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Abstract
A nonlinear and nonisothermal two-dimensional general rate model is formulated and

approximated numerically to allow quantitatively analyzing the effects of tempera-

ture variations on the separations and reactions in liquid chromatographic reactors of

cylindrical geometry. The model equations form a nonlinear system of convection-

diffusion-reaction partial differential equations coupled with algebraic equations for

isotherms and reactions. A semidiscrete high-resolution finite volume method is mod-

ified to approximate the system of partial differential equations. The coupling between

the thermal waves and concentration fronts is demonstrated through numerical sim-

ulations, and important parameters are pointed out that influence the reactor perfor-

mance. To evaluate the precision of the model predictions, consistency checks are

successfully carried out proving the accuracy of the predictions. The results allow

to quantify the influence of thermal effects on the performance of the fixed beds for

different typical values of enthalpies of adsorption and reaction and axial and radial

Peclet numbers for mass and heat transfer. Furthermore, they provide useful insight

into the sensitivity of nonisothermal chromatographic reactor operation.

K E Y W O R D S
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solutions, mass and heat transfer

1 INTRODUCTION

Reactive chromatographic column is a multifunctional reac-

tor, which integrates reaction and separation processes into

the same unit.1 This process has been found capable for sepa-

rating complex mixtures with desired results.2–10 To achieve

reactions and separations simultaneously, the packing mate-

rials should behave as a catalyst and should have different

affinities toward the reactants and products. For example, con-

sider a reversible reaction process of the type A ⇄ B + C.

The reactant A is injected as a rectangular pulse into the chro-

matographic column. With the presence of the catalyst inside
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the column, the reactant A reacts and produces products B

and C. The situation will be optimum if the reactant A trav-

els in the middle of the products, the forward reaction will be

enhanced, and the backward reaction will be suppressed. For

a sufficiently long elution time of reactant A inside the col-

umn, a complete conversion of component A and production

of products B and C can be achieved.11 Generally, the goal of a

reactive separation is to produce a single high-value product.

More ideas on the foundations and operations of chromato-

graphic reactors are given by some researchers.3,5,6,12,13

Studies of thermal reactions in liquid-phase chromato-

graphic reactors have been carried out by only a few groups
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of researchers.14–19 Especially, authors in Ref. [17], have pre-

sented experimental study of exothermic esterification reac-

tion catalyzed by an acidic ion-exchange resin by consider-

ing the same A⇄B + C reaction. Modeling of chromato-

graphic operations is very helpful for understanding and ana-

lyzing dynamic composition fronts in chromatographic reac-

tors without engaging in extensive experiments. Different

one- and two-dimensional (2D) mathematical models, con-

sidering diverse levels of complexities, are available in the

literature, which provide detailed information about the mass

transfer and partitioning processes.4,20–25

The nonisothermal models of liquid chromatography can

be linearized under the assumptions of small changes in

the concentrations and temperature.25,26 Such linear assump-

tions are valid when the injected volume of the sample is

small and is diluted. The Laplace transform method is often

applied to solve the resulting linear model equations analyti-

cally due to its moment generating property.25,26 The derived

analytical solutions provide fruitful information about the

elution profiles propagating through the column and about

the influence of kinetic and thermodynamic parameters on

the process. Moreover, these solutions could be helpful to

validate the numerical solutions of nonlinear models. How-

ever, it has been shown in our previous article26 that such

solutions are only valid and meaningful for small values of

enthalpy of adsorption and give overpredicted solutions for

larger values of enthalpy of adsorption. On the other hand,

for concentrated (or large volume) samples and large tem-

perature variations, consideration of nonlinear models, using

nonlinear isotherms and reactions, is required. These mod-

els are not solvable analytically, and, thus, a numerical solu-

tion technique is required to approximate the model equa-

tions. Such models and the corresponding numerical solu-

tion techniques are more flexible and general because they

handle the cases of both diluted and large volumed sam-

ples.

In this work, the general rate model of liquid chromatog-

raphy is utilized to simulate nonlinear 2D nonisothermal

reactive chromatography. The goal is to quantify the effects

of temperature variations on conversion and separation in

reactive nonisothermal liquid chromatography in the pres-

ence of axial and radial dispersions. A second-order semidis-

crete finite volume method is used to solve the equations

of the model. Case studies of chemical reactions involving

three-component mixtures are given to show the coupling

of thermal waves and concentration fronts. Different signif-

icant parameters that largely affect the performance of the

reactor are identified. The results show that a heat capacity

ratio of solid phase to liquid phase plays an important role

in the case of nonisothermal chromatographic reactor opera-

tion. Moreover, small values of radial dispersion coefficients

generate radial concentration and temperature gradients inside

the reactor.

The novelty of this current work includes (a) the extension

of our previous linear models (cf Refs. [25] and [26]) to non-

linear and nonisothermal two dimensional-general rate model

(2D-GRM) for liquid chromatography, which incorporates

two energy balance equations in the model; (b) introduction

of nonisothermal reaction process in the 2D-GRM of liquid

chromatography; and (c) application of the 2D finite volume

scheme to numerically approximate the current nonisother-

mal 2D-GRM. Furthermore, as mentioned before, lineariza-

tions of adsorption isotherms and reaction term are needed to

apply an analytical solution approach. Thus, the same nonlin-

ear and nonisothermal reaction behavior presented in this arti-

cle cannot be accommodated in the analytical framework pre-

sented in our previous article.26 The considered model equa-

tions and the corresponding numerical solution technique are

more flexible and general, which are capable of handling the

cases of both diluted and large volume samples.

The current nonisothermal 2D model could be very useful

in various situations, for example, (i) for an imperfect injec-

tion at the inlet of the column (thus introducing a radial profile

at the inlet of the column), (ii) when radial temperature gradi-

ents are present (these temperature gradients are connected

with the radial concentration gradients), and (iii) when the

column is not packed homogeneously (this situation is more

prevalent for larger columns processes). All of these issues

are mostly neglected in practical applications; hence the one-

dimensional (1D) models become acceptable. However, for

their relevance and effects, 2D models are required. With our

current nonisothermal 2D model, we could study situations

(i) and (ii) only. The situation (iii) needs further extensions

in the model equations (eg, considering nonconstant column

porosities), which is currently under investigation.

This article is further structured in the following manner:

In Section 2, a 2D-GRM is formulated to simulate dynamical

processes in nonisothermal liquid chromatographic reactors

of cylindrical geometry. Section 3 presents the derivation of

a high-resolution flux-limiting finite volume method used for

solving the equations. Section 4 presents basic formulations

for checking consistency of the results. Some case studies are

presented in Section 5 followed by the conclusions in Sec-

tion 6.

2 TWO-DIMENSIONAL
NONISOTHERMAL GENERAL RATE
MODEL

The migration of multicomponent concentration bands in the

nonisothermal liquid chromatography is a particular case of

the reaction-diffusion processes. Such phenomena can be

modeled mathematically by applying partial differential equa-

tions, obtained by writing the mass and energy balances in a
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F I G U R E 1 Schematic diagram of a chromatographic column of

cylindrical geometry

column slice. In the derivation of our model, it was assumed

that the column is thermally insulated and homogeneously

packed, a volumetric flow rate is constant, and a heteroge-

neous reaction is taking place in the solid phase. Moreover,

mass and energy transfer between the stationary and mobile

phases, axial and radial dispersions, and intraparticle pore dif-

fusion are incorporated in the following mass and energy bal-

ance equations.

