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1  |   INTRODUCTION

In search of novel biomarkers and treatment targets for 
age-related pathologies, sleep has recently attracted much 
attention. Disrupted sleep represents one of the earliest 
symptoms of Alzheimer's disease (Lim, Kowgier, Yu, 
Buchman, & Bennett, 2013; Lucey et al., 2019), but might 
also potentiate, accelerate, or even cause cognitive pa-
thology in old age (Shokri-Kojori et al., 2018; Vaou, Lin, 
Branson, & Auerbach, 2018). Because of the assumed bi-
directional relationship between sleep and Alzheimer's 
pathology (Ju, Lucey, & Holtzman, 2014; Mander, Winer, 
Jagust, & Walker, 2016; Noble & Spires-Jones, 2019; Vaou 
et al., 2018; Winer et al., 2019), studying the interrelations 

between sleep and neurocognitive aging has become in-
creasingly popular.

Even in the absence of any diagnostically identifi-
able pathology, healthy aging entails fundamental yet very 
characteristic changes in sleep (Mander, Winer, & Walker, 
2017; Ohayon, Carskadon, Guilleminault, & Vitiello, 2004; 
Vitiello, 2006). Overall, older adults' sleep is shifted earlier in 
time (including earlier bed and wake times), gets lighter, more 
fragile, and shorter (Dijk, Duffy, & Czeisler, 2000; Monk, 
2005). Sleep alterations are evident in the global distribution 
and succession of sleep stages (i.e., the macrostructure of 
sleep; Feinberg, 1974; Ohayon et al., 2004), but also involve 
a changed signature of electrical oscillations that define and 
characterize different sleep states (i.e., the microstructure of 
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Abstract
In quest of new avenues to explain, predict, and treat pathophysiological conditions 
during aging, research on sleep and aging has flourished. Despite the great scien-
tific potential to pinpoint mechanistic pathways between sleep, aging, and pathology, 
only little attention has been paid to the suitability of analytic procedures applied to 
study these interrelations. On the basis of electrophysiological sleep and structural 
brain data of healthy younger and older adults, we identify, illustrate, and resolve 
methodological core challenges in the study of sleep and aging. We demonstrate 
potential biases in common analytic approaches when applied to older populations. 
We argue that uncovering age-dependent alterations in the physiology of sleep re-
quires the development of adjusted and individualized analytic procedures that filter 
out age-independent interindividual differences. Age-adapted methodological ap-
proaches are thus required to foster the development of valid and reliable biomarkers 
of age-associated cognitive pathologies.
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sleep; cf. Box 1; Carrier et al., 2011; Crowley, Trinder, Kim, 
Carrington, & Colrain, 2002). In particular, older adults' sleep 
is characterized by a drastic reduction of deep non-rapid eye 
movement (NREM) sleep, so-called slow-wave sleep (SWS), 
that is accompanied by an increase of light NREM sleep 
(Carrier et al., 2011; Danker-Hopfe et al., 2005; Ohayon et 
al., 2004; Redline et al., 2004). In contrast to NREM sleep, 
age-related changes in the amount of rapid eye movement 
(REM) sleep are typically more subtle (Redline et al., 2004; 
Scullin & Gao, 2018), although a pronounced reduction of 
REMs within this sleep stage has been reported (Darchia, 
Campbell, & Feinberg, 2003). Moreover, with advancing age, 
high-amplitude slow oscillations (<1 Hz), slow delta waves 
(1–4  Hz), and discrete sleep spindles (11–16  Hz) defining 
NREM sleep appear less often and with reduced amplitudes 

and altered topography (Crowley et al., 2002; Dubé et al., 
2015; Fogel et al., 2012; Landolt & Borbély, 2001; Landolt, 
Dijk, Achermann, & Borbély, 1996; Martin et al., 2013). 
Diminished homeostatic sleep pressure, circadian shifts, 
dysregulation of neurotransmitters, and structural brain alter-
ations may contribute to these pronounced changes in sleep 
during aging (for more details see Dijk et al., 2000; Mander et 
al., 2017; Monk, 2005; Skeldon, Derks, & Dijk, 2016; Zhong 
et al., 2019).

Standard criteria to describe these age-related alterations 
in sleep physiology are only rarely tested and validated within 
heterogeneous samples that include older adults (but see e.g., 
Ujma et al., 2015; Ujma, Simor, Steiger, Dresler, & Bódizs, 
2019; Warby et al., 2014). Therefore, in the following, we 
aim to demonstrate the possible benefits and limitations of 
applying established indicators of sleep physiology in the 
context of aging research. We aim to raise awareness for the 
complexity of aging that entails widespread structural and 
functional brain changes that affect sleep in multiple ways 
(Dubé et al., 2015; Fogel et al., 2012, 2017; Muehlroth et al., 
2019b). To identify meaningful biomarkers that can explain 
or even predict cognitive decline in old age, we need to pro-
mote the use of sensitive and age-adjusted methodology that 
captures within-person age-dependent changes in the phys-
iology of sleep, rather than age-inflated interindividual dif-
ferences (Lindenberger, von Oertzen, Ghisletta, & Hertzog, 
2011).

2  |   PREAMBLE: HOW DO WE 
DEFINE “OLD AGE” AND “AGING”?

As an inevitable prerequisite, the identification of changes 
in sleep physiology during aging requires an appropriate and 
transparent rationale on how research should delineate and in-
vestigate “old age” and “aging.” The literature in (cognitive) 
neuroscience is dominated by cross-sectional group compari-
sons of “younger” (~20–30 years) and “older” adults (~60–
80 years) (Browning & Spilich, 1981; Hedden & Gabrieli, 
2004). This is grounded in the notion that the brain's struc-
ture and function has already undergone profound alterations 
when humans reach their 60s (e.g., Li et al., 2004; Ohayon 
et al., 2004; Raz et al., 2005; Rönnlund, Nyberg, Bäckman, 
& Nilsson, 2005; Ziegler et al., 2012). Beyond stressing the 
importance of a general agreement on the definition of “old 
age” to ensure the comparability of research on aging, we 
want to highlight two challenges that accompany such a defi-
nition: First, the chronological age of individuals can deviate 
from their biological age. Second, age differences derived 
from such group comparisons cannot capture aging in terms 
of age-related change.

First and foremost, one should bear in mind that chrono-
logical age, that is, the time that has passed since birth, is 

Box 1  Sleep electrophysiology at a glance

In most animal species, three different and discrete 
states of vigilance can be differentiated: wakeful-
ness, REM, and NREM sleep (Vassalli & Dijk, 
2009). REM and NREM sleep can be clearly dis-
tinguished based on electrophysiological charac-
teristics (Aserinsky & Kleitman, 1953; Dement & 
Wolpert, 1958; Feinberg & Evarts, 1969; Loomis, 
Harvey, & Hobart, 1935, 1962). REM sleep is 
marked by the occurrence of phasic irregular and 
rapid eye movements, muscle atony, and desyn-
chronized wake-like electroencephalographic 
(EEG) activity. NREM sleep, by contrast, is char-
acterized by synchronous, low-frequency, high-
amplitude EEG oscillations (Iber, Ancoli-Israel, 
Chesson, & Quan, 2007). NREM sleep can further 
be divided into the three substages, N1, N2, and 
N3 (also SWS; Iber et al., 2007; Rechtschaffen & 
Kales, 1968). These NREM substages form a con-
tinuum of increasing arousal threshold and sleep 
depth (Carskadon & Dement, 2011). At the same 
time, they serve as a proxy for the dominance of 
different sleep-specific oscillatory brain signals: 
Lighter NREM sleep (stage 2 or N2 sleep) is de-
fined by the occurrence of discrete sleep spindles 
(i.e., rhythmically waxing and waning oscillatory 
events with a typical frequency of 11–16 Hz), and 
K-complexes (i.e., phasic negative high-amplitude 
EEG deflections that are followed by a positive 
EEG component). With deeper sleep, the number 
and power of EEG slow waves increases. This pre-
dominance of slow EEG waves defines the presence 
of SWS (stage 3 or N3 sleep).
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a variable that does not induce or explain any developmen-
tal change in itself (Wohlwill, 1970). At best, it can serve 
as a proxy for an individual's expected functional capacity 
that relies on true mechanistic alterations taking place as hu-
mans age (Li & Schmiedek, 2002; MacDonald, DeCarlo, & 
Dixon, 2011). The conceptual and methodological pitfalls of 
using chronological age as an index of development or aging 
have been discussed elsewhere in detail (e.g., Cole & Franke, 
2017; Cole, Marioni, Harris, & Deary, 2019; Lindenberger 
& Pötter, 1998; MacDonald et al., 2011; Wohlwill, 1970). 
Due to great interindividual variation in the manifestation of 
aging effects (Cabeza et al., 2018; Habib, Nyberg, & Nilsson, 
2007; Lindenberger, 2014), particularly in old age, chrono-
logical age can deviate greatly from an individual's biological 
age (Cole & Franke, 2017; Cole et al., 2019; MacDonald et 
al., 2011; Steffener et al., 2016). Importantly, physiological 
brain age, as for instance derived from estimates of struc-
tural brain integrity, could represent a better and more infor-
mative predictor of differences in aging, individual (brain) 
health, functional capacity, and mortality (Burzynska et al., 
2010; Cole & Franke, 2017; Cole et al., 2017, 2018; Franke, 
Ziegler, Klöppel, & Gaser, 2010). Notably, also brain age de-
rived from the sleep electroencephalogram (EEG) has lately 
shown its potential to serve as a sensitive index of aging and 
pathology (Sun et al., 2019). In the course of this article, we 
will suggest that the sensitivity of sleep physiology as a po-
tential biomarker of brain age, aging, and age-related disease 
is closely tied to a fair and adapted investigation and evalua-
tion of sleep in aged individuals.

