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Abstract

Collision studies with internally cold ion beams and merged electron

beams in a cryogenic storage ring

The electrostatic cryogenic storage ring (CSR) with wall temperature below 10 K
and ultralow pressure, mimics the conditions of the interstellar medium. Infrared
active molecular ions can radiatively relax towards their ro-vibrational ground state
while being stored in the CSR. In this work, an electron-ion collision experiment
is performed under these conditions and the conditions of electron-ion collisions in
the merged beams are modelled. For this purpose, the electron beam trajectory is
calculated in a magnetic field analysis program. The effect of the overlap geometry,
drift tube potential, space charge variations and thermal energy spread of the elec-
tron beam have been studied individually. The collision energy distributions in the
combination of such experimental conditions are provided. Based on these energy
distributions and a narrow-peak cross section, the measured collision rate coefficient
is simulated at several detuning energies. A correction method is developed to ac-
count for collision energy broadening from the full overlap geometry and drift tube
potential.

With these tools, dissociative recombination (DR) of HeH™ ions is investigated in
the CSR and absolute DR rate coefficients are obtained for ro-vibrationally cold ions.
The time dependence of the DR rate showed fast changes in the rate coefficient at
increasing storage time. This could be explained from the radiative cooling model
of the HeH" ion. In addition, merged beams with an electron deceleration drift
tube have been successfully used and the results compared to the operation without
employing the drift tubes.






Zusammenfassung

Kollisionsexperimente von rotations- und vibrationsgekiihlten Ionen-
strahlen mit iiberlagerten Elektronenstrahlen in einem kryogenen Speicher-

ring

Der elektrostatische cryogenic storage ring (CSR) stellt mit Wandtemperaturen
von unter 10 K und extrem niedrigen Restgasdichten eine vergleichbare Umge-
bung zum interstellaren Medium dar. Infrarot-aktive Molekiile sind innerhalb dieses
Speicher-rings in der Lage, sich in Richtung ihres Vibrations- und Rotationsgrundzu-
stands abzukiihlen. Diese Thesis befasst sich mit Kollisionen zwischen Elektronen
und molekularen Ionen sowie der Simulation der Kollisionsbedingungen zur Auswer-
tung experimenteller Ergebnisse. Zu diesem Zweck werden Elekronenstrahltra-
jektorien in verwendeten magnetischen Feldern simuliert. Weiterhin werden Ein-
fliisse der Uberlappgeometrie, des Driftrohrenpotentials, von Raumladungseffek-
ten und der thermischen Energieverteilung des Elektronenstrahls betrachtet, um
eine Verteilungsfunktion fiir Kollisionsenergien zu extrahieren. Durch Falten dieser
Verteilungsfunktion mit schmalbandigen Resonanzen im Wirkungsquerschnitt wer-
den gemessene Ratenkoeffizienten reproduziert. Schlieflich wird eine Methodik en-
twickelt, um Kollisionenergieverteilungen fiir gegebene Uberlapplingen und Driftréhren-
potentiale zu korrigieren.

Die zuvor beschriebene Methodik wird dazu verwendet, absolute Ratenkoeffizien-
ten fiir Dissoziative Rekombination (DR) von HeH™ Ionen im Rotations- und Vi-
brationsgrundzustand zu analysieren. Zeitabhéngige Untersuchungen zeigen schnelle
Anderungen des DR Ratenkoeffizients mit fortschreitender Speicherzeit auf. Mithilfe
eines Modells zur radiativen Kiihlung von HeH" im Strahlungsfeld des CSR lasst
sich diese Zeitabhingigkeit als Ubergang zwischen Rotationszustéinden erkliren.
Dariiber hinaus werden Ergebnisse fiir Ratenkoeffizienten fiir Experimente mit und
ohne Nutzung von Driftrohrenpotentialen, die zur Abbremsung des Elekronenstrahls

in der Wechselwirkungszone verwendet werden, verglichen.
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1 Introduction

Ion chemistry in the astrophysical plasma environments are driven by gas-phase
atomic and molecular reactions [1, 2|. In such astrophysical plasma, e.g., the in-
terstellar medium (ISM), planetary atmospheres, the early universe, etc., molecules
undergo photon induced or collision induced reactions [3]. In the ISM the particle
density is in the order of 10 — 1000 cm ™2 and temperature in the range of 10 — 100
K. Numerous molecules from the molecular Hy to polyatomic molecules and, e.g.,
Cgo have been discovered from their spectroscopic signatures despite the extreme
conditions [4, 5, 6]. The observed present molecular ion abundances in the ISM
are an outcome of various formation and destruction processes within a very active

chemical reaction network [1].

Low-energy collisions between molecular ions and electrons are one such important
ion destruction channel in the astrophysical plasma environments. These barrier-less
reactions lead to the electron capture into the ion and subsequent dissociation into
neutral fragments. This reaction is called dissociative recombination (DR) and it is
often accompanied by kinetic energy release (Fxgr) into the products to account
for energy conservation [7, 8|. The energetic neutral products can initiate further
reactions with other ions in the ISM.

The HeH™ ion has been predicted to be first molecule formed in the early uni-
verse |9, 10, 11, 12|. In the recombination era, expansion of Universe led to lower
temperature and in consequence photoionization also reduced which in turn led to
formation of neutral He. In next step HeH™' formed from radiative association with
still ionized H'. The radiative cooling of infrared active HeH' also enhances the
cooling in the recombination era. Cooling of this type can help in the gravitional
collapse of gas clouds and consequently, in the formation of first stars [10, 3]. Re-
cently the HeH™ ion has been detected for the first time in planetery nebula NGC
7027 from the rotational state transitions (0 — 1) [13].

The astrochemical models based on a network of formation and destruction reac-
tions require rate coefficients as input, at best from experimental studies conducted
at astrophysically relevant conditions. Moreover, the complex pathways of the dis-
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sociative recombination involving molecular Rydberg states make this process very
interesting from the theoretical point of view. Experimental studies at well defined
conditions are also needed to benchmark the corresponding quantum dynamics the-
ory models.

In the ongoing quest of laboratory measurements, room temperature magnetic
ion storage rings have been very successful in the area of DR measurements of light
molecular ions stored at several MeV [14, 15, 16]. At several facilities world wide
ion storage rings have been in operation for more than two decades |17, 18, 19].
Equipped with electron cooler, the velocity-matched electron and ion beams inter-
actions lead to phase space cooling of the ions [20]. The phase space cooled ion
and electron merged beams offers well-controlled collision conditions for DR experi-
ments. In addition, the circulating ion beam’s internal excitations (vibrational and
rotational) thermalize to the ambient blackbody radiation field of 300 K. In spite of
all advantages and successes of room temperature magnetic storage rings, the 300
K blackbody radiation field does not allow the stored ions with a dipole moment to
deexcite to the lowest rotational levels which are relevant for cold interstellar plas-
mas. Furthermore, the storage of heavier ions is limited by the bending capability
of the dipole magnets of the storage ring.

For this purpose, cryogenic electrostatic ion storage rings paved the way forward.
In the cryogenic temperature of below 10 K, the ion collisions with rest gas par-
ticles are largely reduced which allows ion beam storage for long time needed for
radiative rotational relaxation. This enables the measurement of ro-vibrationally
cold molecules at new unexplored time scales. Also, electrostatic ion storage ring
makes it possible to store heavy complex molecular species [21]. The storage ring
device can also be used in laser-molecular ion interaction studies, cluster ion studies
and ion-neutral atoms collisions, etc. [22, 23, 24, 25|. Thus, a new generation of
storage rings have been built to study these classes of reactions [24, 25, 23]. Among
these storage rings, the cryogenic storage ring (CSR) at the Max Planck Institute for
Nuclear Physics in Heidelberg is the only electrostatic storage ring equipped with
an electron cooler. The operational ion energy in the CSR is up to 300 keV and
electron beam energy is in few eV range. In this work we investigate DR experiment

under these conditions and in particular study the DR of HeH™ ions.

The thesis is structured as follows. Chapter 2 gives a general introduction to
the theory of electron-ion collisions with emphasis on the dissociative recombina-
tion (DR). DR fragmentation pathways in low and high collision energy regions for



HeH™ are discussed in terms of the potential energy curves. In addition, the ra-
diative cooling model of HeH" ions in a cryogenic environment is also described.
In chapter 3, the experimental framework of the merged beams setup is laid out
with the overview of the cryogenic storage ring (CSR) and the electron cooler. The
merged beams kinematics and detection system for the fragmentation experiment is
discussed. Furthermore, the rate coefficient of the merged beams experiment is in-
troduced in a general scenario including the position dependent nature of the relative
velocity in electron-ion collision. In chapter 4, a magnetic field analysis program is
used to simulate the electron beam trajectory in the electron cooler and in the over-
lap region with ion beam. The role of the overlap geometry of electron-ion merged
beams, space charge of the electron beam and drift tubes potential induced electron
beam energy change are studied. Based on this, the electron-ion collision energy
distribution is modelled and the influences of individual components are discussed.
In Chapter 5 experimental studies with the HeH™ ion and a measurement of the
rotationally cold absolute DR rate coefficient are presented. The use of drift tubes
in the interaction region and scaling of the results is also shown. Finally Chapter 6
gives a summary of the obtained results in electron-ion collision experiments with
the more precise knownledge merged beams geometry of the electron cooler and it

concludes with an outlook on possible future measurements and improvements.






