) ( )
t is the time, u; is the velocity component in the xj-direction, A,;is the exchange coefficient
tensor, S is the source term, § is the Dirac-Delta function, » and j are indices running from 1
to 3, and C is the concentration, which is calibrated in such a way, that

 cav=1.

— o
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The weighted mean

{ 9CdV is noted as {9}.

-«

By means of the Reynolds transport theorem

%{9}: f [ (8C) + 7 (9cu,)]dV @

where § is an arbitrary quantity, and under assumption that both the concentration and its
gradient tend to 0 if the distance from the source point tends to infinity, Franz [1982; 1984]
obtains from

and from, (1) and (2)

T A A &

A,; is assumed as uvsually, 0 for # # j. By introducing horizontal homogeneity, one can
express A4,; and u; as power series of the vertical coordinate z:

ulz, ) =uy(z, 1) = vg:o a,(f)z’

v(z, ) =uy(z, ) = vgo b,(H)z’
AnG0= 3 A @
Ayy(z, ) = vgo Ay, 2"

Nz
A3z, 0) = 20 Az,z"

Setting 9 = x*y'z™, (3) and (4) result in the reduction formula:
d N
. {xkylzm} =k Z av{xk—lylzm+v}
dr v=0
. .
+1 Z bv{xkyl—lzm+v}
v=0
Nx
+k(k—1) Z Ay, X720y ®
FII-1) z Ay {x*y1=2 )

+m Z (m+v—1) Az, {x*y'zm* 72},

v=0
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If N, < 2, a closed system of linear differential equations is described, which may be solved
successively. In this way, it is possible to calculate the exact solution for any desired moment
of the concentration distribution, which can inversely be calculated from its moments. A
method, allowing the calculation of an approximate distribution when only a limited num-
ber of moments are known, is given in Appendix 1.

The solution for some simple cases are computed in the following.

3  Space-independent exchange coefficient

In this section, the exchange coefficient is assumed to be space-independent, and the
distribution shall not be affected by any boundaries.
3.1 Steady current

To shorten the formulas this case will be first discussed in two dimensions, the x-axis lies
in the direction of the current and z is positive upwards. Thus (5) reduces to:

d N
_ {kam} — k Z av{xk—lzm+v}
dt v=0

K~ 1) Agg {3+ 22™) (5)

+m(m—1) Ago{x*z""2}.
This describes a set of ordinary linear differential equations, which can be solved successi-

vely by time integration.
To obtain the variance with N = 3, ¢, = 0 and

S(x;) =0(x)o(y)0(2) (6)
the following moments have to be calculated:

{z}=0
{22} = 2450t
{z*} =0
{2} =12A4%,1*
{2} =0
{z°} = 12043, 7 @)

{(x} = apt +a,4;,1
{xz} = a; Azo 1> +4az A3,

14
{x22} =2ag Az > + 3 a, A%,
{xz%} = 6a; A3, > + 36a3 A3, t*

2
{(x*} =2Ayot +a3t* + (3 ar + 2a0a2> Ago £

7 72
+ (5 a3 + 5a1a3> Ao tt + T ai A3, 0.

Thus, for the variance 6% = {x*} — {x}?, this yields:

2 4 72
0% =2Az0t + 3 a? Ayt + <§ as + 5a1a3> AZot* + = ai A3, 5. ®)
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If the distribution can be described by a d-function at ¢t = 0, then the odd moments in
the z direction are always equal to 0. The even moments are the same as those resulting from
Fickian diffusion without a current profile.

The vertical moments in this case are not affected by the current profile at all, and are
expressed by:

{22n+1} — 0

=8 ") Ay 11, ©)

For the linear current profile, the variance reduces to:
2 2 243
0y =2Ayot + 3 Agzoait

which was first given by Okubo [1967]. He obtained this result by Laplace transformation
of the turbulent diffusion equation, and soluting the resulting linear partial differential
equation of first order with the method of characteristics.

In many experiments, an increase of the variance proportional to > was found, e.g. by
Okubo[1971] and Kullenberg[1974], which leads to the assumption that — in those cases
— the linear shear is dominating. In the following, the effect of the nonlinearity will be
compared with that term. A term will be considered as significant if it is greater than 5% of
the linear shear dispersion term.

2 Ayt is significant, if ¢ < 8}/ Axo/(Azoa})

a, is significant, if 4,4t > a?/(4043)
as is significant, if 4,¢> a,/(150a;)

The influence of the nonlinearities grows with time, and dominates for large diffusion
times.