Strictly speaking, the term aging describes a process 
of change, taking place as organisms grow older. Cross-
sectional age comparisons are not appropriate to inform us 
about these changes (Hertzog & Nesselroade, 2003; Hofer 
& Sliwinski, 2001; Li & Schmiedek, 2002; Lindenberger et 
al., 2011; Lindenberger & Pötter, 1998; Overton, 2010; Raz 
& Lindenberger, 2011). When sampling age-heterogeneous 
groups cross-sectionally, essential confounds such as co-
hort effects or sampling bias may covary with age and thus 
prevent or bias conclusions on intraindividual dynamics of 
change (Hertzog & Nesselroade, 2003; Hofer & Sliwinski, 
2001; Li & Schmiedek, 2002; Lindenberger et al., 2011; 
Rönnlund et al., 2005; Wohlwill, 1970). For convenience, 
however, we will use the phrase aging independently of 
the respective study's sampling design in this article. The 
lack of longitudinal studies on sleep in adulthood does not 
allow for the identification of “real” age-related changes 
of sleep physiology. Hence, we emphasize that longi-
tudinal study designs are essential to study aging and to 
identify the lead-lag relations between age-related alter-
ations in brain structure and function (Hofer & Sliwinski, 
2001; Li & Schmiedek, 2002; Lindenberger, 2014; Raz & 
Lindenberger, 2011).

3  |   CHALLENGE 1:  AMBIGUOUS 
SLEEP STAGE DEFINITIONS 
ACROSS AGE GROUPS

Standardized visual scoring of sleep stages is regarded as the 
“gold-standard” of sleep research. Defined sleep stages are 
thereby considered sensitive indicators of specific physiolog-
ical events. However, current sleep stage definitions may not 
capture the same physiological processes across age groups. 
We suggest that genuine sleep analysis—in line with similar 
views from animal research—should consider the continuous 
nature of NREM sleep. A focus on the presence of predefined 
electrophysiological events, like the occurrence or coupling 
of slow oscillations and sleep spindles, during both stage 2 
sleep and SWS is required. 

3.1  |  Pitfalls of visually scoring SWS

In human research, the classification of sleep stages (cf. 
Box 1) is based on widely accepted standardized rules that 
are used to score sleep by means of EEG activity, muscle 
tone, and eye movements (Iber et al., 2007; Rechtschaffen & 
Kales, 1968). SWS, as defined by the American Academy for 
Sleep Medicine (AASM; Iber et al., 2007), requires the pres-
ence of 0.5–2 Hz waves with a minimum amplitude of 75 µV 
covering more than 20% of a sleep time segment. Already 
in 1982, Webb noted that the frequently reported striking 
age-related reduction in SWS likely results from the use of a 
fixed amplitude threshold to define slow waves (Webb, 1982; 
Webb & Dreblow, 1982; cf. Figure 1a, Table 1). As also 
acknowledged by the AASM (Silber et al., 2007), reliably 
measuring SWS using an amplitude criterion below 75 µV 
is possible. Still, the current version of the manual for sleep 
scoring that defines the prevailing gold standard, relies on a 
minimum amplitude criterion of 75 µV. Crucially, the age-
related reduction in slow wave (<4 Hz) and slow oscillation 
(<1  Hz) amplitudes is one of the most consistent findings 
in age-comparative sleep studies (Carrier et al., 2011; Dubé 
et al., 2015; Mander et al., 2017; Muehlroth et al., 2019b; 
Ujma et al., 2019). Typically, SWS is easily identifiable in 
younger adults because slow waves exceed the required am-
plitude threshold. By contrast, the identification of true SWS 
in older adults is challenging: Due to the reduction of slow 
wave amplitudes below 75 µV (cf. Figure 1b,c, Table 2), time 
segments can often not be scored as SWS but are rather as-
signed to stage 2 sleep—although all other characteristics of 
the sleep epoch suggest the presence of SWS (i.e., the pre-
dominance of low-frequency EEG waves but absence of eye 
movements along with reduced muscle tone; cf. Figure 2).

Re-analyzing our own previously published data of 29 
healthy younger (range: 19–28 years, Mage = 23.55 years, 
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SDage  =  2.58; 16 females) and 34 healthy older adults 
(range: 63–74  years, Mage  =  68.85  years, SDage  =  3.11, 
15 females), we demonstrate the effects of fixed ampli-
tude thresholds for visual sleep scoring in age-compara-
tive studies. Participants' nighttime sleep was monitored 
using ambulatory polysomnography (PSG) before and after 
completing an associative learning task (cf. Supporting 
Information  for details on data and methods; Muehlroth 

et al., 2019b, 2019a). Subjective sleep quality was assessed 
using the Pittsburgh Sleep Quality Index (PSQI; Buysse, 
Reynolds, Monk, Berman, & Kupfer, 1989) and compara-
ble in both age groups (Z = 1.03, p =  .305, MdYA = 4.5 
[3.0; 6.25], MdOA = 4.0 [3.0; 5.0]). We show that, overall, 
in our data set the extent of age-related reductions in visu-
ally scored SWS matched the increase in stage 2 sleep in 
older adults (dstage 2 = −2.3 [−2.96; −1.63]; dSWS = 2.18 

F I G U R E  1   Visual sleep scoring in younger and older adults. (a) Distribution of visually scored sleep stages in younger (orange) and 
older (blue) adults. In older adults, the proportion of SWS is significantly reduced, whereas lighter stage 2 sleep is increased. Note the bimodal 
distribution of SWS in older adults with some participants displaying levels of SWS comparable to younger adults, and others clustering around 
0%. Asterisks mark p values <.001 derived from nonparametric Mann–Whitney U tests comparing sleep parameters between younger and older 
adults (cf. Table 1). (b) Distribution of the average slow oscillation amplitude for all younger (orange) and older adults (blue). Age group medians 
are inserted as dashed lines. The median slow oscillation amplitude in older adults lies below the amplitude criterion of 75 µV (green line). (c) 
The proportion of visually scored SWS scales with the average slow oscillation amplitude (respective age group medians marked by dashed lines). 
Older adults falling below the 75-µV criterion (inserted in green) show little or no SWS. The smoothed local regression line (in black, fitted using 
LOESS) and the corresponding standard error (gray shading) further illustrate the association. OA, older adults; SO, slow oscillation; YA, younger 
adults
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T A B L E  1   Age differences in sleep architecture

Younger Adults 
Md [1st qrt; 3rd qrt]

Older adults 
Md [1st qrt; 3rd qrt] Z p

Cohen’s d  
[95% CI]

TST (min) 456.50 [430.25; 496.75] 425.50 [385.06; 459.88] 2.48 .013 0.62 [0.1; 1.15]

WASO (min) 6.75 [3.00; 11.50] 21.25 [12.06; 49.81] −4.23 <.001 −1 [−1.54; −0.45]

Stage 1 (%) 4.46 [2.84; 4.82] 7.39 [4.71; 9.90] −3.99 <.001 −1.02 [−1.57; −0.48]

Stage 2 (%) 51.68 [46.29; 58.10] 65.62 [61.71; 69.14] −6.23 <.001 −2.95 [−2.96; −1.63]

SWS (%) 20.41 [16.01; 27.83] 2.30 [0.16; 11.15] 6.03 <.001 2.18 [1.53; 2.83]

REM (%) 22.91 [20.22; 26.07] 22.19 [18.22; 24.00] 1.46 .144 0.31 [−0.20; 0.83]

Note: Z and p values were derived from nonparametric Mann–Whitney U tests comparing sleep parameters between younger and older adults. Sleep stage percentages 
are calculated as proportions of TST.
Abbreviations: CI, confidence interval; qrt, quartile; REM, rapid eye movement sleep; SWS, slow-wave sleep; TST, total sleep time; WASO, wake after sleep onset 
(i.e., time awake between sleep onset and final morning awakening).
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T A B L E  2   Individually adjusted versus fixed threshold settings for slow oscillation detection

