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The design of periodic nanostructures allows to tailor the transport of photons, phonons, and matter
waves for specific applications. Recent years have seen a further expansion of this field by engineering
topological properties. However, what is missing currently are efficient ways to rapidly explore and
optimize band structures and to classify their topological characteristics for arbitrary unit-cell geometries.
In this work, we show how deep learning can address this challenge. We introduce an approach where a
neural network first maps the geometry to a tight-binding model. The tight-binding model encodes not only
the band structure but also the symmetry properties of the Bloch waves. This allows us to rapidly
categorize a large set of geometries in terms of their band representations, identifying designs for fragile
topologies. We demonstrate that our method is also suitable to calculate strong topological invariants, even
when (like the Chern number) they are not symmetry indicated. Engineering of domain walls and
optimization are accelerated by orders of magnitude. Our method directly applies to any passive linear
material, irrespective of the symmetry class and space group. It is general enough to be extended to active
and nonlinear metamaterials.
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I. INTRODUCTION

Wave propagation in a periodic medium is governed by a
band structure that substantially modifies the transport of
those waves. While these effects were first explored for
electrons inside crystals, with the atomic arrangement
dictated by chemistry, band structures are also encountered
in many other areas across physics where modern advances
make it possible to engineer the periodic medium: photonic
[1] and phononic [2] crystals as well as optical lattices [3]
are well-known examples. This approach the opportunity to
explore freely the space of possible designs and search for
band structures with peculiar desired properties.
One particularly exciting target for such explorations is

the topological features that have become a centerpiece of
modern band-structure theory [3–6]. Recent theoretical
breakthroughs [6,7] have allowed the exploration of large
databases of natural materials to uncover thousands of
topological materials [8]. For engineered materials, on the

other hand, the configuration space is even infinite dimen-
sional. There, an efficient method to rapidly extract the
band structure and topology for any given unit-cell geom-
etry would be a crucial tool which could pave the way to
discoveries that would otherwise not be feasible. Ideally,
such a method should (i) provide answers for completely
arbitrary geometries, (ii) be easily transferrable to different
underlying wave equations, (iii) allow a substantial speed-
up compared to state-of-the art methods, and (iv) predict
topological properties.
We believe that deep learning approaches are uniquely

suited to address these challenges. Up to now, the first
applications of neural networks to band structures have
focused on learning the mapping of a few selected model
parameters (describing the geometry of the periodic
medium) to the bands [9–12], band gaps [13,14], or
topological invariants [15–17]. However, neural networks
(NNs) can clearly be designed to make predictions for
arbitrary unit-cell geometries, enabling the exploration of a
much wider design space. This task is closely related to the
well-developed domains of image recognition and image-
to-image mapping. While that would already be an impor-
tant step on its own, such a NN would still be oblivious of
any property imprinted in the Bloch waves, including any
topological property.
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The solution we advocate here is to have the NN turn an
arbitrary unit-cell geometry into the parameters of a tight-
binding (TB) model (see Fig. 1). In a subsequent step, this
small TB model is then efficiently diagonalized to yield the
full band structure as well as the topologically relevant
features of the Bloch waves. Essential constraints imposed
by the symmetries of the underlying geometry can be
straightforwardly implemented in such a TB model. The
whole approach is an example of “known-operator learn-
ing” [18], where one embeds into a NN a function that
implements a complex (but known) operation that is useful
in the given context.
We show that the rapid exploration made possible by our

NN is a powerful tool to aid in physical discovery. It
addresses challenges in design and optimization, answering
questions like the following: Is it possible to implement,
under given physical constraints, a band structure of
interest, e.g., as produced by a simpler toy model? If
yes, which combinations of model parameters are acces-
sible? How abundant are topological bands for an arbitrary
distribution of designs? What is the distribution of a
topological invariant like the Chern number?

II. SCOPE AND CASE STUDIES

Our approach has a broad scope, as it directly applies to
any linear metamaterial supporting band structures encoded
in Hermitian Hamiltonians. As such, it is applicable to
electronic, photonic, phononic systems, and beyond. For
each case study, the symmetry group can be arbitrarily
chosen but it remains fixed. In other words, in our method a
NN is trained to predict a distribution of band structures

which share one of the 230 space groups (or in 2D, one of
the 17 wallpaper groups) and one of the ten symmetry
classes. The latter classification accounts for so-called
generalized symmetries: the time-reversal, the particle-
hole, and the chiral symmetries [19].
Below, we present the essential elements of our method

in a general framework. For the sake of concreteness and to
prove its practical value, we also discuss in detail a few
interesting case studies. The case study which we use to
demonstrate most applications is the 2D Schrödinger
equation ½−ℏ2△=2mþ VðxÞ�ψn ¼ ℏωnψn with C6 sym-
metric (translationally invariant) potentials. This equation
has wallpaper group p6 and belongs to the symmetry class
AI (conserved time-reversal symmetry whose square is the
identity and no particle-hole or chiral symmetry). Inspired
by the situation that is encountered in photonic or phononic
crystals, where the geometry of two materials (solid or air)
defines the unit cell, we focus on steplike potentials. This
case study relates specifically to the propagation of light in
photonic-crystal-type optical waveguides in the paraxial
approximation, which generally has been an important
playground for photonic topological physics recently [20–
24]. We note that the symmetry class AI does not support
any strong topological invariant in 2D but still allows for
fragile topological phases [25]. Below we show that our
method is especially well suited to identify this type of
topological phase. Furthermore, we demonstrate that its
realm of applications extends to systems supporting strong
topological phases. For this purpose, we consider as a case
study the 2D Dirac equation with a position-dependent
mass; see Sec. VIII. This equation has particle-
hole symmetry (squaring to the identity) but broken

(a) (b) (c)

(d)

FIG. 1. Neural-network-based prediction of band structures from unit-cell geometries or potentials. (a) The geometry is fed into a
multilayer convolutional network (Appendix A) producing the coefficients of a symmetry-enhanced tight-binding model, which is then
diagonalized to obtain the band structure. (b) Cut along the k path indicated in (a), for the same band structure (now including also the
first two bands), comparing the Schrödinger equation (dark thin lines) and NN (thick light lines). The two types of predictions are
difficult to distinguish with the bare eye. The symmetry labels are also indicated (0=1 indicate the quasiangular momentum; þ and −
label the even and odd states, respectively). (c) Fraction of correctly predicted symmetry labels at each high-symmetry point (Γ, K, and
M) and for each band on validation geometries unknown to the NN. (d) Comparing the k-resolved band gap ωnþ1ðkÞ − ωnðkÞ for five
validation geometries (NN vs Schrödinger). For the last potential, the band-gap zeros are marked by white dots. The crossings of the
second and third band define a sextuplet of Dirac cones that are not pinned to any high-symmetry point. In all plots, the height of the
potential is Vmax ¼ ð16ℏÞ2=ð2ma2Þ.
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time-reversal symmetry and, thus, belongs to the symmetry
class D, which supports topological phases with nontrivial
Chern numbers. This model is of interest on its own, as it
captures the large-wavelength spin-polarized (or mirror-
symmetry-polarized) physics of a HgTe=CdTe quantum
well [26] whose geometrical parameters are varied peri-
odically to realize a pattern of alternating trivial and
topological insulator domains.
Finally, we demonstrate another aspect of the flexibility

of our method, implementing it for the 3D Schrödinger
equation in the presence of potentials with a nonsymmor-
phic space group (the space group p4222).
In the context of applications of deep neural networks for

topology, our band-structure-based approach, with direct
predictions based on the underlying geometry, is of a
different nature from other approaches where the network
tries to identify (topological) phases of matter based on
observing, e.g., simulated snapshots of system configura-
tions or correlators [27–31].

III. TIGHT-BINDING NEURAL NETWORK

In the standard setting of band-structure theory, a wave
equation is solved on a periodic lattice, giving rise to a set
of bands ωnðkÞ, where n is the band index and k ∈ BZ
the wave vector inside the Brillouin zone (BZ). The waves
are subject to a periodic modulation of a potential (in the
case of the Schrödinger equation), a dielectric index (for
the Maxwell equations), or material density and elastic
moduli (for phononic crystals). To keep our description
general, we simply refer to “the unit-cell geometry” in
either case.
In our case, we propose to use the NN to generate a

TB Hamiltonian: Ĥ ¼ Ĥ(Fθ½Vð·Þ�). Here, Vð·Þ represents
the network’s input (the unit-cell geometry, i.e., a potential
or a material distribution), θ is a vector collecting all the
network’s parameters (weights and biases), and Fθ is the
network’s output: a vector that contains the energies and
hopping matrix elements of the TB model.
The band structure, in turn, results from writing this

Hamiltonian in k space, and diagonalizing the resulting
N × N matrix Ĥk(Fθ½Vð·Þ�) ¼ hkjĤ(Fθ½Vð·Þ�)jki. The
number N of TB orbitals is chosen depending on how
many bands we would like to predict, more on this later.
Overall, for any given wave vector k, we generate a vector
ω ¼ ðω1;ω2;…;ωNÞ of eigenfrequencies,

ℏωðkÞ ¼ DiagðĤk(Fθ½Vð·Þ�)Þ:

As we indicate above, it is important for network training
that the diagonalization operation Diag is differentiable
with respect to the entries of the Hamiltonian matrix.
Indeed, from first-order Rayleigh-Schrödinger perturbation
theory, one finds

∂ωnðkÞ
∂θ ¼

X
l

�
ϕnðkÞ

����∂Ĥk(Fθ½Vð·Þ�)
∂FðlÞ

θ

����ϕnðkÞ
�∂FðlÞ

θ ½Vð·Þ�
∂θ :

ð1Þ

Here, jϕnðkÞi is the eigenvector in the basis of TB orbitals,

ĤkjϕnðkÞi ¼ ωnðkÞjϕnðkÞi, and FðlÞ
θ are the parameters

inside the tight-binding Hamiltonian that have been pre-
dicted by the NN.
The cost function during training is prescribed as the

quadratic deviation between the true band structure and the
predictions obtained from the network, averaged over all
training samplesVð·Þ, the bandsn, and the quasimomentumk:

CðθÞ ¼ h½ωNN
n ðkÞ − ωtrue

n ðkÞ�2iVð·Þ;n;k: ð2Þ

ThesetofkpointsisagridcoveringthefullBZ.SeeAppendixB
for details on the implementation of the resulting gradient
descent (using TENSORFLOW).

A. Symmetry-enhanced tight-binding model

One of the important advantages of this approach is the
ability to take care of the space group and other symmetries
in an elegant and efficient way by imposing them on the TB
model. This is particularly important for topological band
structures whose topological features are well known to be
constrained (and in some cases, even determined) by the
underlying symmetry properties.
We call such a TB model “symmetry enhanced.”

This TB model shares the same space group and symmetry
class as the training samples. In order to define its
Hilbert space, we select a basis of localized Wannier
orbitals. The choice of a suitable set of orbitals depends
not only on the space group and symmetry class but also
on the potential distribution and the number of bands
we would like to predict. The space group and the
generalized symmetries impose constraints on the hop-
ping and on-site energies of our TB model (that depends
on localization position and point symmetry of the
orbitals). Each output neuron of our NN encodes an
independent parameter of the underlying Hamiltonian
Ĥ; see Appendix C for more details.
During training, we require that the Bloch-wave sym-

metries at a discrete set of so-called maximal k points (e.g.,
Γ, K, and M for the p6 group) are reproduced correctly.
This also ensures the correct behavior at all other high-
symmetry points or lines [6] that may occur in general for
arbitrary space groups. For these k points, the Hamiltonian
decomposes into blocks corresponding to an irreducible
representation (irrep) of the proper symmetry group of k
(for nonsymmorphic groups, the little group, see Sec. VII).
In practice, we enforce the right behavior by applying the
cost function (2) separately to each block at the maximal k
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points, demanding a match to the training data for each
symmetry sector separately.

IV. TRAINING

An important challenge in NN training is the choice of
training data. If data are generated by simulation (as is the
case here), one can train on random input with a distribu-
tion close to the envisaged applications. Our approach
is to generate Gaussian random fields in the unit cell (with
independent Fourier components, here hjAkj2i ∼ jkj−1;
see Appendix D). The Fourier components are enforced
to be of the appropriate symmetry. When required,
steplike potentials can be implemented by digitizing the
initially continuous random field to two values, VðxÞ ¼ 0
or VðxÞ ¼ Vmax.
For the 2D Schrödinger equation case study, we train the

network on the six lowest-energy bands using a k grid
inside a triangular region covering uniformly one sixth of
the Brillouin zone (sufficient for C6 symmetry); see
Appendix E for more details. As we discuss above, after-
ward our symmetry-enhanced TB model still allows us to
predict the band structure with arbitrary k-space resolution.
The results produced using our NN (Fig. 1) are essentially
indistinguishable from the true bands: Our NN can predict
the band structure with about 2% accuracy (relative to
typical band gaps; see Appendix F) after training on 50 000
samples, and it is about 1000 times faster than Lanczos-
type diagonalization. For a more detailed discussion of the
performance gain allowed by our NN, see Appendix G.
In addition, our NN also predicts the underlying proper-

group irreps for the Bloch waves at the maximal k points.
Throughout the paper, we refer to the labels identifying
such irreps as symmetry labels. We take the example of the
p6 group to illustrate how symmetries automatically give
rise to robust features of the band structure that would be
difficult to predict otherwise. For p6, the proper group for
each maximal k point is a rotational group Cn, with n ¼ 6
for Γ, n ¼ 3 for K, and n ¼ 2 for M; cf. Fig. 1. The
combination of time-reversal symmetry and Cn rotations
gives rise to robust features: (i) At the Γ point, p and d
Bloch waves come in pairs with opposite quasiangular
momentum and lead to parabolic band touching [Fig. 1(b)].
(ii) Likewise, at the K points, essential degeneracies arise
from pairs of states with opposite quasiangular momentum
mK ¼ �1, leading to Dirac cones; cf. Figs. 1(b) and 1(d).
We emphasize that such features are automatically

enforced by our symmetry-enhanced TB model. This is
one of its main advantages over a naive approach. A
statistical analysis of a set of validation samples shows that
the fraction of correctly predicted symmetry labels is about
99%; cf. Fig. 1(c). This figure of merit is limited only by the
rms band-structure deviation: the NN is likely to exchange
the ordering of two levels with different symmetry labels
only if their splitting happens be so small that the NN is not
able to resolve it; see discussion in Sec. VII.