Let 𝑡, 𝑧, and 𝑟 represent the time coordinate, axial coordi-

nate that stretches through the column length, and the radial

coordinate along the column radius, respectively. Both the

reactant and products move through the axis of the column in

the 𝑧-direction by means of convection and axial dispersion,

spreads through the radius of the column in the 𝑟-direction

by radial dispersion, and the reactant decays and produces the

products due to chemical reactions in the solid phase. To have

significant effects of mass transfer in the radial direction, the

following injection conditions are assumed. Thus, we intro-

duce a new parameter 𝑟, which divides the column’s inlet cross

section into an inner cylindrical core and an outer annular ring

(see Figure 1). By doing so, the injection of sample mixtures

into the column can be done either via the inner core, via the

outer ring, or via the whole cross section (which is the case

when 𝑟 is set equal to the radius of the column 𝑅𝑐). Thus, the

mass balance equations are given for 𝑖 = 1, 2,… , 𝑁𝑐 as

𝜕𝑐𝑏,𝑖

𝜕𝑡
+ 𝑢

𝜕𝑐𝑏,𝑖

𝜕𝑧
= 𝐷𝑧,𝑖

𝜕2𝑐𝑏,𝑖

𝜕𝑧2
+𝐷𝑟,𝑖

(
𝜕2𝑐𝑏,𝑖

𝜕𝑟2
+ 1

𝑟

𝜕𝑐𝑏,𝑖

𝜕𝑟

)

− 3
𝑅𝑝

𝐹𝑏𝑘ext,𝑖
(
𝑐𝑏,𝑖 − 𝑐𝑝,𝑖(𝑟𝑝 = 𝑅𝑝)

)
, (1)

where 𝑐𝑏,𝑖 is the concentration of 𝑖th component in the bulk

phase, 𝑐𝑝,𝑖 denotes the same component concentration in the

pores of the particle, and 𝑢 denotes the fluid phase velocity,

which, due to the excess of solvent, is assumed to be constant

even in the case of component-specific different axial disper-

sion coefficients 𝐷𝑧,𝑖. Furthermore, the phase ratio is denoted

by 𝐹𝑏 = (1 − 𝜖𝑏)∕𝜖𝑏, where 𝜖𝑏 denotes the external porosity,

𝐷𝑟,𝑖 denotes the dispersion coefficient of the 𝑖th component

in the radial direction, and 𝑘ext,𝑖 denotes the coefficient of

external mass transfer. Lastly, 𝑟𝑝 is the radial coordinate of

spherical particles of radius 𝑅𝑝 and 𝑁𝑐 stands for the number

components in the mixture.

The corresponding equation of mass for the solute in the

particles pores can be given as

𝜕𝑐𝑝,𝑖

𝜕𝑡
+ 𝐹𝑝

𝜕𝑞𝑝,𝑖

𝜕𝑡
= 𝐷𝑝,𝑖

(
𝜕2𝑐𝑝,𝑖

𝜕𝑟2
𝑝

+ 2
𝑟𝑝

𝜕𝑐𝑝,𝑖

𝜕𝑟𝑝

)
+𝐹𝑝𝜈𝑖𝑟

het , 𝑖 = 1, 2,… , 𝑁𝑐, (2)

where 𝑞𝑝,𝑖 is the solid-phase concentration at local equilib-

rium for 𝑖th component, 𝐷𝑝,𝑖 is the pore diffusivity for the 𝑖th

component, 𝐹𝑝 =
1−𝜖𝑝
𝜖𝑝

, where 𝜖𝑝 is the internal porosity, 𝜈𝑖

is the corresponding stoichiometric coefficient of 𝑖th compo-

nent, and 𝑟het denotes the heterogeneous reaction rate in the

solid phase.

Owing to the nonisothermal nature of the column, the cor-

responding energy balance of the column, assuming also heat

conductivity in the radial direction of the column, is given as

𝜕𝑇𝑏

𝜕𝑡
+ 𝑢

𝜕𝑇𝑏

𝜕𝑧
=

𝜆eff ,𝑧

𝜖𝑏𝜌
𝐿𝑐𝐿

𝑝

𝜕2𝑇𝑏
𝜕𝑧2

+
𝜆eff ,𝑟

𝜖𝑏𝜌
𝐿𝑐𝐿

𝑝

(
𝜕2𝑇𝑏
𝜕𝑟2

+ 1
𝑟

𝜕𝑇𝑏

𝜕𝑟

)

−
3𝐹𝑏

𝑅𝑝𝜌
𝐿𝑐𝐿

𝑝

ℎeff
(
𝑇𝑏 − 𝑇𝑝(𝑟𝑝 = 𝑅𝑝)

)
, (3)

where 𝑇𝑏 and 𝑇𝑃 are, respectively, temperatures of the bulk

fluid and fluid inside the particles pores, 𝜆eff ,𝑧 represents the

effective axial heat conductivity, 𝜆eff ,𝑟 denotes the effective

radial heat conductivity, and ℎeff is the effective particle to

fluid heat transfer coefficient.

An energy balance including the possible development of

radial temperature profiles inside particles pores is expressed

as (
1 + 𝐹𝑝

𝜌𝑆𝑐𝑆
𝑝

𝜌𝐿𝑐𝐿
𝑝

)
𝜕𝑇𝑝

𝜕𝑡
− 𝐹𝑝

𝑁𝑐∑
𝑗=1

(−Δ𝐻𝐴,𝑗)
𝜌𝐿𝑐𝐿

𝑝

𝜕𝑞𝑝,𝑖

𝜕𝑡

=
𝜆𝑝

𝜌𝐿𝑐𝐿
𝑝

(
𝜕2𝑇𝑝

𝜕𝑟2
𝑝

+ 2
𝑟𝑝

𝜕𝑇𝑝

𝜕𝑟𝑝

)
+ 𝐹𝑝

(−Δ𝐻𝑅)
𝜌𝐿𝑐𝐿

𝑝

𝑟het . (4)

Here, 𝜆𝑝 denotes the internal heat diffusivity coefficient, 𝜌𝐿

and 𝜌𝑆 are the densities of liquid and solid phases, and 𝑐𝐿
𝑝

and

𝑐𝑆
𝑝

are the corresponding heat capacities. The 𝜌𝐿, 𝜌𝑆 , 𝑐𝐿
𝑝

, and

𝑐𝑆
𝑝

are considered independent of temperature, which is valid

in a small range of temperature. Furthermore, Δ𝐻𝐴,𝑗 is the

enthalpy of adsorption of 𝑗th component and Δ𝐻𝑅 denotes

the enthalpy of reaction.

Assuming the case of a nondispersive, nonreactive, and

fully equilibrium chromatography, the propagation speeds of

concentration profiles 𝑢𝑘
𝑐

and of the thermal wave 𝑢𝑇 can be

estimated using Equations (1)-(4) as (cf Ref. [14])

𝑢𝑘
𝑐
≅ 𝑢

1 + 𝐹
𝜕𝑞𝑘

𝜕𝑐𝑘

, 𝑢𝑇 ≅ 𝑢

1 + 𝐹
𝜌S𝐶S

p
𝜌L𝐶L

p

, 𝑘 = 1, 2,… , 𝑁.

(5)
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It is evident from Equation (5) that the speed 𝑢𝑘
𝑐

of concentra-

tions is dependent on the respective local gradients of adsorp-

tion isotherms and that the propagation speed 𝑢𝑇 of temper-

ature wave is influenced by the ratio of density times heat

capacity. For less retained components or for smaller gradi-

ents of isotherms
𝜕𝑞𝑘

𝜕𝑐𝑘
and for sufficiently larger ratio of

𝜌S𝐶S
p

𝜌L𝐶L
p

,

the speeds of concentration fronts 𝑢𝑘
𝑐

are higher than the speed

𝑢𝑇 of thermal wave.

The nonlinear adsorption isotherm is given as

𝑞𝑝,𝑖 =
𝑎ref
𝑖

𝑐𝑝,𝑖 exp
(

−Δ𝐻𝐴,𝑖

𝑅𝑔

(
1
𝑇𝑝

− 1
𝑇 ref

))
1 +

∑𝑁𝑐

𝑗=1 𝑏
ref
𝑗

exp
(

−Δ𝐻𝐴,𝑗

𝑅𝑔

(
1
𝑇𝑝

− 1
𝑇 ref

))
𝑐𝑝,𝑗

, (6)

where 𝑎ref
𝑖

and 𝑏ref
𝑖

are, respectively, denoting the Henry’s

constant and nonlinearity coefficient of the 𝑖th component at

reference temperature, 𝑅𝑔 is the gas constant, and 𝑇ref repre-

sents the reference temperature.