To find out whether or not the resulting distribution is Gaussian, the 3rd and 4th
moments are calculated. The result, if assuming a, = 0 for simplicity, is:

x%z} = 5a aZA% t4+32a2a3A3015
1 0 z
278

E a%A%O ts

i 10
{x?7%} =445, + 5 a? A t* +

202 824
+ = ajas 310 + = a3 Ay, t°

{x*} = 6a,AxgAzo > + 5a3a, A%,
8352
—a,ai A3 t’

139
+ (6Oa1a2a3 + Fa%) A3o 15 + 35

{x*z} = 6a, AyoAzo?> +24a3 Axo Ao t* + 2a3 A3ot°
(496 181

s a, 02 + = afa3> A3y 1°

9436 , 10284 ., 35208
+ 35 az“s"’?aﬂ% Azot +? 345018
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136
{x*} =12A4%,% + 8at Ayg Azo t* + (~5—— a3+ 60a, a3> AyoAZe 1

864 4
+ 5 a3 AxoAzot® + 5 af A7 1°

1084 4472
-+ <w3‘5— ai as —+ 1—05—“ a%aé) A%O t7

12891 5473, 7632

( 13 alak + 703 at + Z a1a§a3> A% 8
86944 51392

< 35 G a3+ T a%a%) A3 1°

1340084
175

+

atA5,11°.
Referred to the centre of gravity, this yields:
{3} = {5} = 3{x} {x*} + 2{x}°

=3ad3a,4%,t° + 45a,a,a; + G ad) A% I
1368

+ ay,a3 A%, t’

{x6} = {x7 — 40} {x} + 6 {7} {x}2 - 3{x}*

76
= 124208 + 8% Ayo Agot* + <? @2+ 60a1a3> Ao AZo 15 (10)

4
+ 5 a3 AxoA301° + 3 at A3y t°

1084 2792
+ (? alay— 105 afa%) A3yt

12891 912 6162
+ <? a%ag + ¥ a‘; + T ala%_a?,) Aéots

<86944 5, 268592 1340084

175

The 3rd moment, which gives the skewness of the distribution, is only different from 0, if a, is

different from 0. The skewness of the distribution is produced by the part of the current that
is symmetric to z = 0.

35 al a3 + W a%a%) Ago t9 +

at A5, 110,

S

384 3352
{x8} —30% = — C a3 Axo A%t + (g aja; — 105 a%a%) Azot’

1650 2176 5882
+< 7 aia3 + a§'+—a1a§a3> A3 8 (11

W

105 7

71824 256496
+ <T a, a3+ a2a§> AZo®

105 2

246244
+

4 46 10
as Ay, ",
35 341Z0
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Fore a more convenient representation, the 4th moment, as resulting from a Gaussian
distribution with the same variance, has been subtracted from (10). The linear part only
contributes to the deviation from the Gaussian distribution when interacting with the nonli-
near parts of the current profile; a result to be expected, because Okubo [1967] and Carter
and Okubo [1965] have shown that the solution in the case of a linear current profile is
Gaussian.

An algorithm that may help in calculating higher moments is given below. With

{xkzm}) = EO a(k, m, p)t* (12)
(5) results in:
alk,m, u) = S é‘,o a,otk—1,m+v,u—1)
+MAxoa(k—2,m,u—1) 13)
m(m—1)

+ —7—~ Agoalk,m—2,u—1).

For negative indices « is equal to 0. The same is valid for u = 0. An exception is
«(0,0,0)=1. (14)

N, is less than or equal to (N + 1)k + m/2.
Thus it is possible to compute every desired moment of the distribution with a compu-
ter, if a, and A4;; are known.

3.2 Oscillating current

It is assumed that
3
u(z, )= > a,z’sin(wt+ p) 15
v=0
where  is the angular frequency and f the phase of the motion.

For large diffusion times, wt > 1 (5") in combination with the initial conditions (6) and
the current (15) results in the following approximated expression of the variance:

2
+ Az g)iz Qt+tcos2(wt+ B))

2
+ A2, %(8:2+4t2 cos2(ot + B)) (16)

a

;‘2’3 (187 + 127 cos 2(wt + B))

+ A%,
a3
+ 43, pel (962% + 6013 cos 2(wt + B)).

The complete solution is given in Appendix 2.
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3.3 Unspecified time dependence of the current

Another problem arises if one has the records of two current meters at the same loca-
tion, but different depths z, and z,. If | z; — z, | is not too large, the depth-dependence of the
current can be approximated by

Oul(z, 1)  u(zy, ) —u(z,, 1)
oz Z,— 2, '
The same can be carried out for the y component. If the source point of the distribution lies

between z,; and z, and when setting z = 0 at this point, the current profile is given approxi-
mately by:

ou())
0z

u(z, ) ~u(0,9) +

N
& . . . .
=u(0, t)+Z Z _Zl(ex[iv elwvt+e—1/}ve—1wvt),
v=0

where ¢, is the Fourier transformed of the velocity gradient. Transforming the equation into
a co-ordinate system moving with u(0, £), (5") yields with 8, = 0 and w, = 0:

{2} =244t
{x}=0
{xz} = codzot?

N gt e ibv
+Az0 2 6 [ 7 (o, f—1)€'“’”t+1)+ 5> (—iw, t—l)e‘“"vt+1)}
v=1 )y v
= 1)
= 2 Ayt

2
+ g C%Azot3

N .