The central focus of modern band-structure theory is the
study of topological properties. These properties cannot be
deduced from the band structure ωnðkÞ itself but only from
the behavior of Bloch waves. We show that, remarkably,
our NN learns to predict correctly such properties despite
having only very limited implicit information regarding the
Bloch waves (via the symmetries). This is a crucial
advantage because training for the full eigenstates through-
out the BZ would drastically increase the size of the NN
and slow down training.

V. DESIGN OF BAND INVERSIONS

The bulk-boundary correspondence provides a link from
the bulk topology to the existence of robust gapless
excitations at a physical boundary or domain wall. This
connection paves the way to using a NN that has been
trained on the bulk band structure and Bloch-wave sym-
metries as a tool to design topological edge states.
For topological insulators, a generic mechanism leading

to a nontrivial topology and helical edge states is the so-
called band inversion in which the usual ordering of a pair
of bands is exchanged. For photonic and phononic crystals,
a band inversion of p and d orbitals can be engineered by

(a) (b)

(c)

FIG. 2. Designing a band inversion for topological transport
using rapid band-structure evaluation and symmetry predictions
provided by a neural network. (a) Geometry of the potential: Six
circular holes of fixed radius are placed at a varying distance R
from the C6 center. (b) Energy spectrum at the Γ point as a function
ofR. The energies of thep andd bands cross forR ¼ a=3. (c) Band
structure for three different values ofR [marked in panel (b) by the
horizontal lines] before, at, and after the band-inversion transition
(thick lines, NN; thin lines, SEq). The corresponding potentials are
shown as insets. At the band-inversion transition, theWigner-Seitz
primitive cell becomes smaller. The resulting folded band structure
supports a pair of degenerate Dirac cones at the Γ point. Moreover,
two pairs of bands become degenerate along the k path fromM to
K. These are essential degeneracies enforced by the rotational
symmetry and the smaller unit cell. The NN is able to reproduce
these features, although it has not been trained on potentials with a
smaller unit cell.
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purely geometrical means [32]. Based on this concept, our
NN helps efficiently design domain walls of this type. In
Fig. 2, the geometry is tuned to decrease the energy of a d
orbital while increasing the energy of a p orbital until their
order is inverted. The very close agreement between the
network predictions and the true spectrum is remarkable,
given that the potential designs adopted here look very
different from the random training potentials.

VI. EXPLORING BAND REPRESENTATIONS AND
FRAGILE TOPOLOGICAL PHASES

Topological band-structure theory originally relied
entirely on momentum-space properties defining topologi-
cal invariants based on the behavior of Bloch waves across
the Brillouin zone. Only relatively recently, it was realized
that important additional information can be extracted by
analyzing the tension between momentum-space and real-
space descriptions. The resulting mathematical theories
[6–8,33] (sometimes known as “topological quantum
chemistry”) build onto the theory of band representations
]34 ] to offer a very general theoretical framework to

classify all natural materials according to their topological
properties. This theoretical formalism has been so far
mostly used to investigate electronic properties of natural
materials. However, its range of potential applications
extends to any periodic medium; see Ref. [35] for a

pioneering application to photonics. Here, we demonstrate
how our NN-based approach combined with topological
quantum chemistry allows the rapid exploration and stat-
istical analysis of the topological properties of large sets of
band structures.
Band representation (BR) theory tries to understand

isolated sets of bands (separated from the remaining bands
everywhere by local gaps) in terms of their underlying
Wannier orbitals. Mathematically, a BR is a (time-reversal-
symmetric) space-group representation that is defined
on a basis of Wannier states in the so-called atomic limit
[33]. Intuitively, this is the limit where all Wannier states
have a localization length that is much shorter than the
lattice length scale. A group of bands corresponds to a BR
if it is possible to reach the atomic limit by continuously
modifying the Hamiltonian without closing the relevant
band gaps. For topological bands, it is not possible to reach
the atomic limit under continuous deformations.
Topological quantum chemistry aims to identify materials
hosting such bands. Remarkably, in most cases this is
possible based solely on the band structure and the irreps at
the maximal k points, exploiting the fact that all BRs can be
decomposed in terms of building blocks known as elemen-
tary band representations (EBRs) [34]. Crucially, this
information is also made available by our NN [Fig. 3(a)].
We demonstrate the power of the NN by analyzing

randomly generated potentials. They are sampled from a

1st set

1 3

2

(a) (b) (c) (d) (e)

FIG. 3. Using the NN to explore the topological properties of large sets of potentials. (a) Examples of randomly generated potentials
and the band structure predicted by the NN. The tables indicate the irreps predicted by the NN for each of the first six bands. (b) Possible
pathway leading to the annihilation of two (one) sextuplets of Dirac cones. For one sextuplet, this process is possible only at Γ or M.
(c) The EBRs for the wallpaper group p6. The sketches depict the “Wyckoff” positions and point symmetry of the underlying orbitals.
The “occupations” ni in the “symmetry fingerprint” ðns; np; nd; nf; n0; nþÞ count the number of (pairs of) Bloch waves for the
corresponding irreps; e.g., np ¼ 1means that there is one pair of p waves at Γ. (d) Distribution of (quasi-) BRs for the first (upper chart)
and second (lower chart) set of bands. The light gray slice represents sets of bands that cannot be classified based on the first six bands
only but are likely to be composite BRs; see Appendix I. All other composite BRs are grouped in the dark gray slice. (e) t-SNE
visualization [36], with each point representing a random potential (left) or the corresponding output (TB coefficients) of the NN (right);
the latter visualization allows for improved clustering (colors indicate EBRs). (f) Phase map indicating EBR and fragile topology for the
first (inset) and the second sets of bands. The parameter space interpolates between the potentials “1,” “2,” and “3” marked in panel (a),
in terms of their underlying Fourier coefficients.
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distribution which, in practical applications, might be
dictated by experimental design constraints. Here, we
illustrate it for hjAkj2i ∼ jkj−1=2. Even though this distri-
bution is different from the training distribution, the net-
work performs very well.
In a first step, one needs to identify isolated sets of

connected bands, which in topological quantum chemistry
is commonly done by checking for connections only at
high-symmetry points. Our approach allows us to go
beyond that by efficiently searching for connections away
from these points—looking for π defects in the Berry flux
on a fine k grid (much finer than the training grid)
evaluated rapidly, thanks to the small Hilbert space of
the NN-generated tight-binding model. In this way, we can
easily scan large (approximately 104) sets of potentials
using this method that would be otherwise computationally
expensive. Our numerical results show that any clustering
of bands based only on connections at high-symmetry
points would be incorrect for a substantial fraction of the
potentials (approximately 10% for the second set of
connected bands). In most cases, this error translates into
a wrong topological classification of the bands; see below.
Inspired by these observations, we set out to investigate

how robust the connections are away from high-symmetry
points. More precisely, we wonder whether—as is often
assumed, e.g., Ref. [7]—it is possible to eliminate them
without rearranging the order of bands at those points.
Band touchings are protected by the C2T antiunitary
symmetry [37] and can, thus, be eliminated only by
pairwise cone annihilation. This property leads us to
distinguish two scenarios: (i) If an odd number of cones
is present in 1=6 of the BZ, the cones can be annihilated
only at the Γ point or at the M points; cf. Fig. 3(c). This
implies a rearrangement of the band order at the high-
symmetry points. (ii) Otherwise (for an even number), the
cones can be annihilated anywhere [Fig. 3(c)] without
rearrangement. Using the NN, we discover that the first
scenario occurs in the overwhelming majority of cases
(approximately 95% for our potential distribution). The
presence of robust connections in this scenario seems to
point to a missing compatibility relation. Indeed, such a
relation can be identified as a consequence of a previous
finding in the literature [38]. In our time-reversal invariant
system, the sum of the Chern numbers for a set of
connected bands is always zero. As shown in Ref. [38],
the overall parity of the C2 eigenvalues at the C2-symmetric
k points (the parity of the number of odd states for a set of
connected bands) is equal to the parity of the Chern
number, which therefore means that every connected set
of bands must have overall even parity in our system.
As a final step toward identifying topological sets of

bands, we enumerate all EBRs, assigning to each a unique
symmetry fingerprint (Nn array) that lists the number of
(degenerate) orbitals for each irrep at each symmetry point
[Fig. 3(d)] [7,39]. For the group p6, the eight possible

irreps at the Γ, K, M points result in n ¼ 6 by noting the
constraints imposed by the appropriate compatibility rela-
tions; see Appendix H. If the fingerprint computed for an
isolated set of bands cannot be written as a sum of such
EBR fingerprints, the set must be topological (sometimes
labeled “quasi-BR”).
We use our NN to determine (quasi-) BRs for 104

potentials [Fig. 3(e)]. For 4% of the samples in this
distribution, the second set of bands is topological.
Strictly speaking, this figure depends on the statistical
distribution of potentials, but we expect qualitatively
similar behavior for other distributions; see Appendix I.
The standard analysis without taking into account con-
nections away from the high-symmetry points would
overestimate this figure significantly, predicting 14% of
topological samples. On the other hand, it turns out that this
discrepancy is eliminated once the connections predicted
by our C2 compatibility relation are taken into account. In
this case, one recovers with high statistical precision the
results already obtained using the much more numerically
expensive Berry flux method. This method also gives a way
to check our results solving directly the Schrödinger
equation; see Appendix I for more details. Besides provid-
ing statistical insights, our study also represents an efficient
random search, uncovering hundreds of topological sam-
ples. Moreover, we obtain important qualitative informa-
tion: All quasi-BRs discovered here belong to one of two
cases [Fig. 3(e)], where the set of bands is obtained by
splitting a BR into a topological band and another BR. This
is the defining feature of the recently discovered fragile
topological phases [25,35,40,41].
A further task rendered feasible by the NN is the creation

of high-resolution multidimensional maps that explore the
topological and hybridization phase transitions encoun-
tered while interpolating between potentials [Fig. 3(f)].

VII. APPLICATION TO A NONSYMMORPHIC
EXAMPLE IN 3D

In this section, we aim to demonstrate the flexibility of
our method by applying it to 3D band structures. In doing
so, we switch our focus from wallpaper groups to space
groups. Space groups, unlike wallpaper groups, cannot
always be decomposed into a direct sum of lattice trans-
lations and the point group. When this is not possible, the
space group is said to be nonsymmorphic. For nonsym-
morphic groups, the irreps classification—an important
step of our method—requires us to take into account
transformations that combine point symmetries with trans-
lations by a fraction of a lattice vector, i.e., screw rotations
and glide mirrors. This is done generalizing the concept of
the proper group by introducing the so-called little group.
This is an infinite-dimensional subgroup of the space group
that leaves invariant a particular quasimomentum and, in
contrast to the proper group, can include also some trans-
lations. It is also well known that TB models with
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nonsymmorphic space groups can be implemented only on
lattices with a basis [42]. Thus, a lattice with a basis will be
required for our symmetry-enhanced TB model; cf.
Fig. 4(a). We remark that the majority of space groups
in 3D are nonsymmorphic (157 out of 230) and that
nonsymmorphic space groups can even arise for quasi-
2D systems; see, e.g., Ref. [43]. Motivated by the added
complexity and the ubiquity of nonsymmorphic space
groups, we demonstrate our method for a nonsymmorphic
example.
We consider the 3D Schrödinger equation for steplike

potentials with space group p4222 (which has point group
D4 and a primitive-tetragonal lattice); cf. Fig. 4(b) for an
example of such a potential. In addition to the lattice
translations, this group is generated by a screw rotation
about the z axis (a rotation by π=2 accompanied by a
translation by half a lattice vector), and a twofold rotation
about the x axis; cf. Figs. 4(a) and 4(b). As usual, we train
our NN using a coarse grid, here covering 1=8 of the BZ;
cf. blue region in Fig. 4(c). As we explain in Sec. III A and

Appendix J, the training cost function includes a contri-
bution for each of the irreps of the little groups at the
maximal k points. Here, we have six maximal k points
(Γ, M, X Z, A, and R) and a total of 28 different irreps
(substantially larger than our previous p6 example). After
taking the steplike ansatz for the potentials and rescaling
the energy, we are left with only two free parameters: the
potential height Vmax and the vertical lattice constant av (in
appropriate units set by the horizontal lattice constant ah).
We train our NN to predict band structures for Vmax ¼
ð10ℏÞ2=ðma2hÞ and av ¼ ah. In addition, we discretize the
unit cell as a 20 × 20 × 20 grid (comparatively low
resolution, with the goal of saving computational resources
in producing the training data for this illustrative example).
The results are summarized in Figs. 4(d)–4(f). The band

structures for validation potentials evaluated along a high-
symmetry path or high-resolution 2D cuts are in good
agreement with exact results; cf. Figs. 4(d) and 4(e). More
quantitatively, the rms deviation of the band-structure
prediction averaged over 2000 validation samples is
2 × 10−3Vmax. The fraction of correctly predicted sym-
metry labels is above 95%. The error decreases to levels of
around 1‰ if one takes into account only the levels and
symmetry-protected doublets that are separated by the
neighboring levels by more than 3 times the rms deviation.
This reduction indicates that the fraction of correctly
predicted symmetry labels is limited only by the precision
of the band-structure predictions.
Overall, these results show that our method represents a

powerful tool to predict 3D band structures that extends to
systems with very complex symmetry constraints including
nonsymmorphic systems.

