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Abstract

Objectives: Paleofeces are valuable to archeologists and evolutionary biologists for

their potential to yield health, dietary, and host information. As a rich source of pre-

served biomolecules from host-associated microorganisms, they can also provide

insights into the recent evolution and changing ecology of the gut microbiome. How-

ever, there is currently no standard method for DNA extraction from paleofeces,

which combine the dual challenges of complex biological composition and degraded

DNA. Due to the scarcity and relatively poor preservation of paleofeces when com-

pared with other archeological remains, it is important to use efficient methods that

maximize ancient DNA (aDNA) recovery while also minimizing downstream taxo-

nomic biases.

Methods: In this study, we use shotgun metagenomics to systematically compare the

performance of five DNA extraction methods on a set of well-preserved human and

dog paleofeces from Mexico (~1,300 BP).

Results: Our results show that all tested DNA extraction methods yield a consistent

microbial taxonomic profile, but that methods optimized for ancient samples recover

significantly more DNA.

Conclusions: These results show promise for future studies that seek to explore the

evolution of the human gut microbiome by comparing aDNA data with those gener-

ated in modern studies.
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1 | INTRODUCTION

The gut microbiome is a core component of human biology, contribut-

ing to a range of physiological functions from digestion to host immu-

nity. To date, most studies of the human gut have focused on

industrialized societies, but recent research on hunter-gatherer, horti-

culturalist, and pastoralist cultures has revealed previously unknown

microbial diversity in populations living more traditional lifeways

(Obregon-Tito et al., 2015; Schnorr et al., 2014; Yatsunenko et al.,

2012). Such studies suggest that industrialized societies may have
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undergone recent changes in gut microbiome structure and function

related to changing dietary and sanitation practices; however, testing

this hypothesis requires the recovery of well-preserved gut microbiota

from the archeological record. Paleofeces, alternatively known as cop-

rolites, are the preserved remnants of feces from humans or other ani-

mals. Preserving only under extraordinary conditions, such as rapid

desiccation or freezing, paleofeces are relatively uncommon in the

archeological record; however, those specimens that do survive have

the potential to shed light on the evolution of the gut microbiome

(Schnorr, Sankaranarayanan, Lewis Jr., & Warinner, 2016; Warinner,

Speller, Collins, & Lewis Jr., 2015).

The genetic comparison of paleofeces and fresh feces, however,

presents two major challenges. The first is the degraded nature of

ancient DNA (aDNA) itself, and the second is that reconstruction of

a complex microbial community, such as the gut microbiome, can be

influenced by DNA extraction methods (Wesolowska-Andersen

et al., 2014). The aDNA is both low in abundance and highly frag-

mented, and as a result, aDNA extraction methods necessitate a min-

imum of handling steps and chemical reagents, as well as a

specialized silica binding protocol, in order to mitigate DNA loss and

efficiently recover short aDNA fragments (Dabney et al., 2013). On

the other hand, modern microbiome reconstruction depends on the

efficiency with which bacterial lysis occurs during DNA extraction,

which is influenced by differences in cell wall structure, spore forma-

tion, and other factors. In order to reduce data variability in modern

microbiome studies, many laboratories and large-scale projects have

attempted to standardize DNA extraction methods. For example,

both the Earth Microbiome Project (Marotz et al., 2017; Thompson

et al., 2017) and the Human Microbiome Project (HMP) (Aagaard

et al., 2013) have recommended using the Qiagen PowerSoil (for-

merly MoBio PowerSoil) DNA extraction kit, and consequently, this

kit has become relatively standard in modern microbiome research.

To ensure efficient cell lysis, this kit uses extensive mechanical,

chemical, and enzymatic lysis steps, followed by inhibitor removal

using proprietary chemicals, and finally a DNA purification and con-

centration step using a silica spin column. In addition, some variants

of this protocol have also advocated using an initial heat lysis step

(Obregon-Tito et al., 2015).

The fact that the standard methods for ancient and modern DNA

extraction differ so greatly is a potential problem that could introduce

bias when generating and comparing DNA sequence data obtained

from paleofeces and fresh feces using two different protocols. How-

ever, on the other hand, using the same extraction method for both

sample types is problematic because it would very likely yield sub-

optimal results for one sample type. For example, using an optimized

aDNA protocol for modern microbiome DNA extraction is expected

to result in inefficient cellular lysis and biased taxonomic recovery,

and using an unmodified commercial DNA extraction kit for

paleofeces would likely result in unacceptable aDNA losses.