The chemical reactions inside a chromatographic reactor

can be catalyzed homogeneously or heterogeneously or in

both ways. In other words, the reaction could occur either in

the liquid phase (ie, homogenous reaction) or in the particle

phase (ie, heterogeneous reaction) or in both phases. In the

case of homogeneously catalyzed reaction, the separation of

catalyst has to be taken into account. On the other hand, het-

erogeneously catalyzed reactions usually occur in the case of

esterification, where the same ion exchange resin acts as a

catalyst for the reaction and as an absorbent for the separa-

tion. In this study, we consider only the heterogeneous (solid-

phase) reaction. The corresponding reaction rate for a three-

component model reaction (𝐴 ⇄ 𝐵 + 𝐶) is given as

𝑟het = 𝑘het (𝑇𝑝)

(
𝑞𝑝,𝐴 −

𝑞𝑝,𝐵𝑞𝑝,𝐶

𝐾het
𝑒𝑞

)
. (7)

Here, 𝑘het and 𝐾het
𝑒𝑞

, respectively, represent the forward het-

erogeneous rate of reaction constant and reaction equilibrium

constant. The Arrhenius equation is used to characterize the

temperature effects on the chemical reaction rates using the

activation energies 𝐸het
𝐴

:

𝑘het (𝑇𝑝) = 𝑘het (𝑇 ref ) exp

(
−𝐸het

𝐴

𝑅𝑔

(
1
𝑇𝑝

− 1
𝑇 ref

))
. (8)

Next, we introduce the following dimensionless variables

for a reduction of the equations parameters:

𝜏 = 𝑢𝑡

𝐿
, 𝑥 = 𝑧

𝐿
, 𝜌𝑝 =

𝑟𝑝

𝑅𝑝

, 𝜌 = 𝑟

𝑅𝑐

,

𝑃 𝑒𝑧,𝑖 =
𝐿𝑢

𝐷𝑧,𝑖

, 𝑃 𝑒𝑧,𝑇 =
𝜖𝑏𝐿𝑢𝜌

𝐿𝑐𝐿
𝑝

𝜆eff ,𝑧
, (9a)

𝑃𝑒𝜌,𝑇 =
𝜖𝑏𝑅

2
𝑐
𝑢𝜌𝐿𝑐𝐿

𝑝

𝜆eff ,𝑟𝐿
, 𝑃 𝑒𝜌,𝑖 =

𝑅2
𝑐
𝑢

𝐷𝑟,𝑖𝐿
, 𝜁𝑖 =

𝑘ext𝑅𝑝

𝐷𝑝,𝑖

,

𝜁𝑇 =
ℎeff𝑅𝑝

𝜆𝑝
, (9b)

𝜂𝑖 =
𝐷𝑝,𝑖𝐿

𝑅2
𝑝
𝑢
, 𝜂𝑇 =

𝜆𝑝𝐿

𝑅2
𝑝
𝑢𝜌𝐿𝑐𝐿

𝑝

, 𝜉𝑖 = 3𝜁𝑖𝜂𝑖𝐹𝑏,

𝜉𝑇 = 3𝜁𝑇 𝜂𝑇 𝐹𝑏, (9c)

where 𝐿 denotes the column length, 𝑃𝑒𝑧,𝑖 and 𝑃𝑒𝑧,𝑇 are the

axial Peclet numbers, 𝑃𝑒𝜌,𝑖 and 𝑃𝑒𝜌,𝑇 are the radial Peclet

numbers, and 𝜁𝑖 and 𝜁𝑇 are Biot numbers for mass and energy,

respectively. Further, 𝜂𝑖, 𝜂𝑇 , 𝜉𝑖, and 𝜉𝑇 are the dimensionless

constants. After using the above dimensionless parameters in

the mass and energy balances (cf Equations 1–4), we obtain

for 𝑖 = 1, 2,… , 𝑁𝑐 :

𝜕𝑐𝑏,𝑖

𝜕𝜏
+

𝜕𝑐𝑏,𝑖

𝜕𝑥
= 1

𝑃𝑒𝑧,𝑖

𝜕2𝑐𝑏,𝑖

𝜕𝑥2
+ 1

𝑃𝑒𝜌,𝑖

(
𝜕2𝑐𝑏,𝑖

𝜕𝜌2
+ 1

𝜌

𝜕𝑐𝑏,𝑖

𝜕𝜌

)
−𝜉𝑖

[
𝑐𝑏,𝑖 − 𝑐𝑝,𝑖(𝜌𝑝 = 1)

]
, (10)

𝜕𝑐𝑝,𝑖

𝜕𝜏
+ 𝐹𝑝

𝜕𝑞𝑝,𝑖

𝜕𝜏
= 𝜂𝑖

(
𝜕2𝑐𝑝,𝑖

𝜕𝜌2
𝑝

+ 2
𝜌𝑝

𝜕𝑐𝑝,𝑖

𝜕𝜌𝑝

)
+ 𝐹𝑝

𝐿

𝑢
𝜈𝑖𝑟

het ,

(11)

𝜕𝑇𝑏

𝜕𝜏
+

𝜕𝑇𝑏

𝜕𝑥
= 1

𝑃𝑒𝑧,𝑇

𝜕2𝑇𝑏
𝜕𝑥2

+ 1
𝑃𝑒𝜌,𝑇

(
𝜕2𝑇𝑏
𝜕𝜌2

+ 1
𝜌

𝜕𝑇𝑏

𝜕𝜌

)
−𝜉𝑇

[
𝑇𝑏 − 𝑇𝑝(𝜌𝑝 = 1)

]
, (12)

(
1 + 𝐹𝑝

𝜌𝑆𝑐𝑆
𝑝

𝜌𝐿𝑐𝐿
𝑝

)
𝜕𝑇𝑝

𝜕𝜏
− 𝐹𝑝

𝑁𝑐∑
𝑗=1

(−Δ𝐻𝐴,𝑗)
𝜌𝐿𝑐𝐿

𝑝

𝜕𝑞𝑝,𝑖

𝜕𝜏

= 𝜂𝑇

(
𝜕2𝑇𝑝

𝜕𝜌2
𝑝

+ 2
𝜌𝑝

𝜕𝑇𝑝

𝜕𝜌𝑝

)
+ 𝐹𝑝

(−Δ𝐻𝑅)
𝜌𝐿𝑐𝐿

𝑝

𝐿

𝑢
𝑟het . (13)

The initial conditions are given as

𝑐𝑏,𝑖(𝜌, 𝑥, 0) = 0, 𝑇𝑏(𝜌, 𝑥, 0) = 𝑇 init
𝑏

, 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝜌 ≤ 1,

(14)

𝑐𝑝,𝑖(𝜌𝑝, 𝜌, 𝑥, 0) = 0, 𝑇𝑝(𝜌𝑝, 𝜌, 𝑥, 0)

= 𝑇 init
𝑝

, 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝜌𝑝 ≤ 1, (15)
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where 𝑇 init
𝑏

and 𝑇 init
𝑝

represent the initial bulk and particle

temperatures. The following boundary conditions are consid-

ered for Equations (10) and (12) at 𝜌 = 0 and 𝜌 = 1:

𝜕𝑐𝑏,𝑖(𝜌 = 0, 𝑥, 𝜏)
𝜕𝜌

= 0,
𝜕𝑐𝑏,𝑖(𝜌 = 1, 𝑥, 𝜏)

𝜕𝜌
= 0, (16)

𝜕𝑇𝑏(𝜌 = 0, 𝑥, 𝜏)
𝜕𝜌

= 0,
𝜕𝑇𝑏(𝜌 = 1, 𝑥, 𝜏)

𝜕𝜌
= 0. (17)

Also, for Equations (10) and (12), the following Danckw-

erts boundary conditions are used for injections via the inner

region:

𝑐𝑏,𝑖(𝜌, 𝑥 = 0, 𝜏) − 1
𝑃𝑒𝑧,𝑖

𝜕𝑐𝑏,𝑖(𝜌, 𝑥 = 0, 𝜏)
𝜕𝑥

=

{
𝑐
inj
𝑏,𝑖
, if 0 ≤ 𝜌 ≤ 𝜌̃ and 0 ≤ 𝜏 ≤ 𝜏inj,

0, 𝜌̃ < 𝜌 ≤ 1 or 𝜏 > 𝜏inj,
(18a)

𝑇𝑏(𝜌, 𝑥 = 0, 𝜏) − 1
𝑃𝑒𝑧,𝑇

𝜕𝑇𝑏(𝜌, 𝑥 = 0, 𝜏)
𝜕𝑥

=

{
𝑇
inj
𝑏

, if 0 ≤ 𝜌 ≤ 𝜌̃ and 0 ≤ 𝜏 ≤ 𝜏inj,

0, 𝜌̃ < 𝜌 ≤ 1 or 𝜏 > 𝜏inj.
(18b)

Here, the symbols 𝑐
inj
𝑏,𝑖

and 𝑇
inj
𝑏

are used to denote the inlet

concentration of component 𝑖 and the bulk temperature. In this

work, we take 𝑇
inj
𝑏

, 𝑇 init
𝑏

and 𝑇 ref to be identical. At the col-

umn outlet (𝑥 = 1), the zero Neumann boundary conditions

are utilized:

𝜕𝑐𝑏,𝑖

𝜕𝑥
= 0,

𝜕𝑇𝑏

𝜕𝑥
= 0. (18c)

For Equations (11) and (13), the boundary conditions at

𝜌𝑝 = 0 and 𝜌𝑝 = 1 are given as

𝜕𝑐𝑝,𝑖

𝜕𝜌𝑝

|||||𝜌𝑝=0 = 0,
𝜕𝑐𝑝,𝑖

𝜕𝜌𝑝

|||||𝜌𝑝=1 = 𝜁𝑖(𝑐𝑏,𝑖 − 𝑐𝑝,𝑖
|||𝜌𝑝=1), (18d)

𝜕𝑇𝑝

𝜕𝜌𝑝

|||||𝜌𝑝=0 = 0,
𝜕𝑇𝑝

𝜕𝜌𝑝

|||||𝜌𝑝=1 = 𝜁𝑇

(
𝑇𝑏 − 𝑇𝑝

|||𝜌𝑝=1
)
. (18e)

3 NUMERICAL SCHEME

Different numerical schemes can be utilized to approxi-

mate the solutions of the above model equations (see Refs.