2 Molecule and electron collision
processes: Overview

Molecular ion and electron collisions occur in environments ranging from artificial
plasma to the early universe. The dynamics of these collision processes are described
in terms of potential energy surfaces (PES). In this chapter, we start with a brief
description of PES. The general electron-ion fragmentation processes are briefly
introduced. Later, a detailed discussion on the dissociative recombination (DR)

mechanism is presented.

In the second part, the present experimental status and recent theoretical un-
derstanding of DR process of HeH™ ions is presented. Also, a simple model of the
rotational cooling of the infrared active HeH™ ion in a 20 K radiation field environ-
ment is presented.

2.1 Potential energy surfaces

A molecular system is commonly described in terms of the Schrodinger equation
26]

HY = BV (2.1)

where H is the Hamﬂtoniaﬁl of the molecule, H = SV Tu(r;) + Z;V:”l To(R;) +
V.(r;, R;). Here, r; and R; denote the coordinate vectors of the electrons (i =
1...N.) and nuclei (j=1...N,) in the center-of-mass frame and V.(r;, R;) symbolically
describes the potential due to all Coulomb interactions. W is the total wavefunction
and F is the total energy of the molecular system. However, solving for exact
solution to this equation for the system is very complicated. To address this issue,

there were many physically motivated approximations introduced.

Because of large mass difference between the electrons and nuclei, electrons react
instantaneously to the motion of the nucleus. Due to very small nuclear motion
T, compared to Tel; Tn(Rj) introduced as perturbation terms to the approximate
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of a rigid nuclear framework. The corresponding approximation is known as the
adiabatic approximation [26]. The Hamiltonian of the system can be expressed as

H=H,+H (2.2)

where H, = > Tel(ri) + Vi(r;, R;) is the unperturbed Hamiltonian and H =
o T, (R;). Also, we consider here only a diatomic molecule, NV,, = 2, and introduce
the relative coordinate R = Ry — R,. The unperturbed Schrodinger equation then

Hy¢® (ri, R) = E°(R)¢ (7, R) (2.3)

where ¢ is the electronic wavefunction for the rigid nuclear configuration. ¢¢(r;, R)
depends on electronic coordinates r; and the internuclear distance R enters as pa-
rameter. Moreover, E°(R) is the eigenvalue for the rigid configuration. For each
(fixed) nuclear configuration R this yields a stationary state of the molecule. There-
fore, ¢ form a basis set and the total wavefunction W can be described as,

me Jor(r, R) (2.4)

where the factor y,,(R) is the wavefunction representing the nuclear motion when
the electronic system is in state m. Substituting ¥ in eqn. 2.1, multiplying with
¢ and integrating over the electronic coordinates r;, yields

[ oo mi - ) xRy )i =0 (2.5)

Using H = Hy+ H' and eqn. 2.3, the following solution is obtained.

Hy¢®(r,R) = E°(R)¢ (v, R), (2.6a)
R) + Z(cnmxm(R)) = (&£ - EY(’)L(R))XTL (2.6b)

Here eqn.2.6 is equivalent to the Schrodinger eqn.2.1 and, ¢! is a coupling matrix.
They describe how two different electronic states n and m are coupled through
nuclear motion. If the coupling term is completely neglected, the outcome is the
so-called Born-Oppenheimer approximation [27]. The nucleus with kinetic energy
Tn moves within a potential of F,. The total wavefunction ¥ of the molecule in

ltaken from eqn. 2.11 [26]
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an electronic state reduces to a single term as U, (r, R) = ¢¢(r;, R)xn(R). This
means wavefunction is factorized in electronic and nuclear counterparts ¢¢ and
Xn- The electronic eigenenergy with mutual Coulomb interaction of the nuclei,
E?(R) is defined as the potential energy function acting on the nuclei. This is also
called potential energy curve of the diatomic molecule. The nuclear wavefunction
xn(R) satisfies the Schrodinger equation with EC(R) as potential in order to describe

nuclear motion (rotation and vibration).

The minimum of the PEC is the geometrical equilibrium for the molecule and
vibration of the molecule is defined as oscillations around the point of minimum.
Also, a reaction of molecule can be illustrated as a pathway along the PEC. The
fragmentation process of a molecular system can be described by an unbound PEC.
These PECs are often only repulsive with an energetic minimum at infinite geometric

separation of the fragments.

Again, considering eqn.2.6 can bring in some additional terms. The coupling
matrix ¢,,, can be grouped into diagonal and non-diagonal terms. If diagonal terms
are retained as c¢,,, a new potential energy is defined as adiabatic approximation.
The adiabatic approximation modifies the Born-Oppenheimer potential as E;(R) =
E°(R) + (n|T,(R)|n), where |n) are the electronic states (|n) = ¢¢(r;, R)). The
adiabatic correction shows the role of nuclear mass and also, dictates the slight
difference in potential energy of isotopes of the molecule.

The adiabatic approximation is an ideal approach for PEC corresponding elec-
tronic states well separated in energy. If this condition is violated for certain in-
ternuclear distance R, the curve crossing between two PECs of same symmetry is
not allowed according to the non-crossing rule of Von-Neumann and Wigner [28|.
In case two PE curves come closer to each other they bend away from each other.
This exchanges the electron configuration and, hence, the asymptotic behaviour for
R — oo. In addition, at avoided crossing there is a possibility for a radiation-
less transitions to other state which are known as non-adiabatic or Landau-Zener

transitions.

During a fragmentation process, the velocity of nuclear motion can become com-
parable to other motions. And, hence the previously assumed mechanisms will not
always sufficiently explain the dynamics. Therefore, a diabatic potential curve is
often used to describe the fragmentation process. Here, curve crossings between two
electronic states of the same symmetry are allowed. The diabatic approximation is
useful for treating the nonadiabatic transitions between two electronic states [29]. In
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this regime, it is easy to determine the candidate states for transitions, and coupling
strength calculations between them are also possible .

2.2 lon-electron collision processes

A collision between a molecular ion and an electron can trigger several kinds of
reactive processes.Among different reactions, fragmentation is one of the most fun-
damental processes causing destruction of molecules in plasma environments. The
fragmentation reaction between ion and electron leads to neutral or charged frag-
ments depending on the collision energy of the incoming electron and type of PEC
accessed in the collision. Also, the fragmention products can be in an excited state.
Moreover, collisions can lead to autoionization into the molecular ion but in different
excited or even de-excited states. A short overview of various dissociation mecha-
nisms for a general diatomic molecular ion AB™ is described here. These processes
strongly depend on the collision energy of the elctron. In thermal plasmas, the en-
ergy is given by kT ~ 10 — 1000 K (E, ~ 0.001 — 0.1 V) and then is in the range
of rotational and vibrational excitation energy. In hot plasmas or in colliding beams
experiment, impact energies up to few tens of €V can be realized.

If the energy of electron is sufficient enough to promote the molecular ion AB™*
into its vibrational continuum, the system can dissociate via dissociative excitation
(DE) with neutral and ionic fragments. It can occur directly or via an intermediate
state AB". The charge state of the fragment depends on the internal configuration
of the molecules.

At +B+e
ABY + e (E,) — ‘ (2.7)
A+Bt+e

Another important class of fragmentation is the resonant ion-pair formation (RIP).
Here, an electron of intermediate energy regime (few eV) first gets captured into an
intermediate state AB**. Later, it stablizes through the formation of a charged ion
pair.