To address this problem and determine the impact of extraction

protocol on DNA recovery and reconstructed microbial profiles

obtained from paleofeces, we systematically tested a panel of five

DNA extraction protocols on well-preserved human and dog

paleofeces from the Cueva de los Muertos Chiquitos archeological

site. Located near the Rio Zape river in Durango, Mexico and dating

to ~1,300 BP, paleofeces from this site have been shown to contain

well-preserved aDNA deriving from gut-associated bacteria (Tito

et al., 2008; Tito et al., 2012). To assess protocol performance, we

compare both total DNA yield and reconstructed microbial commu-

nity structure. All genetic sequence data was generated using a shot-

gun metagenomics approach in order to avoid known aDNA

amplification biases due to length polymorphisms in the 16S rRNA

gene (Ziesemer et al., 2015). Overall, our findings show that proto-

cols developed specifically for the recovery of aDNA result in sig-

nificantly higher DNA yields compared with commercial DNA

extraction kits. Importantly, however, all extraction protocols

resulted in consistent taxonomic profiles from paleofeces, indicat-

ing that aggressive cell lysis and inhibitor removal steps are not

necessary to efficiently recover DNA from paleofeces. Conse-

quently, genetic sequences obtained from paleofeces using opti-

mized aDNA extraction protocols can be compared with previously

published gut microbiome data obtained using commercial kits

without systematic taxonomic bias due to extraction protocol

differences.

2 | MATERIALS AND METHODS

2.1 | Samples and study design

Three paleofeces samples were selected for analysis from the Cueva

de los Muertos Chiquitos archeological site, a cave situated approxi-

mately 15 m above the Rio Zape in Durango, Mexico. This site con-

tains evidence of storage, agave feasting, waste disposal, and burial

and is associated with the Loma San Gabriel Culture, a group of rural

agriculturalists who occupied the area from approximately 1,200 to

1,400 years ago (Jimenez et al., 2012). Analysis of dental casts in quids

from the site shows that at least 49 people were involved in feasting

activity at the site (Hammerl, Baier, & Reinhard, 2015). Wooden mate-

rials associated with the paleofeces have been dated to 1,300 ± 100

BP (Brooks, Kaplan, Cutler, & Whitaker, 1962). The paleofeces were

excavated from a midden above an adobe floor. The adobe floor

sealed the remains of several partially mummified child burials, as well

as offerings. This site was remarkably deep and the refuse deposits

were separated from the entry of the cave by approximately 10 m.

This distance was composed of rock fall. Inside the rock fall was the

midden overlying the adobe floor and extending a further 4–5 m

deeper into the cave. This unusually isolated archeological context

deep within a cave has contributed to their exceptional preservation,

and paleofeces from this site have been previously shown to preserve

DNA from gut microbiome-associated bacterial taxa (Tito et al., 2008;

Tito et al., 2012). Paleofeces found within the midden are consistent

with human and dog feces. The samples in this study are a subsample

of 36 specimens analyzed for parasite remains (Jimenez et al., 2012).

One putative dog sample (Zape 2) and two human samples (Zape

5 and Zape 28) of paleofeces were selected for analysis. A canine
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origin for Zape 2 was suspected based on the presence of previously

identified dog-associated parasites identified within the fecal material

(Cleeland, Reichard, Tito, Reinhard, & Lewis Jr, 2013; Jimenez et al.,

2012), and later confirmed in this study (see in the following). Because

human and dog paleofeces make up the majority of paleofeces

reported at archeological sites, we include paleofeces from both host

species in this study.

2.2 | DNA extraction

DNA was extracted from paleofeces following five protocols, here

designated A–E: the Human Microbiome Project standard protocol

using the PowerSoil kit (A); an aDNA-optimized modified MinElute

protocol for bone extraction following Dabney et al. (2013) (B); and

three variants of these protocols (C–E) (Figure 1). Extractions were
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F IGURE 1 Overview of study design. This
study was designed to test the influence of DNA
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performed in an ISO-6 cleanroom dedicated to ancient biomolecule