 
Younger Adults Older adults Z

p
Cohen's d

Md [1st qrt; 3rd qrt]  Md [1st qrt; 3rd qrt] [95% CI]

Individually adjusted threshold        

Number 1,109.75 [1,068.75; 1,362.00] 917.75 [807.50; 1,133.56] 3.93 <.001 1.09 [0.54; 1.65]

Density (events/min) 3.81 [3.45; 4.12] 3.52 [2.92; 3.93] 2.26 .024 0.67 [0.14; 1.2]

Frequency (Hz) 0.79 [0.78; 0.81] 0.77 [0.75; 0.79] 3.24 .001 0.90 [0.36; 1.44]

Amplitude (µV) 123.17 [106.91; 136.50] 71.83 [58.74; 84.53] 6.16 <.001 2.28 [1.62; 2.94]

Fixed threshold          

Number 1,329.25 [1,094.00; 1,672.50] 350.00 [149.44; 564.81] 6.07 <.001 2.02 [1.38; 2.65]

Density (events/min) 4.25 [3.24; 5.51] 1.12 [0.53; 2.33] 6.04 <.001 1.93 [1.31; 2.56]

Frequency (Hz) 0.79 [0.78; 0.81] 0.76 [0.73; 0.78] 4.14 <.001 1.16 [0.61; 1.72]

Amplitude (µV) 116.92 [112.46; 125.07] 94.85 [91.57; 102] 5.86 <.001 2.13 [1.48; 2.77]

Note: Z and p values were derived from nonparametric Mann–Whitney U tests comparing slow oscillation characteristics between younger and older adults.
Abbreviations: CI, confidence interval; OA, older adults; qrt, quartile; YA, younger adults.

F I G U R E  2   Whole-night spectral EEG characteristics. Hypnogram (upper panels) from one younger (a; female, 24.63 years) and older (b; 
female, 71.55 years) adult with the corresponding whole-night multitaper spectral EEG data at electrode Cz (lower panels). Both younger and older 
adults show a similarly increased low-frequency power during periods of NREM sleep (some examples highlighted by blue ellipses) along with a 
distinct increase in power in the fast spindle frequency range (approx. 12.5–16 Hz) that disappears during REM sleep (violet ellipses). Periods of 
wake are characterized by an additional strong enhancement of alpha (8–12 Hz) and high-frequency power (red ellipses). Although the older adult 
only has a small amount of visually scored SWS, the spectrogram clearly shows periods of enhanced low frequency and spindle power—in line 
with the canonical SWS characteristics found in younger adults. No clear distinction between stage 2 and SWS is observed on the basis of spectral 
EEG characteristics. Note the differences in absolute sleep duration (x axis). OA, older adult; REM, rapid eye movement sleep; SWS, slow-wave 
sleep; YA, younger adult
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[1.53; 2.83]; Table 1). Visually scoring the data of older 
adults, a reduction—and in some participants even “ab-
sence”—of SWS became evident in comparison to younger 
adults (Table 1, Figure 1a). Closely inspecting the sleep 
architecture of older adults in our sample, it became visi-
ble that the older age group was divided into subjects not 
exhibiting any or only few SWS, and subjects showing a 
more “youth-like” proportion of SWS (Figure 1a). In part, 
this bisection of older subjects might be due to interindi-
vidual differences in the amplitude of slow oscillations, 
with half of the older adults showing slow oscillation am-
plitudes below the proposed 75-µV threshold on average 
(MdOA  =  71.83  µV; Figure 1b). For older adults, falling 
above or below this threshold divided the sample into in-
dividuals with and without SWS according to the standard 
scoring system (Figure 1c). None of the younger adults un-
dercut an average slow oscillation amplitude threshold of 
75 µV (MdYA = 123.17 µV) and, accordingly, SWS could 
be effectively scored in this age group (Figure 1b,c).

Taken together, it appears that due to age-related reduc-
tions in slow wave amplitudes, the fixed amplitude crite-
rion of 75 µV for scoring SWS results in a biased estimate 
of SWS presence in older populations. Descriptively pro-
viding standardized estimates of sleep architecture is im-
portant to ensure the comparability and validity of studies. 
In studies with heterogeneous samples, though, researchers 
should acknowledge that such derived sleep stage estimates 
may be severely biased. As Rechtschaffen and Kales them-
selves put it in 1968 when establishing the standardized 
scheme for visual sleep scoring: “Even among human sub-
jects, however, there are some individuals or groups whose 
polygraph recordings may require further description or 
elaboration than that provided by the stages proposed here” 
(Rechtschaffen & Kales, 1968).

3.2  |  The need to acknowledge the 
continuous nature of NREM sleep

The potential bias of current sleep stage definitions across 
age groups has direct theoretical and methodological impli-
cations. These affect the way we should conceive and treat 
NREM sleep and its substages in our theories and analyses. 
The transition between stage 1, stage 2, and SWS happens 
continuously with slow waves increasing in amplitude and 
abundance as NREM sleep gets deeper. On the contrary, 
sleep spindles show a reversed pattern with predominance 
during lighter stage 2 NREM sleep (Prerau, Brown, Bianchi, 
Ellenbogen, & Purdon, 2017). Hence, stage 2 and SWS are 
often treated as proxies for the dominance of different sleep-
specific oscillatory brain signals (Genzel, Kroes, Dresler, 
& Battaglia, 2014; Hobson, 1968). Although generally ac-
cepted in human sleep research, the distinction between 

sleep stage 2 and SWS based on a certain amplitude and 
time criterion (Iber et al., 2007) is not without problems 
(Genzel et al., 2014; Lacroix et al., 2018; Silber et al., 2007; 
Webb & Dreblow, 1982). Challenges include the handling 
of potentially biased sleep stage estimates in different age 
groups and the comparability of estimates between human 
and animal research (e.g., Genzel et al., 2014; Lacroix et 
al., 2018).

As discussed above, the current criteria to define the 
presence of SWS along with great interindividual variation 
in slow wave amplitudes may severely bias the assignment 
of a specific sleep segment to stage 2 sleep or SWS. Between 
the ages of 5 and 90, the proportion of NREM sleep de-
creases only little (Ohayon et al., 2004). The composition of 
visually scored NREM sleep itself, however, changes dras-
tically across the lifespan. This might at least partly stem 
from the fact that time segments “equivalent” to SWS may 
be scored as stage 2 sleep because the amplitude criterion 
of 75 μV is not met and result in two major problems: First, 
the assignment of SWS-like time segments to stage 2 sleep 
in older adults blurs the boundary between the two stages. 
As a consequence, sleep stages can no longer be regarded as 
a direct reflection or proxy of underlying neural and physi-
ological processes (Hobson, 1968). Second, due to skewed 
distributions and reduced variance, any correlational analy-
sis relying on measures of SWS is biased, or even prevented, 
in samples of older adults—especially in samples of older 
adults with a large percentage of “no-SWS” participants. As 
a result, a clear-cut association between a given physiolog-
ical state—identified via a corresponding sleep stage—and 
an outcome measure, like the ability to maintain memories 
across sleep (e.g., Diekelmann & Born, 2010; Rasch & 
Born, 2013), is hardly tangible in age-comparative stud-
ies. If the definitions used to identify a given sleep stage 
do not capture the same phenomenon (e.g., the presence 
of slow oscillations) to the same degree across age groups, 
age differences in associations with outcome measures can 
hardly capture the intended mechanism. For example, the 
observation that memory performance is more consistently 
associated with SWS in younger than in older adults, could 
be taken as evidence that slow oscillations forfeit their func-
tionality for memory processing during aging (e.g.,Baran, 
Mantua, & Spencer, 2016; Scullin, 2012; Sonni & Spencer, 
2015). However, if slow oscillations are present in older 
adults but just attributed to a different sleep stage, the statis-
tics might be correct, but the functional interpretation would 
be different. In this case, slow oscillations found in a dif-
ferent sleep stage may continue to contribute to the consol-
idation of memories even in old age—a matter of fact only 
revealed when focusing on the oscillatory phenomena them-
selves (e.g., Helfrich, Mander, Jagust, Knight, & Walker, 
2018; Mander et al., 2013; Muehlroth et al., 2019b; Varga 
et al., 2016; Westerberg et al., 2012).
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Given the described challenges an NREM sleep subdi-
vision bears, it may be hardly surprising that research in 
other species refrains from applying such a subclassifica-
tion (but see Lacroix et al., 2018, for a recent attempt for 
“human-like” subclassification of NREM sleep in rodents). 
The term “SWS” is typically used to describe the whole con-
tinuum of NREM sleep, which has evoked pivotal misun-
derstandings when comparing human and animal research 
(Genzel et al., 2014). This conception of NREM sleep may 
arise from the prevailing sleep scoring procedure in rodents 
that can easily distinguish between REM and NREM sleep 
on the basis of movements and spectral parameters of elec-
trical neuronal activity during sleep, but less so between 
NREM substages (Bagur et al., 2018; Lacroix et al., 2018). 
In humans, contemplating whole-night multitaper spectral 
EEG data, the distinct natures of REM and NREM sleep 
becomes evident irrespective of participants' age, whereas 
differences between SWS and stage 2 sleep are more sub-
tle as they transition gradually (Figure 2; see Prerau et al., 
2017 for a detailed description of the spectral dynamics of 
the whole-night multitaper spectogram). Crucially, this does 
not signify that NREM sleep should be regarded as a uni-
form state, but rather that the continuous nature of NREM 
substages must be acknowledged, which makes a clear-cut 
distinction and definition of stage 2 and SWS problematic, 
if not impossible.