VIII. STRONG TOPOLOGICAL PHASES OF
TWO-COMPONENT TOPOLOGICAL

METAMATERIALS

In our approach to the prediction of band structures and
topological properties, the symmetry labels are the only
information about the underlying Bloch waves provided to
the NN during training. This approach has the advantage of
being very efficient, and it is clearly suitable to predict
symmetry-indicated topological features. These also cover
some (but not all) strong topological invariants. It remains
an open question whether our method can be adopted to
investigate non-symmetry-indicated topological features.
The aim of this section is to address this question. In
particular, we focus on the most prominent and well-known
example of a non-symmetry-indicated strong topological
invariant, the Chern number for 2D systems.
A straightforward approach to predict Chern numbers (or

any other non-symmetry-indicated topological invariant)
using a NN consists of providing them to the NN during
training and one-hot encode the NN’s predictions in ad hoc
output neurons [15–17]. While it would be possible to
extend our method based on this approach, we instead use

FIG. 4. Neural-network-based prediction of 3D band structures
for potential distributions in the p4222 nonsymmorphic space
group. (a) Sketch of the symmetry-enhanced TB model. Pairs of
orbitals localized about different sublattices are mapped onto
each other via screw rotations. Symmetry-related nearest-
neighbors transitions are highlighted in the same color. The
different orbital types (bottom) transform according to the
different representations of the point group D2 (twofold rotations
about the axes x, y, and z); see the Appendix. (b) Example of
steplike potential with p4222 space group. (c) BZ and high-
symmetry path for the primitive tetragonal lattice. (d) Band
structure along the high-symmetry path. (e) Comparison of NN
and Schrödinger equation predictions for the first three band gaps
on two different 2D cuts of the BZ. [The results in (d) and (e) refer
to the validation potential shown in (b).] (f) Fraction of correctly
predicted symmetry labels ordered by band and high-
symmetry point.
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our standard method. However, this time, we train many
NNs on the same training data but with different random
initial conditions for the NN. We then use the information
regarding the Chern numbers to postselect a NN that
performs well on the Chern numbers. This approach is
far more elegant, as the Chern numbers are then directly
encoded in the symmetry-enhanced TB model.
At first sight, one may think that our approach is doomed

to fail: Since we aim to predict the Chern numbers for an
infinite number of geometries, one might naively expect
that the number of NNs that would be required to be trained
should also be infinite. However, one should keep in mind
that the predictions of Chern numbers for different geom-
etries are highly correlated: Since a Chern number can
only change whenever the corresponding band gap closes,
a NN that is trained to accurately predict (via the symmetry-
enhanced TB model) the band structure will also auto-
matically find the right topological phase transition
hypersurfaces in the space of all geometries. Hence, if
the NN is successfully postselected to predict the Chern
numbers for even a single geometry for each topological
phase, it will automatically provide the right Chern
numbers for all other geometries as well. In practice, the
Chern numbers might still be wrong in those cases where
the band gaps are smaller than the precision of the NN.
Only the Chern numbers corresponding to band gaps much
larger than the precision will be guaranteed to be correct.
However, since, as we see, the NN precision is usually very
high, this limitation does not present a significant problem
in practice. The remainder of this section is devoted to
demonstrating that our expectations are fully confirmed for
an interesting case study.
Even after restricting ourselves to 2D systems, there

is ample choice of possible case studies where the topo-
logical phases are described by nontrivial Chern numbers.
Formally, the only precondition is that the relevant
Hamiltonian has broken time-reversal symmetry. This is,
for example, the case for charged particles in the presence of
a magnetic field or for certain systems under a suitable time-
dependent drive. Since the spin-orbit interaction is akin to a
magnetic field when acting on spin-polarized electrons, the
Chern numbers are also suitable to describe the topological
phases of this type of excitation. In this framework, the
Hamiltonian of interest is “half” (one of each spin-polarized
block) of the full time-reversal-symmetric spin-conserving
Hamiltonian. Thus, the nontrivial Chern numbers refer to
only one spin sector and are known as “spin” Chern
numbers. This is the situation in several well-knownmodels
[44,45] and for our case study of choice.
Just like before, we want to apply our NN to predict band

structures involving nontrivial unit-cell geometries. Starting
from any homogeneous (bulk) topological model, we can
vary the underlying parameters spatially in a periodic
fashion, giving rise to a topological metamaterial. To keep
things simple and comparable to other examples, we choose

only two different values for the parameter in question
(similar to the potential landscape discussed so far).
Specifically, we consider a minimal model of a two-

component topological metamaterial—a model with many
intriguing features that are interesting in their own right, not
only as a benchmark for our approach. In this metamaterial,
we combine spatial regions of trivial (spin Chern number
C ¼ 0) and topological (spin Chern number C ≠ 0) bulk
material. Both regions are assumed to share the same band
gap of width 2m; cf. Fig. 5(a). The two materials are
arranged according to a random unit-cell geometry with
fourfold rotational symmetry and lattice constant a;
cf. Fig. 5(b). The mismatch in Chern numbers at the closed
domain walls separating the two types of regions will give

FIG. 5. Using the NN to investigate the spin Chern numbers in a
family of 2D topological insulator metamaterials. (a) Sketch of
the spin-polarized excitation spectrum in a semi-infinite-plane
geometry for a trivial (top) and a topological (bottom) material
close to the Γ point, close to the Fermi energy EF ¼ 0. The
topological material supports gapless edge states (red line).
(b) Sketch of a metamaterial geometry. Its unit cell (blue) is
subdivided into trivial (gray) and topological (red) domains
according to a randomly drawn fourfold rotationally symmetric
pattern. (c) Probability field for a metamaterial’s Bloch wave with
energy within the single-domain band gap. (d) Metamaterial band
structure. Shown are the first (last) four positive (negative) bands
together with the symmetry labels and the Chern numbers (in
red). Exact results and NN predictions are not distinguishable
with bare eyes. (e) Exact and NN-predicted Berry fluxes for the
first four bands. [(c)–(e) refer to the validation geometry shown in
(b).] (f) Stacked bar chart of the Chern number distribution for the
first four positive bands. (g) Scatter plot of the Chern and
fingerprint accuracies for 13 trained NNs. Each NN is represented
by a red and a blue circle. For the red circles, the rms band-
structure deviation (radius of the circles), the fraction of correct
fingerprints (x coordinate), and Chern numbers (y coordinate) are
obtained, averaging over 2500 validation samples and the eight
central bands. The blue circles take into account only bands
separated from neighboring bands by a minimal splitting larger
than 0.01m.
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rise to topological excitations inside the homogeneous bulk
band gap; cf. Fig. 5(a). The edge channels propagating
along the domain walls themselves form a lattice of closed
loops. An isolated loop would have a discrete eigenspec-
trum. These excitations will propagate chirally about any
given closed domain wall but also tunnel to adjacent
domain walls; cf. Fig. 5(c). These processes will give rise
to the band structure that we set out to investigate.
We model each of the two-component materials using

the Bernevig-Hughes-Zhang model [45]. This model is
known to capture well the physics of HgTe=CdTe semi-
conductor quantum wells [26]. For these materials, the
valence and the conduction bands have minimal splitting at
the Γ point; cf. Fig. 5(a). At this high-symmetry point, the
Bloch waves are eigenstates of the quasiangular momentum
and are, thus, orbital polarized; cf. the labels in Fig. 5(a).
This feature allows us to define the mass or band-gap
parameter M as half of the energy difference between the
two Bloch waves, M ¼ �m. The sign of M is determined
by the ordering of the bands and a change of ordering is
accompanied by a change of Chern number (by one unit).
In our conventions (see Appendix K), the Chern number is
C ¼ 0, 1 for positive and negative mass, respectively.
We model the composite metamaterial using the

Bernevig-Hughes-Zhang model but allowing a lattice-
site-dependent mass MðxÞ. Each random configuration
MðxÞ belongs to the p4 wallpaper group [lattice, square;
point group, C4]. Here, the position x is defined on a
“microscopic” square lattice of lattice constant a=N. The
metamaterial unit cell contains N × N unit cells of the
microscopic lattice and has lattice constant a. This leads to
a folding of the BZ giving rise to N2 bands for each band of
the Bernevig-Hughes-Zhang model. Subsequent bands are
separated by local band gaps, and we can assign to each
band an integer Chern number.
As we discuss above, we are primarily interested in the

band structure formed by the topological excitations in the
bandwidth of the single-domain band gap; cf. Figs. 5(c) and
5(d). The distribution of the Chern numbers for the first
four bands above the Fermi energy (here located in the
middle of the whole band structure) is shown in the stacked
bar chart Fig. 5(f). We consider the mesoscopic regime
where the typical localization length ξ, i.e., the transverse
extent of the edge channels at the domain walls, is larger
than the microscopic lattice constant but smaller than the
macroscopic one: a=N ≪ ξ ≪ a. Since a sets the scale for
the typical distance between adjacent domain walls, we
expect the interdomain hopping to be exponentially sup-
pressed and, thus, the bands to be well separated. In this
regime, the band structure is well approximated within a
large-wavelength description encapsulated in the Dirac
equation

HD ¼ Mðx̂Þσ̂z þ vðk̂xσ̂x þ k̂yσ̂yÞ: ð3Þ

Here, the energy is counted off from the Fermi energy and v
is the speed of the excitations. Moreover, σ̂i¼x;y;z is a set of
Pauli matrices whose basis states are an s and a p−
orbital for σz¼ 1 and σz ¼ −1, respectively. Importantly,
the antiunitary transformation Ξ¼Kσx (where K is
the complex conjugation) is a particle-hole symmetry,
Ξ−1HDΞ¼−HD. Since Ξ2 ¼ 1, our family of metamate-
rials is in the symmetry class D.
We note that the assumption that the Pauli matrices are

defined on a specific basis of atomic orbitals affects only
the symmetry labels but not the band structure or the Chern
numbers and, thus, does not imply any loss of generality. In
this sense, Eq. (3) and, thus, all results presented here go
beyond our specific microscopic model. This includes (but
it is not limited to) scenarios in which the spin is not
conserved (but the mirror out-of-plane transformationMz is
a symmetry) and/or the particle-hole symmetry is an
emergent symmetry not present in the microscopic model;
see Appendix K.
We train 13 NNs to predict the eight bands around the

Fermi energy and the corresponding Chern numbers for
ξ ¼ v=M ¼ a=10 (after a trivial rescaling of the energy,
this length is the only free parameter in the large-wave-
length description). We use the same method described in
Sec. IV. However, since we aim to predict the band
structure in the middle of the spectrum (instead of starting
from the minimal energy), we now face an additional
challenge: Given that the symmetry-enhanced TB model
and the original lattice model have a different number of
bands, it is not clear which band should correspond to
which (see Appendix K).
All of the NNs trained with this approach perform well

for most of the geometries, even without postselection, both
in the prediction of the symmetry labels and of the Chern
numbers. This includes even cases where the training grid
(a 9 × 9 k-space grid covering one fourth of the BZ) would
be too coarse to calculate the Chern numbers as the sum of
the Berry fluxes across the BZ [46]. For the purpose of
validating the Chern numbers after the training, we use a
fine 62 × 62 k-space grid to obtain reliable results. We note
that the somewhat surprisingly good performance in the
Chern number predictions, even before the postselection, is
favored by the especially stringent constraints posed by the
symmetry labels on the Chern numbers for our p4 wall-
paper group. For this group, the symmetry labels of a band
determine the Chern number modulo 4 [38]. In other
words, R ¼ C mod ð4Þ can be viewed as a symmetry-
indicated topological invariant. Even after taking this
constraint into account, there is still an infinite number
of possible Chern numbers for each value of R. Thus, the
task of predicting the Chern numbers remains nontrivial.
We further note that due to the natural correlations between
band structure and Berry curvature, even the Berry curva-
ture predicted by the NN is in most cases qualitatively
correct; cf. Fig. 5(f). This is remarkable because the NNs
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have not received any information regarding the Bloch
waves away from the high-symmetry points.
We compare the predictions by different NNs by plotting

in a scatter plot the rms band-structure deviation (radius of
the circles) and the fraction of correctly predicted Chern
numbers (y axis) and symmetry fingerprints (x axis);
cf. Fig. 5(g). Below, we refer to the latter two quantities
as Chern and fingerprints accuracy, respectively.
Remarkably, all NNs perform at a similar level for the
rms band-structure deviation and the fingerprint accuracy,
while they can be roughly divided into two groups when the
Chern accuracy is also taken into account. For the first
group, the Chern accuracy is significantly lower than the
fingerprints accuracy. This reflects that, as it should be
expected for a non-symmetry-indicated topological invari-
ant, for a significant number of cases, the Chern number is
wrong even though the symmetry fingerprints are correct.
On the other hand, for the other much larger group (11 out
of 13 NNs), the two figures almost perfectly coincide and
assume a value larger than 95% [cf. red circles in Fig. 5(g)].
Thus, by postselecting any of the NNs of the second group,
we obtain a high Chern accuracy.
As anticipated above, the remaining errors are mostly

due to band gaps that are too small to be reliably resolved
by the NN. This is confirmed by recalculating the Chern
and fingerprint accuracy, now taking into account only the
bands separated from neighboring bands by a minimal
splitting larger than a small threshold (0.01m, or roughly 3
standard deviations of the band-structure rms deviation). In
this case, both accuracies are very close to 100% (the
residual error is at the level of around 1‰); cf. the blue
circle in Fig. 5(g). This proves that the accuracy of our
Chern number predictions after NN postselection is limited
only by the band-structure precision (a similar conclusion
then holds also for the symmetry labels).

IX. OPTIMIZATION

Gradient-based optimization search for a geometry that
maximizes some reward is a powerful but numerically
intensive design tool for photonic devices [47–50]. The
numerical effort involved in calculating a large number of
finite element method simulations represents a substantial
bottleneck for explorative designs. NNs offer a natural way
out of this challenge as it has been demonstrated in a
handful of pioneering works [10,51–53]. In contrast to
these works, our approach allows us to search for an
arbitrary input geometry. As we explain above, this
geometry is parametrized via the Fourier coefficients of
a smooth field that is then discretized via a sigmoid
function (see Appendix L).
An important goal consists of solving the inverse

problem, where we try to reach a given target band
structure. This approach might be used, for example, to
find a physical implementation of some TB model of

interest (sharing the goal of Ref. [54]) under the given
experimental constraints.
In Fig. 6, we illustrate the procedure for a TB model

[55] that underlies fruitful applications in topological
photonics [56,57] and phononics [58,59]. The presence
of local minima in the optimization landscape is easily
addressed by running multiple trials and postselecting
outcomes, thanks to the 1000-fold acceleration produced
by the NN.
We observe that the optimal geometry is not defined

uniquely [Fig. 6(a)] since we demand only a match in the
first few bands. This feature could be exploited to select for
structures that are easy to fabricate. Conversely, however, it
is not generally possible to reach arbitrary band structures,
due to physical constraints like the allowed values of the
potential (the refractive-index contrast in the photonic case)
and the unit-cell size. To delineate the accessible regions of
the TB model parameters, a scan with repeated optimiza-
tion runs is required. Performing such scan for a 3D
parameter space [Fig. 6(b)] even on a coarse grid, the
number of evaluations runs in the millions (Appendix L),
which does not present a problem for the NN but would be
very impractical otherwise. The resulting map can be used

(a)

(b) (c)

FIG. 6. Using the NN for gradient-based optimization. (a) Pipe-
line for finding a physical implementation of a given TB model
(unit cell shown). The band structure of the model is provided as a
target. A randomly initialized geometry is evolved until the NN-
predicted band structure (dark lines) approaches the target (bright
lines); see also the animation in the Supplemental Video [60]. We
select those random trials that end up at a loss comparable to the
NN accuracy itself (blue shaded region). (b) Physically accessible
regions of the TB model parameter space: Contours show the
minimal loss achieved after 50 trials as a function the parameters
(on-site energy ω0, average hopping J̄ ¼ ðJ þ J0Þ=2, hopping
difference δJ ¼ J0 − J). In the blue region, the minimal loss is
lower than the network accuracy. (c) Solutions for a more
general model, including also next-nearest-neighbor hopping
supporting fragile topological phases; see Appendix M for more
details. The parameters are ℏω0 ¼ 0.6Vmax, ℏJ0 ¼ 0.038Vmax,
ℏJ ¼ 0.035Vmax, ℏL0 ¼ 0.002Vmax, ℏL ¼ −0.002Vmax.
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as a starting point for realizing extended TB models, e.g.,
implementing fragile topological phases with next-
nearest-neighbor hopping [Fig. 6(c)].
Other reward functions can be used to optimize only for

specific feature combinations (like band gaps, group
velocities, selected band representations, etc.). More gen-
erally, one might even optimize potential landscapes
where smooth geometry deformations in real space lead
to some band-structure evolution that, e.g., produces edge
states with desired properties. One important point in
optimization is that the network should give reliable robust
predictions even away from training examples. Empirically,
this seems to be the case here, in our observations.
Nevertheless, this could be the domain of further study,
possibly exploiting the concept of adversarial approaches
(where one tries to slightly change the input in a deliber-
ately disadvantageous way to maximize the deviation from
the correct output; see, e.g., Ref. [61]).