[21,22,27,28]) and the references therein. In this study, a

semidiscrete finite volume method is suggested for approx-

imating the model equations in the axial and radial coordi-

nates. The method is simple, compact, easily implemented,

and second-order accurate.27,29 A second-order total varia-

tion diminishing Runge-Kutta (TVD-RK) scheme is utilized

to solve the system of ordinary differential equation in the

time coordinate.27,30 The order of accuracy of our suggested

scheme has already been verified analytically and numerically

in our previous article.27 It was proved there that this scheme

is second-to-third order accurate. This selected second-order

Runge-Kutta method for the time discretization and the con-

sidered flux-limiting function for calculating fluxes at the

cell interfaces guarantee the second-order accuracy of the

scheme.27,29 Furthermore, the scheme is capable of captur-

ing (resolve) accurately sharp fronts of the concentration and

temperature profiles.

We get the following system of equations from Equa-

tions (10)-(13) by using the adsorption isotherm in Equa-

tion (6) and considering a mixture of three components:

𝜕𝐜𝑏
𝜕𝜏

+
𝜕𝐜𝑏
𝜕𝑥

= 𝐏𝐳
𝜕2𝐜𝑏
𝜕𝑥2

+ 𝐏𝝆

(
𝜕2𝐜𝑏
𝜕𝜌2

+ 1
𝜌

𝜕𝐜𝑏
𝜕𝜌

)
−𝝃(𝐜𝑏 − 𝐜𝑝|𝜌𝑝=1), (19)

𝐉
𝜕𝐜𝑝
𝜕𝜏

= 𝜂

(
𝜕2𝐜𝑝
𝜕𝜌2

𝑝

+ 2
𝜌𝑝

𝜕𝐜𝑝
𝜕𝜌𝑝

)
+ 𝐹𝑝

𝐿

𝑢
𝐑𝑟het , (20)

where

𝐜𝑏 =

⎡⎢⎢⎢⎢⎢⎣

𝑐𝑏,1

𝑐𝑏,2

𝑐𝑏,3

𝑇𝑏

⎤⎥⎥⎥⎥⎥⎦
, 𝐜𝑝 =

⎡⎢⎢⎢⎢⎢⎣

𝑐𝑝,1

𝑐𝑝,2

𝑐𝑝,3

𝑇𝑝

⎤⎥⎥⎥⎥⎥⎦
, 𝐏𝐳 =

⎡⎢⎢⎢⎢⎢⎢⎣

1
𝑃𝑒𝑧,1

0 0 0

0 1
𝑃𝑒𝑧,2

0 0

0 0 1
𝑃𝑒𝑧,3

0

0 0 0 1
𝑃𝑒𝑧,𝑇

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝜉 =

⎡⎢⎢⎢⎢⎢⎣

𝜉1 0 0 0
0 𝜉2 0 0
0 0 𝜉3 0
0 0 0 𝜉𝑇

⎤⎥⎥⎥⎥⎥⎦
,

𝐏𝝆 =

⎡⎢⎢⎢⎢⎢⎢⎣

1
𝑃𝑒𝜌,1

0 0 0

0 1
𝑃𝑒𝜌,2

0 0

0 0 1
𝑃𝑒𝜌,3

0

𝑦0 0 0 1
𝑃𝑒𝜌,𝑇

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝐑 =

⎡⎢⎢⎢⎢⎢⎣

𝜈1 0 0 0
0 𝜈2 0 0
0 0 𝜈3 0

0 0 0 −Δ𝐻𝑅

𝜌𝐿𝑐𝐿
𝑝

⎤⎥⎥⎥⎥⎥⎦
, 𝜂 =

⎡⎢⎢⎢⎢⎢⎣

𝜂1 0 0 0
0 𝜂2 0 0
0 0 𝜂3 0
0 0 0 𝜂𝑇

⎤⎥⎥⎥⎥⎥⎦
,
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𝐉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 𝐹𝑝

𝜕𝑞𝑝,1

𝜕𝑐𝑝,1
𝐹𝑝

𝜕𝑞𝑝,1

𝜕𝑐𝑝,2
𝐹𝑝

𝜕𝑞𝑝,1

𝜕𝑐𝑝,3
𝐹𝑝

𝜕𝑞𝑝,1

𝜕𝑇𝑝

𝐹𝑝

𝜕𝑞𝑝,2

𝜕𝑐𝑝,1
1 + 𝐹𝑝

𝜕𝑞𝑝,2

𝜕𝑐𝑝,2
𝐹𝑝

𝜕𝑞𝑝,2

𝜕𝑐𝑝,3
𝐹𝑝

𝜕𝑞𝑝,2

𝜕𝑇𝑝

𝐹𝑝

𝜕𝑞𝑝,3

𝜕𝑐𝑝,1
𝐹𝑝

𝜕𝑞𝑝,3

𝜕𝑐𝑝,2
1 + 𝐹𝑝

𝜕𝑞𝑝,3

𝜕𝑐𝑝,3
𝐹𝑝

𝜕𝑞𝑝,3

𝜕𝑇𝑝

𝐹𝑝

Δ𝐻𝐴

𝜌𝐿𝑐𝐿
𝑝

3∑
𝑗=1

𝜕𝑞𝑝,𝑗

𝜕𝑐𝑝,1
𝐹𝑝

Δ𝐻𝐴

𝜌𝐿𝑐𝐿
𝑝

3∑
𝑗=1

𝜕𝑞𝑝,𝑗

𝜕𝑐𝑝,2
𝐹𝑝

Δ𝐻𝐴

𝜌𝐿𝑐𝐿
𝑝

3∑
𝑗=1

𝜕𝑞𝑝,𝑗

𝜕𝑐𝑝,3
1 + 𝐹𝑝

𝜌𝑆𝑐𝑆
𝑝

𝜌𝐿𝑐𝐿
𝑝

+ 𝐹𝑝

Δ𝐻𝐴

𝜌𝐿𝑐𝐿
𝑝

3∑
𝑗=1

𝜕𝑞𝑝,𝑗

𝜕𝑇𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

If all the nonlinearity coefficients 𝑏ref
𝑗

are zero then the

above Jacobian matrix 𝐽 becomes very simple. To derive the

scheme, we first discretize the domain of computations.

3.1 Domain discretization
A domain [0, 1] × [0, 1] × [0, 1], that is enclosed by the cells

Ω𝑘𝑙𝑚 ≡ [𝑥
𝑘−1

2
, 𝑥

𝑘+1
2
] × [𝜌

𝑙−1
2
, 𝜌

𝑙+1
2
] × [𝜌𝑝𝑚−1

2
, 𝜌𝑝𝑚+1

2
] for

1 ≤ 𝑘 ≤ 𝑁𝑥, 1 ≤ 𝑙 ≤ 𝑁𝜌 and 1 ≤ 𝑚 ≤ 𝑁𝜌𝑝
, is considered.