CoC : . . 21 21

+ Az > OZV et —iw, el — 2t — — el 4
V=1 @ w, w,

N 2
-

. . . 21 . 21
+eib (m)vtz eTiovt Dy T gTiovt —)J
('Uv wv
+ Az 2

c Q2| — 1 £ e2iont _ 31 e2iovt 4 r glovt 1
v=1 w2 2 4 w, w, 4w,

»

1 . .
+ 2+ —- (exwvt _ e—xwvt)
[e3)

v

. 1 . 31 . i i
—2ifv | _ —2imyt —2iout __ —1(0\,
€ —te ——¢€ —
i ( 2 * 4 w, w, 4w >}

et - D peievtont L (glout — 1) (17)
f w, + o, w,

—1 10 )
_|__ _ v . el(warw”)t — 1
(wv+wu <wv+wu>2> ( )

+AzoZZ
v=1pu=1

pEv

w
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1 eiBu—8v) <# tei@a—avr f 1 (glowt _ q)
@, , n

~i i :
- Srrererd RCLALEY
w,~o, (w,—o)

4 ei(ﬁv—ﬂﬂ)< Dy eitov—owt — 1 (g=iow _ qy

W, — @, @,
+ < —1 _ lwv 2) . (ei(wv‘wu)t _ 1)>
wv - (D# (wv - (’0[[)
pemitpa| — Py it * (e7iow — 1)
, t+ w, Wy,

i iw .
+ + - (eTHevrewt — 1y 1
(wku (wv+wu>2> ( )

When N =1 and i, = — =n/2 this is identical to the case of the Okubo [1967] model
and gives the same result.

(17) makes it possible to calculate the shear generated part of the variance from current
measurements direct, if the vertical extension of the tracer is much smaller than the thickness
of the layer.

Nevertheless, it is necessary to know the vertical exchange coefficient. Conversely, it
should be possible to calculate 4,, from the current data and the measured variances.
Kullenberg [1971 and 1974] gives empirical relations between the environmental condi-
tions and the vertical exchange coefficient. Assuming that the stress does not vary with
depth, he gives for near surface layers:

d(uy, u,)
dz
Ny isthe Brunt-Viisili frequency, and W, is the wind velocity at 10 m height, which has to

be greater than 5m/s.
For weak winds, where the turbulence is shear-generated, Kullenberg gives:
d(uy, uy)
dz

VV’Z
10
2

BV

AZO = 9 ° 10‘8

Ago Ny = 4.1-107% 4

3.4 Time-dependent vertical exchange coefficient

If the fact that the extension of the patch may be smaller than the largest eddies is taken
into consideration, it is possible to use the Taylor formula [19217:

t t’ -_—
ox( =2fdr {dr"u() - u( — "),
0 0
which is originally defined for the relative diffusion of two fluid particles. However, it is

assumed here that it is still valid if we are dealing with the transport of a passive tracer. This
yields in the following the exchange coefficient:

ot
Ayo (D) = u? (j) dt R, (7).
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R, is the Lagrangian velocity correlation. The integral
JdiR (=T,
0

is a constant. R; can be approximated, as was proposed by Taylor [1921], by:

Ry (7) = exp(—1/Th)-

T; is the Lagrangian integral time scale. -
The same calculations can be made for the vertical exchange coefficient Az,. These
calculations yield the following results:

Axo=A4;1 —exp(—t/Tiy)

18
Azo=A3;(1 —exp(—1/1L7) (18)
In combination with a steady linear current profile, and with (5%, this yields:
2 TLZ
{2} =245 1 - R (1 —exp(—1/T.z)
t2
{xz} =24;a, |:? — 1Tz — T (exp(— 1/ Ty ) — 1)]
{x*} =%
2 1; Ti.2 \2
=§A3agﬁ[1—3%+6<¥) (19)

o5 (e ()]
cai[1-Br (oo )]

2
=3 A3 PP +24,t00).

The dependence of P(r) and Q(¢) on time is shown in Fig.1. For diffusion times much
smaller than the Lagrangian integral time scale, Q can be approximated by the function
t/2 Ti x. For larger times, Q =1 is a good approximation.

Fig. 2 gives the relationship between nondimensional time ¢/ 7 ; and the contribution
of the horizontal turbulent diffusion to the variance 6¢%y:

T;
g = 2A1z[1 -~ exp(—z/TLx))].

This expression was first given by Taylor [1921]. For small times the variance incre-
ases proportional to 12, resulting in the Okubo-Pritchard model (Okubo [1962]) if horizon-
tal isotropy is assumed and the model is expanded in 3 dimensions. The Okubo-Pritchard
diffusion velocity wep is given by:

A —
_ 1 _ 72
Wop = —T = l/ u-.
LX

For times much larger than T; 4, the present model yields Fickian diffusion with 4,. The
characteristic time scale 7, for the distinction between the two cases is 7, = 27| x.
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Fig. 1. P and Q versus time t/T; (for definitions see section 3.4
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Fig. 2. Variance generated by horizontal turbulent diffusion ¢%,/2 4, 71y versus time ¢/ Ty (for

definitions see section 3.4)
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Neumann [1978] applied this model to atmospheric diffusion, obtaining quite good
results. It may be possible to apply this model to marine turbulent diffusion too. Results
from large-scale experiments with drifters in the Pacific, carried out by Kirwan et al.
[1978], show the same characteristics as Fig. 2. T; 5 values of between 4 and 10 days are
estimated from the graphs.

For small diffusion times, as defined by ¢/7; ; < 1, P(f) can be approximated by P(f)
= t/4 T, ;, whereas P(¢) is approximately 1 for large times. The shear generated part of the
variance %, increases as ¢* for small times, whereas for large times ¢%, increases as ¢, and
the present model becomes equivalent to Okubo’s [1977]. The relationship between o%,
and non-dimensional time /77, is shown in Fig. 3.