To conclude, an explicit distinction between stage 2 and 
SWS bears not only methodological but also theoretical dif-
ficulties. A coherent methodology to study the complex and 
dynamic nature of sleep not only within, but also between 
species is required to enable informative study comparisons 
(cf. Prerau et al., 2017). Research on the causes and conse-
quences of interindividual and age-related differences in sleep 
physiology should thus transcend stage-based analyses and 
rather consider the actual exploranda, that is, the underlying 
neurophysiological processes (for instance, the occurrence of 
rhythmic thalamocortical sleep spindles) present during both 
stage 2 sleep and SWS.

4  |   CHALLENGE 2:  MULTIPLE 
WAYS TO DESCRIBE SLEEP 
PHYSIOLOGY

The multitude of indicators and available algorithms used to 
describe sleep-specific neural activity hampers the compa-
rability of results between studies. We argue that the validity 
and value of age-comparative sleep research depends greatly 
on the precise definition of indicators that reflect a neural 
process of interest as directly as possible. In our view, indi-
cators of sleep microstructure should always be preferred as 
they more closely mirror the dynamics and characteristics of 
sleep-specific neural activity.

Everyone engaging in sleep research will soon real-
ize the multitude and inconsistency of indicators avail-
able to describe neurophysiological activity during sleep 
(Figure S1). Comparing different measurement occasions 
(Brandmaier et al., 2018) and diverse indicators of slow 
oscillatory activity during NREM sleep in our own data 
set (namely % SWS, relative slow-wave activity [SWA], 
and the number, density, frequency, and amplitude of 
detected slow oscillations), we noticed a generally poor 
agreement between the different variables both across 
and within age groups (ICC  =  0.201 [−0.15; 0.47], 
F(62,310) = 1.25, p = .113; ICCYA = 0.13 [−0.48; 0.54], 
FYA(28,140)  =  1.15, pYA  =  .295; ICCOA  =  0.09 [−0.49; 
0.49], FOA(33,165)  =  1.1, pOA  =  .342; cf. Table S1). In 
contrast, the test–retest reliability of the same variable 
between two consecutively recorded nights was good 
to excellent (all ICC  ≥  0.78, all F  ≥  4.61, all p < .001; 
cf. Table S1). A moderate test–retest reliability of rela-
tive SWA in the group of older adults was the only ex-
ception (ICC  =  0.68 [.33; 0.85], F(33,33)  =  3.69, p < 
.001). Critically, all participants engaged in an extensive 
associative learning task between the two recorded nights 
(cf. Muehlroth et al., 2019b, 2019a). As demanding learn-
ing is known to influence indicators of spindle and slow 
oscillatory activity (e.g., Gais, Mölle, Helms, & Born, 
2002; Mölle, Bergmann, Marshall, & Born, 2011; Mölle, 
Eschenko, Gais, Sara, & Born, 2009), the reported esti-
mates should even be considered as the lower bounder of 
reliability. Taken together, even though sleep physiology 
can be very reliably measured by applying common ana-
lytic approaches, the great disparity of available indicators 
calls for a thorough consideration of the way we describe 
sleep physiology in our analyses.

In general, the validity of indicators to quantify neural ac-
tivity during sleep scales with their resolution and precision: 
Age differences in sleep are best captured by describing the 
dynamics and features of neural activity in as much detail 
and as directly as possible. Using machine learning on 3,500 
sleep recordings covering the ages 18–80, Sun and colleagues 
(2019) recently demonstrated that oscillatory dynamics 
during sleep (i.e., the microstructure of sleep)—like fluctu-
ations in spectral power—can reliably predict participants' 
age (mean absolute deviation 7.8 years; see Sun et al., 2019). 
Global sleep stage composition (i.e., the macrostructure of 
sleep), in contrast, turned out to be a less appropriate predic-
tor of chronological age (mean absolute deviation 23.3 years; 
Sun et al., 2019). Sleep is known to be a dynamic process 
(Prerau et al., 2017; Spiess et al., 2018; Yetton, McDevitt, 
Cellini, Shelton, & Mednick, 2018). The use of sleep stage 
estimates mismatches our current theoretical understanding 
of sleep and strongly reduces resolution of the data (Conte & 
Ficca, 2013; Prerau et al., 2017). Altogether, we believe that 
the analysis of sleep EEG data should transcend beyond the 
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report of sleep stages and global spectral features and focus 
on the microstructure of sleep.

To avoid using the proportion of SWS as a proxy for 
the presence of slow waves, analyses increasingly report on 
slow-wave activity (SWA). SWA measures the spectral delta 
power (i.e., 0.5–4.5 Hz) via a transformation of the data in 
the frequency domain (e.g., a Fast Fourier Transformation, 
FFT). In conjunction with a normalization procedure—for 
example, dividing the respective frequency band by the 
total power of the whole spectrum—the influence of pos-
sible confounds such as frequency-unspecific interindivid-
ual differences in EEG amplitudes can be minimized (see, 
e.g., Dannhauer, Lanfer, Wolters, & Knösche, 2011; Frodl et 
al., 2001; Leissner et al., 1970; Segalowitz & Davies, 2004; 
Werkle-Bergner, Shing, Müller, Li, & Lindenberger, 2009, 
for arguments on how interindividual differences in ana-
tomical properties of the brain and skull influence the EEG 
signal). A normalized measure of SWA increases the compa-
rability across diverse study populations. However, spectral 
power, as conventionally measured with FFT, is a compound 
of rhythmic processes and the arrhythmic 1/f background 
spectrum that, crucially, is flattened in older compared to 
younger adults (Voytek et al., 2015; Figure S2; see Haller et 
al., 2018; Kosciessa et al., 2019; Wen & Liu, 2016; Whitten, 
Hughes, Dickson, & Caplan, 2011 for approaches to sepa-
rate rhythmic activity from the arrhythmic background spec-
trum). Moreover, as spectral power conflates both duration 
and amplitude of rhythmic neural activity (e.g., Kosciessa et 
al., 2019), an interpretation of SWA in terms of abundance or 
strength of slow waves remains difficult (Amzica & Steriade, 
1998; Mensen, Zhang, Qi, & Khatami, 2016). “Thus it is es-
sential to strive toward a characterization of sleep EEG oscil-
lations that faithfully represent the underlying data, allowing 
us to apply the wealth of knowledge we have gained about the 
continuum of the underlying neurophysiological mechanisms 
to the interpretation of the EEG” (Prerau et al., 2017, p. 63).

Technological developments over the past decades are in-
creasingly facilitating analysis of specific features and char-
acteristics of neural events during sleep (Mensen, Riedner, & 
Tononi, 2016; Mölle, Marshall, Gais, & Born, 2002; Prerau 
et al., 2017). Such analyses can incorporate the amplitude, 
oscillatory frequency, the density of occurrence (i.e., num-
ber of events per time interval), and the slope of specific 
oscillatory events. These different indicators are often used 
interchangeably although they signify differential physiolog-
ical properties and, accordingly, show differential age depen-
dency (cf. Box 2, Figure S1). If applied correctly, though, 
they hold great explanatory power and can provide more in-
formed insights into the aging brain (Fogel et al., 2017; Sun 
et al., 2019; Ujma et al., 2019). Moreover, the possibility 
to identify individual oscillatory events also entails the op-
portunity to investigate how different oscillations and neu-
ral processes interact (Helfrich et al., 2018; Klinzing et al., 

2016; Muehlroth et al., 2019b; Staresina et al., 2015). At the 
moment, due to the variety of algorithms available to study 
oscillatory brain signals and their interaction during sleep, 
these analyses are still time-consuming and between-study 
comparability of indicators can be challenging (Figure 3; 
cf. Warby et al., 2014). To tackle these problems, currently, 
several open source projects are under development that aim 
to harmonize and standardize analysis pipelines and param-
eters and make them publically available (e.g., Luna [http://
zzz.bwh.harva​rd.edu/luna/], Sleep [Combrisson et al., 2017; 
http://visbr​ain.org/sleep.html], SPISOP [www.spisop.org], 
YASA [http://doi.org/10.5281/zenodo.3382284]; all code 
and sample data to reproduce this manuscript's EEG analysis 
pipeline are available on the Open Science Framework [https​
://osf.io/zur2b/​]). Identifying and resolving these discrepan-
cies—ideally by the use of common algorithms—will lay the 
grounds for a mechanistic understanding of the causes and 
consequences of age-related changes in sleep (Helfrich et al., 
2018; Muehlroth et al., 2019b).