The coordinate points in the cell Ω𝑘𝑙𝑚 are represented by

(𝑥𝑘, 𝜌𝑙, 𝜌𝑝𝑚). Here,

𝑥𝑘 =
𝑥
𝑘−1

2
+ 𝑥

𝑘+1
2

2
, 𝜌𝑙 =

𝜌
𝑙−1

2
+ 𝜌

𝑙+1
2

2
,

𝜌𝑝𝑚 =
𝜌𝑝𝑚−1

2
+ 𝜌𝑝𝑚+1

2

2
(22)

and for this uniform mesh

Δ𝑥 = 𝑥
𝑘−1

2
− 𝑥

𝑘+1
2
, Δ𝜌 = 𝜌

𝑙−1
2
− 𝜌

𝑙+1
2
,

Δ𝜌𝑝 = 𝜌𝑝𝑚−1
2
− 𝜌𝑝𝑚+1

2
. (23)

It should be noted that

𝑐𝑏 ∶= 𝑐𝑏(𝜌, 𝑥, 𝜏) and 𝑐𝑝 ∶= 𝑐𝑝(𝜌𝑝, 𝜌, 𝑥, 𝜏). (24)

Therefore, for 𝐼𝑘𝑙 ∶= [𝑥
𝑘−1

2
, 𝑥

𝑘+1
2
] × [𝜌

𝑙−1
2
, 𝜌

𝑙+1
2
] and Ω𝑘𝑙𝑚,

the averaged values of the cell 𝑐𝑏,𝑘,𝑙(𝜏) and 𝑐𝑝,𝑘,𝑙,𝑚(𝜏) are

expressed at any time 𝜏 as

𝑐𝑏,𝑘,𝑙 = 𝑐𝑏,𝑘,𝑙(𝜏) =
1

Δ𝑥𝑘Δ𝜌𝑙 ∫𝐼𝑘𝑙 𝑐𝑏(𝜌, 𝑥, 𝜏)𝑑𝜌𝑑𝑥, (25)

𝑐𝑝,𝑘,𝑙,𝑚 = 𝑐𝑝,𝑘,𝑙,𝑚(𝜏)

= 1
Δ𝑥𝑘Δ𝜌𝑙Δ𝜌𝑝𝑚 ∫Ω𝑘𝑙𝑚

𝑐(𝜌𝑝, 𝜌, 𝑥, 𝜏)𝑑𝜌𝑝𝑑𝜌𝑑𝑥. (26)

On integrating Equation (19) over the interval 𝐼𝑘𝑙 and utilizing

Equations (25) and (26), we arrive to the expression of the

form:

𝑑𝐜𝑏,𝑘,𝑙
𝑑𝜏

= −
𝐜
𝑏,𝑘+1

2 ,𝑙
− 𝐜

𝑏,𝑘−1
2 ,𝑙

Δ𝑥
+

𝐏𝐳
Δ𝑥

[(
𝜕𝐜𝑏
𝜕𝑥

)
𝑘+1

2 ,𝑙
−
(
𝜕𝐜𝑏
𝜕𝑥

)
𝑘−1

2 ,𝑙

]

+
𝐏𝝆

Δ𝜌

⎡⎢⎢⎣
(
𝜕𝐜𝑏
𝜕𝜌

)
𝑘,𝑙+1

2

−
(
𝜕𝐜𝑏
𝜕𝜌

)
𝑘,𝑙−1

2

+
𝐜
𝑏,𝑘,𝑙+1

2
− 𝐜

𝑏,𝑘,𝑙−1
2

𝜌
𝑙+1

2

⎤⎥⎥⎦
− 𝝃

(
𝐜𝑏,𝑘,𝑙 − 𝐜𝑝,𝑘,𝑙,𝑁𝜌𝑝

)
, (27)

where 𝑘 = 1, 2,… , 𝑁𝑥 and 𝑙 = 1, 2,… , 𝑁𝜌. The derivatives

appearing in the above equations are approximated as(
𝜕𝐜𝑏
𝜕𝑥

)
𝑘±1

2 ,𝑙
= ±

(𝐜𝑏,𝑘±1,𝑙 − 𝐜𝑏,𝑘,𝑙)
Δ𝑥

,

(
𝜕𝐜𝑏
𝜕𝜌

)
𝑘,𝑙±1

2

= ±
(𝐜𝑏,𝑘,𝑙±1 − 𝐜𝑏,𝑘,𝑙)

Δ𝜌
. (28)

Integration of Equation (20) over the interval Ω𝑖𝑗 leads to

𝑑𝐜𝑝,𝑘,𝑙,𝑚
𝑑𝜏

= 𝐉−1
𝑘,𝑙,𝑚

𝜂
1

𝜖𝑝𝜌
2
𝑝𝑚+1∕2Δ𝜌𝑝

[
(𝐜𝑝)𝑘,𝑙,𝑚+1∕2 − (𝐜𝑝)𝑘,𝑙,𝑚−1∕2

]
+𝐹𝑝

𝐿

𝑢
𝐉−1
𝑘,𝑙,𝑚

𝐑𝑟het
𝑘,𝑙,𝑚

, (29)

where the interface flux is expressed as

(𝐜𝑝)𝑘,𝑙,𝑚+1∕2 = max
( (𝐜𝑝)𝑘,𝑙,𝑚+1 − (𝐜𝑝)𝑘,𝑙,𝑚

Δ𝜌𝑝
, 0
)
𝜌2
𝑝𝑚+1

+min
( (𝐜𝑝)𝑘,𝑙,𝑚+1 − (𝐜𝑝)𝑘,𝑙,𝑚

Δ𝜌𝑝
, 0
)
𝜌2
𝑝𝑚

. (30)
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T A B L E 1 Parameters for test problems

Description Symbols Value Unit
Bed void volume fraction 𝜖𝑏 0.4 −
Particle porosity 𝜖𝑝 0.333 −
Axial Peclet number for concentration 𝑃𝑒𝑧,𝑖 1500 −
Radial Peclet number for concentration 𝑃𝑒𝜌,𝑖 37.5 −
Axial Peclet number for temperature 𝑃𝑒𝑧,𝑇 1500 −
Radial Peclet number for temperature 𝑃𝑒𝜌,𝑇 37.5 −
Dimensionless constant 𝜂𝑖 2.7 −
Dimensionless constant 𝜂𝑇 0.7 −
Dimensionless constant 𝜁𝑖 40 −
Dimensionless constant 𝜁𝑇 40 −
Henry’s constant for component A 𝑎1 1.0 −
Henry’s constant for component B 𝑎2 0.2 −
Henry’s constant for component C 𝑎3 1.8 −
Interstitial velocity 𝑢 62 × 10−4 m/min

Column length 𝐿 0.27 m

Injection time (dimensionless) 𝜏inj 1.0 −
Injected concentration of component A 𝑐

inj
𝑏,1 3.0 mol/L

Injected concentration of component B 𝑐
inj
𝑏,2 0.0 mol/L

Injected concentration of component C 𝑐
inj
𝑏,3 0.0 mol/L

Reaction equilibrium constant 𝐾het
𝑒𝑞

2.0 mol/L

Heterogeneous reaction rate constant 𝑘het 6.0 × 10−3 min−1

Reference temperature 𝑇 ref 300 K

Activation energy 𝐸het
𝐴

60 kJ/mol

General gas constant 𝑅𝑔 0.008314 kJ/molK

Density times heat capacity in the liquid phase 𝜌𝐿𝑐𝐿
𝑝

4.0 kJ/Kl

Density times heat capacity in the solid phase 𝜌𝑆𝑐𝑆
𝑝

4.0 kJ/Kl

Similarly, (𝐜𝑝)𝑘,𝑙,𝑚−1∕2 can be defined by just lowering the

index 𝑚 by one in the above equation. The fluxes at the

cell interfaces 𝑥
𝑘±1

2
, 𝜌

𝑙±1
2

and 𝜌𝑝𝑚±1
2

in Equations (27) and

(29) are approximated by using the following schemes along

with the TVD-RK scheme to get a second-order accuracy in

time.27,30

3.2 First-order scheme
The axial flux vectors 𝐜𝑏 and 𝐜𝑝 at the interfaces of the cell are

approximated as follows:

𝐜
𝑏,𝑘,𝑙+1

2
= 𝐜𝑏,𝑘,𝑙 𝐜

𝑏,𝑘,𝑙−1
2
= 𝐜𝑏,𝑘,𝑙−1, (31)

𝐜
𝑝,𝑘,𝑙,𝑚+1

2
= 𝐜𝑝,𝑘,𝑙,𝑚 𝐜

𝑝,𝑘,𝑙,𝑚−1
2
= 𝐜𝑝,𝑘,𝑙,𝑚−1. (32)

The above approximations above provide a first-order accu-
racy of the scheme along the axial and radial coordinates.