A, and T; 4 can be obtained from tracer experiments. 4, is given by:

— 42
Ay =u" Ty,

u; must be measured in a Lagrangian frame of reference. Under certain conditions (stationa-
rity and homogeneity) this is equal to the velocities #’ > measured in an Eulerian frame. Thus,

there are various ways of determining 4, T; y and «'? from simultaneous current measure-
ments and tracer experiments, and it is possible to compare the results.

Besides that, one can introduce the Hay-Pasquill hypothesis [1959], which states
principal similarity in the shape of the Lagrangian and the Eulerian correlation function and
introduce the transformation Ry (yf) = Rg(f). Hay and Pasquill obtained y = 4 in the at-
mosphere under a wide range of stability conditions, but the spread is considerable. Schott
and Quadfasel [1979] obtained y = 1.4 + 0.4 for rhodamin experiments in the Baltic.

2 dez/ 3A3 a12 Tz .

Fig. 3. Variance generated by shear dispersion ¢%./(2/3 45a? Ty) versus time ¢/ T; 5 (for definitions
see section 3.4)
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3.5 Spatial extended source

It is impossible to materialize a momentaneous point source exactly. How to calculate
the moments in the case of a spatially extended source is shown by a simple example.
Assuming a current varying linearly with depth, the origin of the coordinate system is chosen
in such a way that the first moments of the distribution vanish. The solution of (5") is:

o7 = {z%}
]
={Z2(t=0)} +2 [ Azdr
0
t t t
{xz} = {xz(t =0} + [ a, {Z2(t = 0)}d¢' + 2a, [ dr [ dt" 44,
0 0 o]
o} = {x%} 20
i
= {x*(t =0)} +2a, [ a, {xz(t = 0)} d7
0
t t
+2[dra, [de"a, {z2(t = 0)}
0 4]
t t t'’
+4fdtfa, [dr"a, {di” Ay,
V] 0 0
t
+2[didye.
0
Assuming the current to be steady and {x*(¢ = 0)} = {xz(r = 0)} = 0, (20) yields the

term a? {z*(t = 0)} #* in addition to the shear generated part of the variance. This result was
obtained by Kullenberg [1972] from geometrical arguments.

3.6 Expansion to three dimensional space

There are many ways to expand the aforementioned calculations to three dimensional
space. Some of them are shown in brief.

a) The current as a function of z and ¢ has only one component, which will be taken as being
the x direction. The moments containing merely x and z remain the same as in the two
dimensional case. The variance in y direction is given by o2 = 2 4, t.

b) The current has only one component in the x direction but is a function of y, z, and
N
u= Y (a,z’+b,y").
v=0
The resulting reduction formula is:
d N
a {xkylzm} =k z (av {xk~1ylZm+v} + bv {xk—1y1+v2m})
v=0

+k(k — 1) Ayo {x* 72!z}
+ 11 —1) Ay, {xkyl_zzm}
+m(m— 1) Ago {x*y'zm"2}.

G
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Assuming a steady current and the initial conditions (6), one obtains:

0% =2 Axot
2 4 72
+ gafAzoﬁ—i— <§a§+5a1a3> A§0t4+?a§A§Ot5 @1
2 - 4 72
+ gbfAY(,z3 + <§b§ + 5b1b3> Afot* + ?bgAgots.
For the linear case Carter and Okubo [1965] obtained:

1 2
0'1%( = 2AXOt + EG%AZOF’ + gb%AYO I

(in my notation), which is in contradiction to the aforementioned result (21). This is explained
by an error of Carter and Okubo in computing the variance (see Appendix 3).

c) The current is dependent upon depth and time only:

The resulting reduction formula is:
d k.l _m Y k—1_ 1 _m+v
—dt{xyz}=k7§ a, {x*"Tylzm*}

+l Z b {xk -1 m+v} (SV)

+ k(k — 1) Ayo {x*72y'2"}
+ 1= 1) Ay {x*y' 722"}
+m(m —1) Azo{x*y'zm"2}.

With a steady current, and the initial conditions (6), this yields:

2 4 “y 72, 4
62 =2Axot + 3a 2A,013 + §a2+5a1a3 Azt + 5 — a3 A5t
2 4 72 (22)
O-ZY=2AYOI+ gb%Azols'i“<§b%+5blb3>A%0t4+?b%Agots
6% =2A,1.

Kullenberg [1972 and 1974] gives the following results for u = (a,o + a, cos(w?) - z and
v = by sin(wt) - z with (6) as initial conditions:

2 al a? i
o3 = 3 Agodio 3 + w—leZOt - i;AZO sin 2wt

alO 1 10
—4——=

Azptcos2wt + 4 L A, sinwt

9 b? b%a
ok = 3 — Azot+ 14 13 (a9 — ay) Azot
w? aw

b} b¥a, — 4 )
+ Az —5 sm2wt—AZOM sin wt
20° a;
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a, = 0 is excluded. The present method yields a contradictory result:

2 2. t
63 == Agoalot® +2A450a50a, <Z; sin wt — pes (1 — coswi)

3
? 1 3 sin2w¢ inwt
+2AZO% t{1— -cos2wt —l——sm @ _2s d (23)
ol 2 4 o W
b? t 3 sin 2wt
0%v=2AZO;7<t+§cos2wt—Z > >

Kullenberg’s result must be wrong; because for the limit a, — 0and both 5, and a;o % 0, e3¢
increases to infinity.