AT+ B
ABT + e (E.) — AB* — R (2.8)
e
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2.2.1 Dissociative recombination

An important class of fragmentation reactions where only neutral fragments are
formed after a collision of a molecular ion with an electron is dissociative recombi-
nation (DR). DR is exothermic in nature; the excess internal energy is converted into
kinetic energy of the fragmented nuclei. For a diatomic positively charged molec-
ular ion AB™ in a v, J vibrational and rotational quantum state colliding with an

electron of energy F., DR process can be summarized as
AB*(v,J) +e (E.) — A(n) + B(n') + Exgr (2.9)

Here n, n’ are atomic final-state quantum numbers of the fragments and Exgg is
the kinetic energy release. Fxggr are the characteristic of molecular structure and
dynamic propagation into different pathways along PES. DR rate coefficient, Fx gr,
and branching ratio of different final channels can be studied as a function of well
defined electron collision energy. Also, angular anisotropy of the reaction as a func-
tion of electron collision gives insight into the fragmentation direction [30]. In the
low-collision energy region, initial internal state of the molecular ion plays a major
role in the DR rate coefficient [31]. We will discuss for the case of HeH™ theoretically
in sec. 2.4 and experimentally in sec. 5.2. First we will discuss mechanisms for the
DR reaction and consider potential energy curves in the diabatic representation.
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Figure 2.1: Sketch of the potential energy curves (PEC) for direct DR (a and b) and
indirect DR (¢) mechanism for a diatomic ion. Blue curve is PEC of the
ground state of the molecular ion. Red is AB™ dissociative state and
black curve is the AB” Rydberg state. Electron with energy E, is shown
in red arrow and the Fxggr is depicted by the red arrow. The shown
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PECs are defined in diabatic picture.
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In direct DR, a repulsive neutral state is directly accessed in the Franck-Condon
region of the molecular ion, as depicted in fig. 2.1[32|. After capture, there is a
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finite probability of autoionization as AB™ lies initially above the energy of the
molecular ion. As the dissociation proceeds along the repulsive curve, it crosses the
ion curve and becomes stable with respect to autoionization. The excess energy is
imparted to the dissociating fragments. In direct DR, the electron gets captured
via purely electronic transition with in the Franck-Condon region of the vibrational
state of molecular ion into the steeply decreasing AB™" state. Therefore, the cross-
section in low-energy region vary as E~! corresponding to the threshold level for an
electron-ion collision (see fig. 2.1 (a)) . However, in the high-energy region (10-30
eV), excited state of cation support several dissociating neutral states still within
the Franck-Condon zone and hence, the DR cross section will show a broad peak

around FEj.

Indirect DR

The DR mechanism other than direct electronic coupling between states leading to

strong cross-section at low-energy is the result of a new mechanism called indirect

DR[33).
AB* (v, J) + e (E.) — AB* — AB™ — A(n) + B(') + Expr (2.1

In the indirect DR process, an electron with kinetic energy FE. is resonantly captured
into an intermediate state, the vibrationally excited Rydberg state AB", as shown
in the fig 2.1 (b). In terms of PEC, there are large number of neutral Rydberg
series converging to the ionic ground state. All these states have vibrational levels
converging to vibrational levels of the ionic ground state. Later, electron from the
Rydberg state within the extent of the vibrational wavefunction crosses to the disso-
ciative neutral state AB™". Also, the range is extended beyond the Franck-Condon
zone of the vibrational ground state of the cation. Therefore, a resonance state
act as the gateway to the fragmentation path inaccessible to direct DR [34]. Also,
indirect DR is always a resonant process as electron with certain discrete energies
only get captured into the vibrational Rydberg state. Therefore, indirect DR the
cross-section feature sharp peaks in the cross section. Moreover, the shape of cross-
section exhibits complictated spectral features in the continuum where resonances
are less separated from each other than by their width [34].

The presented DR process is a short overview of the DR mechanism. A detailed
review of the DR process can be found in [8, 7].

11
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2.3 DR of the HeH™ ion

HeH" is an important prototype molecule for the indirect DR mechanism in low-
energy electron collision. The DR process is described as eqn. 2.12. Due to its simple
structure and important role in early universe chemistry [10], HeH" has been stud-
ied extensively to predict its cross-section structure [35, 36]. Several experimental
studies have been carried out in the past to benchmark the theoretical models |37,
38, 39]. As shown in fig. 2.2, the ground state of HeH" does not cross any doubly
excited repulsive state. In the low-energy region, the fragmentation is dominated by
the He + H(n = 2) channel with EFxgr = 1.55 €V for negligible small impact energy
[36]. However, a new product channel opens at 333 meV collision energy leading to
He + H (n = 3) and completely switches to this state at 577 meV [16]. The neutral
fragment imaging was employed for product state distribution study as a function
of energy. The Expgr of 1.55 €V confirmed He + H(n = 2) at low energy and Exgr
of 243 meV after 577 meV collision energy [16].

HeH" (v, J) + ¢ (E.) — He + H(n) + Exgr (2.12)

At low energy, the process is driven by the indirect recombination by which the
HeH C?X7 state is reached. In high-energy region, as shown in fig. 2.2 various
doubly excited dissociative Rydberg states HeH** are present within the Franck-
Condon region. Therefore, direct DR occurs through electronic states. As several
such dissociative states are available, the observed cross section is very broad. Fur-
thermore, dissociative excitation (DE) channels open in the same energy region as
shown in the previous measurement [37|. Therefore, DR and DE channels are in

direct competition at energies above 1.8 eV.

12



2.3 DR of the HeH' ion
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Figure 2.2: Relevant potential energy curves of HeH" (blue) ion and HeH (dashed

black) for DR and DE are shown. The ground state of cation is X!,
The ground state of neutral HeH X2X* is repulsive and the excited
Rydberg state C*%* is bound and the primary dissociation route in low-
energy DR (see red arrow A). A'ST and a3¥ T are the excited ionic states,
steeply repulsive in the Franck-Condon zone. Also, the excited cation
states support several Rydberg states. Red arrow B shows the access
to PECs in the high energy range from vibrational gound state. The
potential curves of various electronic states are adapted from Stromholm
et al.[37].
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Fig. 2.3 is the DR spectrum? studied in the merged beams setups at the CRYRING
and TSR ion storage rings in a room temperature environment [37, 39]. Since HeH "
is an infrared active molecule [40], it interacts with the radiation field at 300 K and
the molecule relaxes within less than 0.1 s to the vibrational ground state. In steady
state several rotational levels are populated in the vibrational ground state of HeH ™",
as discussed below. Therefore, the observed spectrum is averaged over the several
rotational states of the molecule. Moreover, the electron beam energy spread is in
the order of 10 meV [37]. Under these conditions DR rate coefficients is strongest
at low E, revealing strong indirect process. Moreover, peak at high energy is due to
the direct DR. The detailed study on rotational cooling of HeH" and electron beam

energy spread will be presented later in sec. 2.4 and sec. 3.3.2.

10°°

10710

Rate coefficient (cm?s~1)

10‘11 Lol Lol Lol Lol Lol L1
10" 10° 10° 107" 10 10
Collision Energy (eV)

Figure 2.3: Experimental merged beams rate coefficient from CRYRING and TSR
at room temperature. The TSR measurement is scaled to the CRYRING
data at 0.2 eV.

In recent past, tremendous progress has been made theoretically to predict the
DR spectrum of individual rotational levels in the vibrational ground state of HeH™
ion [41]. Curik et al. calculated DR spectra in the low-energy region upto 2.5 6V as
the rate coefficient depends on the initial state of the molecule. On the experimen-

2DR spectrum is measured in terms of the rate coefficient which is & = (o). where o is DR cross
section and v = \/2E/m,,, is the collision velocity at energy E.

14



2.4 Rotational cooling of HeH" ions by the radiative emission
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Figure 2.4: Computed DR rate coefficient is presented for v = 0 and J = 0 - 4 for
HeH". The theoretical cross section is convoluted with the expected
electron beam energy spread of AE; = 0.1 meV and AE; = 2 meV.

tal side, the requirement of near single J state study is met by our cryogenic ion
storage ring where molecular ion can be ro-vibrationally cooled [23|. In addition,
photocathode generated electron beam energy spread is lowered by factor ~ 10 than
the previous experiments. Here, the cross-section calculated from the theory is used
and convolved with expected electron beam energy spread of the CSR electron cooler
and overlap geometry of the merged beams set up in the CSR (see sec. 3.3.2). Fig.
2.4 shows there are several peaks in the rate coefficient even after electron beam
energy spread. The features of the spectra especially J = 0 will be compared and
discussed with the experimentally obtained spectra.

2.4 Rotational cooling of HeH™ ions by the

radiative emission

HeH™ ions require an ion source with a high temperature plasma for their produc-
tion. The temperature of the source plasma is typically ~ 3000 K leading to the
population of vibrationally and rotationally excited states. Since the ion has a dipole
moment, excited vibrational states emit radiations. Vibrational relaxations occur in
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2 Molecule and electron collision processes: Overview

a time scale of several milliseconds. When experiments are performed with stored
ions, it can be assumed that they are essentially in the vibrational ground state [39].
On the other hand, the radiation field in the environment of the ions is important
regarding the rotational populations. The energy density can be written according

to the Planck’s radiation law for a particular frequency v [42].

S8they?

p(v) = e (2.13)

where c is the speed of light and kp is the Boltzmann constant. Furthermore, the

rotational energy of a linear diatomic molecule is given as,
E;=BJ(J+1) (2.14)

where J is rotational quantum number and B is the rotational constant of the
molecule. The energy difference between two rotational levels increases linearly as

AEj -1 = 2BJ.