3.3 Second-order scheme
Here, the axial flux vectors are approximated by following

expressions:

𝐜
𝑏,𝑘,𝑙+1

2
= 𝐜𝑏,𝑘,𝑙 +

1
2
𝜑(𝛼𝑘,𝑙)(𝐜𝑏,𝑘,𝑙 − 𝐜𝑏,𝑘,𝑙−1),

𝛼𝑘,𝑙 =
𝐜𝑏,𝑘,𝑙+1 − 𝐜𝑏,𝑘,𝑙 + 𝛾

𝐜𝑏,𝑘,𝑙 − 𝐜𝑏,𝑘,𝑙−1 + 𝛾
, (33)

𝐜
𝑝,𝑘,𝑙,𝑚+1

2
= 𝐜𝑝,𝑘,𝑙,𝑚 + 1

2
𝜙(𝛽𝑘,𝑙,𝑚)(𝐜𝑝,𝑘,𝑙,𝑚 − 𝐜𝑝,𝑘,𝑙,𝑚−1),

𝛽𝑘,𝑙,𝑚 =
𝐜𝑝,𝑘,𝑙,𝑚+1 − 𝐜𝑝,𝑘,𝑙,𝑚 + 𝛾

𝐜𝑝,𝑘,𝑙,𝑚 − 𝐜𝑝,𝑘,𝑙,𝑚−1 + 𝛾
. (34)

A flux-limiting high-resolution scheme is produced by Equa-

tions (33) and (34). A small value of 𝛾 , for example, 𝛾 =
10−10, is selected to avoid the situation of division by zero.

The local monotonicity of the scheme is preserved by utiliz-

ing the flux limiting functions 𝜑 and 𝜙 as defined below (cf

Ref. [27]):

𝜑(𝛼𝑘,𝑙) = max
(
0,min

(
2𝛼𝑘,𝑙,min

(1
3
+ 2

3
𝛼𝑘,𝑙, 2

)))
, (35)

𝜙(𝛽𝑘,𝑙,𝑚) = max
(
0,min

(
2𝛽𝑘,𝑙,𝑚,min

(1
3
+ 2

3
𝛽𝑘,𝑙,𝑚, 2

)))
.

(36)
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F I G U R E 2 Isothermal case: Δ𝐻𝐴 = 0 kJ/mol, Δ𝐻𝑅 = 0 kJ/mol. Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3 [Color figure can be viewed at
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T A B L E 2 Here, 𝑋1(%) = 100 × ((𝑛inj1 − 𝑛out1 )∕𝑛inj1 )

Parameters (kJ/mol) 𝝃𝟏 (mol) 𝝃𝟐 (mol) 𝝃𝟑 (mol) 𝝈𝝃,𝒌 (%) 𝑿𝑨 (%) 𝚫𝑯𝐨𝐮𝐭 (𝒌𝑱 ) 𝚫𝑯𝐞𝐫𝐫 (𝒌𝑱 ) 𝑬𝑯 (%)
Δ𝐻𝐴 = 0,Δ𝐻𝑅 = 0 0.004 0.005 0.006 0.068 28 0.0 - -

Δ𝐻𝐴 = 0,Δ𝐻𝑅 = −20, 𝐸het
𝐴

= 60 0.005 0.005 0.006 0.076 31 0.01 0.09 0.91

Δ𝐻𝐴 = 0,Δ𝐻𝑅 = −40, 𝐸het
𝐴

= 60 0.005 0.006 0.007 0.087 34 0.01 0.23 0.96

Δ𝐻𝐴 = −20,Δ𝐻𝑅 = 0, 𝐸het
𝐴

= 60 0.005 0.006 0.007 0.082 33 0.10 - -

Δ𝐻𝐴 = −40,Δ𝐻𝑅 = 0, 𝐸het
𝐴

= 60 0.005 0.006 0.007 0.078 32 0.10 - -

Δ𝐻𝐴 = −60,Δ𝐻𝑅 = 0, 𝐸het
𝐴

= 60 0.004 0.005 0.006 0.068 28 0.10 - -

Δ𝐻𝐴 = −60,Δ𝐻𝑅 = −20, 𝐸het
𝐴

= 60 0.004 0.005 0.006 0.067 28 0.10 0.003 0.03

Δ𝐻𝐴 = −60,Δ𝐻𝑅 = −20, 𝐸het
𝐴

= 100 0.006 0.007 0.009 0.107 41 0.10 0.05 0.34

It is impossible to apply the high-resolution scheme up to

the boundary intervals. To overcome this difficulty, the afore-

mentioned first-order approximation of fluxes is used at the

interfaces of boundary cells, whereas the suggested second-

order approximation of fluxes is well applicable at the inter-

faces of interior cells. In our case, the interstitial velocity 𝑢 is

positive. Thus, we need to take first-order approximation in

the left boundary cell only, whereas such an approximation

is not needed in the right boundary cell. Further, it has been

found that global accuracy of the suggested algorithm is not

diminished by such first-order approximations in the bound-

ary cells.27,29
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F I G U R E 3 Effect of enthalpy of reaction: Δ𝐻𝐴 = 0 kJ/mol, Δ𝐻𝑅 ≠ 0 kJ/mol. Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3

Lastly, to solve Equations (27)-(36), we apply a second-

order TVD-RK scheme to get the second-order accuracy in

time.30 The right-hand side of Equations (27) and (29) is rep-

resented by  (𝐜𝑏, 𝐜𝑝 ∣𝜌𝑝=1) and (𝐜𝑝). To update the stages

of 𝐜𝑏 and 𝐜𝑝, the following second-order TVD-RK scheme is

utilized30:

𝐜(1)
𝑏

= 𝐜𝑛
𝑏
+ Δ𝜏 (𝐜𝑛

𝑏
, 𝐜𝑛

𝑝
∣𝜌𝑝=1),

𝐜𝑛+1
𝑏

= 1
2

[
𝐜𝑛
𝑏
+ 𝐜(1)

𝑏
+ Δ𝜏 (

𝐜(1)
𝑏
, 𝐜(1)

𝑝
∣𝜌𝑝=1

)]
, (37)

𝐜(1)
𝑝

= 𝐜𝑛
𝑝
+ Δ𝜏(𝐜𝑛

𝑝
), 𝐜𝑛+1

𝑝
= 1

2

[
𝐜𝑛
𝑝
+ 𝐜(1)

𝑝
+ Δ𝜏(𝐜(1)

𝑝

)]
.

(38)

In the above expressions, solutions at previous time-step

𝜏𝑛 are represented by 𝐜𝑛
𝑏

and 𝐜𝑛
𝑝
, whereas solutions at new

time-step 𝜏𝑛+1 are represented by 𝐜𝑛+1
𝑏

and 𝐜𝑛+1
𝑝

. A Courant-

Friedrichs-Lewy condition calculated from Equations (27)

and (29), defined below, is used to choose the time-step Δ𝜏:

Δ𝜏 = 1
2
min

(
Δ𝑥,Δ𝑥2 min(𝑃𝑒𝑧,𝑖, 𝑃 𝑒𝑧,𝑇 ),

Δ𝜌𝑝
2max(𝐉−1

𝑘,𝑙,𝑚
𝜂)
,

Δ𝜌2
𝑝

max(𝐉−1
𝑘,𝑙,𝑚

𝜂)

)
. (39)

The above method was programmed in C language for grid

points of 60 × 30 × 10.

4 CONSISTENCY CHECK OF THE
RESULTS

Considering a chemical reaction A ⇄ B+C, the following

expressions are utilized to check the consistency of the results
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F I G U R E 4 Effects of enthalpy of reaction: Δ𝐻𝐴 = 0 kJ/mol, Δ𝐻𝑅 ≠ 0 kJ/mol. Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3 [Color figure can be viewed at

wileyonlinelibrary.com]

obtained from our numerical scheme.14,15 Application of

these integral consistency checks for mass and energy bal-

ance equations are very useful for the validation of numerical

results and for checking the accuracy of the formulated model.

The consistency check is required to verify the correctness of

the applied numerical scheme and to evaluate the conserva-

tivity of mass and energy balances.

Let 𝜉 describes a change in the number of moles due to the

chemical reaction, that is

𝜉 = 𝑛
inj
1 − 𝑛out1 = 𝑛

inj
1 −

(
𝑛out2 + 𝑛out3

)
. (40)

The total moles injected in the column is described as

𝑛
inj
𝑖

= 𝑐
inj
𝑏,𝑖
𝑉 inj, (41)

where 𝑉 inj is the volume injected and 𝑐
inj
𝑏

is the injected con-

centration.