4  Depth dependence of the vertical exchange coefficient

This case will again be treated in two dimensions. The three dimensional case can easily
be derived analogous to the cases in the foregoing section. (6) is always taken as initial
condition and steady currents are assumed.

4.1 Vertical exchange coefficient varying linearly with depth
In this case, (5) reduces to
& <k 5 a, etz
dt v=1
+k(k—1) Ayo {x* "2z} o)
+m(m — 1) Az {x*z" "2}
+m? Ay {xFzm 71},

This set of ordinary differential equations can be solved by successive time integration.
The result obtained for the variances is:

0% =241+ A3, 12

2 1
02 =24yt + a3 <§ Agol® + gA%l {4>

4 14 3 45
+a,a,| 44,0454t +EAZ1t

82 16
+a,a; <5A§014+ ?AzoAgl £+ ?A;I 16) 24)

/4 116 8
+ a3 (5 Aot + FAZOA%I r©+ EA%I 16>

186 376 456
+aya; (T AZo Az 1+ TAZOAgl 1+ 3—51‘131 f7>
72 831 1044

. 2169
+ a3 <?A%015 + ?Aﬁoﬁf% ©°+ ?AzoA% 7+ TA% 58) .

The results for the moments necessary to calculate the variances are given in Appendix 4.
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4.2. Vertical exchange coefficient varying as z?

With 4,, = 0 (the case A, % 0 shall not be discussed here because of the rather tedious and
voluminous calculations, the result is given in Mikolajewicz [19841), (5) reduces to:

d N
. {XkZm} =k Z av{xk—lzm+v}
ds v=0

Nx (SIII)
k(= 1) Y Ay, (x*722m)
v=0

+m(m— 1) Ay {x*zm"2}
+m(m + 1) Az, {x*z"}

This describes a closed system of ordinary differential equations, which can be solved succes-
sively by the method of variation of the constant. For the variances one obtains:

14
0'% — _7zo (GGAzzt —-1)
3 Ay,
062 =2Axot
Azo <1 1 2
+ Ay, (et — = 4t
*2 42,19 9 37
A
+ai 5 [ (eo4 = 1) = (e“zzt D+ 3 4z f]
A7,
AZO 13 20Az2t _ 1 1
N z2t 1y — 12Azzt_1 _ 6Azzt__1
tads T [8400( )~ 540 @ )55 )

19 2
+ 50 (e24z2' — 1) — 3 Az t} (25)

AZO 3 20A4Az5t 1
zat 1 _ 12Az5t 1
T [4900 (e )" 3 )

50 gt 4 4

72— )~ —— Ay tetP — —— Ayt
* 3965 © )~ 1godzate 1357722
AZO 1 424zt 17
zat 1 — 204zt __
+ai g [29106 (e )~ 15400 © b
1 2
+ — 360 (eIZAzzt _ 1) + (e6Azzt — 1)

1 13
— 1_O(CZAZn — 1) + T(EAZZ {| .

The moments necessary for the calculation of the variances are given in Appendix 5. In the
limit 4,, — 0, this yields (9). The time ¢ only appears as the product 4,,t. Az;' can be
interpreted as a timescale characteristic for vertical mixing. If | 4, t| < 1, the tracer does not
“feel” the boundaries, this case is equivalent to the case with a constant vertical exchange
coeflicient.
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In the following, it is assumed that 4,, = — 4,,/h>. Thus, the vertical exchange coeffi-
cient is given by:
22
As5(2) = Az <1 - h_2> . (26)

Az becomes 0 for | z| = 4 and negative for | z| > 4. This is equivalent to solid boundaries at
|z| = h and thus forming a channel. To prove this, the vertical moments {z2"} for large
diffusion times [ A z,¢| > 1 have been calculated. The moments converge with the limits:

1
lim {z?} =< #?
Azat—>—© 3
: 4 1 4
lim {z*}=—-h
Azzt—> — 5
: 6 _ L6
lim {z°} = - A°,
Azt — 7
which are equal to the moments that a distribution with constant concentration between — 4
and +#4 and 0 outwards would yield.
In the case of a channel with a tracer equally distributed over depth, it is known (e.g.

Taylor [1953] and Bowden [1965]) that the variance increases linearly with time, resul-
ting in a constant effective diffusivity

1do3
AXeff = EW

(25) yields an effective diffusivity in the large time limit 4,7 < — 1 of:

1 , laih* 1 2\ A° 13, nt
Ax e = Axo 3 A ™ + 6 Agq + <5 a,az + 135 a2> Az0 + 210 asz Ay’ (27
which is in agreement with the result one obtains using Bowden’s method for the same depth
dependence of current and vertical exchange coefficient.