E; A ]
M
NN AP ANANP
’\/\/\/\>
Vi
Aj 1 B, PVr1) By (V1)
E; ;Y ’ y ] -1

Figure 2.5: Interaction of radiation field of frequency v ;_; interacts with rotational
levels of molecule with population N; in level J and N;_; in level J — 1.
The radiation field of photon energy density p(v;;_1) drive transition
between J and J — 1. Bj_; ; is the Eintein’s coefficient of stimulated
absorption, represents the coupling between two-state system and ra-
diation field. Likewise, B ;_; is the Eintein’s coefficient of stimulted
emission and A ;_; is the spontaneous emisison (see text).

Fig. 2.5 shows of how the radiation field p(v;;_1) interacts with a two level
system. The details of such interactions can be found in detail in Bernath [43].
In presence of a photon field the Einstein coefficients define the population ratio
between the states as

Ny, By 1,5p(Vy-1)
Nyoy Ajsa+Bryap(vyi-1)

(2.15)
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2.4 Rotational cooling of HeH" ions by the radiative emission

where the statistical equilibrium also implies

Nr 95 omaaiT (2.16)

Nj1 gi
where g; = 2J + 1 is the degeneracy of the energy level J.

Comparision of eqn. 2.16 and eqn. 2.15, the Einstein coefficients leads to the

relations
By_1,; 9J Ay 3
= and ——— =Q&whvy,_ 2.17
Brj-1 gi-1 By ST (2.17)

On the other hand, the Einstein coefficient A is given by
167‘(‘31/?}, g1 J

A= a1

where 1 is the dipole moment of the molecule.

2 (2.18)

The Einstein’s coefficient A of spontaneous emission gives the probability of tran-
sition per unit time interval from J — J — 1. The inverse of spontaneous emission
gives the lifetime of a system in an excited state with a single decay channel. The
spontaneous emission is proportional to ® (transition energy), for higher J-states
decay rate is faster. The dipole moment remains approximately constant for lower
rotational levels. For the present calculation, the spontaneous emission rate is taken
from Engel et al.[40].

Based on the relations presented above, a rotational cooling model of HeH™ ion
is developed. In the model, the 10 lowest rotational states have been considered. A
rotational state J only couples to J — 1 via photon emission and J + 1 via photon
absorption according to the selection rule AJ = 4+1. Also, there is no loss to the
total population in the radiative transitions. Time evolution of the population in
several rotational states is developed according to the following rate equation:

dpy
dt
+psi1[Asi1g + p(Wys1.0)Brirg) + pi-alp(vi—1,0)By-1.J]
A numerical simulation has been performed to solve the coupled differential equation
upto 100 s.

=psl—As;-1—pvyj-1)Bjj_1— plv B
pil=Ass-1 = pWrs-1)Bri-1 — p(vss41)Bryii] (2.19)

In fig. 2.6 the molecules reach rotational equilibrium after ~ 10 s at 300 K
with several rotational levels populated. However, at 20 K environment fig. 2.7
shows higher .J-states continue to decay faster due to the narrow field. Hence, in
a low temperature radiation field and with sufficient storage time, especially J =0

population can be reached. Thie will be used in the experiments in this thesis.
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Figure 2.6: Radiative cooling of populations for 10 lowest rotational states. The
initial temperature of the ion is 3000 K and equilibrates at 300 K in a
thermal cavity (legends 0-10 are rotational states).
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Figure 2.7: Radiative cooling of populations for 10 lowest rotational states. The
initial temperature of the ion is 3000K and equilibrates at 20 K inside
CSR (legends 0-10 are rotational states).
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3 Fast-beam fragmentation studies

In this chapter, experimental details of the electron-ion fragmentation reaction dis-
cussed in the previous chapter is presented. It starts with a general overview of the
newly comissioned electrostatic ion storage ring, CSR and its several experimental
programs. The dynamics of collisions in merged electron and ion beams can be
described considering individual beams of well-defined energy. On this basis, the
principle of electron cooling and aspects of the electron beam energy spread are
presented. Consequently, an ion storage ring in combination with an electron cooler

offers internally as well as translationally cold stored ion beams.

The fragments detection scheme of collision experiments is also presented. In fast
beam collision reactions, the fragments emerge in a narrow cone and fly ballistically
in forward direction leaving the ion beam orbit. In many cases, this allows the
detector to be sensitive over effectively 47 solid angle regarding the particle emission

in the center-of-mass frame.

3.1 Cryogenic storage ring: overview

The Cryogenic Storage Ring (CSR) located at Max Planck Institute for Nuclear
Physics in Heidelberg is a fully electrostatic storage ring. The energy of the stored
ion can be varied from 20 to 300 keV per charge. Figure 3.1 shows the schematic
overview of the CSR. The quadratic storage ring has a circumference of 35.12 m with
four 2.6 m straight sections [23|. The ion optical elements are placed in the four
symmetric rectangular corners 1-4, from the injection in counter clockwise direction.
These are a combination of two electrostatic 6° cylindrical deflectors (3) and two 39°
cylindrical deflectors (2). The first 6° deflector in corner 1 also serves the purpose
of fast switching the ion beam. For focussing of the stored ion beam each corner is
equipped with two quadrupole doublets.

The four straight sections of the CSR serve as the experimental platforms and
for beam diagnostics. Section A of the CSR is dedicated for ion-neutral reactions.
Neutral beam is produced by the photodetachment of anion (e.g. H~, O~, D~ and
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3 Fast-beam fragmentation studies

C~ etc.) in the injection beam line prior to the CSR and can be merged with
already stored ions [44]. In addition, it consists of RF bunching system (5) and
the beam viewer (6). In section B, an electron cooler for phase space cooling and
merged electron-ion beams collision studies has been implemented. This section is
also equipped merged and crossed laser-ion beams set up for photodetachment or
photodissociation experiments. In the corner 3 after section B there are detectors to
collect the neutral and charged reaction products. NICE, Neutral particle Imaging
in Cryogenic Environment is the neutral particle detector positioned next to 39°
deflector to collect nearly coincident atomic or molecular fragments in dissociation
[45]. The COMPACT, COIld Movable PArticle CounTer, is an MCP based counting
detector for electron or photon induced charged or neutral products [46, 47]. It
is movable across the beam vacuum chamber of the CSR. Both detectors will be
discussed in detail in sec. 3.5. Section C is used for the beam diagnostics. It
features a Schottky pick-up, a current pick-up for bunched ion beams and a beam
viewer. In addition, it also consists of a vertical and a horizontal capacitive pick-up
electrode pair [48]. And, in the fourth straight section (D) a reaction microscope to

study the collisions of stored ions with an internal gas target will be implemented.

3.1.1 lon beam lifetime

In order to achieve the ambient cryogenic temperature below 10 K inside the ex-
perimental chamber (EC) of the CSR, structure of the CSR mimics the design of
a standard cryostat [49]. The EC of the CSR is maintained at ultra-high vacuum.
For avoiding thermal coupling to the environment due to convection, it is enclosed
in an isolation vacuum. Furthermore, the EC is covered with additional two layers
of thermal shields at 40 K and 80 K, which act as infrared screens. Also, the 80 K
shield is wrapped in multi-layer insulation to lower the 300 K black-body radiation
onto the inner layers and, hence the experimental chambers.

Under cryogenic temperature, ultra-high vacuum in the order of 107! mbar (room
temperature equivalent) has been observed and, lifetimes of stored ions up to ~
2500 s were achieved [23]. Hence, infrared active molecules can relax towards their
ro-vibrational ground state. In previous experimental campaigns, photon-induced
rotational-state resolved reactions have been performed on OH™ and CH* molecular
ions [50, 51]. The first studies of electron-induced reactions in the CSR are described

in this thesis.
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3.1 Cryogenic storage ring: overview

Corner 1 Corner 4

Section D

Corner 2 Corner 3

Figure 3.1: Schematic overview of the CSR. The ion is injected from corner 1, 39°
deflectors (2) and 6° deflectors (3) confine ions in closed orbit of the CSR.
Section A consists of ion-neutral merged beam set up and RF bunching
system (5). In section B electron cooler is installed to study ion-electron
collisions experiment with counting (7) and neutral particle detector (8).
The CSR houses various tools for beam diagnostics in section (C) with
current, Schottky, and position pick ups (9, counting counterclock wise).
Three destructive beam-viewers are distributed to different locations in
the beam line (6). Section D will be equipped with reaction microscope.
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3 Fast-beam fragmentation studies

3.2 Principle of electron cooling

High resolution electron-ion collision experiments with merged beams require a well-
defined ion beam of small diameter with low divergence and small momentum spread.
However, according to Liouville’s theorem the phase-space volume occupied by the
position and momentum of an ensemble of stored ions remain unchanged in the
absence of external forces. To overcome this limitation, there are a number of
cooling techniques for ion beam manipulation available such as radiation damping
or stochastic cooling [52]. Electron cooling has been very succsesful in efficient phase
space cooling of the stored ions [20].