research at the University of Oklahoma's Laboratories of Molecular

Anthropology and Microbiome Research following established guide-

lines for aDNA research. Each extraction protocol was performed in

duplicate, and non-template (negative) extraction controls were

processed alongside each protocol to monitor for contamination. Prior

to extraction, ~2.2 g of material was homogenized from each of the

paleofeces; because of the fragmentary nature of the paleofeces, this

sampling was performed on whole fecal pieces, which were then

homogenized by milling to eliminate potential spatial biases. For each

extraction, a subsample of approximately 200 mg was resuspended in

a solution of 400 μL of 0.5 M EDTA and 100 μL Proteinase K (Qiagen,

>600 mAU/ml) to form a slurry for DNA extraction. Following extrac-

tion and purification, DNA was quantified using a Qubit 3.0 fluorome-

ter with a double-stranded DNA High Sensitivity assay (Table S1).

2.2.1 | Extraction Method A: Human Microbiome
Project protocol with PowerSoil kit

This method follows the HMP protocol for the MoBio PowerSoil

DNA extraction kit and was used as a test of the efficacy of a stan-

dard microbial extraction protocol on DNA recovery from paleofeces.

In brief, the paleofeces suspension was added to a PowerBead tube

containing 750 μL guanidine thiocyanate and garnet bead solution,

and samples were rotated for 2 hr at RT. The sample was then incu-

bated at 65�C for 10 min with 60 μL of solution C1, followed by bead

beating for 10 min. Following centrifugation for 1 min at 17900 rcf,

the supernatant was then processed according to the PowerSoil kit

manufacturer's instructions. In total, this protocol involves mechanical

lysis, chemical lysis, heat lysis, chemical removal of inhibitors, and sil-

ica purification steps. Final DNA elution was performed with 60 μL of

Solution C6 after a 5 min RT incubation of the elution buffer on the

column.

2.2.2 | Extraction Method B: Modified MinElute
protocol

This method was selected as a test of a highly efficient aDNA extrac-

tion protocol developed for bone (Dabney et al., 2013) on paleofeces

as a source material. While this protocol has been shown to be highly

effective for the recovery of aDNA from mineralized tissues, including

bone, dentine, and dental calculus (Mann et al., 2018), it has yet to be

empirically tested on paleofeces. In brief, the paleofeces suspension

was added to a PowerBead tube containing 750 μL guanidine thiocya-

nate and garnet bead solution, and samples were rotated for 4 hr at

RT, followed by bead beating for 10 min. Samples were then spun

down at 3400 rcf for 5 min, and the supernatant was then added to

14 mL of Qiagen PB buffer. This was then centrifuged in a MinElute

column (Qiagen) attached to a Zymo-Spin V column (Zymo Research)

for 4 min at 1500 rcf, rotated 90�, and then centrifuged for an addi-

tional 2 min. The column was then dry spun for 1 min at 3400 rcf and

washed twice with 700 μL Qiagen PE buffer at 9400 rcf. DNA was

eluted from the column after a 5 min RT incubation in two rounds of

30 μL of Qiagen EB buffer at 17900 rcf for a total volume of 60 μL.

2.2.3 | Extraction Method C: Phenol-chloroform +
modified MinElute protocol

Previous experiments in our laboratory with paleofeces have resulted

in the occasional clogging of silica columns with an unidentified gel-

like substance. This protocol aims to circumvent this issue by chemi-

cally isolating nucleic acid through phenol-chloroform separation prior

to silica binding. In this protocol, the paleofeces suspension was

added to a PowerBead tube containing 750 μL guanidine thiocyanate

and garnet bead solution, and samples were rotated for 4 hr at RT,

followed by bead beating for 10 min and centrifugation at 3400 rcf

for 5 min. DNA was then separated from the supernatant via phenol-

chloroform extraction. In brief, the supernatant was added to a new

microcentrifuge tube containing 750 μL of 25:24:1 mixture of phenol:

chloroform:isoamyl alcohol, vortexed, then centrifuged at 17900 rcf

for 1 min. The aqueous phase was transferred to a new microce-

ntrifuge tube with an additional 750 μL of the phenol:chloroform:

isoamyl alcohol mixture, vortexed, and again centrifuged at 17900 rcf

for 1 min. The resulting aqueous phase was then added to 750 μL of

24:1 chloroform:isoamyl alcohol mixture, vortexed, and centrifuged at

17900 rcf for 1 min before being processed according to Method B,

and DNA was eluted after a 5 min RT incubation in two rounds of

30 μL of Qiagen EB buffer for a total volume of 60 μL.