To investigate the influence of the nonlinearities of the current profile and the impene-
trable boundaries on the variance, a ““Gedanken”’experiment was conducted. The current is
assumed to be steady and the stratification to be neutral. By assuming that the vertical
exchange coefficients for matter and momentum have the same shape, Elder [1959] has
shown that a depth dependence equal to 453 = K - (1 — z2/h?) leads to a logarithmic current
profile, if the stress varies linearly with depth:
we) itk uyin 22y, 28)

Uy Zo 2o

The arbitrary value of 1/40 of the depth of the channel H = 2/ is now chosen for the friction
depth z,. u, is the maximum velocity at the upper layer. To fit the present models, u(z) was
expanded as a Taylor series at z = 0:

N1 2 ”
InH—In2zy+ 3 —(—1)”‘1<———(Z+h)>
v=1V

u@ _ a

Ug InA—1nz,
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The result for various N is shown in Fig. 4. Fig. 5 illustrates the non-dimensional relation-
ship between the shear generated part of the horizontal variance 6%, and the time ¢. The

following 4 cases are given:

3 22
1) u= 3y a2z’ A33=K<1——2>
v=0 h
1 72
2) u= 3y a,z’ A33=K<1——5>
v=0 h
1
3) u= Y a,z’ Ay =K
v=0
3
4) u= 3 a,z’ Az =K.
v=0

Case 3 is equal to Okubo’s model [1967]. For small diffusion times Kz/h* < 0.1, Okubo’s
model provides quite a good approximation of the variance 6%, resulting in an increase of
o2, as >, For large times, the non-linearity of the current profile generates a greater increase
of the variance (case 4), whereas the effect of the boundaries results in a diminished increase
(case 2). Those two effects compensate each other, so that for times less than Kz/h? < 0.3,
case 1 and 3 are nearly equal. For larger diffusion times, the variance in the cases 1 and 2
increases linearly with time, as has been described by Taylor [1953] and Bowden [1965].

In Fig. 6, the non-dimensional effective exchange coefficient is shown as a function of
non-dimensional time. For diffusion times ¢ > 3h%/K, Ay is constant.

For a parabolic vertical exchange coefficient and for a current profile of the shape

N
u: Z aVZvS
v=0

zZ/H—

u/uo—>

Fig. 4. Velocity u versus various approximations versus depth z/H (for definitions see section 4.2)
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Fig. 5. Shear generated part of the variance o2, K?/(u?h*) versus time-Kz/h? (for definitions see
section 4.2)
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Fig. 6. Effective exchange coefficient (Ay s — Ax) K/(udh*) (for definitions sec section 4.2)
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Bowden’s model [1965] yields:

h? Noob N ¥ b 1
A - _n . v _
A li(ngl n+ 1> ugl (vgu v+ 1> p(u+1)

L7 N bv> b,
nlg%Q§W+1 p+p+1)’

. av(—1)v—”<v> o
v=p M

The results are given below for various N:

(29)

where the b, are given by:

N Ay s K/(u(z) : hz)
1 0.0124
3 0.0179

10 0.0239

The relative error of Ay ¢ generated by the approximation of the current is about 25 % with
N = 3, whereas it is about 50 % with a linear current profile.

5 Hypothetical dependence of the variance upon time

In this section, the possible dependence of variance upon time — according to the results
presented — is reviewed in brief.

The horizontal spread of tracers is due to two additive effects: shear dispersion and
horizontal turbulent diffusion. The horizontal turbulent diffusion produces an increase of
6%y, as 12 for small diffusion times (¢ < 2 Ty x) and a linear increase in time for ¢ > 2 T y. The
contribution of shear dispersion o2, increases as t* for as long as ¢ < 4 T; ,. For intermediate
diffusion times (47}, < 1 € h?/Ay,), it increases as >, and for large times (¢ > h?/A4,,) it
increases linearly with time.

Summarized this might give the following picture: Firstly 62 increases as ¢, because of
horizontal turbulent diffusion. If the condition

l‘)ﬁ
. =25]/=5 <41,

is fulfilled, the variance first grows as * for ¢, <t<47T., and then as £ for
4T, <t < h?[Ay,. If t, € 4T, 4, then the * range is non-existent. In the literature, the 1*
range is not mentioned. This can be explained by the fact that either the conditions for its
existence were not fulfilled in some experiments, or that it has not been recognized, because it
is unusual to distinguish between several ranges, and very often Okubo’s model [1967] has
been used, and the residuum has been explained by the uncertainties of the measurements.
Okubo [1971] considers mass balances as low as 50% to be permissible. For very large
diffusion times (¢ > A*/A,,) the variance increases linearly in time.
__ InFig.7, the consequences of the aforementioned considerations are shown. For u'2

2, T,, and |dv/dz|, values obtained from a rhodamin experiment in the open Balt1c -
described in Mikolajewicz [1984] — are used. T}y has been chosen to be about 5 days.
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102 108 10* 105 10° 107 10%s 10°

TIME ————t

Fig. 7. Hypothetical dependence of the variance on time.
Coefficients are taken from a rhodamin experiment in the Baltic described in Mikolajewicz
[1984]

Appendix 1

A relative simple method of calculating an approximative distribution if only a limited
number of moments are known is described here.