X. OUTLOOK

The tight-binding-network approach introduced here can
be directly applied to many other situations. These include,
without any alterations in the NN, finite-element calcu-
lations for electromagnetic and elastic waves (where the
execution speed advantage of the NN is enhanced by
further orders of magnitude). Moreover, direct extensions
allow us to address band structures for metamaterials with
inhomogeneous dissipation and amplification (with com-
plex eigenfrequencies and exceptional point physics in
reciprocal space) and driven nonlinear photonic crystals or
optomechanical arrays (where excitation pair creation leads
to a symplectic Hamiltonian structure and novel topological
features). Interactions on the mean-field level can be
addressed as well, e.g., using solutions of the Gross-
Pitaevskii equation for matter waves in optical lattices or
using density-functional-theory results for real materials
(where the input could be atomic positions instead of
geometries, using the ideas of SCHNET [62]). We expect
approaches like the one exemplified here to become a
standard part of the toolbox for metamaterial design.
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APPENDIX A: NETWORK LAYOUT

Here, we describe the layout of our NN. The network
maps a two-dimensional L × L image Vð·Þ representing the
potential inside a (parallelogram-shaped) unit cell onto a
finite set of coefficients of the symmetry-enhanced TB
model; see Appendix C. In our explorations, we find that a

good choice for the number of convolutional layers as well
as the kernel sizes is important for robust and successful
training, even though the fine details do not matter. The
proper structure depends mainly on the size of the input
potential. For the case of potentials with size 100 × 100, we
find the layout described below to give good results. The
layout is sketched in Fig. 7(a). A detailed list of parameters
is given in the table in Fig. 7(b). The entire implementation
uses the TENSORFLOW framework.

(i) Multilayer convolutional network: The first eight
layers of the neural network are 2D convolutional
(conv2D) layers with ReLu (rectified linear unit) as
the activation function. One goal of applying suc-
cessive convolutional layers is the reduction of the
image size, which is usually done using pooling
layers. In our case, we instead reduce the image size
mainly by using stride ¼ 2 in some layers. The
combination of the options stride ¼ 2 and padding ¼
same leads to the reduction of the pixels by a factor of
4 (a factor of 2 in each direction). The combination
stride ¼ 1 and padding ¼ valid leads also to a
reduction of the pixels by eliminating grid points
close to the boundaries (when the kernel is not
completely within the image).

(ii) Multilayer fully connected network part: After flat-
tening the result of the last conv2D layer, four dense
layers are applied with dropout (0.15) between each
pair of dense layers. The first three dense layers use
also ReLu activations, while the last dense layer uses
linear activation to allow rescaling. The number of
neurons is 512=256=256=245. The number of neu-
rons in the last layer (245) corresponds to the

(a)

(b)

FIG. 7. Details of the NN layout. (a) Sketch of the layout of the
neural network. The input image is the unit cell of the potential
(the region within the blue contour). The numbers indicate the
dimensions of the layers, where for the convolutional the last
value is the number of filters. The image is flattened before it is
processed by the dense layers. The final dense layer has 245
output neurons encoding the independent coefficients of the
TB model. (b) Detailed list of the parameters for the network.
“Layer 0” labels the input image.
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number of independent coefficients of our sym-
metry-enhanced TB model; see Appendix C.

The resulting output of the neural network is then
interpreted as the coefficients of the (symmetry-enhanced)
tight-binding model (see section above), which is diagon-
alized numerically. We run everything except the eigen-
value calculations on the graphics processing unit (GPU).
However, due to the implementation of the diagonalization
in TENSORFLOW, it is important to run tf.linalg.eigh on the
CPU instead of the GPU. Otherwise, the diagonalization
takes about 2 orders of magnitude longer due to paralle-
lization overhead.
Future improvements might include implementing

conv2D layers with periodic boundary conditions and
implementing the convolution operations on the actualmesh
inside the parallelogram-shaped unit cell (for a triangular
lattice, this would be a triangular mesh, instead of the square
mesh assumed in the TENSORFLOW implementation).
However, as far as we observe, these details do not prevent
the network from reaching a very good performance.

APPENDIX B: GRADIENT DESCENT FOR THE
COMBINATION OF NEURAL-NETWORK AND

TIGHT-BINDING MODEL

One of the unconventional parts of our ansatz is the use
of known-operator learning, i.e., having numerical diago-
nalization be part of the overall pipeline leading from
geometry to band structure. To be able to perform gradient
descent on this combination, we implement a suitable
modification of the cost function introduced above. The
main idea is to exploit perturbation theory to obtain the
derivative of the eigenvalues of a matrix with respect to its
coefficients and to feed this analytical expression into the
TENSORFLOW backpropagation pipeline.
The expression for the modified cost function can be

derived by starting with the derivative of the original cost
function:

∂CðθÞ
∂θ ¼

�X
l

2½ωNN
n;Fθ ½Vð·Þ�ðkÞ − ωtrue

n ðkÞ�

×
∂ωNN

n;Fθ ½Vð·Þ�ðkÞ
∂FðlÞ

θ ½Vð·Þ�
∂FðlÞ

θ ½Vð·Þ�
∂θ

�
Vð·Þ;k;n

;

where FðlÞ
θ ½Vð·Þ� is determined by a neuron of the output

layer. Here we are very careful in spelling out all the
dependences; in particular, the band structure depends on
the neural-network parameters θ via the tight-binding
coefficients.
We can use the Rayleigh-Schrödinger perturbation-

theory relation

∂ωn;Fθ ½Vð·Þ�ðkÞ
∂FðlÞ

θ ½Vð·Þ�
¼ 1

ℏ
hϕnðkÞj

∂Ĥk(Fθ½Vð·Þ�)
∂FðlÞ

θ

jϕnðkÞi

to calculate the derivative of the eigenvalues. Since

Ĥk(Fθ½Vð·Þ�) is linear in every coefficient FðlÞ
θ ½Vð·Þ�,

∂Ĥk(Fθ½Vð·Þ�)=∂FðlÞ
θ is a numerical constant. Therefore,

we must calculate this expression only once before training,

and we can then use it for all training steps.FðlÞ
θ ½Vð·Þ� is also

independent of the sum over the k and n, which is why we
can rewrite the derivative of the cost function as

∂CðθÞ
∂θ ¼

�X
l
vl
∂FðlÞ

θ ½Vð·Þ�
∂θ

�
Vð·Þ;k;n

;

with

vl½Vð·Þ;k; n�

¼ 2

ℏ
½ωNN

n;Fθ ½Vð·Þ�ðkÞ − ωtrue
n ðkÞ�

×

�
ϕn;Fθ ½Vð·Þ�ðkÞ

���� ∂Ĥk(Fθ½Vð·Þ�)
∂FðlÞ

θ

����ϕn;Fθ½Vð·Þ�ðkÞ
�
:

Hence, we arrive at the conclusion that we can use

CNNðθÞ ¼
�X

l
vl½Vð·Þ;k; n�FðlÞ

θ ½Vð·Þ�
�

Vð·Þ;k;n
¼ hv½Vð·Þ;k; n� · Fθ½Vð·Þ�iVð·Þ;k;n ðB1Þ

as the cost function for the neural network.
Indeed, the θ gradient of this cost function is the same as

for the original one, as long as we postulate that v is to be
treated as independent of θ. Since v is a vector with the
number of coefficients as the number of entries, this cost
function is realized in TENSORFLOW as a simple scalar
product between the output layer of the NN and the vector
v. Each training step of the neural network consists of the
calculation of v (for a batch of training samples) and the
usual gradient descent applied to the cost function CNN .

APPENDIX C: SYMMETRY-ENHANCED
TIGHT-BINDING HAMILTONIAN

Here, we give more details on the “symmetry-enhanced”
tight-binding models whose parameters are predicted by
our NN and subsequently used to calculate the band
structures. [There is one such TB model for each symmetry
group considered (space group plus time-reversal sym-
metry when applicable).]
The challenge in defining such TB models is that they

should be able to reproduce the low-energy bands of a
broad distribution of potentials. Moreover, the number
of underlying orbitals and parameters should remain as
small as possible to keep the diagonalization of the TB
Hamiltonian numerically inexpensive.
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1. Wallpaper group p6 with time-reversal symmetry

In order to estimate how large the Hilbert space of our
TB model should be, we define the occupation n½Vð·Þ�ξ in the
lowest seven bands for the potential Vð·Þ and the irreps ξ,
ξ ¼ s; p; d; f; 0; 1;þ;−. The number of orbitals required
for our TB model will then depend on the maximal

occupations nðmaxÞ
ξ over all training samples, nðmaxÞ

ξ ¼
maxVð·Þ n

½Vð·Þ�
ξ .

We decide (somewhat arbitrarily) to build our TB model
using only orbitals localized about the C6 rotocenters. We

denote by ñðTBÞl the number of l orbitals, l ¼ s, p, d, f. The
number of different orbitals in real space then determines

the number nðTBÞξ of Bloch waves that are available for each

irrep at the high-symmetry points, e.g., nðTBÞ0 ¼ ñðTBÞs þ
ñðTBÞf and so on. Requiring nðTBÞξ ≥ nðmaxÞ

ξ for all irreps
(such that for all samples, enough Bloch waves with the
right symmetry are available) results in a lower bound on

ñðTBÞl . For the 50 000 training samples used to train our NN,

we find nðmaxÞ
ξ ¼ 3, for ξ ¼ s and nðmaxÞ

ξ ¼ 2 otherwise.

Accordingly, we choose to have ñðTBÞs ¼ 4 s orbitals,

ñðTBÞp ¼ 4 p orbitals, ñðTBÞd ¼ 3 d orbitals, ñðTBÞf ¼ 3 f

orbitals (well above the lower bound set by nðξÞmax.)
We note that while all unperturbed orbitals for our TB

model are localized about the same Wyckoff position,
the Wannier states for an isolated set of bands can still
be hybridized orbitals localized about different Wyckoff
positions. This may happen because the hoppings
between different TB orbitals can be larger compared
to the typical on-site energy differences. Thus, our
choice of the Wyckoff position for the unperturbed
orbitals is akin to a choice of basis. We also restrict
the hopping to nearest-neighbor orbitals. This choice
reduces the number of output neurons and, thus, the
overall complexity of the NN while still turning out to
be adequate to obtain a well-trained NN in the examples
considered in this work.
Next, we derive the explicit form of the TB model

described above in terms of the appropriate set of inde-
pendent on-site energies and hoppings amplitudes. The
constraints imposed by the C6 symmetry that connect
hopping rates in different directions are most easily
taken into account using a basis of C6-symmetric
Wannier orbitals fjW̃n;mig where n is the principal quan-
tum number and m is the quasiangular momentum,
R̂π=3jW̃n;mi ¼ e−imπ=3jW̃n;mi with m ¼ 0;�1;�2, 3. In
the corresponding basis of Bloch waves, one can then
easily add the contributions from all hopping directions
to find

Ĥk;n;m;n0m0 ðkÞ=ℏ ¼ δm;m0δn;n0ωn;jmj þ J̃n;m;n0;m0fm−m0 ðkÞ;

where ωn;jmj are the on-site energies, J̃n;m;n0;m0 are the
hopping amplitudes in the direction of the lattice vector
a1 ¼ að1; 0Þ, and the functions fΔmðkÞ are independent of
the potential,

f0ðkÞ¼ cosðk ·a1Þþ cosðk ·a2Þþ cosðk ·a3Þ;
f1ðkÞ¼−f�−1ðkÞ

¼−i½sinðk ·a1Þþe−iπ=3 sinðk ·a2Þ
þe−i2π=3 sinðk ·a3Þ�;

f2ðkÞ¼ f�−2ðkÞ
¼ cosðk ·a1Þþei4π=3 cosðk ·a2Þþei2π=3 cosðk ·a3Þ;

f3ðkÞ¼−i½sinðk ·a1Þ− sinðk ·a2Þþ sinðk ·a3Þ�;

with a2 ¼ að1; ffiffiffi
3

p Þ=2, a3 ¼ að−1; ffiffiffi
3

p Þ=2. Because of the
time-reversal symmetry, the on-site energy is the same for
states with equal principal quantum number n and opposite

quasiangular momentum m. This results in ñðTBÞs þ ñðTBÞf þ
ñðTBÞp þ ñðTBÞd real independent on-site energies which are
represented by an equal number of output neurons FðlÞ;
cf. Eq. (B1). The hopping amplitudes J̃n;m;n0;m0 are also
constrained by the symmetries of the problem. The relevant
constraints are most easily expressed by switching to a
time-reversal invariant basis of Wannier states fjWn;lig,
l ¼ s; p1; p2; d1; d2; f, where jWn;sðfÞi ¼ jWn;0ð3Þi, and

jWn;pðdÞ1i ¼
1ffiffiffi
2

p ðjW̃n;1ð2Þi þ jW̃n;−1ð2ÞiÞ;

jWn;pðdÞ2i ¼
−iffiffiffi
2

p ðjW̃n;1ð2Þi − jW̃n;−1ð2ÞiÞ: ðC1Þ

[Here, we also implicitly fix the sum of the phases of states
with equal n and opposite quasiangular momentum m by
assuming T jW̃n;mi ¼ jW̃n;−mi.] Because of the time-
reversal symmetry, the hopping amplitudes Jn;l;n0;l0 in the
time-symmetric basis are real. Moreover, using the C2
symmetry and that the Hamiltonian should be Hermitian,
one finds the additional constraint