2.2.4 | Extraction Method D: Split modified
MinElute protocol

Nearly identical to Method B, this protocol differs only in splitting the

silica binding step across two MinElute columns in order to mitigate

clogging problems encountered when loading extraction lysates onto

a single column. For this, the supernatant was divided into two equal

aliquots, each of which was added to a MinElute column with 7.5 mL

of Qiagen PB buffer and processed according to the protocol

described in Method B. For each of the two columns, DNA was eluted

after a 5 min RT incubation in two rounds of 15 μL of Qiagen EB

buffer, and the four elutions were then pooled for a total volume

of 60 μL.

2.2.5 | Extraction Method E: HMP protocol +
modified MinElute protocol

Methods A and B involve starkly different cell lysis and inhibitor

removal procedures, but share a similar DNA purification and concen-

tration step using a silica column. However, the manufacture and

reported binding capacity of the columns used in Methods A and B

differ. Specifically, Method B uses a Qiagen MinElute column, which
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is marketed as efficiently retaining DNA fragments as short as 70 bp,

while the retention properties of the silica column spin filter used in

Method A are not specified and may not retain short fragments. In

order to distinguish the effects of the lysis and inhibitor removal pro-

cedures from the size selection of the silica column, we devised a

hybrid method that combines the two protocols. The paleofeces sus-

pension was added to a PowerBead tube containing 750 μL guanidine

thiocyanate and garnet bead solution, and DNA was then extracted

according to Method A up to the centrifugation step following the

addition of 200 μL of Solution C3. The resulting supernatant was then

purified and concentrated on a Qiagen MinElute column following

Method B, and DNA was eluted after a 5 min RT incubation in two

rounds of 30 μL of Qiagen EB buffer for a total volume of 60 μL.

2.3 | Library construction and sequencing

Double-stranded shotgun Illumina libraries were constructed for each

extract following the protocol developed by Meyer and Kircher (2010),

with modifications. Briefly, 100 ng of DNA (or 30 μL of extract for nega-

tive controls and low yield samples) as measured by the Qubit fluorometer

high-sensitivity assay was used to construct indexed libraries with the

NEBNext DNA Library Prep Master Set (E6070) according manufacturer

instructions, but replacing SPRI bead purification with a silica column-

based purification (Qiagen MinElute PCR Purification kit). In brief, the ends

of template molecules were repaired with T4 polymerase and polynucleo-

tide kinase to create blunt end templates with phosphorylated 50 ends.

Blunt end IS1/IS3 and IS2/IS3 adapters were then ligated to template mol-

ecules at a concentration of 0.5 μM. Adapter overhangs were filled in by

Bst DNA polymerase at 37�C for 30 min, followed by an inactivation step

at 80�C for 20 min and −20�C overnight. Shotgun libraries were con-

structed for each sample and negative control by PCR amplification with

Kapa HiFi Uracil+. The libraries were then purified by silica column

(Qiagen MinElute PCR Purification kit) and quantified with a BioAnalyzer

2,100 using the High Sensitivity DNA reagents. MinElute centrifugation

speeds were modified to 3,400 rcf, 9,400 rcf, and 17,900 rcf for binding,

washing, and elution steps, respectively. All libraries were pooled in equi-

molar amounts, size selected to 150–600 bp using a PippinPrep 2% aga-

rose gel, and sequenced by Illumina HiSeq 2×100 paired-end sequencing.

2.4 | Data analysis

2.4.1 | Data filtering and quality control

Sequenced reads were initially assessed for quality with FastQC.

Library pooling and sequencing for sample Zape 2 Method B replicate

2 resulted in fewer than 10 K sequences and was excluded from subse-

quent analysis. The remaining paleofeces samples were each sequenced

to an average depth of approximately 11 million reads (median, 11.1 M

reads; range, 3.4–59.9 M reads). Sequencing adapters were removed

and paired-end reads were merged with AdapterRemoval 2.0 using the

following parameters: —maxns 0, —trimqualities, —minquality 30, —

collapse, —minlength 25, and —minalignmentlength 10. Residual

adapter contamination was removed by mapping all reads to full

adapter constructs with Bowtie 2.3.0 (Langmead & Salzberg, 2012) in

local alignment mode. The resulting collapsed, analysis-ready reads

were then used for downstream analysis. A summary of sequencing

and preprocessing statistics is provided in Table S2.