Due to the fact that exp (— x%/6% — y? /62 — 22 /a2)is different from 0 for all x, y and z—-
if only the variances are different from 0 — the distribution camnbe expressed in the following
way:

Cx, 3, 2) = £(x, 3, 2) exph(— 2202 — 323 — 22/3). (A1)

where fis a real function. If C has derivatives of all orders, then f has too, and can be

expressed as a power series expansion (Bronstein and Semandjajew [1979]):
W o ©

VICS I EDIPIDIF ME L S (A2)

p q r

The moments are defined as:

{xky'z™} = fcjof dVCxty'z™. (A3)
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With (A2) this yields:

The integrals are clearly defined and yield (Grébner and Hofreiter [1958]):
1+ (=1 1-3-5...(k -1 ktptl
A+ (=14 Cp=1) 02

2

(M =TS S

2 2@
- 2
1 -1y 1-3-5...(/ -1 Hatl
2 o
A+(-D"*" 1-3-5...m+r—1 mirtl
’ 2 i l/;(20'%) 2
272
Stopping the summation at N = p + g + r results in:
N N-pN-p-~gq 3
{xk m}N Z Z“ g gpqr TCZ O_k+p+1 O.ly+q+1_Ug+r+1_2—1.5
A+ (D) A+ (D) A+ (= D)") (A6)

135 (k+tp-1-1-3-5-...-(Q+q—1)
135 -(mtr—1).

If the moments are known for all k, / and m, with k + [+ m £ N, a closed system of linear
equations is defined that can be solved by the methods of linear algebra.
Cy is defined as:

N N-pN-— 1 2 2 2
=T YT g0ty exp2< x__y__z_2> (A7)

p=0 g=0 r=0

and lim Cy=C.

N—-w
The convergence can be improved by a transformation of the co-ordinate system, thus
eliminating the first moments and the mixed second moments.
Appendix 2
The complete solution for the oscillating current is:
{ ZZn +1} — 0
n (2”) n "
{227} = Azqt
o
{x} =— —(cos{wt + B) — cos )
@)

24, % (sin(wt + B) — sin f) — 24,01 22 cos(wt + )
a) N
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{xz} = 2AZO (sm (wt+B)—sinp) — 2Azot — cos{wt+ f)
+124%, Z)—s < £ sin (wf + B) — t2cos (wt + B) + (cos (a)t + B) —cos ﬂ))
(x22) = — 2 Ayt ‘;i (cos (@1 + B) — cos B) — 12 A2y 12 % cos (@t + )
—4Azot sm,B-{-ZOAZOt sm(wt—i—ﬁ)
+16AZO (cos(cot—i—/?)—cosﬁ)
(x2%) = — 1242, ‘;—1 cos (wt + B) + 1242, t %2— (sin(wt + B) — sin B)
— 12043, 7 ‘;i cos (wr + f) + 288 A3 £ g% sin (o + f)
+ 432Azot 5 cos(wt+ f) — 144Azot cosﬁ

a, . .
— 28843, _a)% (sin(wt + B) — sin B)
{x} =24x0t
2
o+ 251% (cos B — 2cos(wt + ) cos B + cos® (wt + B))
®

—+-2AZO pe <t+tcos2(a)t+ﬁ) 2tcosf - cos(wt+ p)

_sin2(wr+ f) —sin2f

®
_sing cos f — cos(wt + B) L 2cosp sin(w?t + B) — sinﬁ>
w (G
a? 1
—i—2AZO <t+§tcos2(wl+ﬂ)
_ 3 sin2(wt+ f)—sin2p
4 w
_2smﬁcosﬁ—cos(a)t+ﬁ)>
»
5 in2(wt t
+2A%oa—2z<5z2+3z2cosz(wz+/3)—8z—-sm @ D) | 4rsinpSS@ITPD
® ® ®
_g cosZ(wt+€)—cos2/§ + 1608 cos(cuz—i—/i)—cosﬁ
® »

—4sinf 5
0

sin(wt 4+ f) — sin B>
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s1n2(cot+ B)—sin2p
)

+2AZ0 <9t2+612 cos2(wt + ) —
w?

cos(wz+ f) 27 cos2(wt + f) — cos2p
2 »?

sin(wt + B) — sin ﬁ)

+12¢sin f

+24cosf cos(wt+[§) —cosp_ 12sin f

o) w*
3 in?2(wt t
+2Ago“—1(48:3—117:2M—144—2
w w w
2wt
+307° cos2(cot+ﬁ)-225t—coS (coz +h)
(0]

cos(wt + ) + 369 sin2(wt + f) —sin2f

144 ¢
+ cos f o > o3
t — i t — si
— 288sin g S tﬁ) COSF _ 144 cos p MO P) sin >
w

0% = (%) — {x)?