Furthermore, at the column outlet, we have

𝑛out
𝑖

= 𝑉̇ ∫
𝑡∗

0
𝑐𝑏,𝑖(𝑡, 𝑧 = 𝐿)d𝑡, 𝑖 = 1, 2, 3, (42)

where 𝑉̇ is the volumetric flow rate.

Standard deviations for the three values of 𝜉𝑖 are calculated

as

𝜎𝜉,𝑖(%) = 100 ×

√∑𝑖

𝑗=1(𝜉𝑖 − 𝜉)2

3
, 𝑖 = 1, 2, 3. (43)

Here, 𝜉 represents the average of 𝜉𝑖 for 𝑖 = 1, 2, 3.
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F I G U R E 5 Effects of enthalpy of adsorption: Δ𝐻𝐴 ≠ 0 kJ/mol, Δ𝐻𝑅 = 0 kJ/mol. Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3

For the energy balance, we have

Δ𝐻 inj = 𝜌L𝑐L
𝑝
𝑉̇ ∫

𝑡∗

0
(𝑇 inj

𝑏
− 𝑇 ref )d𝑡,

Δ𝐻out = 𝜌L𝑐L
𝑝
𝑉̇ ∫

𝑡∗

0
(𝑇𝑏(𝑡, 𝑧 = 𝐿) − 𝑇 ref ) d𝑡, (44)

where Δ𝐻 inj is the enthalpy entering and Δ𝐻out is the

enthalpy leaving the system.

Lastly, a relative percentage error 𝐸H (%) is defined as

𝐸H (%) = 100 ×
|||||Δ𝐻err

Δ𝐻R𝜉

|||||, (45)

where

Δ𝐻out + (Δ𝐻R)𝜉 = Δ𝐻err . (46)

In the above equation, Δ𝐻err = 0 if the equation is satis-

fied exactly. However, several sources of numerical errors are

involved in the computations, such as discretization errors,

round off errors, and errors in the numerical integrations of

the outlet profiles. Because of these errors, the right-hand side

of Equation (46) is not zero, and the smaller is the value of

Δ𝐻err the better is the fulfillment of the coupled mass and

energy balances.

5 CASE STUDIES ON THERMAL
EFFECTS

In this section, the effects of different parameters that affect

separation and conversion in nonisothermal reactive liquid

chromatography are analyzed. The considered test problems
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F I G U R E 6 Effects of enthalpy of adsorption: Δ𝐻𝐴 ≠ 0 kJ/mol, Δ𝐻𝑅 = 0 kJ/mol. Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3 [Color figure can be viewed

at wileyonlinelibrary.com]

also explain coupling between thermal fronts and concentra-

tion in the nonisothermal chromatographic reactor. The value

of enthalpy of adsorption is taken the same for all components,

that is Δ𝐻𝐴,𝑗 = Δ𝐻𝐴. Moreover, the values of the kinetic

parameters 𝑃𝑒𝑧,𝑖 and 𝑃𝑒𝜌,𝑖 are also assumed the same for all

the components, although they may vary according to compo-

nents in practice. All the parameters used in the test problems

are listed in Table 1, which were used by Sainio et al.17 and

Vu and Seidel-Morgenstern19 in their experimental studies for

exothermic esterification reaction catalyzed by an acidic ion-

exchange resin. In all the test problems, except the last test

problem for the fully nonlinear case, the reference nonlinear-

ity coefficients 𝑏ref
𝑗

(𝑗 = 1, 2, 3) in Equation (6) are set equal

to zero. Further, a grid of mesh points 60 × 30 × 10 is used in

all calculations.

5.1 Isothermal case
(𝚫𝑯𝑨 = 𝚫𝑯𝑹 = 𝟎 kJ/mol)
Here, we start with an isothermal case which is an ideal refer-

ence case for the study of nonisothermal behavior. The reac-

tant was injected in the annular region as a Danckwerts bound-

ary condition (BC). The 1D and three-dimensional (3D) plots

of Figure 2 show the behavior of concentration and temper-

ature profiles under isothermal conditions for the considered

three components reversible reaction problem in which only

the reactant 𝑐𝑏,1 is injected to the reactor. The results indi-

cate the presence of products 𝑐𝑏,2 and 𝑐𝑏,3. The values of the

Henry’s constants show strong but not complete separation

and conversion. With the current values of Δ𝐻𝐴 = Δ𝐻𝑅 =
0 kJ/mol, no changes are seen in the temperature profile.
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F I G U R E 7 Effects of both enthalpies of adsorption and reaction: Δ𝐻𝐴 ≠ 0 kJ/mol, Δ𝐻𝑅 ≠ 0 kJ/mol. Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3

For the selected value of radial Peclet number 𝑃𝑒𝜌 = 37.5,

which corresponds to the small radial dispersion 𝐷𝑟, radial

variations in the concentration profiles can be easily seen in

Figure 2C. Because of injection through the inner region, the

value of concentration is larger at the column center, that

is at 𝜌 = 0.

5.2 Effects of enthalpy of reaction
(𝚫𝑯𝑨 = 𝟎kJ/mol, 𝚫𝑯𝑹 ≠ 𝟎kJ/mol)
Now, we evaluate the effect of the enthalpy of reaction

(Δ𝐻𝑅) on concentration and temperature profiles, while

keeping Δ𝐻𝐴 = 0 kJ/mol and other parameters are the same

as given in Table 1. Once again, injection is done through

the inner region of the inlet cross section. The results of

Figure 3 were obtained under the influence of exothermic

reaction for Δ𝐻𝑅 = −20 kJ/mol (Figures 3A and 3B) and

Δ𝐻𝑅 = −40 kJ/mol (Figures 3C and 3D). On the temper-

ature profile, there is a smooth temperature variation and

a single peak, indicating that heat release has occurred

as compared with the isothermal case of Figure 2. An

increase in the concentration profiles of both products can

be observed for Δ𝐻𝑅 = −20 kJ/mol and even more clearly

for Δ𝐻𝑅 = −40 kJ/mol. This caused an increase in the con-

version 𝑋1(%) of 𝑐𝑏,1 (reactant) to products 𝑐𝑏,2 and 𝑐𝑏,3,

which is evident from the listed results in Table 2. The 3D

plots of the results in Figure 3 are given in Figure 4. In

this case, radial variations can be observed in both con-

centration and temperature profiles for the selected 𝑃𝑒𝜌 =
37.5.
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F I G U R E 8 Effects of intraparticle diffusion coefficients (𝜂 and 𝜂𝑇 ). Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3
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F I G U R E 9 Effects of mass transfer coefficients (𝜁 and 𝜁𝑇 ). Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3

5.3 Effects of enthalpy of adsorption
(𝚫𝑯𝑨 ≠ 𝟎kJ/mol, 𝚫𝑯𝑹 = 𝟎kJ/mol)
This case evaluates the effects of Δ𝐻𝐴, whereas the enthalpy

of reaction is neglected (ie, Δ𝐻𝑅 = 0 kJ/mol). The separa-

tion of the products 𝑐𝑏,2 and 𝑐𝑏,3 is based on the differ-

ences in the adsorption strength, which depends on the tem-

perature through the enthalpy of adsorption. The effects of

the enthalpy of adsorption on the concentration profiles are

clearly seen in Figure 5. This also reflects the changes seen in

the conversion rates given in Table 2, which shows the con-

version of products as 33% when Δ𝐻𝐴 = −20 kJ/mol, 32%

when Δ𝐻𝐴 = −40 kJ/mol and back to 28% when Δ𝐻𝐴 =
−60 kJ/mol. Again, the 3D plots of the results in Figure 5

are presented in Figure 6 to see the occurrence of the

radial changes.