2.4.2 | Assessment of method impact on DNA
yield

The quantity of DNA recovered by each extraction as measured by the

Qubit fluorometer double-stranded high-sensitivity assay was normal-

ized to the amount of starting material used. Next that the mean quan-

tity of DNA recovered by Method A in each sample was calculated, and

the fold change in each sample for each additional method was calcu-

lated by dividing its yield by the mean of Method A. Significant differ-

ences in fold change were tested between all methods using a pairwise

Wilcoxon rank sum test corrected for multiple testing by the

Benjamini–Hochberg method (Benjamini & Hochberg, 1995) in R. To

determine if there was any effect by method on the length of DNA

molecules recovered, all analysis-ready reads were mapped to the ref-

erence genomes for 21 bacterial taxa present within the dataset

(Table S3), and the insert lengths of all mapped reads were computed.

The median insert length was calculated for each species in each sam-

ple, and their distributions are shown in Figure S1.

2.4.3 | Microbial community profiling

Analysis-ready reads were mapped to the Greengenes 16S rRNA gene

database (v.13.8, pre-clustered at 97% similarity) (DeSantis et al., 2006)

using bowtie2 (v.2.3.0; Langmead & Salzberg, 2012). Successfully

mapped reads (Table S2) were selected and combined into an input

FASTA file for use with the QIIME package (Caporaso et al., 2010).

Closed-reference operational taxonomic unit (OTU) clustering was per-

formed in QIIME v1.9.1 using the same pre-clustered database and the

following parameters: —max_accepts 500, —max_rejects 500, —

word_length 12, —stepwords 20, and —enable_rev_strand_match TRUE.

In order to determine the effect of extraction method on the observed

microbial community of the paleofeces, the resulting BIOM tables were

merged into a single BIOM table using the script merge_otu_tables.py in

QIIME (Data S1), and beta diversity was calculated using the weighted

UniFrac metric (Lozupone, Lladser, Knights, Stombaugh, & Knight, 2011)

via the script beta_diversity_through_plots.py. Principal coordinates were

extracted from the output file and visualized using R.

2.4.4 | Assessment of paleofeces microbial
preservation

To determine whether the reconstructed microbial communities

observed were endogenous to the paleofeces, Bayesian source
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tracking was performed using SourceTracker v2.1.0 (Knights et al.,

2011). Reference fecal metagenomes obtained from industrialized

human populations (Sankaranarayanan et al., 2015), non-industrialized

human populations (Obregon-Tito et al., 2015), and domesticated

dogs (Li, Lauber, Czarnecki-Maulden, Pan, & Hannah, 2017), as well as

soil metagenomes (Johnston et al., 2016) were prepared in QIIME fol-

lowing the same procedures used for paleofeces (see above), and the

BIOM files were merged with those of the current study for use with

SourceTracker2. Then, to determine whether the paleofeces DNA

exhibits appropriate molecular behavior for aDNA, such as DNA dam-

age, the merged reads from each sample were mapped to the genome

of Prevotella copri (DSM 18205), and mapDamage 2.0 (Jonsson,

Ginolhac, Schubert, Johnson, & Orlando, 2013) was used to measure

the frequency of nucleotide deaminations that are characteristic of

aDNA. P. copri was selected because it has been reported in both

human and dog gut microbiota (Li et al., 2017; Tett et al., 2019).

2.4.5 | Host determination of paleofeces

Finally, two strategies were employed to confirm the previous identifi-

cation of Zape 2 as dog paleofeces rather than representing other

possible scenarios, such as human paleofeces with a dietary signal

from dog consumption. First, all merged reads from each sample were

competitively mapped to both the human (hg19) and dog (CanFam

3.1) reference genomes using bowtie2 (v.2.3.0; Langmead & Salzberg,

2012) in local mode, and the number of reads mapping exactly once

to each was log10 transformed and compared under the assumption

that host DNA would be higher than other eukaryotic, non-host DNA

for a given paleofeces sample. Next, the combined BIOM file con-

taining OTUs from the paleofeces and reference fecal metagenomes

was processed in QIIME. Beta diversity was again computed using the

weighted UniFrac metric and visualized using principal coordinates

analysis under the assumption that the microbial communities present

in Zape 5 and Zape 28 would cluster with modern human feces, while

Zape 2 would cluster with dog feces.