5  |   CHALLENGE 3:  AMPLITUDE 
REDUCTIONS—TOWARD 
ALGORITHMS WITH ADJUSTED 
THRESHOLDS

The benefits of a direct investigation of slow oscillatory 
events are constrained by a lacking consensus on the de-
tection thresholds to be applied. We suggest that a fair as-
sessment of true slow oscillatory activity requires the use of 
amplitude thresholds that are adjusted individually within 
participants.

Studying rhythmic neural activity during sleep requires 
a reliable detection of oscillatory events themselves. Here, 
automated slow oscillation detection methods offer an ef-
ficient way to identify the presence and characteristics 
of individual slow oscillations (e.g., Massimini, Huber, 
Ferrarelli, Hill, & Tononi, 2004; Mensen, Riedner, et al., 
2016; Mölle et al., 2002; Nir et al., 2011). Typically, os-
cillation detection algorithms rely on a bandpass-filtered 
EEG signal within a theoretically implied frequency range 
(e.g., 0.5–1  Hz for slow oscillations, see Challenge 4 for 
details on the definition of frequency ranges). The presence 
of oscillatory components is then inferred by applying cer-
tain amplitude and peak detection criteria (cf. Supporting 
Information). Amplitude criteria can either be based on 
fixed thresholds or on variable thresholds adjusted within 
individuals (e.g., Massimini et al., 2004; Mölle et al., 2009, 
2002; Staresina et al., 2015). In analogy to the visual scor-
ing of SWS, many algorithms rely on a criterion of 75 μV 
(Carrier et al., 2011; Dubé et al., 2015; Piantoni et al., 2013) 
or even higher amplitudes (Heib et al., 2013; Massimini 
et al., 2004) for the detection of slow oscillations during 

http://zzz.bwh.harvard.edu/luna/
http://zzz.bwh.harvard.edu/luna/
http://visbrain.org/sleep.html
http://www.spisop.org
http://doi.org/10.5281/zenodo.3382284
https://osf.io/zur2b/
https://osf.io/zur2b/
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NREM sleep. But an increasing number of studies opt for 
thresholds adjusted individually for each participant (e.g., 
Klinzing et al., 2016; Mölle et al., 2011; Ngo et al., 2015). 
As yet, there is neither a gold standard nor consensus on 
the most suitable method nor on the threshold settings to be 
applied when identifying the presence of oscillatory events 
(Mensen, Zhang, et al., 2016; Ujma et al., 2019). However, 
the choice of detection thresholds has profound effects on 
the analysis of age differences.

Irrespective of the applied detection threshold (i.e., 
a fixed threshold of 75  μV vs. an individually adjusted 
threshold of 1.25 times the mean amplitude of all puta-
tive slow oscillations; cf. Supporting Information), in 
the older adults in our data, the number, density (i.e., the 
number of slow oscillations per minute of NREM sleep), 
amplitude, and frequency of slow oscillations were all re-
duced (Table 2). Nevertheless, compared to an individu-
ally adjusted amplitude criterion, the extent of age effects 
was augmented when using a fixed detection threshold 

of 75 μV (dadjusted = 0.67 [0.14; 1.2], dfixed = 1.93 [1.31; 
2.56], nonoverlapping confidence intervals for Cohen's d 
of slow oscillation density, cf. Table 2). Using individu-
ally adjusted thresholds, as displayed in Figure 1b, in older 
adults, the average slow oscillation amplitude fell below 
the 75-μV criterion in 61.77% of the subjects (21 out of 34 
compared to only one younger subject [3.45%]). In other 
words, in older adults, a large number of potential slow 
oscillations will not be detected in case of a fixed-ampli-
tude criterion of 75 μV as the detection is biased toward 
higher-amplitude oscillations (Figure 3b). As a conse-
quence, slow oscillation density estimates that are derived 
using individually adjusted versus fixed detection thresh-
olds are comparable in younger but not in older adults 
(ZYA = −0.88, pYA = .38; ZOA = 6.08, pOA < .001; see Table 
2; Figure 3a).

Critically, interindividual differences in slow oscillation 
amplitudes might not only carry functional information but 
may be confounded by differences in homeostatic sleep 

Box 2  Guidance for the interpretation of frequently reported oscillatory characteristics

Spectral power. The spectral power in predefined frequency bands is believed to mirror the presence of rhythmic neural 
activity, that is, periodic alternations in the excitability of neuronal populations (Buzsáki, 2006; Buzsáki, Anastassiou, 
& Koch, 2016; Cohen, 2014). Yet, conventional estimates of spectral power reflect a compound of rhythmic and ar-
rhythmic activity and, within their rhythmic component, index a combination of the duration and the amplitude of 
oscillations within a specific frequency range (Cohen, 2014; Kosciessa, Grandy, Garrett, & Werkle-Bergner, 2019).
Amplitude. The amplitude of an oscillation reflects the degree of synchronized neuronal firing: Small amplitudes relate 
to more local synchronous firing, whereas large amplitudes reflect more global synchronous changes in membrane 
potentials (Buzsáki, 2006; Nir et al., 2011). The basis for this cortical synchronization is the integrity of cortical areas 
involved in the generation and propagation of a certain oscillation (Dubé et al., 2015; Saletin, Helm, & Walker, 2013). 
In aging, cortical thinning and atrophy may diminish the scalp-detectable range of amplitudes. Age differences in os-
cillatory amplitudes may, on the one hand, reflect a minimized extent of synchronous neuronal firing as direct conse-
quence of structural brain changes in the course of aging (Dubé et al., 2015). On the other hand, anatomical alterations 
of the brain and skull may influence the conduction of the EEG signal and thus attenuate the amplitude of an oscillation 
measured on the scalp (Leissner, Lindholm, & Petersen, 1970; Segalowitz & Davies, 2004). Besides, reduced slow 
wave amplitudes in old age may arise from alterations in homeostatic sleep pressure, which is typically reduced as 
humans age (Dijk et al., 2000; Esser, Hill, & Tononi, 2007; Vyazovskiy et al., 2009).
Frequency. In general, the inherent frequency of an oscillation may index the efficiency and speed of neural informa-
tion transfer (Dubois et al., 2008; Grandy et al., 2013; Klimesch, 1999; Posthuma, Neale, Boomsma, & Geus, 2001). 
The typical developmental acceleration of various oscillatory components including sleep spindles (Campbell & 
Feinberg, 2016; Purcell et al., 2017) is believed to depend on the differentiation of thalamocortical feedback loops due 
to maturation, optimization of synaptic connections, and neuronal myelination (Campbell & Feinberg, 2016; Clawson, 
Durkin, & Aton, 2016; Dubois et al., 2008; Klimesch, 1999; Piantoni et al., 2013). Maintained or even increased 
frequency of fast spindles in old age (Crowley et al., 2002; Fogel et al., 2017; Nicolas, Petit, Rompré, & Montplaisir, 
2001; but see Martin et al., 2013) may indicate a largely preserved functionality of thalamocortical cells during aging. 
In contrast, the consistently reported slowing and flattening of slow oscillations in old age (Carrier et al., 2011; Dubé 
et al., 2015; Mander et al., 2017) may be the consequence of reduced synaptic load and homeostatic sleep pressure 
in old age and indicative of decelerated and less synchronous switches between phases of neuronal excitability and 
inhibition (Bersagliere & Achermann, 2010; Carrier et al., 2011; Dijk et al., 2000; Dubé et al., 2015; Fogel et al., 2012; 
Vyazovskiy et al., 2009).
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regulation (Dijk et al., 2000), brain integrity (Dubé et al., 
2015; Saletin et al., 2013), and skull thickness (Frodl et al., 
2001; Leissner et al., 1970). Hence, an individually adjusted 
amplitude threshold that tags slow oscillations with the larg-
est amplitudes within individuals may have advantages. Only 
when slow oscillations are selected independently of inter-in-
dividual differences in EEG amplitudes, do unbiased com-
parisons become possible. Persisting age differences in the 
amplitude, density, and morphology of slow oscillations can 
then be interpreted as valid age group differences. Compared 
to fixed-amplitude detection criteria, especially in age-com-
parative settings, the use of individually adjusted amplitude 
criteria for detecting slow oscillations during NREM sleep 
provides a more realistic and at the same time less biased 
measure of true slow oscillatory activity.