A cold, intense and continuously regenerated electron beam is merged with a hot
stored ion beam. For an ion beam of mean energy F;, the electron beam energy is
adjusted to have the same mean velocity as the ion beam. Therefore, the velocity
matched electron energy F,. needs to fulfill the condition

me

my

where m, and m; are the mass of electron and ion, respectively. The ions undergo
multiple Coulomb collisions and energy is transfered from hot ions to the cold elec-
tron beam. This means that the phase space occupied by particles becomes smaller
and the ion beam can cool down nearly to the electron beam temperature 7,. The
final ion beam temperature is limited by the intra-beam scattering of the ion beam
and by rest gas collisions. The cooling time for an ion beam of mass m; and charge
state Z by an electron beam with density n. and temperature T, scales as [53]

3/2
m; Te/
Teool X

3.2
75 (3.2)

For heavier ions, cooling time 7., is greatly increased. To counterbalance this effect,
the electron beam density must be as high as possible and beam temperature should
be very low. For this purpose, adiabatically expanded GaAs based photocathode is
used [54]. The typical beam temperature goes down to ~ 1-2 meV range.

In case of molecular ions, electron-ion inelastic collisions can even lead to vibra-

tional or rotational excitations and de-excitation.
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3.3 Electron Cooler

3.3 Electron Cooler

3.3.1 Basic setup

In the CSR electron cooler, a low energy electron beam is produced in a GaAs
photocathode, magnetically guided and merged with stored ion beam in the CSR
orbit. The merged electron-ion beams collision can be studied from near 0 to several
eV collision energy in the center-of-mass of an ion and an electron. The photocathode
is operated in space charge limited mode, where electron density n. is defined by the
space charge of the electron beam and not by the emissivity of the cathode itself.
The maximum current I, depends only on the applied extraction voltage U.,; and
follows the Child-Langmuir law [55].

I, = pU3/? (3.3)

ext

where p is the perveance of the gun, which depends on the geometrical properties
of the photocathode and is typically of the order of 1A V—3/2,

Fig. 3.2 shows the schematic set up of the electron cooler. The size of photo-
cathode defines initial size of the electron beam. The effective emitting surface of
photocathode is 3 mm defined by the Pierce electrode [48]. The magnetic expan-
sion factor (see sec. 3.3.2) is defined as the ratio of magnetic field in two adjacent
regions. In the room temperature region, first expansion is defined as oy = B;/Bs
and corresponding size of electron beam is ry = /17 caqp. Where 7.4y, is the radius
of photocathode beam and «; = 10. The room-temperature section is followed by
the cryogenic section made up of high temperature superconducting coils (HTS). In
the toroidal bend and merging region the B-field remains constant. The interaction
section consists of a long solenoidal field of strength B3 and, hence, the transition
provides a second beam expansion of ay = By/Bs. Therefore, final size of the

electron beam in the interaction section is given as

Tbeam = V X102T cqth = V 20 x 1.5 =6.7 mm (34)

Consequently, density of the expanded electron beam in the interaction region also
decreases to nf = n./a.
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merging ion beam

coils

toroidal
solenoid

eleétron beam

photoelectron
gun

electron
collector

Figure 3.2: Schematic diagram of CSR electron cooler device. The electron beam
(shown in blue) is produced at photocathode, inside the high mag-
netic field solenoid, B; = 2500 G. Subsequently, three room temperature
solenoids of field strength By = 250 G, guide and expand electron beam
(see text). The toroidal coils bend the electron beam parallel to the ion
beam (shown in red) and, merging coils with superposition B-field in
longitudinal and vertically downward merges with ion beam. In the in-
teraction region, electron and ion beams are merged and magnetic field
is further decreased to B; = 125 G. (Image taken and modifield from
Stephen Vogel [48].)

The interaction section consist of a series of drift tubes, which are used in case of
the electron beam deceleration scheme discussed below (see sec. 4.4). In a similar
fashion as described above, the electron beam is demerged and guided outside of the
CSR cryogenic section. The beam is also compressed by factor 2 and guided to an
analyzing main cup set up for electron current measurement. A detailed study on
magnetic guiding field conditions and requirements will be presented in sec. 4.2.2.

3.3.2 Magnetised electron beam

The expansion of electron beam discussed in previous section is the manifestation
of adiabatic transport of electron beam from high B-field to low B-field region [56].
The adiabatic method makes use of invariance criteria: (i) the product of squared
electron beam radius and the magnetic field, R?B = const [53]. (i) The ratio
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3.3 Electron Cooler

of mean transverse energy to the magnetic field (E,)/B = const [57]. Electrons
are produced in the photocathode with an initial isotropic temperature T,,,. The
adiabatic expansion leads to decrease in transverse temperature of the electron beam
as given by the criterion (ii), yielding the final temperature here

k:BTL,i kBTcath

kT, ;= o= (3.5)

(0%

Here, kp is the Boltzmann constant, and 7', ; and 7' ¢ are the initial and final trans-
verse temperatures. For a photocathode, T, is ~ 25 meV at room temperature

and after expansion up to 1 meV can be achieved for kgT' ;.

The longitudinal acceleration of electrons by U4, results in a reduced longitudinal
temperature in the co-moving frame. Kinematic transformation from lab frame to
co-moving results in final longitudinal temperature. Since acceleration energy eU,qn
is significantly larger than the kgT,., the final longitudinal temperature is

(]'CBT‘cath)2
26Ucath '

It is in the order of 25-100 ueV.

kT = (3.6)

The relation presented above treats the electron beam as an ideal gas of non-
interacting free partcles. However, Coulomb interaction among electrons leads to
potential energy relaxation in the presence of magnetic field is called longitudinal-
longitudinal relaxation (LLR) [58]. Therefore, density of the electron beam plays a
major role and final expression for longitudinal temperature is given as
(kBT atn)? e? nl/3

+C .

kgT) ¢ ~
BEILf eUqath 4eq

(3.7)

where C' is the dimensionless adiabaticity parameter of the acceleration process. It
is ~ 1.9 for fast acceleration [58].

The motion of electrons in presence of a magnetic field B is not free but describes
a constrained trajectory around the magnetic field line with a revolution frequency
given by the cyclotron frequency
eB

Me

(3.8)

We =

Also, due to the large temperature difference between longitudinal and transverse
directions, there is another relaxation process called transverse-longitudinal relax-
ation (TLR), which exchanges heat from the transverse to the longitudinal direction.
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3 Fast-beam fragmentation studies

However, in a magnetic field TLR can be minimized. Therefore, a certain minimum

magnetic field strength must be maintained throughout the electron cooler [59].

In a co-moving frame of reference, the electron velocity distribution is given by
an anisotropic Maxwell-Boltzmann distribution,

3/2 2
my/ ( mevj  mev? )

(27Tk‘3)3/2T“1/2T 2kpTy  2kpT|

f(T.) = (3.9)

where 7, ¥, are the longitudinal and transverse velocity component of the electron
velocity U, with respect to the electron beam axis. Due to large difference in 7', and
Tj, it is also called a flattened electron velocity distribution.

3.4 Merged beam kinematics

A phase-space cooled ion beam has well-defined mean energy E;. The electron beam
energy I, can be changed by the varying acceleration voltage at the photocathode
(Uecatn, in fig. 3.4 shown below). Therefore, the kinematics of electron-ion collisions
can be described with relatively simple relations. The relative velocity of electron
and ion beam with mean energy E. = m.v?/2 and E; = m;v?/2, respectively is

given as
0] = |6, — 0] = (0% + v? — 2v.v;c080) 2 (3.10)

where 6 is the angle between electron and ion beams. In the non-relativistic regime,
the relative energy in the cente-of-mass frame, FE, is given by

1
1 E. FE; E.E;\?
E, = —,quZ,u[——l———2< ) cos@} (3.11)

2 Me My MeM;

where p is the reduced mass of the electron-ion system [60]. For § = 0 and using
the relation between ion energy and cooling energy (see eqn. 3.1), a very important
relation between the beams can be deduced as

Eq= mvd (VE. - VE.)?. (3.12)

Here, E, is the collision energy between the two beams, commonly denoted as the
detuning energy. Fig. 3.3 shows the relation between the lab frame energy of electron
beam E, and the detuning energy [61]. The typical laboratory frame energies of
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3.5 Fragmentation scheme at CSR

ion and electron beams at the CSR are about 100 keV and few eV, respectively.
As an advantage, the merged beam technique shows the highest resolution at small
relative energies. One interesting point is the near-symmteric nature of the detuning
energy of faster and slower electrons with respect to ion beam. In a merged-beam
experiment Fy, is changed by controlling F., keeping F; constant. The rate coefficient

or cross section is then shown as a function of the collision energy E,;. The velocity

10°

= = =
o o o
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Detuning energy (eV)

=
o
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Lab.frame electron energy(eV)

Figure 3.3: Electron-ion collision energy in the center-of-mass frame at 20 eV velocity

matched energy (F.). At small detuning energy high sensitivity can be
observed.

distribution function at a given detuned speed vy from ion’s rest frame can be given
as

3/2 2 2
50 TLTh) exp( — - 3.13
f(W,vg; T, I) (271_1{:]3)3/27_,“1/2,11 p( 2kpT 2kpT ( )

A more detailed investigation of the velocity distribution function in terms of this
energy distribution function will be discussed in sec. 4.5.