=2Axot
ai 3 sin2(wt + f) — sin2
+Az0 3 (25+ZCOS2(w§+ﬁ) sin2(wt 4 f) —sin2f
w w
im0 Do)
w
2 ) ,
+ Az —5 <8t2+4tzcos2(wt+5) w
w w
14 cos2(wt+[§)”cos2ﬁ +32005ﬁcos(wt+/?_005/3>
@ »
2(wt —gin?2
+Azo <1812—|—1212c052(wt+ﬁ) sm (0t + p)—sin2p
o )
+24¢sin B cos(@r+f) 27 COS2(wt+§)—COSzg
@ a)
¢ - (ot e
+4800sﬁcos(m +€) cos 8 —24sinﬁsm(w +€) smﬁ>
® T o

a ' in 2(w!
+ 430 = (96l3 + 602 cos2(wt + f) — 234 sin2(wt + )
@ w

co;s2(wl +8) cos(wt + B)
3

t
— 288 — —450¢ + 2881cosf 3

1) 1)
cos(wt+ B) —cos

{2)3

+ 369

— 576sin f§

sin2(wt+ B) —sin2 f
(,03

288 cos sin(wt + f) — sin ﬁ) ‘

0)3
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Appendix 3

The Carter and Okubo [1965] model is reviewed briefly in Okubo [1968]. The
calculation error appears when the variance is computed from the concentration 4 — 14 ((3)
in Okubo [1968]). The concentration is symmetrical in y and z, which means that inter-
changing y and z and the corresponding exchange coefficients and shear parameters do not

0
change the result. When the operator [ [ { x>dxdydz, symmetrical in y and z too, is applied

on that expression, the resulting expression must also be symmetrical. Carter and Okubo’s
result for ¢% is not, whereas the present author’s is.

The second derivation of 413, with respect to (ik) divided by the total mass M and
taken at k = I = m = 0, gives the variance ¢2.

The result obtained in this way is:

2
0k =2Ayol + 2 (Ayob + Azoa) P,
which is in agreement with (21).

Appendix 4

The moments necessary to calculate the variance in'the case of the vertical exchange
coefficient varying linearly with depth are:

{z} = Az ¢
{22} =240t +24%, 17
(22} =124, 450" + 645, 7
{z*} = 124%,62 + T2 4,0 A5, + 24 4%, t*
{z°} =180 43,4, 1® + 480 A A3, t* + 12045, £°
{z°} = 120430 1® + 2160 A3 A%, 1* + 3600 A 5o A%, 17 + 720 A5, 15

1 2 3
{x} = 501A21 tl "F azAZO t2 + gazA%I t3 +4a3AZOA21 t3 + §a3A%1 t4

5 13 5
{xz} = a, (AZO P+ gAgl t3> +a, <~3— Aoy 13+ gAgl t4>

. b |
+ a;, (4A§O P19 450 A4%, % + EAQI t5>

17 7
{xz?} = a, <? Agg Az 2+ gAgl t4>

14 68 92
+a, <? Az + ?AZOAél 4+ I Az, ts>

559 117
+ a, <51 A%OA21 t* + ?AZOA% r + TA21 t6>
{xz3} = a1(6A%0 t3 + 32AzoA%1 t4 + 9A;0 ts)

694 146
+a, (62A§0 Ay i+ < Ago A3 £ + e Az t6>

2733 3864 4653
+a, <36A30 4 ?AéoAgl £+ z Ago A% 15+ ?A&ﬂ)
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2 5
(x*} = a} <3 Azot®+ = B A3, t4>
8
+aa, <5AZOAZ1 *+ gAgl t5>
102 47
+aa; <5Azot4 + TAZOAZ1 £+ 10A211 )
3 15 90

7 136 184
+ a3 (‘ Ajogt*+ = Ao AG © + —— A7 f6>

226 1253 526
+ aza3 <—5' A%0A21 ts + —E“ AZOAgl t6 + gA;l t7>

5 5 140
+ 2450t

72 911 1104 4653
+ a3 <_ Ajol® + — A7 A7, 1° + 5 Ago Az 1+ —— A5t >

Appendix 5

The moments neceésary to calculate the variances when the vertical exchange coeffi-
cient is varying with depth as z2 are:

{22m+1} =0

{24} AZO 3 ezOAzzt 2 eGAzzt + 1
A2, \35 7 5
A (5 9 5 !

6 “zo 42A4z0t _ 7 L20Azat | T 6Azat __

=2, <231 ¢ 7e T 7>
A 1 1

{x} = Aio a (E (e%4#2 — 1) — 3 Az, t)

_AZO _1 24zt 1 6 Adzat 1
{xz} ( 4e —l—Ee +€

2
n Az as <i @204zt _ 1 b4zt 1 o24zt _ i)

42, 2\ 210 14 6 10
Bo (3 o 13 o 1 11
z2t __ z2t T 4 ¢ 6Azat ~ At
e’} =45 a <49oe 1323 ° 63 221 ¢ 270 T 9422

AZO 3 20Az2t 1 12 Azt 1 6 Azt 3 24zt 1
e’} = 5-a <280e 40 ¢ %% Tt 10

AZO 1 424zt 17 204zt 1 12475t
MDA <1386° 540" T

2 1 13
7 a6Azat 24275t
T8¢ w0 T 210)
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A 1 1 1
{x*} = _Z—O i (_ (e®472* — 1) — 2 (e*472' — 1) + §Azz t)

36

2
AZO 2

3 51 1
4y T (a20A4z>t __ 1 6 Azt __ - — A, ¢t 6 Azt
e (4900 e )T 938 © )~ 1ggAzte

1

Agat+ 5 Az 1

MEED 9

A%, 8400

19

A3 1
+-2a3 e -1)-
43, 2\ 29106
1 124zt
Z2 _1
+360 (e )+
L2 Ayt
1

A
+9 XZAZZ
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