6  |   CHALLENGE 4: 
DIFFERENTIAL FREQUENCY 
SHIFTS IN SLEEP OSCILLATIONS—
TOWARD INDIVIDUALIZED 
FREQUENCY RANGES

The exact frequency band in which an oscillatory event 
can be observed varies between individuals and is influ-
enced by age. To prevent missing true oscillatory events 
during detection and mixing up functionally distinct os-
cillatory components, cutoff frequencies have to be deter-
mined carefully. We argue that individually determined 
frequency ranges are the prerequisite to derive meaning-
ful age- and person-specific characteristics of oscillatory 
components.

F I G U R E  3   Comparison of fixed (75 µV) and individually adjusted slow oscillation detection thresholds. (a) Relation between slow 
oscillation density estimates derived by the use of individually adjusted versus fixed detection thresholds. In younger adults (orange), the two 
detection thresholds produce comparable results. In older adults (blue), especially for individuals with small slow oscillation amplitudes (smaller 
square size), a fixed detection threshold results in an underestimation of slow oscillation density. (b) Individual average slow oscillations and 
age group averages of slow oscillations detected with individually adjusted and fixed amplitude thresholds. Left panel: In younger adults, both 
algorithms result in comparable slow oscillation detection. Right panel: In older adults, individually adjusted thresholds (blue) result in the 
detection of slow oscillations with smaller amplitudes compared to higher-amplitude fixed-threshold detection (green). OA, older adults; SO, slow 
oscillation; YA, younger adults
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6.1  |  Contemplating frequency cutoffs for 
low-frequency oscillatory components

Age-related changes in the appearance of sleep oscillations 
do not only include alterations in amplitudes, but also en-
tail shifts in the intrinsically expressed frequencies of the 
respective neural events. With respect to low-frequency 
components, a global slowing has consistently been re-
ported (Carrier et al., 2011; Dubé et al., 2015; Mander 
et al., 2017) (Figure 4c, Box 2). These effects comprise 
both slow oscillations (<1 Hz) as well as slow waves with 
higher frequencies (1–4  Hz). Although slow oscillations 
and slow waves constitute different entities on a theoretical 
level (Achermann & Borbély, 1997; Amzica & Steriade, 
1998; Steriade, Nunez, & Amzica, 1993), the applied cut-
off frequencies defining low-frequency EEG components 
are often not much attended to.

Empirically, the problem of identifying the exact fre-
quency ranges for specific oscillatory components in indi-
vidual participants can be solved by considering the NREM 
sleep power spectrum. Peaks in the power spectrum signify 
the presence of rhythmic neural activity at a given frequency 
(Aru et al., 2015; Kosciessa et al., 2019; Whitten et al., 2011). 
When visually inspecting the age-specific power spectra 
during NREM sleep in our data, it became evident that the 
peak in low-frequency power was shifted to even lower fre-
quencies in older adults (Figure S2). This slowing in low fre-
quencies was statistically reliable (average frequency peak: 
t(115) = 6.18, p <  .001, MYA = 0.73 Hz, MOA = 0.53 Hz) 
and was also evident for discrete slow oscillation events 
(Z = 3.24, p = .001, MdYA = 0.79 Hz, MdOA = 0.77 Hz; see 
Table 2, Figures 3b, 4c). Although statistically detectable, in 
contrast to the dramatic reduction in slow oscillation ampli-
tudes, interindividual and age differences in slow oscillation 
frequencies were relatively small (dfrequency  =  0.90 [0.36; 

1.44], damplitude  =  2.28 [1.62; 2.94], nonoverlapping confi-
dence interval; cf. Table 2).

Taken together, it appears that the magnitude of the slow-
ing of slow oscillations in old age does not reach an extent 
that would bias detection results when established frequency 
ranges (e.g., 0.5–1  Hz for slow oscillations) are utilized. 
Nonetheless, we emphasize the need to carefully consider, 
justify, and report the selected frequency range when publish-
ing sleep research findings on older adults. Slow oscillations 
and “faster” slow waves have been associated with differen-
tial homeostatic regulation (Bersagliere & Achermann, 2010; 
Werth, Achermann, Dijk, & Borbe, 1997) as well as with di-
vergent roles in the context of cognitive pathology in aging 
(Lucey et al., 2019; Mander et al., 2015, 2016). Yet, detection 
algorithms often deploy frequency bands that comprise both 
oscillatory components (e.g., Carrier et al., 2011; Kurth et 
al., 2010). Finally, one should bear in mind that even when 
using adequate frequency cutoffs, filtering can induce sig-
nal distortions. The choice of filter type and filter parameters 
will differentially influence the signal and change detection 
results (Widmann, Schröger, & Maess, 2015). Together, we 
thus underscore the need for clear and coherent terminology 
along with appropriate parameter settings and detection cri-
teria when reporting on age differences in low-frequency os-
cillatory activity.

6.2  |  Interindividual (age) variation in 
fast and slow spindle frequency bands

In contrast to slow oscillations whose detection seems mostly 
dependent on appropriate amplitude settings, the detection of 
sleep spindles is heavily influenced by the selection of fre-
quency ranges. In particular, the detection of spindle events 
is challenged by the presence of two spindle types. Slow (ca. 

F I G U R E  4   Topographical distribution of the average slow oscillation and spindle frequencies. (a) Overall increased fast spindle frequency in 
older (blue) compared to younger (orange) adults, with reduced effects at frontal channels. (b) Decreases in slow spindle frequency in older adults 
are only pronounced at Cz. (c) Uniform decrease in slow oscillation frequency in old age at all channels. Note. All slow oscillation and spindle 
characteristics were derived using individually adjusted amplitude thresholds. OA, older adults; SO, slow oscillation; YA, younger adults
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9–12.5 Hz) and fast spindles (ca. 12.5–16 Hz) differ in fre-
quency, topography (De Gennaro & Ferrara, 2003; Doran, 
2003; Klinzing et al., 2016; Schabus et al., 2007), generat-
ing mechanisms (Ayoub et al., 2013; Schabus et al., 2007; 
Timofeev & Chauvette, 2013), and not least in their func-
tionality (Barakat et al., 2011; Fogel & Smith, 2011; Mölle 
et al., 2011). Although the existence of two spindle types is 
now widely acknowledged, there is no general consensus on 
the exact definition of the frequency range in which to expect 
slow and fast spindles (Cox, Schapiro, Manoach, & Stickgold, 
2017). Critically, spindles undergo a complex developmental 
shift and differentiation in their inherent frequency, power, 
and topography (Campbell & Feinberg, 2016; Crowley et al., 
2002; Nicolas et al., 2001; Purcell et al., 2017). This not only 
challenges research on younger adults (Cox et al., 2017), but 
also research that focuses on the entire lifespan.

In line with these observations, slow and fast spin-
dle frequencies were differentially affected by age in our 
data. Average fast spindle frequency was increased in 
older adults (F(1,56) = 14.12, p < .001, MYA = 13.39 Hz, 
MOA = 13.68 Hz) (Figure 4a, Box 2). In contrast, an age-re-
lated decrease in the average frequency of slow spindles 
was only pronounced at electrode Cz (age by channel in-
teraction: F(3,168) = 9.78, p < .001, ZCz = 3.31, p < .001, 
MdYA = 11.28 Hz, MdOA = 10.61 Hz; all other |Z| ≤ 1.41, 
all other p ≥ .158, α-level adjusted to .0125; Figure 4b). The 
complexity of frequency shifts during aging is thus even 
enhanced by the topographical intricacy of the observed 
effects.

The multiple facets of age differences in sleep spindle ap-
pearance require the careful consideration of an age-adjusted 
definition of spindle frequency ranges. Based on individ-
ually identified peaks in the NREM sleep power spectrum 
at topographical locations where slow and fast spindles are 
expected (cf. Figure S2), individually adjusted spindle fre-
quency ranges can be defined—even if they might not match 
conventionally prescribed bands exactly (Adamczyk, Genzel, 
Dresler, Steiger, & Friess, 2015; Bódizs, Körmendi, Rigó, 
& Lázár, 2009; Cox et al., 2017; Doppelmayr, Klimesch, 
Pachinger, & Ripper, 1998; Grandy et al., 2013; Klimesch, 
1999; Ujma et al., 2015). Comparisons between spindle de-
tection algorithms that use commonly predefined frequency 
ranges and those that adjust their frequency range definitions 
within individuals, provide a strikingly poor agreement with 
conventional (fixed-frequency) algorithms. The latter have 
been shown to miss up to 25% of fast and slow spindles 
(Adamczyk et al., 2015; Cox et al., 2017; Ujma et al., 2015). 
To allow for the investigation of differences in spindle char-
acteristics, age-comparative research should ensure that the 
frequency bands applied to define slow and fast spindles are 
congruent with age- and person-specific spindle properties. 
Moreover, frequency definitions need to be broad enough 
to capture sleep spindles in their complexity and entirety. 

Independently of an individual's age, person-specific defini-
tions of spindle frequencies form the basis for these improve-
ments (Adamczyk et al., 2015; Cox et al., 2017; Ujma et al., 
2015).