3.5 Fragmentation scheme at CSR

3.5.1 Experimental arrangement
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Figure 3.4: Schematic overview of fragmentation measurement in the CSR. Stored
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ion beam (shown in red) guided by 39° deflector (1), 6° deflector (2),
and quadrupole doublet (3). Also, the ion’s internal state is coupled to
the temperature of the CSR, Txsr by induced absorption and emission
(see sec. 2.4). The electron beam (shown in blue) can be chosen to
move faster or slower than ion beam by changing detuning energy, F,
either by changing cathode voltage (U.up) or by voltage of drift tubes
in the interaction region (Ugis:). The neutral fragments from reaction
with kinetic energy relase (Expr) ~ few eV always emerge in a cone and
fly straight to the NICE detector. A zoomed in NICE detector shows
an example case ABT molecular ion fragmented into A(mass m(A)) and
B(mass m(B)). The orientation of fragments is defined with respect to
the electron beam axis. On the phosphor screen of the detector, frag-
ments create bright spots and the corresponding positions can be imaged
with a CMOS camera. Moreover, in case of a charged fragment (shown
in dotted green), a transverse movable fast counting detector (COM-
PACT) can be used to collect fragment at the deflected position with
respect to the ion beam.



3.5 Fragmentation scheme at CSR

Figure 3.4 shows the scheme fragmentation measurements in electron-ion colli-
sions. The electron cooled ion beam is shown in red and expanded electron beam
merges from left to right over ~ 1 m. The detailed structure along the length of in-
teraction is presented in sec.4.2.2. Over the interaction length, the electron collision
energy can be tuned from meV to several eV (see eqn. 3.12). One of the very impor-
tant class of fragmentation reactions is the dissociative recombination (DR) where
molecular ions undergo dissociation and the reaction products are neutral fragments
with excess energy Expg is distributed among them according to the momentum

conservation in their center-of-mass frame (see sec. 2.2.1).

To study DR, a neutral particle detector (NICE) has been implemented in the
CSR [45]. The particle distance D on the detector plane is given by

E
D = | =EEE Lsing. (3.14)
Eip;

where L is the distance between the fragmentation point and detector plane. 6
is the angle between molecular orientation and electron beam axis and u; is the
reduced mass of the molecular ion. Thus, the maximum particle distance on the
detector, D,u.. is proportional to Ly/Fxgr/F;. The 6° deflector seperates the
neutral fragments from the stored ion beam and therefore, the closest position from
the electron cooler is next to 39° deflector. This corresponds to a distance Ly= 3.807

m from the center of the electron cooler.

NICE consist of two multi-channel plates (MCP) in chevron configuration and
a phosphor screen serves as the anode [45]. Particle hitting the MCP create an
avalanche of electrons which is further accelerated towards the phosphor screen bi-
ased at 10 kV. On the phosphor screen it creates a bright spot and their arrival
time can be electronically extracted. The spots on the phosphor screen can also be
recorded with a high speed CMOS camera outside the CSR cryostat via aluminium
mirror situated behind phosphor screen. The active area of the MCP and phosphor
screen is ~ 120 mm such that nearly coinicident fragments can be imaged. The
distance between fragments on detector plane is proportional to \/Exgr and ori-
entation of the molecule with respect to the beam axis. Therefore, from projected
distance distribution on detector Fxgr can be calculated which in turn can predict

the fragmentation pathways.

The NICE detector can be operated from room temperature to the cryogenic tem-
perature. However, at low temperature resistance of the MCP increases significantly
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3 Fast-beam fragmentation studies

which in turn saturates the detection capabilities. To overcome this issue, a heating
module has been implemented to locally heat the MCPs. MCPs are typically heated
up to 40 K and stable and recovered count rate has been observed. In the present
experiment HeH™ count rate as function of detuning energy is studied to determine
rate coefficient of the DR process. At the stored ion beam energy of E; = 250 keV,
the time of flight (TOF) is 1-1.5 us over the interaction length. At Expr = 1.55 eV
(see sec. 2.3), both H and He fragments fit the detector with maximum transverse
distance of 24 mm and 6 mm, respectively.

In addition, charged products of the fragmentation can also be collected down-
stream at 3.2 m from the center of electron-ion interaction section with a further
detector denoted COMPACT (see fig. 3.4). The detector system consists of a con-
vertor plate and MCP stack with anode to count the hits during fragmentation. The
working principle is based on the production of secondary electrons when a parti-
cle hit the bent aluminium convertor plate. These secondary electrons are further
accelerated towards a small MCP where the particle event can be detected with
nearly 100 percent efficiency. The detector can also be moved across the beam line
of the CSR via a translation stage and hence allows to detect fragments based on
the charged to mass ratio [47, 46].

3.5.2 Rate coefficient determination

The rate of interaction in an electron-ion collision experiment within an interaction
volume V' can be determined with the spatial electron density n.(7), the spatial ion
density n;(7), the relative velocity between electron and ion v, and the cross section
o(?v), and also the velocity distribution f(ﬁ, vg; T, Tjj, X, Uge, Ugy) of the collision
velocity ¢ at a given detuning velocity. Then, the rate R is given by,

R(vg) = / /ne(F)ni(F’)a(ﬁ)vf(ﬁ,vd;Tl,TH,X, Use, Uy )d>vd®r (3.15)
vV Ju

where X, U, and Uy, in f (V) (in short) are the overlap geometry of the merged
beam, the space charge potential of the electron beam, and drift tube potential,

respectively. Details of these terms contributions are discussed in chapter 4.

In a magnetically guided electron beam, the spatial electron density n.(r) is uni-
form along the whole interaction length, and the ion beam after phase-space cooling
is well confined within the electron beam. For cylindrically shaped electron and ion
beams, the volume can be integrated in terms of transverse and axial part as dr,
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3.5 Fragmentation scheme at CSR

and dz, respectively. The electron density is simply used as n. for the complete
interaction region and, hence, n. is taken out of the integral. The ion density in the
interaction region is given by the following relation:

N, 0o oo
1i(7) = N f(71) with Ay = 2 and / / FEOEr = 1 (3.16)
0 —o0 J —0o

where \;,, is the linear ion density with N; and Cy are the number of stored ions and
circumference of the CSR, respectively. f(r, ) represents the transverse distribution
of very narrow FWHM ion beam and due to confinement within the electron beam

it is assumed to be normalized. Therefore, axial part still remains in the integral.

The velocity distribution function is a 3-dimensional function, where transverse
components are due to the thermal energy spread of the electron beam (see sec.
3.3.2). The function f(U, vg; T, T, X, Uge, Ugr) is defined here for a general scenario
to motivate the realistic collision conditions in our merged beam set up. The electron
beam approaches at a certain non-zero angle before it becomes parallel to the ion
beam. In addition, if drift tube in the interaction region is used for electron beam
energy deceleration purpose, an additional position dependent velocity comes into
effect. To account for such a case, the electron beam kinetic energy is described by

a position dependent function Ej;,(2).
Therefore, relative velocity ¥ between electron and ion is qualitatively given by,
0
7=10 |+ 0, X,Us,Uq) (3.17)

Vq

where vy is the experimentally controlled and scanned average collision velocity
between beams and 4 is the additional contribution for a given collision event due to
thermal energy spread vy, X accounts for increase due to the angle between electron
and ion and Uy, is due to the drift tube operation (if used). Thus, integration along
z incorporates the position dependent nature of electron-ion collision velocity and

after switching position of integrals in eqn. 3.15 rate is given as,

R(Ud) =~ Te O-(U)U€ </ f(Uv Ud; TL) T‘||7 Xa U567 Udr)dz> d3U (318>

lint
where [;,,; is the full interaction length of the electron-ion merged beam set up. The
rate can also be written as

N;

R(Ud) = anelintamb(vd) (319)
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where ayp(vg) is the convolution of the product of vo(¥) over the velocity distribu-
tion and averaged over the complete interaction length,

i (vd) = (00) = / a(ﬁ)v(l / F(@ 0 T Ty, X U, Ug )z ) o (3.20)

v lint lint

Since the molecules are randomly oriented, the directional nature in the cross section
can be neglected and thus, o(¢) = o(v). Also, the results are usually considered

through an energy-dependent convolution function. For this purpose, rate is de-

scribed as
N;
R(Ed) = anelimamb(Ed) (321)
0
setting vg = \/2E4/m. and
amb(Ed) - /U(E> V ZE/mefmb(E7 Eq; Ty, ﬂ|7 X, Use, Udr)dE (322)

where the energy distribution function, f,,; is obtained by integrating f over the
sphere in velocity space at v = \/2FE/m, and (mv?/2) lying in the range £+ AFE/2.