Jn;l;n0;l0 ¼ �Jn0;l0;n;l;

where the positive sign applies when both orbitals
have the same behavior (odd or even) under the C2
symmetry and the negative sign applies otherwise, e.g.,
þ when l ¼ s and l0 ¼ d1ð2Þ (both orbitals are even)
and − for l ¼ s and l0 ¼ f (s is even while f is odd).
Taking into account these additional constraints, there
are ðN2

H þ NHÞ=2 real independent hopping amplitudes,

NH ¼ ñðTBÞs þ ñðTBÞf þ 2ðñðTBÞp þ ñðTBÞd Þ. These are repre-

sented by the same number of output neurons FðlÞ;
cf. Eq. (B1).
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APPENDIX D: GENERATING TRAINING
SAMPLES

When training a network on simulation results, an
arbitrary random distribution of training samples can, in
principle, be chosen. However, for best accuracy, it is
beneficial to have these samples be as close as possible
(statistically) to typical use cases encountered in later
applications.
We start by generating a periodic smooth 2D random

Gaussian field,

ϕðxÞ ¼
X
k

AðkÞeik·x; ðD1Þ

where the wave vectors k lie on the reciprocal lattice,

k ¼ n1b1 þ n2b2: ðD2Þ

Here, n1 and n2 are integers, and b1 and b2 are reciprocal
lattice vectors.
The Fourier coefficients AðkÞ respect the underlying

symmetry (again, in our chosen example, they are sym-
metric under 60° rotations). Otherwise, they are complex
Gaussian-distributed random numbers (of zero mean), with
variance

hjAðkÞj2i ¼ C
jkajα fðkÞ: ðD3Þ

The function fðkÞ is 1 for small jkj and implements a cutoff
for larger k. In our case, we choose C ¼ 2 and set fðkÞ ¼ 0
for n1ð2Þ > 6; cf. Eq. (D2). The exponent α determines how
smooth the field appears (in our case, α ¼ 1). After
training, we check that our NN still performs well for
random validation potentials drawn from a similar distri-
bution but with a substantially larger cutoff. This shows that
the band structure for the low-energy bands is insensitive to
fine details of the potential (on a length scale smaller than
the one set by our cutoff). This makes sense because the
underlying Bloch waves should remain smooth to reduce
the kinetic energy.
The examples treated in the main text are inspired by

photonic or phononic crystals, where only two materials are
involved. This means we want to provide a “digitized”
potential starting from the smooth field ϕ. That is achieved
by the help of the rounded step function, the sigmoid
σðxÞ ¼ 1=ð1þ e−xÞ:

VðxÞ ¼ Vmaxσ½βϕðxÞ�; ðD4Þ

where smaller β imply a more gradual step. For the
training, we use sharp step functions corresponding to
the limit β → ∞.

APPENDIX E: TRAINING OF THE NEURAL
NETWORK

To train the neural network, we use 50 000 samples of
random potentials, with the correct band structure evaluated
at 79 points. These points are evenly distributed within one-
sixth of the Brillouin zone.
Out of these 50 000 samples, 1024 are reserved for

calculating the validation loss and the remaining 48 976
samples are used for training. We use the widespread ADAM

optimizer, with parameters Adamðlr ¼ 0.0001; epsilon ¼
10e − 8Þ. The dropout rate between the dense layers is
chosen to be 0.15. The training spans many epochs
(approximately 1000). Before every training epoch, we
reshuffle the training samples.
We recall that (as we mention in the main text) in order to

train the NN also on the symmetry of the Bloch waves at
the high-symmetry points, we add to the global (compris-
ing an average over the BZ) cost function Eq. (2) other
local terms for each block of the Hamiltonian at each high-
symmetry point. Each block corresponds to an irrep of the
proper group of the relevant high-symmetry point, and the
corresponding local cost function term has (except for
the average over the BZ) the same form as Eq. (2). The
overall cost function will then be a weighted sum of the
global and the local cost functions with the weight ratio r
between the local and the global contributions playing an
important role during training.
Since the global cost function is oblivious of the

symmetry labels, it tends to prevent a change in the
ordering of the bands. Thus, the local cost functions should
dominate the global cost function at least until the fraction
of correct symmetry labels is high enough (indicating that,
for the overwhelming majority of the geometries, the bands
are correctly ordered). On the other hand, a too large weight
ratio r might imply an excessive emphasis on the high-
symmetry points and, thus, can be detrimental to the overall
quality of the band-structure predictions. We note in
passing that r ∼ 1 is to be regarded as comparatively large
because, assuming (to fix the ideas) that the band-structure
deviations are of the same order across the BZ, it implies
that the contribution to the overall training gradient from a
single high-symmetry point (via the local cost functions)
would be similar to the combined contributions from all
over the BZ (via the global cost function). Indeed, we
empirically observe that using a constant r of the order
r ∼ 1 during the whole training run produces accurate NNs
and that one can improve even further the NNs by
decreasing r toward the end of a training run. As it is
often the case for supervised learning, the training is limited
by the onset of overfitting. Good results are already
obtained on a timescale of approximately 100 epochs,
but the onset of overfitting occurs only on a timescale of
approximately 1000 epochs. [Thus, it is worth training for
approximately 1000 epochs to obtain optimal accuracy.]
The onset of overfitting proves that our ansatz for the
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symmetry-enhanced TB model (with all orbitals in the
Wyckoff position 1a and nearest-neighbor coupling;
cf. Appendix C) does not represent a bottleneck for the
achievable rms band-structure deviation.
We observe that the training allows a large degree of

flexibility in the choice of the hyperparameters, such as
optimizer, learning rate, batch size, network layout, time
dependence of the relative weight ratio r, etc. A good
choice of hyperparameters consistently (for all random
initial conditions of the network parameters) leads to a low
rms band-structure deviation (of the order of approximately
0.001Vmax) and a high fraction of correctly predicted
symmetry labels. Nevertheless, the predictions for different
training runs might still be qualitatively different; e.g.,
unlucky initial conditions may lead to spurious Dirac cones
or (for the two-component topological metamaterial case
study, cf. Sec. VIII) to the wrong Chern numbers. These
wrong predictions are strongly correlated from sample to
sample. This means that they are either present for a
significant portion of validation samples (and are, thus,
easy to detect) or are not present at all. Thus, they can be
easily eliminated by training a few NNs and discarding the
unreliable NNs; cf. Sec. VIII.
Before the training of the NN, we pick a “target” number

Ntarget of bands that we aim to predict. In this work, we
show results for different Ntarget, Ntarget ¼ 4, 6, 8. In
addition, we perform numerical experiments with Ntarget ¼
10 for the 2D Schrödinger equation, obtaining accurate
predictions (0.004Vmax rms deviation and 99% of correctly
predicted labels). An interesting question is how large can
we increase Ntarget? We expect to be able to increase Ntarget

somewhat above Ntarget ¼ 10 but that we will encounter a
bottleneck in the required number of trainable parameters
for the NN. This number scales as the square of the number
of independent parameters in our symmetry-enhanced TB
which itself scales as N2

target (thus, overall we have a
quartic dependence). One could get around this problem
by training different NNs on different band numbers,
e.g., one NN for the first ten bands and a second for the
next ten bands. If this approach works, the number of NN
trainable parameters as a function of the overall number of
bands to be predicted will scale as Ndþ1=d

target where d is the
dimension, e.g., d ¼ 2 in 2D. This scaling is governed by
the number of potential grid points required to converge
to the continuum limit (∝ Ntarget). This quantity deter-
mines both the number of neurons in each convolutional
layer (∝ Ntarget) and the number of convolutional

layers (∝ N1=d
target).

Since the eigenvalue calculation is performed on the
CPU, the duration of one epoch depends strongly on the
CPU. The workload on the CPU depends on the number of
k points in the global cost function. With batch size 16
and 79 reciprocal points, on an NVIDIA RTX 6000 and a

Xeon Gold 6130 with 16 cores, one epoch takes
about 100 s.

APPENDIX F: ACCURACY FOR THE NETWORK

The NN used to produce the results in Figs. 1–3 and 6
has a rms band-structure deviation of approximately
0.0025Vmax. This figure is calculated on a grid with 821
grid points equally distributed within one-sixth of the unit
cell (much finer than the training grid which had only 79
grid points). As we note above, the rms deviation will be
slightly different for different training runs with equal
training hyperparameters (but different initialization of the
NN trainable parameters). Nevertheless, it remains of a few
‰ of the overall scale of the band structure (here Vmax) for
a wide range of training hyperparameters in all case studies
investigated in this work.
We empirically observe a slight trend for increasing rms

deviation for higher bands; cf. Fig. 8. We attribute this to a
higher sensitivity of higher-energy bands to the fine details
of the potential. We check that this effect can be compen-
sated by increasing the number of training samples.
If one wants to compare these deviations to the band gaps

(as a natural scale), we can, e.g., obtain the sample average
of the minimal band gaps for disconnected bands, in which
case, the deviations represent 2.5% of the band-gap value
obtained in that way. On the other hand, the sample average
of the k-averaged (not minimal) band gaps for discon-
nected bands is slightly larger, yielding a relative deviation
of 2.1%.

APPENDIX G: PERFORMANCE GAIN

1. Speed advantage in predicting band structures

One of several advantages of using a neural network for
predicting symmetries and band structures is the dramati-
cally increased speed of calculations vs direct evaluations.
The performance gain offered by the neural network

depends on the algorithm which it replaces, as well as on
the number of points in reciprocal space, the structure of the
neural network, and the number of bands which one is
interested in.
For the results of this paper, the neural network should

predict the same band structure one would obtain by using

FIG. 8. rms deviation of the individual bands for the NN used to
produce Figs. 1–3 and 6.
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the Schrödinger equation on a periodic potential with
100 × 100 grid points. In the absence of a trained neural
network, this task would be performed for one k point in
the reciprocal space by calculating the eigenvalues of a
sparse 10 000 × 10 000 matrix, where the diagonal ele-
ments correspond to values of the potential on the grid
points.
For the numerical calculation, we use for diagonaliza-

tion scipy.sparse.linalg.eighs, which uses the “implicitly
restarted Lanczos method” to find the eigenvalues and
eigenvectors for the first six bands in our case. In our
comparison, we count only the time needed to calculate the
eigenvalues for the case of the numerical method (which
works in favor of the numerical method). As reference
hardware, both for the direct numerical calculation and the
neural network, an i5-6267U (two cores, four threads,
2.9 Ghz) is used, which is as a typical mobile CPU. On this
hardware, the diagonalization takes about 2–3 s for three
points and 80 s for the 79 point, which we also use for
training. On the other hand, the same task takes for the
neural network 0.067 s for 79 points (and 0.23 s for a much
finer grid of 821 points).
This analysis shows that the neural network performs

much
faster than the direct Lanczos-based diagonalization of the
Schrödinger equation, even for very few points. The
advantage of the NN grows with the number of points:
Note that the calculation time in the case of the neural
network can be split into the calculation of the coefficients
for the tight-binding model and the subsequent calculation
of its band structure (by diagonalization of a small matrix),
where the former step is independent of the number of k
points. Since the creation of the tight-binding model is
written in PYTHON, one could accomplish further speed-up
for the neural network.

2. Overall performance gain

As in all neural-network applications, there are two
scenarios to evaluate the cost benefit and overall perfor-
mance gain of this approach.

(i) The goal is to deploy the network for obtaining
speed-up on whatever hardware is available (includ-
ing, e.g., the type of cluster used for training). In that
case, the training effort needs to be accounted for.
Breakeven will be reached when the network has
been used to accelerate band-structure evaluations
on a number of potentials that is at least larger than
the initial number of training samples. For our
approach, this is easily the case for the optimization
of band structures (as well as for large-scale stat-
istical exploration and random discovery).

(ii) The cost-benefit analysis turns out to be even more
advantageous when the explicit goal has been to
deploy the network on modest computing hardware
(e.g., laptops operated by the end users). In that

case, the cost of generating the training samples
and performing the training (on a cluster) need not
be taken into account, since that hardware by
definition would not have been available to the
end user.

APPENDIX H: SYMMETRY FINGERPRINTS

Here, we give more details regarding the symmetry
fingerprints used to identify EBRs and topological bands
in the main text. Equivalent concepts are also presented in
Refs. [7,39]. The symmetry fingerprint of an isolated set
of bandsgroups in a single Nn array all the information
about the symmetry of the Bloch waves at the maximal k
points.
At each maximal k point, we define the occupation

nξ as the number of (degenerate) orbitals belonging to each
irrep ξ. The occupation numbers nξ are subject to linear
constraints known as compatibility relations [7,63]. They
reduce the number of independent occupations to

n ¼ number of irreps − number of linear constraints:

The simplest compatibility relation is that the number of
bands is the same at all maximal k points. Another
important example of a compatibility relation is realized
in crystals with mirror symmetry. For each high-symmetry
line that is invariant under a mirror symmetry of the crystal
and connects two maximal k points, a compatibility
relation fixesthe numbers of states with a given parity to
be equal at the two maximal k points. Such compatibility
relations derived from mirror symmetry allow us to predict
connections between bands that lie ona high-symmetry
line, based only on the spectrum and irreps at the maximal
k points [6,7].
For the p6 group, the maximal k points are the high-

symmetry points Γ, K, and M and the respective proper
groups are the rotational groups Cn, with n ¼ 6 for Γ, n ¼ 3
for K, and n ¼ 2 for M. In this case, the time-reversal-
symmetric irreps are identified by the absolute value of the
quasiangular momentum jmj ≤ n=2. To avoid confusion,
here and in the main text we use ξ ¼ jmj ¼ 0, 1 to label the
irreps of C3, while using the atomic-physics-inspired labels
ξ ¼ s, p, d, and f in place of jmj ¼ 0, 1, 2, 3 for the irreps
of C6, and the labels ξ ¼ þ and ξ ¼ − in place of m ¼ 0
and m ¼ 1 for the irreps of C2 (the normal modes are either
odd or even). We are, thus, left with eight occupation
numbers: nðsÞ, np, nd, and nf for the Γ point, n0 and n1 for
the K point, and nþ, n− for the M point. However, taking
into account that the overall number of bands should be the
same at all high-symmetrypoints, we find the compatibility
relations,

n− ¼ ns þ 2ðnp þ ndÞ þ nf − nþ;

n1 ¼ ½ns þ 2ðnp þ ndÞ þ nf − n0�=2: ðH1Þ
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Thus, all the information regarding the symmetry labels is
grouped in the six-dimensional array ðns; np; nd; nf;
n0; nþÞ.