7  |   CHALLENGE 5: 
TOPOGRAPHICAL DISPARITIES IN 
AGE-RELATED SLEEP CHANGES

Age-related alterations in sleep physiology do not show a 
spatially coherent pattern. We highlight that alterations in 
sleep oscillations that are measurable on the scalp do not 
necessarily reflect an altered initiation of underlying physi-
ological sleep processes per se, but could rather represent 
age-related alterations in structural properties of the brain. 
Taking into account that intrinsic characteristics of sleep-
specific oscillatory components may be well preserved dur-
ing aging can help our understanding of the functionality of 
sleep in old age.

Across the lifespan, the human brain undergoes complex 
structural alterations (Buckner, 2004; Cabeza, Nyberg, & 
Park, 2005; Fjell & Walhovd, 2010; Fjell et al., 2013; Raz 
et al., 2005), which are also reflected in the topography of 
the sleep EEG (Buchmann et al., 2011; Carrier et al., 2011; 
Kurth et al., 2010; Landolt & Borbély, 2001; Martin et al., 
2013; Sprecher et al., 2016). From childhood to adolescence, 
along with cortical maturation in frontal brain regions, maxi-
mal SWA shifts from posterior to frontal brain regions (Kurth 
et al., 2010; Whitford et al., 2007). In old age, frontal brain 
regions are particularly prone to age-related structural white 
and gray matter loss (Giorgio et al., 2010; Raz & Rodrigue, 
2006). As a consequence, age-related decline in spectral EEG 
power and amplitude is especially pronounced over frontal 
areas (cf. Figure S7, Table S6) (Carrier et al., 2011; Landolt 
& Borbély, 2001; Mander et al., 2017; Martin et al., 2013; 
Sprecher et al., 2016).

Topographical shifts in sleep parameters are diverse. For 
example, in our own data, the centroparietal prevalence of 
fast spindle density and amplitude in younger adults was 
shifted posterior in older adults, resulting in reduced or even 
absent age differences over parietal and occipital regions 
(Figure 5a,d; Figure S2). In contrast, slow spindles and slow 
oscillations maintained their frontal dominance in old age. 
Whereas the amplitude and density of slow oscillations were 
globally and uniformly reduced in old age (Figure 5c,f), the 
density and amplitude of slow spindles showed most pro-
nounced age-related reductions over frontal areas (Figure 
5b,e). Thus, the extracted oscillatory event or indicator (i.e., 
slow spindle, fast spindle, and slow oscillation), their derived 
characteristics (i.e., density, amplitude, and frequency), and 
not least an individual's age interact and influence where, and 
to what extent, age differences in sleep can be observed.
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Crucially, the topographical heterogeneity of age effects 
detectable on the scalp level may be meaningful and indic-
ative of alterations in underlying brain structure and cellular 
properties. To illustrate this effect, we tested for the associ-
ation between gray matter volume and fast spindle density 
measured at different electrode sites (separate voxel-vise 
multiple regression models for each predictor; see Figure 6; 
cf. Supporting Information; Figure S4, Table S3). In line with 
the observed posterior preservation of fast spindles in old age 
(Figure 5a,d; Figure S2), fast spindle density at Pz and Oz did 
not relate to gray matter volume. In contrast, fast spindle den-
sity measured frontally and at Cz, that was most reduced on 
older adults, was associated with structural integrity in fron-
tal and temporal brain regions (Figure 6; Figure S4, Table 
S3). In comparison, gray matter clusters for the association 
with slow spindle and slow oscillation density were small and 
less consistent (Figures S5 and S6, Tables S4 and S5). Based 
on these analyses examples, it becomes clear that structural 
brain integrity does not globally shape the generation and 
propagation of all oscillatory components. However, one 
should note that chronological age, in general, was associated 

with global reductions in gray matter volume that were stron-
gest in frontal brain regions (Figure 6; Figure S3, Table S2). 
The extent of structural brain alterations in aging can thus 
overshadow more focalized and potentially meaningful struc-
ture–function associations.

To derive a meaningful interpretation of the observed 
structure–function associations, one needs to consider that the 
extent to which we can detect oscillatory events on the scalp 
depends on both their generation and propagation. Thus, we 
can encounter the situation that oscillations are properly gen-
erated, but their propagation to certain brain areas is impaired 
by altered structural properties of the involved brain circuits 
(Landolt & Borbély, 2001; Martin et al., 2013; Nir et al., 
2011; Sprecher et al., 2016). In line with this notion and the 
gray matter associations reported above, the maximum of fast 
spindle density over the posterior cortex has been interpreted 
in terms of aggravated fast spindle propagation to frontal and 
central brain regions that is severely affected by brain atrophy 
during aging. In contrast, the generation of sleep spindles is 
often regarded as less affected during aging (Crowley et al., 
2002; Landolt & Borbély, 2001; Martin et al., 2013; Nir et al., 

F I G U R E  5   Topographical distribution of the average slow oscillation and spindle density and amplitude. (a) Centroparietal prevalence of 
fast spindles in younger adults (orange), compared to a parietal–occipital prevalence in older adults (blue). (b) Frontal prevalence in slow spindle 
density in both younger and older adults, as well as anterior to posterior attenuation of age differences. (c) Overall reduced slow oscillation density 
in older adults but preserved frontal dominance. (d) Preserved amplitude of parietal–occipital fast spindles in older adults. (e) Reduced slow 
spindle amplitude over centroparietal regions in younger adults, but more uniform amplitude modulation in older adults. (f) Overall, reduced slow 
oscillation amplitude in older adults but anterior to posterior attenuation of age differences. Note. All slow oscillation and spindle characteristics 
were derived using individually adjusted amplitude thresholds. OA, older adults; SO, slow oscillation; YA, younger adults
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2011; Sprecher et al., 2016; see also Box 2). Still, we must ac-
knowledge that the available cross-sectional correlative data 
neither allows us to disentangle whether differences in oscil-
latory components stem from disparities in their generation 
or their propagation, nor whether structural brain alterations 
cause, accompany, or result from alterations in sleep physi-
ology. To solve these questions, longitudinal study designs 
that identify and track the sources of oscillatory components 
and link them to aging changes in structural brain integrity 
are required.

To conclude, the topographic distinctiveness of age-re-
lated sleep alterations is an important but often overlooked 
factor in age-comparative sleep studies. With the choice 
where to study age differences, age effects can either be 
maximized or reduced. Hence, deriving measures of EEG 
activity from only one derivation, as common in standard 
sleep recordings, should be avoided (Mander et al., 2017). 
To capture regional variation of age effects in the EEG, 

electrode setups that can capture hemispherical asymmetry 
(Sprecher et al., 2016) and allow for a high spatial resolution 
should be preferred (ideally at least a 32-electrode setup or 
even high-density EEG). The fact that sleep parameters are 
selectively altered over specific brain regions, but not over 
other areas, casts doubt on the reported extent of age-related 
impairments in sleep processes. Brain atrophy likely results 
in a diminished and altered generation of certain sleep pa-
rameters (Dubé et al., 2015; Mander et al., 2013), but may 
also affect the propagation of electrical events that, per se, 
may be less prone to age-related changes. Future research 
should interpret the reported effects with care and provide 
solutions to disentangle age-related impairments in slow 
wave and spindle generation and propagation. Rather than 
placing a continued focus on the deficiency of sleep in old 
age, sleep studies require a shift toward maintained and in-
tact sleep characteristics to determine altered or preserved 
functionality of sleep in old age.

F I G U R E  6   Age differences in fast spindle density mirror cortical integrity. (a) Cohen's d of age differences in fast spindle density at different 
electrode sites. Confidence intervals are displayed as error bars. Age differences are most pronounced at Cz but are attenuated over more posterior 
sites. (b) Sagittal, coronal, and axial depiction of the association between gray matter volume and age (yellow), frontal (violet), and Cz (cyan) fast 
spindle density (separate voxel-vise multiple regression models for each predictor, controlled for total intracranial volume). In contrast to a global 
age-related decrease in gray matter volume (see Figure S3, Table S2), associations with spindle density are more specific. Whereas interindividual 
differences in fast spindle density at Pz and Oz are not related to gray matter volume, fast spindle density at Cz shows a strong association 
with structural integrity in frontal and temporal brain regions (see Figure S4, Table S3). Clusters are displayed and considered significant at a 
FWE-corrected voxel threshold of p < .05, and a FWE-corrected cluster extent threshold of p < .05 and k > 100. All clusters are corrected for 
nonstationary smoothness. See Tables S3–S5 for the cluster statistics and Figures S4–S6 for detailed depictions of the clusters. FWE, family-wise 
error; OA, older adults; YA, younger adults
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8  |   CONCLUSION

Fundamental changes in human sleep during aging are con-
sistently reported and easy to observe—but, as discussed in 
this article, it is nontrivial to quantify and measure them. 
Intact sleep and the functional succession of different sleep 
states is enabled by the balance of different neurotransmit-
ter systems (Aston-Jones, Gonzalez, & Doran, 2007; Cirelli, 
Huber, Gopalakrishnan, Southard, & Tononi, 2005; Ramm, 
1979; Steriade, Datta, Paré, Oakson, & Curró Dossi, 1990), 
and synergistic activity in different cortical and subcortical 
brain regions (Hobson & Pace-Schott, 2002; Pace-Schott 
& Hobson, 2002; Saletin et al., 2013; Steriade et al., 1990). 
Furthermore, it is embedded in a system of regulatory cir-
cadian and homeostatic processes (Achermann & Borbély, 
1999; Dijk et al., 2000). Altogether, the diversity of regulatory 

mechanisms, reaching from genes and cells to neurotransmit-
ters and brain networks (Hobson & Pace-Schott; Pace-Schott 
& Hobson, 2002), makes sleep susceptible to a wide range 
of possible interference. In consequence, the causes and the 
appearance of age-related changes in sleep are manifold and 
diverse (Dubé et al., 2015; Fogel et al., 2012, 2017; Mander 
et al., 2017; Muehlroth et al., 2019b; Zhong et al., 2019).