1 R
Foo(Es Ea: T Ty, X, Uney Uy) = / / F (5,00 T, Ty X, Uses Uge)dedo
llntAE E+AFE Jljn

(3.23)

The energy dependent convolution function will be presented below.

For a narrow width rate coefficient is,

o(E)\/2E/m. = 46(E — Ejes) (3.24)

where &y is the energy integral of the rate coefficient. The convolved rate coefficient
in eqn. 3.21 will then follows from eqn. 3.22 as

amb(Ed) - CAYOfmb(-E'rem Ed7 TL7 ﬂ|7 X7 Usca Ud'r) (325)

As the resonance is sampled mainly by the nearly monoenergetic electrons in the
straight part of the interaction region, a,,,(Ey) peaks near Ey = E,..; and decays to
very small values outside the interval E,.; — AE, E,., + AFE.

However, the integral

Eres+AE Eres+AE
/ amb(Ed)dEd = d() / fmb(Eresa Eda TJ.a iT’H ) X, USC) Udr)dEd (326)
'res*AE 'res*AE
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3.5 Fragmentation scheme at CSR

over the experimental peak will be less than &g, as the complete [;,; also includes
the merging regions (see chapter 4).

However, an equivalent description to eqn. 3.21 is
N;
R(Ed) = 5neleffozm(Ed) (327)
0
with . (Eq) = (lint/leff)@mp(Eq). When [ ff is chosen as
Eres"l‘AE
leff = lznt/ fmb(EresaEd;TJ_aﬂbX; Usm Udr)dEd (328>

Eres —AE

then the integrated measured rate coefficient «,,(FEy) in the range of E,..; + AFE
represents the energy integrated rate coefficient &y. Rate coeffcients a, (Fy) will be
largely independent of the measuring configuration if /. is properly chosen for each

configuration and the considered energy range.

From measured rates R(FE,) the rate coefficients are extracted using

R(Eq)
= ——— '2
Cmb ne Nilint /Co (3:29)
and
R(E,) (3.30)

Gm = neNileff/Co

For the present discussion, detector efficiency is assumed to be 1. In chapter 5,

detector efficiency is considered for the case of DR.

Energy resolution

In a phase space cooled ion and electron beams collision, the energy resolution is
mainly determined by the longitudinal and transverse temperatures of the electron
beam for flattend energy distribution. The width (FWHM) of a very narrow reso-
nance of negligible width is given by the following relation [62]:

AE %/ (kpT11n2)? + 16k5T) Eln2 (3.31)

Fig. 3.5 shows the energy spread as a function of detuning energy. It can be clearly
seen that in the energy range below kg1, , total width is limited by transverse energy
spread of the beam. And, at higher F;, width is dominated by the longitudinal
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Figure 3.5: Expected energy spread in the merged electron-ion collision experiment
as function of detuning energy. The electron beam thermal energy spread
are kT = 50 peV and kT = 1 meV. The blue curve is the total
FWHM and dotted lines show the individual contribution to the energy
spread.

temperature. Also, the relative width AFE/FE, reduces to a small value. Lastly, the
energy where the contribution to the width due to the transverse temperature is

equal to that of the longitudinal one is

an(k‘BTL)2

Ee s —
* 7 T 16kpT)

(3.32)

For the present case E.qs — 0.87 meV. In sec. 4.6, model rate coefficient shape for
a delta resonance will be discussed with realistic energy distribution.

3.6 Simulation software

In the next chapter, the electron cooler model is presented. Here we already intro-
duce the used software and its basic working principle. The electron cooler has been
simulated in the field analysis program TOSCA from Opera-3d [63]|. In Tosca, elec-
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3.6 Simulation software

tric or magnetic field of any given geometry is calculated on fine mesh in space by
solving Maxwell’s equation. In the electron cooler the magnetic fields from several
coils were superimposed and scaled such that to obtain minimum transverse offset

in position.

In addition, G4beamline a particle tracking software is also used escpecially in
the case of the drift tube operations of the electron cooler model. It is a command
based program based on Geant4 [64]. For this purpose, the magnetic and electric
field tables of all magnetic coils and drift tube were imported from TOSCA electron
cooler model. And, similar to TOSCA single electron can also be tracked in presence

of electric and magnetic fields.
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4 Modelling the conditions of electron
collision measurements with low energy
merged beams

In this chapter, we establish the characteristic properties of the electron beam tra-
jectory in a field analysis program. The influence of the merging geometry in the
electron-ion merged beams set up of the CSR is studied in detail. Later, the role of
space charge of the electron beam under realistic experimental beamline geometry
in the interaction section is calculated. At low cooling energy, the electron cooler
can make use of drift tubes to decelerate electrons in the interaction region to reach
velocity matched condition and overcome the space charge limit of the electron gun
at a given electron energy.

Then, the results of the electron and ion beams collision energy distribution as
function of geometry of the merged beams set up, space charge of the beam, and
the drift tube is presented. The obtained energy distributions are also used to simu-
late model merged beams rate coefficients for typical cross section in recombination

experiments.

4.1 Challenges and requirements

The CSR electron cooler is the first low energy electron beam device operated in a
cryogenic electrostatic ion storage ring. In summer 2017 electron cooler has been
successfully commisioned and operated to achieve the longitudinal phase space cool-
ing of F ions in the CSR [65, 66]. As discussed in sec. 3.2, to enable the electron
beam to achieve phase space cooling of ions and later act as target for recombination
experiments, certain conditions need to be fulfilled. In this section, we will explain
the conditions and challenges.

The CSR electron cooler is designed to have beam energies ranging from 1eV to
1000 eV. The density of electrons in the beam is proportional to beam current and
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4.2 Electron cooler model

it scales with three-halves power law of extraction voltage (see sec. 3.3). However,
at low energy electron cooler should have sufficient density to phase space cool ions
in time scales smaller than the ion-beam lifetime. This feasibility of low-energy
beam with sufficient density has been explored and established in previous work by
Shornikov et al. [59, 67]. The overall geometry is determined by a guiding magnetic
field pointing in the electron beam direction and shown in fig. 4.1. The strength
of the guiding magnetic field should be sufficient to suppress the blow up due to
Coulomb repulsion of the electrons. And, a high magnetic field also reduces the
TLR effect, which is favorable for faster cooling as discussed in sec. 3.3.2. Moreover,
high magnetic field can affect the ion beam trajectory in the merging or demerging
section as transverse component of B-field can deflect the ions. Shornikov has also
shown that the strongest criterion on magnetic field strength is the fulfillment of
adiabaticity criterion especially along the curved track of the toroidal coils [59]. The
maximum field strength required is for 1 keV electron energy is 215 G. Therefore,
the nominal B-field used in the toroidal coils for all calculation is 250 G.

The CSR electron cooler deviates from the conventional U-shaped or S-shaped
design for the merging and demerging of ion and electron beams as in high energy
electron cooler e.g. TSR ion storage ring. The low energy ion beam in the CSR
electron cooler, e.g. 20 keV protons feel non-linear (position dependent) vertical
deflection by horizontal component of the toroidal field if used for merging and it
cannot be corrected with dipole compensation coils [68]. Fadil et al. [68] calculated
and proposed the toroid free merging design and Shornikov developed it further to
fit in the CSR cryostat [59].

4.2 Electron cooler model

Electron cooler design and simulation of the entire beamline was conceived and
performed in previous works [59, 48|. The final beamline is the result of several
iterations of mechanical compatibility of magnets and cryogenic requirements. The
quality of electron beam was simulated for each iteration step. An ultra-high vac-
uum of the order of 10! mbar in the room temperature gun section is important for
long operation of photoelectron gun. Here, a brief introduction of magnetic compo-
nents and trajectory of electron will be discussed. The room temperature part, gun
and collector sections have been simulated separately and adiabaticity condition of
magnetic fields was fulfilled [48]. The presented electron cooler beamline for elec-
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Figure 4.1: Top view of the magnetic elements and of the drift tubes in the cyrogenic
part of the electron cooler. For a complete view of the electron cooler
see fig. 3.2. The electron beam (e) enters from left in toroidal mag-
net (1) (linear+ 90°+30°). Compensator dipole coil (2) placed before
and after merging and demerging section respectively. Box magnet (3)
and merging vertical (MV) (4) dipole magnets (4 coils) forms merging
section. Main solenoid and two short solenoids (5) creates longitudinal
B-field in interaction section. Set of drift tubes (6) defines kinetic energy
of electron beam in the interaction section if used. The position of coils

along longitudinal axis of the electron beam is also shown.

tron tracking consist of merging, interaction and demerging sections. The cryogenic
linear toroid is extended upto room temperature cathode position in order to mimic
conditions of a realistic beamline and minimize fringe fields. In a similar manner,

the collector side linear toroid is also extended up to the main cup position [48].