APPENDIX I: DETAILS OF THE TOPOLOGICAL
EXPLORATION

For the topological exploration, the Fourier coefficients
AðkÞ of the random potentials are extracted from the
distribution in Eq. (D3) with α ¼ 1=2 and C ¼ 2. For
each potential, we calculate the symmetry fingerprint for
the first two sets of bands and use it to identify the set with
one of the eight EBRs, a composite BR (cBR), or a
topological set of bands if the first two options are
excluded. All topological sets of bands discovered corre-
spond to only two different symmetry fingerprints. To
determine the fingerprints, two ingredients are required
[both represented in the symmetry tables in Fig 3(a) of the
main text]: (i) the irreps for each band at each high-
symmetry point (this information is provided directly from
the NN, (ii) the connectivity of the bands, i.e., which pairs
of bands are connected somewhere in the BZ (this
information is not provided directly by the NN but has
to be inferred by looking at π defects in the Berry flux on a
fine k grid, more on this later, or by using our conjectured
compatibility relation).
To calculate the Berry flux, we divide the BZ in small

rectangular plaquettes j. The Berry fluxΦj is just the Berry
phase acquired while encircling each plaquette. It can be
easily calculated numerically using the formula

Φj ¼ i ln

 
oðlÞj;exo

ðlÞ
jþex;ey

oðlÞjþexþey;−exo
ðlÞ
jþey;−ey

joðlÞj;exo
ðlÞ
jþex;ey

oðlÞjþexþey;−exo
ðlÞ
jþey;−ey j

!
; ðI1Þ

where oðlÞj;Δj ¼ hkðlÞ
j jkðlÞ

jþΔji, ex ¼ ð1; 0Þ, and ey ¼ ð0; 1Þ.
This method allows us to find connections efficiently
because jΦjj ≈ π whenever a Dirac cone is inside the
plaquette and the plaquette is so small that the band
dispersion can be approximated as linear (this property
can be proven by approximating the Hamiltonian with a
Dirac Hamiltonian). The requirement that the band
dispersion should be linear inside a plaquette containing
a Dirac cone determines how fine the grid should be to
obtain reliable results. Whether this requirement is satisfied
for a given grid depends on the specific potential. For this
reason, even though a coarse grid would be already enough
to obtain reliable results for the majority of the potentials, a
very fine grid is necessary to get high-accuracy statistical
results (much finer than the grid used for training).
Moreover, even for a fine grid the method might fail in
a handful of statistically irrelevant cases. For this reason, it
would be difficult to obtain the results shown in the main
text without relying on the speed of our NN.

A much faster method to calculate the connectivity is to
infer it from the compatibility relations, including also the
additional parity compatibility relation. We compare the
results obtained with this method to the one obtained with
the Berry flux method using a fine grid containing
approximately 10 000 plaquettes; cf. Fig. 9. We find a
disagreement in only less than 0.1% (1%) of the cases for

FIG. 9. (Quasi-) BR distribution calculated using three different
methods to determine the bands connectivity. The methods are
(from left to right for each entry) (i) standard method of
topological quantum chemistry which neglects connections away
from high-symmetry points, (ii) taking into account the con-
nections away from high-symmetry points which are predicted by
the parity compatibility relation, and (iii) looking for π defects in
the Berry flux. This method is able to detect all connections (if a
fine enough grid is used). The column top1 and top2 refer to the
two fragile topological phases discovered by our NN; cf. Fig. 3 of
the main text. The standard method would predict other types of
topological bands (top. el.). These sets of bands turn out not to be
isolated once the connections away from the high-symmetry
points are taken into account with the other two methods. All
results are calculated using the first six bands. The set of bands
that is connected to the seventh band can not be assigned to any
(quasi-) BR based on the available information and is grouped in
the last entry [tba (to be assigned)].

FIG. 10. Comparison of the (quasi-) BR distribution calculated
using the NN and the Schrödinger equation. The probability bars
for a given (quasi-) BR but different methods are shown side by
side. The results obtained using the Schrödinger equation are
plotted in slightly darker colors.
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the first (second) group of bands. This indicates that the
compatibility relations (when also the additional parity
compatibility relation is taken into account) are sufficient to
identify connected bands for the overwhelming majority of
the samples.
The speed and reliability of the compatibility method

offer the possibility to validate the results obtained using
the NN with results obtained directly solving the
Schrödinger equation; cf. Fig. 10.
In order to give an idea how the distribution of (quasi-)

BRs depends on the underlying potential distribution, we
calculate the statistics also for the training distribution. A
comparison between the two statistics is shown in Fig. 11.

APPENDIX J: SUPPLEMENTAL INFORMATION
FOR THE 3D NONSYMMORPHIC CASE STUDY

1. Symmetry-enhanced TB model

For our two symmorphic examples, we construct sym-
metry-enhanced TB models that are defined on the Bravais
lattice of the underlying space group. As a consequence, the
orbitals are representations of its point group. This is not
possible for the space group p4222 (or any other non-
symmorphic group), as it is well known that TB models
with nonsymmorphic space groups should be defined on a
lattice with a basis. Instead, we generalize our approach by
considering as a lattice a single so-called crystallographic
orbit (the set of sites obtained by applying all space-group
transformations to a single site). In this case, the number of
sublattices is the so-called multiplicity of the underlying
Wyckoff position, while the orbitals are representations of
the corresponding site-symmetry group (the group of
transformations that leaves a site invariant), which is
(isomorphic to) a subgroup of the point group to which
the space group belongs. For nonsymmorphic groups, the
multiplicity is larger than 1 for all Wyckoff positions
leading to a lattice with a basis. (This in contrast to
symmorphic groups where there is at least one position
with multiplicity 1.)
A natural generalization of the approach we adopt so far

is to pick (one of) the Wyckoff position(s) with smallest

multiplicity. For the space group p4222, we choose the
Wyckoff position 2a (here, the number 2 indicates the
multiplicity). We construct our TB model starting from a
set of orbitals fjn;mig localized about the origin (n is the
principal quantum number andm labels the irrep of the site-
symmetry group). Here, the site-symmetry group is the
point group D2 (twofold rotations about the x, y, and z
axes). This point group has four inequivalent irreps, m ¼
A;B1; B2; B3 with the atomic s, pz, py, and px orbitals,
respectively, being representative states transforming under
these irreps. From each orbital localized about the origin,
we construct another orbital localized about the position
a3=2 by applying a screw rotation. Finally, we obtain a
basis of Wannier states by applying all lattice translations,

jn; j; s; mi ¼ ð1; ajÞjn; s; mi:

Here, j indicates the unit cell and s the sublattice.
Thus, aj ¼ j1a1 þ j2a2 þ j3a3, jn; 0; mi ¼ jn;mi, and
jn; 1; mi ¼ ðRπ=2;z; a3=2Þjn;mi. We note that according
to our definition, the states jn; j; 1; B2=3i are labeled
according to the irreps of the state j0; mi, not their own.
For example, the state jj; 0; B2i transforms under symmetry
as a py orbital, while the state jj; 1; B2i being rotated by 90°
will rather transform as a px orbital.
With the above definitions in hand, we find

Hn;m;n0;m0 ≡ hn0; m0jĤjn;mi ¼ hn0; j; s; m0jĤjn0; j; s; m0i
¼ ωn;mδn;n0δmm0 :

Thus, we have ñðTBÞA þ ñðTBÞB1
þ ñðTBÞB2

þ ñðTBÞB3
independent

on-site energies where ñðTBÞj¼A;B1;B2;B3
are the number of

orbitals of each type. Here we assume without loss of
generality that the principal basis diagonalizes the
Hamiltonian projected onto the Wannier states localized
about the origin. Next, we define the matrix containing the
hopping amplitudes for nearest-neighbor vertical transi-
tions within the same unit cell

(a) (b)

FIG. 11. (a) Comparison of the (quasi-) BR distributions for two different distributions of potentials. The probability bars for a given
(quasi-) BR but different distributions are shown side by side. (b) Number of samples as a function of the filling factor [portion of the
unit cell where VðxÞ ¼ Vmax] for the two distributions of interest. In all panels, the results referring to the training distribution are plotted
in slightly darker colors.
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JðzÞn0m0;nm ≡ hn0; 1; m0jĤjn; 0; mi: ðJ1Þ

We note that JðzÞnm;n0m0 can be chosen real because the orbitals
jn; s; mi are invariant under time-reversal symmetry.
Moreover, the symmetry under twofold rotations about
the z axis gives rise to a selection rule forbidding vertical
hopping transitions between states of opposite parity. Thus,
for example, an excitation can hop vertically from an A
orbital to another A orbital or a B1 orbital (as both A and B1

orbitals are even under twofold rotations about the z axis)

but not to a B2 or a B3 orbital. Thus, the matrix JðzÞn0m0;nm is
block diagonal with one block spanned by the A and B1

orbitals and the other Block spanned by the B2 and B3

orbitals. By applying a screw rotation followed by a 180
rotation about the x axis, we find

JðzÞn0m0;nm ¼ m0
zm0

xmyJ
ðzÞ
nm;n0m0 :

Here, mx=y=z is the parity of the orbitals jn;mi under x=y=z
twofold rotations. Thus, mz=y=x ¼ 1 for m ¼ A; B1=2=3

and −1 otherwise. We can conclude that the hopping

matrix JðzÞn0m0;nm has ðñðTBÞA þ ñðTBÞB1
þ 1ÞðñðTBÞA þ ñðTBÞB1

Þ=2þ
ðñðTBÞB2

þ ñðTBÞB3
þ 1ÞðñðTBÞB2

þ ñðTBÞB3
Þ=2 independent matrix

elements. Applying the symmetry under twofold transitions
about the y axis, one finds the hopping amplitudes for
vertical NN transitions between sites in different unit cells

hn; az; 0; mjĤjn0; 1; m0i ¼ JðzÞn0m0;nmm
0
xmy:

Thus, all nearest-neighbor vertical hopping transitions are

encoded in the matrix JðzÞn0m0;nm.
Next, we define the horizontal hopping rates on sub-

lattice s ¼ 0,

Jðx=y;0Þn0m0;nm ≡ hn0; ex=y; 0; m0jĤjn; 0; mi: ðJ2Þ

Analogous to what we discuss above for the vertical

hopping rates, the matrix Jðx;0Þn0m0;nm (Jðy;0Þn0m0;nm) is block
diagonal, this time with one block spanned by the A and
the B3 (B2) orbitals and the other by the B1 and B2 (B3)

orbitals. As their vertical counterparts, the blocks of Jðx=yÞn0m0;nm
are constrained by the symmetry

Jðx=yÞn0m;nm ¼ Jðx=yÞnm;n0m;

Jðx=yÞn0m0;nm ¼ −Jðx=yÞnm;n0m0 for m ≠ m0:

Thus, the hopping matrices Jðx=yÞn0m0;nm are defined by ðñðTBÞA þ
ñðTBÞB3=2

þ 1ÞðñðTBÞA þ ñðTBÞB3=2
Þ=2þ ðñðTBÞB1

þ ñðTBÞB2=3
þ 1ÞðñðTBÞB1

þ
ñðTBÞB2=3

Þ=2 independent parameters. By using a screw

rotation, we can also obtain the horizontal hopping matrices

Jðx=y;1Þn0m0;nm on sublattice s ¼ 1,

Jðy;1Þn0m0;nm ≡ hn0; ey; 1; m0jĤjn; 1; mi ¼ Jðx;0Þn0m0;nm; ðJ3Þ

Jðx;1Þn0m0;nm ≡ hn0; ex; 1; m0jĤjn; 1; mi ¼ Jðy;0Þnm;n0m0 : ðJ4Þ

After setting the appropriate constraints to the hopping
matrices, our symmetry-enhanced TB Hamiltonian will
have automatically a block diagonal form at the maximal k
points, with each block corresponding to an irrep of the so-
called little group Gk (the group of symmetries g that leave
k invariant modolus a vector of the reciprocal lattice). The
same property, obviously, will hold for the Hamiltonian of
the 3D Schrödinger equation. A crucial step in implement-
ing our method is to require (via the appropriate cost
function contribution) that matching blocks (corresponding
to the same irrep) of both Hamiltonians have the same
spectrum. Thus, we need to identify the underlying irrep
for each such block. For this purpose, we construct the
characters Tables I–IV. The first column in every table is the
irrep (orbital type) of an orbital at the origin (A, B1, B2, or
B3). This orbital is then used to construct the corresponding
EBR. At each maximal k point (k ¼ Γ; X;M; Z; R, or A),

TABLE I. Character table of the irreps of the little group Gk for
k ¼ Γ;M. For the first column, each row corresponds to an EBR
as identified by the orbital type (i.e., the corresponding irreps of
D2) on sublattice s ¼ 0. For the remaining columns, each row
corresponds to a different irrep of Gk. For the cases in which the
same EBR gives rise to two one-dimensional irreps of Gk, the
wave function is either a symmetric (indicated with a þ sign in
the table) or an antisymmetric (− in the table) superposition of
sublattice-polarized plane waves.

Orb. 1 ðRπ;z; a3Þ Rπ;y ðRπ;xþy;−a3=2Þ ðRπ=2;z; a3=2Þ

A
þ 1 1 1 1 1
− 1 1 1 −1 −1

B1
þ 1 1 −1 −1 1
− 1 1 −1 1 −1

B2 2 −2 0 0 0
B3

TABLE II. Characters table of the representations of the little
group Gk for k ¼ Z, A. See caption of Table I.

