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Figure S1. Analytical spectral density calculation involves far fewer operations than 
numerical solution 

Numerical and analytical solutions for the correlation and spectral density functions shown in 

Figure 1 are outlined. A) Numerical solution: From the internuclear vectors (ri) for a given 

proton pair, the vector forms of the dipole-dipole interaction tensors (di) are calculated. The 

matrix of correlation values is then created by taking all pairwise dot products of those vectors, 

here calculated with matrix multiplication. Determining weights for elements of the correlation 
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The product of the equilibrium population matrix, ∏, 
and transition probability matrices, P(τ), can be used 

to calculate the population-weighted average of 
elements of the correlation matrix, C, producing the 

internal correlation function CI(τ).

A

Calculating the 
numerical Fourier 

transform of the full 
correlation function,
C(τ) = CO(τ)CI(τ), 
yields the spectral 

density function, J(ω).
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matrix requires propagating the transition rate matrix (Q) at different times (τ) to calculate 

transition probability matrices (P(τ)). Each value of the correlation function is determined by 

multiplying the equilibrium probability matrix (∏) by the transition probability matrix, followed 

by taking the element-wise dot product with the correlation matrix. To accurately estimate the 

spectral density function, the correlation function must be calculated at many values of τ 

covering the complete decay, including overall tumbling of the molecule. With typically log 

spaced τ, the spectral density function can be determined using piecewise numerical integration 

(i.e. Fourier transformation) of the correlation function. B) Analytical solution: Following 

calculation of di as in A, blocks of kinetically related tensors are averaged. Groupings depend on 

the factoring of matrices (Ai) derived from eigenvectors of Q into block matrices (Gi), as shown 

in Figure S2. The self-dot products (di,j·di,j, equal to the Euclidean norm squared, |di,j|2) of the 

averaged tensors are then calculated, followed by further averaging over the groups (𝑔" =

〈%𝑑",(%
)〉). The correlation function can then be analytically described using a multiexponential 

decay with the exponential prefactors (ai) calculated from linear combinations of gi, along with 

decay rates (λi’) determined from eigenvalues of Q. The spectral density function follows directly 

from analytical Fourier transformation of that formula. This involves several orders of magnitude 

fewer operations than the numerical method. 
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Figure S2. Eigenvector analysis of rate matrices enables decomposition into a linear 
combination of state subsets 

A) A hierarchical rate matrix is constructed similar to Figure 1B, with kf = 10 and ks = 4. Inter-

macrostate rates are set to ks/4 and intra-macrostate rates are set to (kf - (1-2/4)ks)/2. B) 

Decomposition of the matrix into eigenvalues (λ) and a matrix of eigenvectors (V) yields three 

unique eigenvalues. C) For each eigenvalue, the product of the columns of V and the rows of V-1 

corresponding to that eigenvalue yields the eigenvector subset product matrix (Aλ) that can be 

used to weight the matrix (C) of dipole-dipole correlations between two states. The correlations 

must also be weighted by the equilibrium populations of a given state, which are given by the 

diagonal of A0. Applying both weightings and summing over the elements of C gives the pre-

exponential factor in the correlation function associated with a given eigenvalue. The 

eigenvector subset product matrices (V×V-1) can be expressed as a linear combination of group 

matrices. D) Group matrices are defined such that (ΠGi)·C is equivalent to various schemes of 

averaging the modulus squared of the internuclear vector tensors, 𝑑+,,,⃗ . When ri is fixed %𝑑+,,,⃗ %
)
=

𝑟"/0𝑆"). Therefore, drawing analogy to extended model free formalism, (ΠG1)·C is equivalent to 

𝑟/0𝑆) and (ΠG2)·C is equivalent to 𝑟/0𝑆f). E) A similar non-hierarchical rate matrix was 
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constructed by taking the Kronecker sum (Q = Qf ⨁ Qs) of a pair of two state matrices, one (Qf) 

with interstate rates of kf/2 and another (Qs) with interstate rates of ks/2. F) This matrix results in 

an additional eigenvalue that is the sum of -kf and -ks. G/H) The λ = -14 eigenvector subset 

product matrix is a linear combination of all four group matrices.  
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Figure S3. Rotation timescales used in this work fall in correlation plateau region and are 
consistent with literature values.  
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Figure S4. Simultaneous changes in distance and angle are not modeled well by simple 
analytical expressions 
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A) An example of the Kinetic Ensemble modeling (black points) and corresponding fit (red line) 

used to create Figure 2, in this case with parallel internuclear vectors having rA = 1.0 and rB = 1.1. 