Standard criteria applied to measure these alterations are 
commonly optimized to capture interindividual variance in 
healthy younger adults but can be severely biased when ap-
plied in other populations. As a result, not all age differences 
documented via the use of conventional analysis pipelines 
capture real alterations in underlying neural processing. We 
thus stress the need to develop individually adjusted analytic 
approaches in order to disentangle true age-dependent effects 
from age-independent interindividual differences (see Box 3). 
But how could such an age-adjusted research process work?

We suggest that the basis for research on age-depen-
dent differences in a given (neural) process is rooted in 
thorough theoretical considerations that incorporate the 
complex and dynamic nature of aging (e.g., Cabeza et 
al., 2018; Cabeza, Nyberg, & Park, 2005; Lindenberger, 
Li, & Bäckman, 2006) and the individual as the primary 
unit of analysis (Fisher, Medaglia, & Jeronimus, 2018; 
Grandy, Lindenberger, & Werkle-Bergner, 2017; Molenaar 
& Campbell, 2009; Nesselroade, Gerstorf, Hardy, & Ram, 
2007; Nesselroade & Molenaar, 2016; Rose, Rouhani, & 
Fischer, 2013). Ideally, such a research process starts out 
with an exact definition of a neural or physiological phe-
nomenon that we intend to investigate. For instances, we 
could ask whether the intensity of sleep (in terms of sleep 
depth) is reduced in old age. In a next step, potential indi-
cators that mirror the phenomenon of interest along with its 
crucial features have to be considered and the most appro-
priate indicator(s) need(s) to be selected. In our example, 
we could decide to use SWA and slow oscillation density as 
markers of low-frequency oscillatory activity during sleep 
that index the depth of sleep (e.g., Achermann & Borbély, 
1999; Bersagliere & Achermann, 2010; Blake & Gerard, 
1937). Next, we need to determine how to best measure 
the respective indicator. Here, the individual has to be at 
the center of the analysis. Interindividual differences that 
are irrelevant for our research question and thus introduce 
“noise” (e.g., differences in anatomical skull properties) 
should be filtered out by adjusting analytic detection crite-
ria at the level of the individual person (Karch, Sander, von 
Oertzen, Brandmaier, & Werkle-Bergner, 2015; Molenaar 
& Campbell, 2009; Nesselroade et al., 2007; Nesselroade 
& Molenaar, 2016; Rose et al., 2013). In this way, we can 
create the conditions that facilitate an accurate interpreta-
tion of remaining interindividual differences (Nesselroade 
et al., 2007). To be as unbiased as possible when compar-
ing heterogeneous subject groups and individuals, we thus 

Box 3  Methodological advice for age-compara-
tive sleep studies

1.	Closely inspect your sleep EEG data visually. 
Knowing what the data look like will ease your 
understanding of what to consider and what to ad-
just in your analyses.

2.	Analyses should focus on microstructural rather 
than macrostructural sleep features.

3.	Define the neural process of interest as well as 
possible. Avoid proxies wherever possible.

4.	Consider that seemingly similar measures (e.g., 
frequency, amplitude, density, power of the very 
same spindle event) can reflect very different 
physiological and neuronal properties. Be precise 
on which features you extract and interpret them 
carefully.

5.	NREM sleep forms a continuum. Acknowledge 
that neurophysiological processes that are cap-
tured by sleep spindles and slow oscillations are 
present during both stage 2 sleep and SWS.

6.	Use individually adjusted algorithms (with regard 
to amplitude and frequency) for sleep oscillation 
detection.

7.	Use electrode setups that enable topographical 
comparisons. Try to incorporate the mechanisms 
that are driving topographical heterogeneity in 
age effects into your theories and methods (e.g., 
by carrying out structural brain imaging and/or 
source localization techniques in addition).

8.	Instead of focusing on deficits only, consider 
what is intact or maintained in old age. Do your 
very best to apply age-adjusted methodology and 
comparisons.
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believe that research on sleep and aging should strive to 
identify the best possible analysis strategy to study a cer-
tain phenomenon of interest—even if this means moving 
away from conventional analytic approaches.

Complementarily, we stress the inevitable need to shift re-
search foci from cross-sectional toward longitudinal studies. 
The currently available evidence cannot inform about “real” 
age changes in sleep (Hertzog & Nesselroade, 2003; Hofer & 
Sliwinski, 2001; Li & Schmiedek, 2002; Lindenberger et al., 
2011; Lindenberger & Pötter, 1998; Overton, 2010; Raz & 
Lindenberger, 2011). To disentangle adaptive from maladap-
tive aging processes, and to identify the lead-lag relations 
between age-related alterations in brain structure and sleep, 
study designs that follow the same individual across multi-
ple measurement occasions are required (Hofer & Sliwinski, 
2001; Li & Schmiedek, 2002; Lindenberger, 2014; Raz & 
Lindenberger, 2011).

Aside from that, we want to emphasize that age-depen-
dent alterations in sleep physiology should not necessarily 
be interpreted in terms of “shortage” or “deficiency.” The 
brain is an adaptive organ that changes its structure and 
function in reaction to mismatches between environmen-
tal demands and organismic supplies (Lövden, Backman, 
Lindenberger, Schaefer, & Schmiedek, 2010; Park & 
Reuter-Lorenz, 2009). First, this means that not all ob-
served age differences in sleep necessarily indicate a loss 
(Baltes, 1987; Baltes, Staudinger, & Lindenberger, 1998). 
Reduced SWA, for instance, might merely be the conse-
quence of reduced sleep pressure and an altered need for 
sleep in old age (Dijk et al., 2000). Second, due to the adap-
tive nature of the human brain, persons with very different 
developmental trajectories and physiological conditions 
can display similar sleep patterns (Muehlroth et al., 2019a). 
By identifying the similarities among individuals, and spe-
cifically among younger and older adults (Nesselroade 
et al., 2007), we can determine whether and how sleep is 
preserved in old age. Moreover, we can determine whether 
maintained sleep physiology is also reflected on the level 
of behavioral outcomes (Cabeza et al., 2018; Muehlroth et 
al., 2019b, 2019a; Nyberg, Lövdén, Riklund, Lindenberger, 
& Bäckman, 2012; Nyberg & Pudas, 2019; Park & Reuter-
Lorenz, 2009). Research that shifts its focus toward the 
successful retention of sleep characteristics represents the 
foundation to gain a mechanistic understanding of the con-
sequences entailed in altered sleep physiology. This is the 
basis for identifying the diagnostic value of sleep changes 
(Ferrarelli et al., 2019; Grandy et al., 2013; Prinz, 1977).

Finally, we want to point out that understanding sleep neu-
rophysiological dynamics in their entirety ultimately requires 
taking a holistic view on sleep as alternating states of NREM 
and REM sleep (Conte & Ficca, 2013; Prerau et al., 2017; 
Scullin & Gao, 2018). Beyond a continued focus on NREM 
sleep, theories and analysis methods should take the cyclic 

nature of NREM and REM sleep into account and consider 
their dynamic interaction (e.g., by investigating stage transi-
tion rates, probabilities, and their temporal pattern; cf. Kishi 
et al., 2011; Schlemmer, Parlitz, Luther, Wessel, & Penzel, 
2015; Yetton et al., 2018).

Recent attempts to establish sleep as a novel biomarker 
and treatment target for Alzheimer's disease have instantly 
evoked a massive rise in research on sleep and aging (Ju et al., 
2014; Mander et al., 2016; Noble & Spires-Jones, 2019; Vaou 
et al., 2018). Methodological considerations, though, call 
for a clarification of what we want to measure and how we 
can best assess the respective phenomena. Improved meth-
odological approaches will clearly speed up the search for a 
mechanistic understanding of the association between sleep 
and cognition in aged individuals.
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