Orb. 1 ðRπ;z; a3Þ Rπ;y ðRπ;xþy;−a3=2Þ ðRπ=2;z; a3=2Þ
A

2 −2 0 0 0
B1

B2
þ 1 1 1 1 1
− 1 1 1 −1 −1

B3
þ 1 1 −1 −1 1
− 1 1 −1 1 −1
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such an EBR will give rise to a representation of the little
group Gk spanned by the sublattice plane waves

jn;k; s; mi ¼
X
j

eik·aj jn; j; s; mi; s ¼ 0; 1:

This representation is either a two-dimensional irrep of Gk
or can be decomposed in two one-dimensional irreps. In the
latter case, we also give the underlying superposition of
sublattice plane waves for each irrep (also in the first
column). As usual, it is possible to uniquely identify any
irrep of the little group by listing the characters (traces)
χ½ρðgÞ� of the matrix representative ρðgÞ for an appropriate
finite set of transformations g. This set is finite because it is
enough to consider a single transformation for each infinite
set of transformations that differ by a lattice translation (as
the traces for different elements will differ only by a phase
that does not depend on the irrep). In addition, it is enough
to consider a single transformation for each conjugacy class
(because the trace is the same for all elements of the same
conjugacy class).
We use the Tables I–IV for three purposes: (i) We

identify the subset of Wannier orbitals (or superposition
thereof) that span the same block of the symmetry-
enhanced TB model at a specific high-symmetry point.

For example, according to Table I, all B2 and B3 orbitals
give rise to the same irrep at the Γ and M point and, thus,
will span a single block there. (ii) We assign each exact
solution of the 3D Schrödinger equation (at a maximal k
point) to the correct irreps by checking its behavior under
the transformations listed in the relevant table. (iii) We
calculate the symmetry fingerprints for the EBRs generated
by each orbital type. These are then used to calculate lower

bounds for ñðTBÞl ; see discussion in Appendix C. As usual,
the lower bound depends on the number of target bands.

For four bands, the lower bounds are ñðTBÞA ¼ 3, ñðTBÞB1
¼ 2,

ñðTBÞB2
¼ 1, ñðTBÞB3

¼ 2. Empirically, we find that it is advan-

tageous to use a larger Hilbert space with ñðTBÞA ¼ 5,

ñðTBÞB1
¼ 4, ñðTBÞB2

¼ 3, ñðTBÞB3
¼ 4.

2. NN layout

The NN layout for the 3D case study is sketched
in Fig. 12. In this case, we use conv3D layers with
ReLu activation, kernel size (2,2,2) using the option
padding ¼ same. With the aim of progressively reducing
the image size, the convolutional layers are alternated
with max_pooling3D layers with pool size (2,2,2) and
stride ¼ 2. As usual, the convolutional and pooling layers
are followed by a series of dense layers. The dropout (0.15)
is applied between each pair of subsequent dense layers
(not shown in the sketch).

APPENDIX K: SUPPLEMENTAL INFORMATION
FOR THE TWO-COMPONENT TOPOLOGICAL

METAMATERIAL CASE STUDY

1. Details of the microscopic model

As we discuss in the main text, we model one spin sector
of our two-component metamaterial using “one-half” of
the Bernevig-Hughes-Zhang (BHZ) model with a site-
dependent mass Mj,

TABLE III. Characters table of the representations of the little
group Gk for k ¼ X. Each row corresponds to an EBR as
identified by the orbital type on sublattice s ¼ 0. For the cases in
which the same EBR gives rise to two one-dimensional irreps
of Gk, the Bloch waves are sublattice polarized. The sublattice
(0 or 1) is indicated in the first column. For the maximal k point X
and R, the little group can be decomposed as a sum of lattice
translations and the point group D2. This property allows us to
identify each irrep of Gk with an irrep of D2, indicated in the last
column.

Orb. 1 Rπ;z Rπ;y Rπ;x Irrep

A 1 1 1 1 A
B1 1 1 −1 −1 B1

B2
0 1 −1 1 −1 B2

1 1 −1 −1 1 B3

B3
0 1 −1 −1 1 B3

1 1 −1 1 −1 B2

TABLE IV. Characters table of the representations of the little
group Gk for k ¼ R. See caption of Table III.

Orb. 1 Rπ;z Rπ;y Rπ;x Irrep

A
0 1 1 1 1 A
1 1 1 −1 −1 B1

B1
0 1 1 −1 −1 B1

1 1 1 1 1 A
B2 1 −1 1 −1 B2

B3 1 −1 −1 1 B3

FIG. 12. Sketch of the NN layout for the 3D nonsymmorphic
case study.
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H ¼
X
j

ðMj þ 2JÞσ̂zjjihjj

−
J
2

X
hl;ji

ðσ̂z − iσ̂dðl;jÞÞjlihjj þ H:c: ðK1Þ

Here, Mj ¼ �m where the multi-index j ¼ ðjx;jyÞ para-
metrizes the sites of an N × N square grid, hl; ji indicates
the sum over nearest neighbors, dðl; jÞ ¼ x, y is the
hopping direction, and J is the hopping rate. In our
simulation, we choose N ¼ 70 and m=J ¼ 10=N ≈ 0.14
with J > 0. For this sign of J, any positive mass M > 0
corresponds to the trivial phase, C ¼ 0. On the other hand,
for the topological region, the mass M ¼ −m falls in the
interval −2 < M=J < 0 where C ¼ 1 [45]. We note that
the Hamiltonian (K1) applies not only to a scenario in
which the spin is conserved but also to a more general case
in which the spin is not necessarily conserved but the out-
of-plane mirror transformation M̂z is still a symmetry.
Thus, also our results apply to this more general scenario.
In this framework, the “half” HBZ Hamiltonian as well as
the corresponding Chern numbers refer to a mirror sym-
metry sector (one of the two possible eigenvalues of the
mirror symmetry, Mz ¼ i or Mz ¼ −i).
Taking the large-wavelength limit of the half BHZ

Hamiltonian Eq. (K1), one arrives at the Dirac
Hamiltonian Eq. (3) with v ¼ Ja=N. It is of fundamental
interest to investigate the large-wavelength limit because it
is of higher generality going beyond our specific micro-
scopic model. In particular, the physics becomes indepen-
dent of N (once v=m is held fixed). Our particle-hole-
conserving Dirac Hamiltonian would also emerge as a
large-wavelength description of a more general form of the
BHZ Hamiltonian that does not have this symmetry (as in
the original formulation of this model). More generally, it
will describe any situation where the two-component
materials differ in Chern number by one unit and their
valence and conduction bands have minimal splitting at the
Γ point where they support gapped Dirac cones, irrespec-
tive of the underlying microscopic lattice. To make sure that
our results are not model specific and really apply to the
most general setting described above, we check that they
converge to the limit N → ∞ comparing simulations with
equal v=M but different N.

2. Symmetry-enhanced TB model

We construct our symmetry-enhanced TB model using
orbitals localized about the Wyckoff position 1a (one of the
two fourfold rotocenters). The orbitals will then be irreps of
the point group C4. In this case, the relevant irreps are not
time-reversal symmetric and, thus, are simply parametrized
by the quasiangular momentumm,m ¼ 0;�1; 2 mod 4, or
s, p�, and d. The particle-hole symmetry sets the additional
constraint that pairs of orbitals with quasiangular momen-
tum m mod 4 and 1 −m mod 4, respectively, have

opposite energy. Thus, there are only two different types
of orbital pairs (or equivalently, EBRs): For one EBR, the
quasiangular momenta of the two particle-hole-connected
orbitals are m ¼ 0 and m ¼ −1, for the other m ¼ 2 and
m ¼ 1. The constraints described above lead to a sym-
metry-enhanced TB Hamiltonian in the form

Ĥk;n;m;n0m0 ðkÞ=ℏ ¼ δm;mδn;n0ωn;m þ Jn;m;n0;m0fm−m0 ðkÞ:

Because of the C4 symmetry, we find

f0ðkÞ ¼ cosðkxaÞ þ cosðkyaÞ;
f1ðkÞ ¼ −f�−1ðkÞ ¼ −i½sinðkxaÞ þ e−iπ=2 sinðkyaÞ�;
f2ðkÞ ¼ cosðkxaÞ − cosðkyaÞ;

where Jn;m;n0;m0 are the hoppings in the rightward direction.
Note that from the inversion symmetry, it follows that

Jn;m;n0;m0 ¼ �J�n0;m0;n;m;

where the positive (negative) sign applies if Δm ¼ m −m0
is even (odd). [This constraint ensures that the Hamiltonian
is Hermitian.] Because of the particle-hole symmetry, we
have the additional constraints

ωn;m ¼ −ωn;−1−m; Jn;m;n;m0 ¼ −J�n;−1−m;n0;−1−m0 :

Thus, the independent coefficients can be chosen to be ωn;m

(real) for m ¼ 0, 2, Jn;m;n0;m0 (complex) for

m ¼ 0; m0 ¼ 0; for n > n0;

m ¼ 2; m0 ¼ 2; for n > n0;

m ¼ 0; m0 ¼ −1; for n ≥ n0;

m ¼ 1; m0 ¼ 2; for n ≥ n0;

m ¼ 0; m0 ¼ 2;

m ¼ 0; m0 ¼ 1;

and Jn;m;n;m (real) form ¼ 0, 2. The number of independent

parameters is thus, 2ðñðTBÞs þ ñðTBÞd Þð1þ ñðTBÞs þ ñðTBÞd Þ
where (ñðTBÞd ) ñðTBÞs is the number of (d) s orbitals. For

training on the eight central bands, we use ñðTBÞs ¼ 9

and ñðTBÞd ¼ 8.
In this case study, it is straightforward to match different

blocks of the TB model Hamiltonian with the correspond-
ing blocks of the Dirac equation by checking for the
quasiangular momentum (parity) at the Γ and M points
(X point). However, there remains an outstanding chal-
lenge: Since the two models have a different numbers of
bands and we are trying to predict the band structure in the
middle of the spectrum, it is still not obvious which energy
level should correspond to which. For the global cost
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function Eq. (2), this ambiguity is readily eliminated by the
particle-hole symmetry: By symmetry, there is always an
equal number of positive- and negative-energy states, and
one can simply match the first positive bands of the
symmetry-enhanced TB model to the corresponding levels
of the Dirac equation. At a maximal k point, however,
this symmetry does not apply separately to each block.
Since the particle-hole symmetry maps onto each state of
different symmetry, e.g., s and p−, there is no guarantee
that the number of positive- and negative-energy states of a
given symmetry, e.g., p−, are the same. In this case, the
matching requires an additional assumption. We assume
that a band touching between the higher-energy negative
band and the lowest-energy positive band (leading to a
band inversion) can occur only at the Γ point between an s
and a p− Bloch wave. In other words, we assume that for
each irrep the number of positive and negative bands is the
samewith a single exception: Whenever the p− Bloch wave
is the lowest positive-energy state at the Γ point, we allow
for one additional positive (negative) energy p− state
(s state). We have not proven this assumption, but we
believe that the nearly perfect Chern number predictions by
postselected NNs is a good indication of its validity.
In the main text, we compare the prediction of our NN to

microscopic simulations for the band Chern number. This
topological invariant can readily be calculated as the sum of
the Berry fluxes [cf. Eq. (I1)] over all quasimomentum
plaquettes of a fine grid (here a 62 × 62 grid) covering the
whole BZ (Fukui et al. [46]). Alternatively, one might have
considered the band-gap Chern number, this is the sum of
the band Chern numbers of all bands below a certain band
gap. We focus on the band Chern number mainly for two
reasons discussed below. The first reason is of fundamental
nature: The band Chern numbers of the central bands are
well defined within the Dirac Hamiltonian large-wave-
length description. On the other hand, the band-gap Chern
number goes beyond the long-wavelength limit in that it
involves also bands with large negative energy outside of
the bandwidth where the large-wavelength limit is expected
to apply. The second motivation to focus on the band Chern
numbers is of practical nature: The band Chern numbers are
easily accessible by calculating the band structure and
eigenvectors in the central region of the spectrum using the
Lanczos algorithm. On the other hand, the calculation of
the band-gap Chern numbers would be numerically very
expensive because of the large number of bands of our
microscopic model (we have 2 × N2 bands with N ¼ 70 in
our simulations).
While, for the reasons discussed above, we focused on

the band Chern number so far, we wish to address at least
briefly the question whether the band-gap Chern numbers
predicted by our symmetry-enhanced TB model do
coincide with those of the microscopic model. This is an
important question because the band-gap Chern numbers
are relevant for the bulk-boundary correspondence and,

thus, determine the behavior of the edge states in a system
with boundary. We note that our assumption that a band
touching between the lowest-energy positive band and the
highest-energy negative band occurs only between an s and
a p− band at the Γ point (used while matching the bands of
our symmetry-enhanced TB model to the bands of the
microscopic model) represents a stringent constraint to the
Chern number C−=þ for the band gap separating the positive
bands from the negative bands (or, equivalently, to the sum
of the Chern numbers over all negative-energy bands). If
this assumption holds true, there remain only two scenar-
ios: (i) C−=þ ¼ 0 if an s state is the lowest positive-energy
state at the Γ point (no band inversion); (ii) C−=þ ¼ 1 if the
lowest positive-energy eigenstate is a p− Bloch wave.
These are the same scenarios that occur in the special case
of a homogeneous bulk. In the framework of this
hypothesis, we can easily derive any band-gap Chern
number (for the central bands) from the band Chern
numbers of the first few positive bands and the symmetry
label of the lowest-energy positive state at the Γ point,
which are both very accurately predicted by our NNs.
We verify our hypothesis regarding the Chern number

C−=þ for a statistically relevant number of samples using the
bulk-boundary correspondence. This is achieved by deduc-
ing C−=þ from the slopes and position (upper or lower edge)
of the edge states in the central band gap calculated from
strip simulations. With the aim of reducing the computa-
tional effort, we consider a low-resolution grid (N ¼ 10)
and a narrow strip (ten-unit-cell width). While we do not
expect our strip simulations for such a low resolution to
have already converged to the continuous limit, we still
expect them to reproduce at least qualitatively the band

FIG. 13. Sketch of the NN layout for the two-component
topological insulator case study.
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structure and to correctly reproduce the robust topological
features of interest here.

3. NN layout

The NN layout is sketched in Fig. 13. conv2D layers
with ReLu activation, kernel size (2,2) using the option
padding ¼ same are alternated to max_pooling2D layers
with pool size (2,2) and stride ¼ 2. These layers are
followed by three dense layers. The dropout (0.15) is
applied between each pair of subsequent dense layers (not
shown in the sketch).