3 | RESULTS AND DISCUSSION

3.1 | DNA recovery by extraction method

Overall DNA recovery differed by paleofeces sample, with Zape

2 yielding the highest average amount of DNA (median, 6.7 ng/mg;

range, 0.8–11.7 ng/mg), followed by Zape 5 (median, 2.9 ng/mg;

range, 0.02–6.7 ng/mg), and Zape 28 (median, 2.5 ng/mg; range,

0.03–7.2 ng/mg) (Table S1). DNA recovery also differed signifi-

cantly by extraction method (Figure 2), and the lowest DNA yields

were observed for extraction methods using the PowerSoil kit

(Methods A and E). DNA recovery was lowest using the HMP pro-

tocol (Method A) and only slightly improved with the substitution

of a MinElute silica column in place of the kit's silica spin filters

(Method E). This suggests that a large proportion of the DNA lost

during extraction using the Powersoil kit occurs during the cell

lysis and/or inhibitor removal stage prior to the silica column

purification step.
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*, p < .05
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F IGURE 3 Sample origin, not DNA extraction method, is primary
determinant of microbial community structure in paleofeces. Principal
Coordinates Analysis (PCoA) analysis of weighted UniFrac beta-
diversity in paleofeces indicates that DNA extraction method has little
influence on reconstructed microbial structure. This contrasts with
studies of modern feces, where extraction method has been shown to
introduce systematic taxonomic biases
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To further investigate the high degree of DNA loss observed in

Method A, we compared the DNA fragment lengths recovered using

the five protocols (Figure S1). Although protocols B-E were expected

to retain shorter DNA fragments due the MinElute silica column, we

did not observe significant differences between any of the methods,

but rather high inter-sample variation. This supports our conclusion

that the cell lysis and/or inhibitor removal steps of the PowerSoil kit

protocol likely had the greatest impact on DNA recovery.

Methods B, C, and D all performed well, and differences between

these methods were non-significant. However, using two silica columns

to expand the total DNA binding capacity and reduce clogging (Method

D) resulted in the highest median DNA yields, and we found that this

method was more straightforward to implement than Method B, which

frequently required cleaning steps to dislodge clogged material. Method

C incorporated a phenol: chloroform purification step that was

intended to remove unwanted material prior to silica column filtration,

but we found that it did not reduce clogging of the columns. Because

Method C uses hazardous chemicals and did not outperform the other

methods, we do not recommend its use. Overall, we recommend

Method D on the basis of DNA recovery and ease of use.

3.2 | Effect of DNA extraction protocol on
microbial community reconstruction

The microbial community structure reconstructed from modern feces

has been shown to be highly influenced by choice of DNA extraction

method (Wesolowska-Andersen et al., 2014). By contrast, here we

find that reconstructed microbial profiles from paleofeces are highly

similar regardless of DNA extraction protocol and that differences in

sample beta diversity are primarily driven by the paleofeces from

which the sample derives (Figure 3). This finding suggests that cellular

degradation over time has sufficiently weakened the cellular structure

of the ancient microbial cells such that even highly simplified DNA

extraction protocols, such as those used in Methods B and D, recover

a microbial community similar to complex and highly aggressive proto-

cols, such as Method A.

3.3 | Gut microbiome preservation

To assess gut microbiome preservation in the paleofeces, Bayesian

source tracking of the microbial taxa (OTUs) present in each sam-

ple was performed using published reference metagenomes of

human feces from industrialized and non-industrialized

populations, dog feces, and soil (Figure 4a). We found that the

majority of the OTUs present are consistent with microbes found

within human or dog feces rather than soil, indicating well-

preserved paleofeces. Additionally, all three paleofeces exhibited

DNA damage patterns consistent with authentic aDNA (Figures 4b

and S2). The high degree of endogenous gut microbiome preserva-

tion we observe is consistent with previous studies that have

reported good molecular preservation of paleofeces at this site

(Tito et al., 2008; Tito et al., 2012).