A fit to the equation shown in red (with free parameter n) yields one data point shown in Figure 

2. B) The data shown in Figure 2 was refit with an additional free parameter, Δn. C) If a 30° 

angle is introduced in between the internuclear vectors, a fit with the same equation as in A 

leaves large systematic residuals. D) For small distance ratios, the resulting averaging powers go 

to extreme values in a futile attempt to fit the data. E) Adding a model free-like order parameter 

correction factor to the fitting equation improves the fit but still fails to model the behavior 

correctly. F) The resulting averaging powers continue to be distorted at fast exchange timescales 

in an attempt to fit the correlated changes in distance and orientation. G) If equidistant 

internuclear vectors are used, the order parameter correction factor fully captures the changes in 

populations. Because distances were equal, the averaging power was set to three and the red 

equation was directly evaluated from the input parameters. 
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Figure S5. Crystal resolution is less correlated with RDCs especially at high resolution 

Theses plots are produced in the same manner as Figure 6. The four plots show Q factors for N-

H, N-C’, side chain, and all RDCs pooled together. The RDCs used here were the same as those 

used for refinement and/or cross validation of the EROS ensembles11. The alignment tensors 

were fit simultaneously for all RDC types and all Q factors were derived from the same 

alignment tensor. 
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Ru Resolution PDB ID # 
Alt. Year  Ru Resolution PDB ID # 

Alt. Year 

0.902 1.6 3M3J:A 2 2010  0.889 3.48 5EDV:F 1 2015 
0.901 1.6 3M3J:E 2 2010  0.889 1.91 5D0M:B 1 2015 
0.899 1.4 2WWZ:A 2 2009  0.889 2.3 4S22:D 1 2015 
0.898 1.4 4M0W:B 2 2013  0.889 1.56 4LJO:B 1 2013 
0.898 1.7 3VUX:A 2 2012  0.888 1.98 3VUY:C 1 2012 
0.896 2.3 4S22:B 1 2015  0.888 1.18 3A9J:B 2 2009 
0.896 1.59 5GOI:B 1 2016  0.888 2.2 3A33:B 1 2009 
0.896 2 4WLR:C 1 2014  0.887 1.95 4MSQ:B 2 2013 
0.895 1.74 4MSM:B 1 2013  0.887 1.6 3M3J:C 2 2010 
0.895 1.98 3VUY:A 1 2012  0.887 1.85 3ALB:D 1 2010 
0.894 1.6 2ZNV:C 1 2008  0.887 1.85 3ALB:A 1 2010 
0.894 1.63 4K1R:D 1 2013  0.887 2.21 5AIU:C 1 2015 
0.894 1.74 4MSM:D 1 2013  0.886 3.48 5EDV:E 1 2015 
0.893 1.63 4K1R:B 1 2013  0.886 3.48 5EDV:H 1 2015 
0.893 1.15 5GOD:A 1 2016  0.886 3.82 4ZUX:C 1 2015 
0.893 1.15 5GOB:A 1 2016  0.886 1.96 3HM3:D 2 2009 
0.893 2.4 5EYA:C 1 2015  0.885 1.96 3HM3:B 2 2009 
0.893 2.05 4PQT:B 1 2014  0.885 1.85 3ALB:B 1 2010 
0.893 1.15 5GOD:B 1 2016  0.884 2.34 5FER:F 1 2015 
0.893 2.4 5EYA:D 1 2015  0.884 2.21 4AP4:F 2 2012 
0.892 1.85 3ALB:C 1 2010  0.883 2.4 3VHT:C 1 2011 
0.892 1.26 3NHE:B 2 2010  0.883 1.55 5J8P:A 1 2016 
0.892 3.82 4ZUX:M 1 2015  0.883 2.21 5AIU:F 1 2015 
0.892 1.4 3A9K:B 2 2009  0.883 2.2 2XEW:I 2 2010 
0.892 3.82 4ZUX:H 1 2015  0.883 1.9 3H7P:B 1 2009 
0.891 1.7 3VUX:B 1 2012  0.882 1.75 1WRD:B 1 2004 
0.891 3.48 5EDV:G 1 2015  0.882 2.21 4AP4:C 1 2012 
0.891 2.1 5DFL:B 1 2015  0.881 2.35 3UGB:B 1 2011 
0.891 1.85 2HD5:B 1 2006  0.881 2.39 3AUL:A 1 2011 
0.891 1.9 3WWQ:K 1 2014  0.880 1.96 3HM3:C 2 2009 
0.890 1.9 3WWQ:E 1 2014  0.880 2.7 4BVU:C 1 2013 
0.890 1.95 2JF5:B 2 2007  0.880 2.34 5FER:C 1 2015 
0.890 1.85 2QHO:C 2 2007  0.880 1.59 5GOI:A 2 2016 
 
Table S1. Top Scoring Crystal Structures 

This list includes all of the structures used to generate the 22-member high resolution crystal 

structure ensemble (≤ 1.74 Å resolution, Ru = 0.915). 