APPENDIX L: DETAILS OF THE
OPTIMIZATION METHOD

Implementing an optimization task starts by specifying
some goal to achieve for the band structure: e.g., maxi-
mizing some band gap, or matching the predicted band
structure as well as possible to a fixed given band structure.
This goal has to be expressed in terms of a reward function
(a function of the predicted band structure). Furthermore,
the geometry has to be parametrized; in our case, we choose
to describe a completely general geometry via its Fourier
coefficients. Afterward, one can do gradient ascent on the
reward, with respect to the geometry, exploiting the fact
that backpropagation through the full network or tight-
binding pipeline is possible.
The illustrative example we treat in the main text is a

kind of “inverse problem,” where we want to target a given
band structure (calculated from some selected simple tight-
binding model, in our case).

1. Creation of sharp potentials from smooth functions

A difficulty in our case is the constraints on the potential,
which should assume only two discrete values, besides
being C6 symmetric. To guarantee these properties, we
optimize not directly the potential defined on a lattice, but
instead the Fourier coefficients from which the potentials
can be generated. This is possible since our approach for
creating potentials, applying a sigmoid to a smooth scalar
field, is differentiable for finite (nonzero) “temperatures” of
the sigmoid. The step from Fourier coefficients to potential
can be implemented directly in TENSORFLOW.
In this way, the potentials already obey the required

symmetry. However, even though the sigmoid constrains
the potential values between 0 and Vmax, it cannot reliably
enforce the potential to take only these values. In order to
enforce the discreteness of the potential, we define a new
term for the cost function which is proportional toP

x vðxÞ½vðxÞ − 1�, where x runs over the unit cell and
vðxÞ ¼ VðxÞ=Vmax is the rescaled potential. The cost
function for optimizing the input is hence the old cost
function plus this new potential cost function. Again, it is
important to choose the right weighting between both
contributions. Without the potential cost function, the

optimized potential might become less discrete, while a
weight that is too large leads to stagnation of training. We
observe that a good weight for the potential cost function is
around 0.0001. In this way, the neural network focuses on
making the potentials discrete only after it has reached
already a low-loss value. As an optimizer, we again use
ADAM with a learning rate of around 0.5 and otherwise
default settings.

2. Our optimization procedure

Since it can happen that certain starting conditions
may lead to stagnation, we recommend running several
optimization trials with different random starting con-
ditions. In our case, we choose a uniform distribution
for all coefficients, with 0 as the mean. The suitable
limits for the uniform distribution depends on the choice
of inverse temperature β [cf. Eq. (D4)]. In the case of
β ¼ 1, we observe good results for random amplitudes
in the interval ½−0.5; 0.5�. Since the optimization can be
performed on a GPU, we are able to optimize many
samples in parallel. For example, we can optimize for
one target band structure with 200 different starting
conditions at the same time. On our hardware (men-
tioned in the training section) ten update steps on 200
samples take roughly 3 s. As usual, the number of
update steps we recommend is 400–500. Out of the 200
trials for one band structure, we can then choose the
best trials and check the results of the Schrödinger
equation on the predicted potentials.

3. Details on the calculation of the loss map

For the optimization loss map (measuring the quadratic
deviation between the optimized band structure and the
target for different target band structures), we use paralle-
lization to optimize for different band structures at the same
time. By this, we can quickly produce one potential for
each point in our grid. By repeating this procedure and
updating the loss map such that the loss and the corre-
sponding potential are replaced if the new version is better,
we can reduce the noise of the loss map over time. To assess
the quality, we always compare against the loss of the
neural-network predictions on validation data (this is the
square of the rms band-structure deviation measured in
units of Vmax). For the final optimization loss map, we
distinguish between “relatively good” results, with an
optimization loss about twice the network loss, and very
good results, with an optimization loss below the network
loss (here roughly 6 × 10−6).

APPENDIX M: TIGHT-BINDING MODEL
SUPPORTING FRAGILE TOPOLOGICAL

PHASES

Here, we give more details on the TB model imple-
mented using our optimization method. For a detailed
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investigation of the model with only nearest-neighbor
hopping, we refer to Refs. [55,64]. There are two main
reasons why this model has attracted huge attention in the
field of topological physics: (i) It is the simplest toy model
that describes the band-folding p-d band-inversion tran-
sition that underlies the designs of a large number of
topological photonics and topological phononics experi-
ments demonstrating helical edge states; see, e.g.,
Refs. [56,57,59]. In this case, the edge states are localized
about domain walls separating a “trivial” region (without
band inversion, J0 < J) and a “topological” region (with
band inversion, J0 > J). (ii) It is possible to describe its
topology in terms of mirror winding numbers. Such mirror
winding numbers are connected via a bulk-boundary
correspondence to the edge states at the physical boundary
of systems with a selected shape (decoration) [64]. We
emphasize, however, that from the point of view of
topological quantum chemistry (which focus on the orbitals
in real space rather than the bulk-boundary correspon-
dence), the band-folding phase transition is actually a
hybridization transition and not a topological one; see
Ref. [35]. For J > J0, the Wannier orbitals are formed by
the hybridization of six atoms within one unit cell and are,
thus, localized about the C6 rotocenters. For J > J0, on the
other hand, the Wannier orbitals are formed by the
dimerization of pairs of nearest-neighbor orbitals belonging
to different unit cells and are, thus, localized about the C2
rotocenters. In both cases, there is a well-defined
“atomic limit.”
Here, we show that by adding a next-nearest-neighbor

hopping modulated in amplitude, it is possible to induce a
topological phase transition where a set of isolated bands
does not admit an atomic limit. More precisely, we imple-
ment topological quasi-BRs with the same symmetry
fingerprints as those we discover in our topological
exploration; cf. Fig. 3(d) of the main text. Thus, this
finding is yet another example of discovery that is stimu-
lated by the rapid exploration allowed by our NN.
The Hamiltonian for our TB model reads

HTB=ℏ ¼
X
j

ω0â
†
j âj −

X
hj;j0i

Jj;j0 ðâ†j âj0 þ â†j0 âjÞ

−
X
⟪j;j0⟫

Lj;j0 ðâ†j âj0 þ â†j0 âjÞ;

where âj is the annihilation operator on site j,
ð⟪j; j0⟫Þhj; j0i indicates the sum over (next-) nearest
neighbors, and ðLj;j0 ÞJj;j0 are the (next-) nearest-neighbors
hopping amplitudes. We choose Jj;j0 ¼ J ðJj;j0 ¼ J0Þ for j
and j0 within the same unit cell (in different unit cells);
cf. sketch in Fig. 6(a). Likewise, we choose Lj;j0 ¼ L
ðLj;j0 ¼ L0Þ for j and j0 within the same unit cell (in
different unit cells); cf. sketch in Fig. 6(c).
In order to analyze the (quasi-) BR as a function of the

parameters for our TB model, we need to calculate the

spectrum and symmetry at the high-symmetry points. It is
possible to find simple close formulas because at each high-
symmetry point there are at most two orbitals for each irrep.
At the Γ point, the six sites combine to generate one orbital
for each quasiangular momentum; the corresponding ener-
gies are

Es=ℏ ¼ ω0 þ 3J̄ −
δJ
2
− 6L̄ − δL;

Ep=ℏ ¼ ω0 þ δJ þ 3L̄þ δL
2
;

Ed=ℏ ¼ ω0 − δJ þ 3L̄þ δL
2
;

Ef=ℏ ¼ ω0 þ 3J̄ −
δJ
2
− 6L̄ − δL:

At the K points, we have two orbitals for each value of the
quasiangular momentum m ¼ 0;�1,

E0=1;0=ℏ ¼ ω0 þ 2δL ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3J̄2 − 3J̄δJ þ 7

4
δJ2

r
;

E0=1;1=ℏ ¼ ω0 − δL ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3J̄2 þ 1

4
δJ2

r
: ðM1Þ

At the M points, where the proper group is C2ν, it is useful
to label the orbitals according to the parity under the two
mirror symmetries. [We thus implicitly take into account
that the space group of the TB model is actually the
Wallpaper group p6m and not just p6.] We then find

Eþ−=ℏ ¼ ω0 − 2J̄ − L̄ −
3

2
δL;

E−−=ℏ ¼ ω0 þ 2J̄ − L̄ −
3

2
δL;

E0=1;−þ=ℏ ¼ ω0 þ
J̄
2
þ L̄

2
−
δJ
4
þ 3

4
δL

�
�
9

4
ðJ̄ − L̄Þ2 − 5

4
ðJ̄ − L̄ÞðδJ − δLÞ

þ 17

16
ðδJ − δLÞ2

�
1=2

;

E0=1;þþ=ℏ ¼ ω0 −
J̄
2
þ L̄

2
þ δJ

4
þ 3

4
δL

�
�
9

4
ðJ̄ þ L̄Þ2 − 5

4
ðJ̄ þ L̄ÞðδJ þ δLÞ

þ 17

16
ðδJ þ δLÞ2

�
1=2

: ðM2Þ

Here, we define

J̄ ¼ ðJ þ J0Þ=2; δJ ¼ J0 − J; L̄ ¼ ðLþ L0Þ=2;
δL ¼ L0 − L:
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While it would be interesting to use the above analytical
expressions to derive all possible topological and hybridi-
zation phases supported by the our TB model, below we
focus on the parameter regime where the TB model
describes a small perturbation about the graphene TB
model, and, thus, J̄ > 0 is the largest hopping amplitude,
J̄ ≫ L̄; δJ; δL. In this framework, it is not necessary
anymore to distinguish between states with different mirror
symmetry at the M point. Instead, we adopt the same
convention used in the main text of ordering the three odd
(even) states under C2 rotations by increasing energy,

E0;−=ℏ≡ Eþ−=ℏ ¼ ω0 − 2J̄ − L̄ −
3

2
δL;

E0;þ=ℏ≡ E0;þþ=ℏ ≈ ω0 − 2J̄ − L̄þ 2

3
δJ −

7

6
δL;

E1;−=ℏ≡ E0;−þ=ℏ ≈ ω0 − J̄ þ 2L̄þ 1

6
δJ þ 1

3
δL;

E1;þ=ℏ≡ E1;þþ=ℏ ≈ ω0 þ J̄ þ 2L̄ −
1

6
δJ þ 1

3
δL;

E2;−=ℏ≡ E1;−þ=ℏ ≈ ω0 þ 2J̄ − L̄ −
2

3
δJ þ 7

6
δL;

E2;þ=ℏ≡ E−−=ℏ ¼ ω0 þ 2J̄ − L̄ −
3

2
δL: ðM3Þ

Here, we expand Eq. (M2) up to leading order. Likewise,
expanding Eq. (M1), we find

E0=1;0=ℏ ¼ ω0 þ 2δL ∓ ffiffiffi
3

p �
J̄ −

δJ
2

�
;

E0=1;1=ℏ ¼ ω0 − δL ∓ ffiffiffi
3

p
J̄: ðM4Þ

We first analyze the special case δJ ¼ δL ¼ 0. In this
case, the smallest possible unit cell contains only two sites,
and we recover the band structure of graphene (with next-
nearest-neighbor hopping) but folded into a smaller
Brillouin zone (because in real space, we are using a larger
unit cell containing six atoms). The two connected bands of
graphene give rise to six connected bands after folding.
Because of this underlying symmetry, we also expect
two triply degenerate levels at the K point. The reason
is that three quasimomenta of the larger BZ that are
mapped onto each other by C3 rotations are projected onto
the same quasimomentum of the smaller BZ. Indeed, from
Eq. (M1) we see that E0;0 ¼ E0;1 (E1;0 ¼ E1;1) correspond-
ing to a triple degeneracy because E0;1 (E1;1) is a doubly
degenerate level. With similar arguments, one can prove
that at the M point, two doubly degenerate levels are to be
expected. Indeed, from Eq. (M2) we see that E0;− ¼ E0;þ
and E2;− ¼ E2;þ.
The first step toward constructing the topological

quasi-BRs is to create an imbalance in the nearest-neighbor
hopping by choosing δJ > 0 (the external hopping is
larger). In this scenario (discussed also above for

L̄ ¼ 0), the folded graphene band structure is split into
two sets of three connected bands each with dimerized
Wannier orbitals localized about the C2 rotocenters;
cf. Fig. 14 (central panel). At the Γ point, the p orbital
is lifted above the d orbital. At the same time, at the M
point, the lowest- (highest-) energy even band is lifted
above the lowest- (highest-) energy odd band, E0;þ > E0;−
(E2;þ > E2;−). Likewise, at the K point, the lowest (high-
est) s-orbital wave is lifted above (lowered below) the
lowest (highest) p level, E0;0 > E0;1 (E1;0 < E1;1).
Next, we tweak the band structure described above to

obtain topological fragile bands. This is achieved by
creating an imbalance between the next-nearest-neighbor
hopping, δJ ≠ 0. From Eq. (M3), we see that at the M
point, a positive δJ decreases the energy E2;þ of the
highest even orbital while increasing the energy of the
odd orbital E2;−. Meanwhile, at the K point, the energy E1;1

of the highest p-Bloch wave is also decreased, while the
energy E1;0 of the corresponding s orbital is increased;
cf. Eq. (M4). For sufficiently large δL, δL > δJ=

ffiffiffiffiffi
12

p
, the

order of the highest two bands have been inverted com-
pared to the situation where δL ¼ 0 at both high-symmetry
points K and M (at the M point, the band inversion occurs
already for δL > δJ=4). As a consequence, the highest
three bands are split into a pair of topological bands, and an
f orbital localized about the C6 rotocenter; cf. Figs. 14
(right panel) and 4(c) of the main text.
A similar analysis shows that for δL negative,

δL < −δJ=
ffiffiffiffiffi
12

p
, the lowest three bands are split into an

s orbital localized about the C6 rotocenters and a pair of
topological bands; cf. Fig. 14 (left panel). A similar bands
configuration is observed for the lowest three bands of the
randomly generated potential 2 in Fig. 3 of the main text.

FIG. 14. Three different phases for the graphene TB model with
next-nearest-neighbor hopping. For δJ > 0, jδLj ¼ 0 the folded
graphene band structure is split into two kagomelike band
structures (central panel). For δL < −δJ=

ffiffiffiffiffi
12

p
, after band-inver-

sion transitions at both the M and K points (the orbitals that are
exchanged are marked by dashed lines), the lower kagome bands
split into a triangularlike s band and a pair of topological bands
(left panel). For δL > δJ=

ffiffiffiffiffi
12

p
, similar band inversions lead to

the splitting of the higher kagome bands into a topological pair of
bands and triangularlike f band (right panel).
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