Zape 2 Zape 5 Zape 28
0.00

0.25

0.50

0.75

1.00

P
ro

p
o
rt

io
n

Source

Unknown

Soil

Dog Feces

Human Feces

5’ 3’

Z
a

p
e

 2
Z

a
p

e
 5

Z
a

p
e

 2
8

0 5 10 15 20 −20 −15 −10 −5 0

0.0%

2.5%

5.0%

7.5%

10.0%

0.0%

2.5%

5.0%

7.5%

10.0%

0.0%

2.5%

5.0%

7.5%

10.0%

Position

A
ve

ra
g
e
 f
re

q
u
e
n
c
y

(a) (b)

F IGURE 4 Zape paleofeces exhibit characteristics of an authentic ancient gut microbiome. (a) Bayesian source tracking of microbial taxa
present in paleofeces suggests a high degree of gut microbiome preservation and low soil contamination; only Zape 2 shows evidence for dog-
associated taxa. (b) Terminal per sample mean nucleotide deamination rates across all methods calculated using mapDamage 2 confirm the
presence of typical aDNA damage patterns in sequences mapping to P. copri (DSM 18025), a bacterial species present in the feces of both
humans and dogs. Red lines indicate C > T; blue lines indicate G > A; all other substitutions are marked in gray
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3.4 | Host confirmation of paleofeces

The host origin of each paleofeces sample was next investigated by

comparing the relative proportion of human and dog DNA sequences

in each sample. Paleofeces samples Zape 5 and Zape 28 exhibited a

7–26-fold excess of human DNA sequences, suggesting a human ori-

gin. By contrast, Zape 2 contained a 40-fold excess of dog DNA

sequences, suggesting a canine origin (Figure 5a). Further analysis of

both the dog and human DNA sequences revealed that they exhibit

damage patterns typical of aDNA, suggesting that they are endoge-

nous to the sample and not contaminants (Figure 5a).

Microbial community profiling further supported these findings

(Figure 5b). Beta diversity analysis of weighted UniFrac distances rev-

ealed that the microbial communities of the Zape 5 and Zape

28 paleofeces fall within the distribution of reference fecal

metagenomes from non-industrial human populations, supporting a

human origin. By contrast, Zape 2 falls outside this distribution, and,

although displaced in principle coordinate two, Zape 2 clusters along

the first principal coordinate within the range of modern dog feces.

Bayesian source tracking further identified a dog fecal contribution in

Zape 2, whereas the fecal components of Zape 5 and Zape 28 were

both estimated to be exclusively of human origin (Figure 4a). The

additional human fecal contribution estimated by SourceTracker2 for

Zape 2, as well as its displacement in principle coordinate two outside

the range of reference dog feces may result from the fact that no

reference fecal metagenomes are currently available for dogs from

non-industrialized contexts.

4 | CONCLUSIONS

Paleofeces are a valuable resource for investigating the evolution of

the gut microbiome and the diet and health of past peoples, but until

now no systematic studies had been conducted to assess the perfor-

mance and potential biases of existing DNA extraction protocols on

the recovery and reconstruction of microbiome profiles. In this study,

we compared five DNA extraction methods on a panel of well-

preserved human and dog paleofeces and evaluated methodological

performance on the basis of DNA recovery and taxonomic composi-

tion. We found that DNA extraction methods that have become field-

standard in modern microbiome studies, such as the HMP PowerSoil

protocol, recover significantly less DNA from paleofeces than

methods that have been developed and optimized for ancient skeletal

material. Additionally, we found that aDNA optimized-methods do

not negatively impact the structure of the reconstructed microbial

communities when compared with the HMP PowerSoil protocol, and

in fact, all DNA extractions tested in this study yielded highly similar

microbial communities. This finding supports future research that

seeks to compare metagenomic data generated using optimized pro-

tocols for both ancient and modern fecal samples. For paleofeces, we

(a) (b)

F IGURE 5 Host assessment of paleofeces. (a) Comparison of the log10-transformed number of DNA sequences mapping uniquely to

the dog and human genomes from paleofeces. The solid diagonal line indicates an equal number of reads aligning to both genomes;
points falling above the line contain more dog DNA (Zape 2), while those falling below the line contain more human DNA (Zape 5, Zape
28). Insets show representative DNA damage profiles for human and dog genomic DNA obtained using method D (Upper: dog, Zape 2;
Lower: human, Zape 28). (b) Microbial beta diversity analysis of paleofeces and reference metagenomes. Zape 5 and Zape 28 fall within the
distribution of feces from modern non-industrialized human populations, while Zape 2 falls outside reference distributions, but within the
range of dog feces on the first principal coordinate. Analysis was performed using Principal Coordinates Analysis (PCoA) of weighted
UniFrac distances
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recommend the use of Method B or D for this purpose, with Method

D favored if clogging occurs during spin filtration.
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