5.4 Joint effects of enthalpies of adsorption
and reaction (𝚫𝑯𝑨 ≠ 𝟎kJ/mol,
𝚫𝑯𝑹 ≠ 𝟎kJ/mol)
For an entire illustration of the nonisothermal behavior of

chromatographic reactors, we investigate the joint effects of

enthalpies of adsorption and reaction on both the tempera-

ture and concentration profiles. We see in Figure 7 A, which

is obtained for Δ𝐻𝑅 = −20 kJ/mol and Δ𝐻𝐴 = −60 kJ/mol,

that there is a noticeable increase in the peak height of reactant

A and a slight decrease in the peak heights of the products 𝑐𝑏,2
and 𝑐𝑏,3 as compared to the results in Figure 5 C. Moreover, a

slight increase is noticed in the peak height of the temperature

profile if we compare Figures 7 B and 5 D. Figures 7 C and

7 D show that by changing the value of the activation energy

from 𝐸het
𝐴

= 60 kJ/mol to 𝐸het
𝐴

= 100 kJ/mol, the conversion
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F I G U R E 1 0 Effects of
𝜌𝑆𝑐𝑆

𝑝

𝜌𝐿𝑐𝐿
𝑝

. Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3

rate is increased from 28% to 41% which is evident from

Table 2. Furthermore, it can be observed in Figures 3, 5, and 7

that magnitudes ofΔ𝐻𝑅 andΔ𝐻𝐴 significantly affect separa-

tion and conversion of components. Moreover, the combined

errors of integral energy and mass balances, expressed by the

error 𝐸𝐻 (cf Equation 45) is less than 1% in all the test cases

considered and, thus, verifying the accuracy of the numeri-

cal results.

5.5 Effects of the model parameters 𝜼, 𝜼𝑻 , 𝜻 ,
and 𝜻𝑻

The effects of the intraparticle diffusion coefficients for mass

and energy (𝜂 and 𝜂𝑇 ) and the mass transfer coefficients for

mass and energy (𝜁 and 𝜁𝑇 ), are investigated under this sub-

section. Figure 8 gives the results showing the effects of 𝜂 and

𝜂𝑇 . It is important to mention here that for the cases where

the value of 𝜂 is altered, the value of 𝜂𝑇 remains as given in

Table 1 and vice versa. The plots show that reducing the value

of 𝜂 (or 𝜂𝑇 ) results in a reduction of the peak heights and a

more diffusive profile for both the concentration and temper-

ature. A very similar result can be witnessed in Figure 9 for

the cases when the value of 𝜁 (or 𝜁𝑇 ) is reduced.

5.6 Effects of the ratio of solid to liquid
phases density multiplied by heat capacity
(𝝆𝑺𝒄𝑺

𝝆𝑳𝒄𝑳
)

Here, we consider the effects of the ratio
𝜌𝑆𝑐𝑆

𝜌𝐿𝑐𝐿
along with both

enthalpies of adsorption and reaction on the concentration and

temperature profiles (cf Equation 5), while other parameters

remain the same as given in Table 1. The results shown so far

have been obtained for the case where both the waves of the

temperature and concentration profiles were moving at closer

speeds, that is,
𝜌𝑆𝑐𝑆

𝜌𝐿𝑐𝐿
= 1 implies that both concentration and

temperature profiles are almost coupled. This is clearly illus-

trated in Figure 10 A. For the case
𝜌𝑆𝑐𝑆

𝜌𝐿𝑐𝐿
= 0.2 (Figure 10 B),
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F I G U R E 1 1 Effects of radial Peclet number (𝑃𝑒𝜌). Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3 [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 1 2 Effects of radial Peclet number (𝑃𝑒𝜌𝑇 ). Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3 [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 1 3 Effects of axial dispersion coefficients 𝑃𝑒𝑧,𝑖 (𝐷𝑧,𝑖) and 𝑃𝑒𝑧,𝑇 (𝜆𝑒𝑓𝑓,𝑧). Further, 𝑏ref
𝑗

= 0 for 𝑗 = 1, 2, 3

the temperature wave is seen to be moving slightly faster than

the concentration profile. For
𝜌𝑆𝑐𝑆

𝜌𝐿𝑐𝐿
= 5 (Figure 10 C), it is

evident that the concentration profile moves quicker than that

of the temperature profile. Therefore, the concentration and

temperature profiles move at different velocities for the cases
𝜌𝑆𝑐𝑆

𝜌𝐿𝑐𝐿
= 0.2 and

𝜌𝑆𝑐𝑆

𝜌𝐿𝑐𝐿
= 5.

5.7 Effects of the radial and axial Peclet
numbers (𝑷𝒆𝝆, 𝑷𝒆𝝆,𝑻 , 𝑷𝒆𝒛,𝒊, 𝑷𝒆𝒛,𝑻 )
The effects of kinetic parameters 𝑃𝑒𝜌, 𝑃𝑒𝜌,𝑇 , 𝑃𝑒𝑧,𝑖, and

𝑃𝑒𝑧,𝑇 , which, respectively, denote radial dispersion coeffi-

cients for the mass and energy, and axial dispersion coeffi-

cients for the mass and energy, are considered for nonzero

enthalpies of reaction and adsorption. It should be noted that

for each of the case considered, except the radial and axial

Peclet numbers, all other parameters remained the same as

given in Table 1. Figure 11 displays the effects of 𝑃𝑒𝜌 = 1.5
and 𝑃𝑒𝜌 = 150, which corresponds to the larger and smaller

radial dispersion coefficient for mass 𝐷𝑟. We can conclude

from the results that slow radial dispersion (large radial Peclet

number) causes a more diffusive profile, which can be clearly

seen on the plots of Figures 11 E and 11 F. Figure 12 shows a

similar result for the effects of 𝑃𝑒𝜌,𝑇 = 1.5 and 𝑃𝑒𝜌,𝑇 = 150,

which corresponds to larger and smaller radial dispersion

coefficient for energy 𝜆eff ,r . It should also be noted that for

such small values of 𝑃𝑒𝜌 and 𝑃𝑒𝜌,𝑇 , the results of current 2D-

GRM reduces to the 1D-GRM. Figure 13 displays the results

showing the effects of varying 𝑃𝑒𝑧,𝑖 (𝐷𝑧,𝑖) and 𝑃𝑒𝑧,𝑇 (𝜆eff ,z)

for the components. It is evident that small values of 𝑃𝑒𝑧,𝑖 and

𝑃𝑒𝑧,𝑇 (large values of 𝐷𝑧,𝑖 and 𝜆eff ,z) generate more diffusive

and tailed profiles of the components.
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F I G U R E 1 4 Nonlinear isotherm (cf Equation 6) results of numerical calculations for isothermal and nonisothermal conditions. Further,

𝑏ref
𝑗

= 1 for 𝑗 = 1, 2, 3

5.8 Isotherm nonlinearities with respect to
concentration
Figures 14 and 15 show the 1D and 3D plots of the results

of numerical calculations for the nonlinear isotherm given by

Equation (6) with 𝑏𝑗 = 1 for 𝑗 = 1, 2, 3. All other parameters

are the same as given in Table 1. Figures 14 A and 14 B (and

Figures 15 A and 15 B) give the results for isothermal condi-

tion, whereas Figures 14 C and 14 D (and Figures 15 C and 15

D) display the results for nonisothermal condition. A typical

Langmuir behavior can be recognized from the peak tailings

of the concentration profiles. The temperature deviates in the

nonisothermal case significantly from the reference tempera-

ture of 300 K [−6 K,+11 K]. This leads to small but visible

deviations in the elution profiles compared to the isothermal

case. It should be finally mentioned that the suggested numer-

ical method is capable of handling other types of nonlinear

isotherms than that quantified by Equation (6).

6 CONCLUSION

The effect of temperature variation arising from the exother-

mic reaction on 2D reactive chromatography was investigated

by formulating and applying a 2D general rate model

of cylindrical geometry. The model forms a system of

convection-diffusion reaction partial differential equations. A

high-resolution finite volume method was applied to numer-

ically approximate the solutions of the model equations.

Several case studies of reversible reactions were carried out.

The consistency tests were carried out to verify accuracy of
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F I G U R E 1 5 Nonlinear isotherm (cf Equation 6) results of numerical calculations for isothermal and nonisothermal conditions. Further,

𝑏ref
𝑗

= 1 for 𝑗 = 1, 2, 3 [Color figure can be viewed at wileyonlinelibrary.com]

the results. Key parameters that affect the reactor performance

were pointed out, and significance of the coupling of thermal

and concentration fronts was illustrated by case studies. It was

found that the nonisothermal process significantly influences

the separation process and the conversion of reactants into

products. Radial variations in the concentration and temper-

ature profiles were observed for larger values of the radial

Peclet number, which belong to the cases of smaller radial

dispersion coefficient. It was also observed that larger axial

and radial dispersion coefficients produced diffusive profiles.

The computed results could be very helpful in optimizing

experimental conditions and in understanding complex front

propagation phenomena in thermally insulated columns

considering also radial concentration and temperature

gradients.
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