4.2.1 Magnetic field calculations

TOSCA is the electromagnetic field analysis program of OPERA-3D vector fields
(see sec. 3.6) [63]. It has been used to model the magnetic and electric components
of the electron cooler and to define the electron trajectory. The electric components
are mainly drift tubes and shall be discussed later in this chapter. Fig. 4.1 shows the
cryogenic magnetic elements and their corresponding positions along the longitudinal
axis. The coordinate system for the TOSCA electron cooler model is same as the
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4.2 Electron cooler model

CSR i.e. z is the longitudinal axis, x and y are transverse horizontal and vertical
axes, respectively. Also, the coordinate system is left handed but in agreement
with the convention of accelerator Physics for circular motion z is similar to s [69)].
The electron starts 140 mm vertically above and guided perpendicular (along -+
r-axis) to the ion beam orbit of the CSR. The 90° toroidal magnet(1) in the CSR
cryostat bends the electron beam horizontally and making it parallel to the closed
ion beam orbit. Next, 30° toroidal magnetic field bends the beam downward (|B,)|
>0). Following 30° toroid is the merging region where electron beam merges with
ion beam. The superposition of longitudinal magnetic field produced from solenoidal
box magnet(3) over 290 mm merging section and vertical downward field from a set
of four race-track coils, the so-called merging vertical(4) (MV). The MV coils are
placed symmetrically with respect to the ion beam and two inner coils are tilted by
17° clockwise, and counterclockwise with respect to ion beam, to allow ion beam
vacuum flange pass through it (see fig. 3.2).

After merging region, electron beam remain merged with ion beam in the in-
teraction region. It consists of 944 mm long main solenoid (MS), and two short
solenoids of length 47 mm each, placed before and after main solenoid with a gap
of 34 mm to allow a relatively long straight section with nearly uniform solenoid
field (see fig. 4.1). The gaps between MS and short solenoids serve the purpose of
positioning rotational feedthrough of wire scrapers. The position of gaps is partic-
ularly advantageous as electron and ion beams are already collinear in this region
and hence, wire scrapers can be used to determine the beam overlap [70]. Followed
by this, similar to merging region, a superposition magnetic field of racetrack coils
and solenoidal box magnet moves the electron vertically upward and demerges. In
addition, there are two pairs of compensator coils(2) to correct ion beam trajectory
from the merging field. These coils are placed before merging and after demerging
sections, respectively. The pair of outer coils deflects ion beam into same direction
as the MV coils to create a position shift. The pair of inner coils bend ion into the
opposite direction. These coils are not in the model for electron beam as shown
here.

Fig 4.2 shows the simulated transverse magnetic fields along the longitudinal axis
of the electron beam. B, shown in red, starts to decrease in amplitude as electron
beam bends in 90° toroid and subsequently becomes 0 when B points parallel to z. It
remains negligible since electron moves in (y, z) plane. Similarly, B, is magnetic field
component in vertical direction (y). It modulus starts to increase after 90° toroid
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Figure 4.2: Illustration of simulated transverse magnetic field along = and y direc-
tions. The bold black lines represent the position of main solenoid and
two short solenoids (see fig. 4.1). The grey shaded area correspond to

merging and demerging regions.
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Figure 4.3: Illustration of simulated total and longitudinal magnetic field along
z. The bold black lines represents the position of MS and two short
solenoids. The grey shaded area correspond to merging and demerging
regions.
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4.2 Electron cooler model

due to merging verticals coils. The origin z = 0 is the center of main solenoid and the
electron cooler. The transverse field componenets remain small in the interaction

region, but it is taken into account in the calculations.

Fig. 4.3 shows the simulated total and longitudinal magnetic field along the elec-
tron beam axis. The initial B, starts to increase in the 90° toroid. The adiabaticity
criterion demands a strong magnetic field in the 90° degree toroid, but a smaller
magnetic field can be chosen for the linear interaction region. The field in the in-
teraction region is, hence reduced to ~ 110 G. In remaining part, longitudinal field
strength is nearly uniform with small depression in the field strength due to the 34
mm gaps on both sides of main solenoid. The nearly uniform field strength defines a
constant beam size of the electron beam after second magnetic expansion (ay) (see
sec. 3.3).

4.2.2 Electron trajectory and toroidal drifts

B N B
B I ] 2r @

Electron
motion /

Z
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0 ICEcd
553 472 472 -553

Total 1nteract10n length

Figure 4.4: Illustration of merged electron-ion beams in the interaction section of the
electron cooler. The phase space cooled ion beam (shown in black) and
magnetically expanded electron beam (blue) overlap defines the total
interaction length. The purple line is the center of the electron beam.
The main solenoid and two short solenoids are also shown. The position
of solenoids are also shown with respect to center of main solenoid.

The ion-electron beams interaction length depends on cross section of the electron
beam. For a magnetic expansion «, the size of electron beam is the product of cath-
ode size, r.qu, and \/a (see sec. 3.3). In principle, size of phase space cooled ion beam
is very small compared to the electron beam and therefore can be approximated as
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4 Modelling the conditions of electron collision measurements with low energy merged beams

straight line. In this way, the point of intersection of ion and electron beams while
merging and demerging can be defined and which in turn gives the total interaction
length. Fig. 4.4 shows the merged electron-ion beams and total interaction length
can be seen as the point of intersection C' of the electron boundary with the ion

beam assumed to be much smaller.

The interaction length and overlap between beams is optimum if ion beam lies at
the center of the electron beam. In fragmentation experiments, the electron beam
energy is changed over a certain range. Therefore, there should not be any offset
in position of the electron beam as the ion beam position is fixed. However, in 90°

Figure 4.5: Drift of electron motion from the toroidal (x, z) plane. The red arc is the
magnetic field along the toroid and blue is the downward shifted electron
trajectory due the drift velocity, vy (shown in green) along negative y.

toroid magnet (see fig. 4.1), the magnetic field B is oriented along the axis of toroid
as shown in fig. 4.5. The electron while moving along axis experiences a centrifugal
force, F in its rest frame as:
mevi R

R R

F= (4.1)

where m, is mass of electron and v is the electron velocity parallel to ]§(R) This
force causes curvature drift or toroidal drift with velocity

. FxB
and then
me R x B
- e’ v X
Ud = e R2B2 (43)

42
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The direction of drift velocity, #; is normal to the plane of toroid in negative y direc-
tion due to electron’s charge. It is proportional to the energy of the electron beam
and give rise to downward offset in the electron beam position in the interaction
region which in turn can lead to complete loss of the overlap between the beams.

Table 4.1: Toroidal drift compensating magnetic field at different electron energy
Energy (eV) B, (G)

1 0.168
20 0.75
100 1.69

1000 2.33

To compensate this offset, 90° degree toroid in the electron cooler model is
equipped with a pair of steerer coils one above and one below the plane of elec-
tron beam and it is always used for our electron trajectory calculations. The steerer
coils produce a weak vertical B-field, B, = m.v/eR to compensate the offset. Table
4.1 shows the typical B-field needed to balance the offset. Therefore, the electron
beam trajectory after toroidal drift compensation is identical for 1 - 1000 eV.

4.2.3 Trajectory results and beam overlap

To quantify above scenario, TOSCA electron cooler model was used to track the
electron beam along the complete trajectory. For this purpose, a single electron
is launched from center of photocathode with 1 eV kinetic energy in longitudinal
direction and tracked at step length of 0.1 mm over the entire trajectory up to
the collector side. Since electron follows the magnetic field lines of the center of
solenoid, it does not feel any effect of magnetic expansion (factor y/«) and remains
at the center of guiding field throughout (see purple line in fig. 4.4). For this central
electron, the coordinates are zo(z) and yo(z) shown in fig.4.6.

The x(y position is very small in the interaction region and can be neglected.
Consequently, only yo(z) is used to describe electron’s transverse position as function
of longitudinal position z. From this, the coordinate z. of the intersection point C
can be determined (see fig. 4.4). Neglecting xg, the condition for the cutting point
C is eqn. 4.5 and the cutting point C' lies at the 2z coordinate of eqn. 4.4.

Ze =%t yo(%)% (4.4)

20

43



4 Modelling the conditions of electron collision measurements with low energy merged beams

€

E

C

o

bt

0

3 - I

o

(0]

o

(0]

>

w0

C

© - I

|_
1 1 |
0 500 1000

z (mm)

Figure 4.6: Illustration of electron’s zy and yy positions in the interaction region.
The x¢ remains very small after 90° toroid while g, remains finite in the
interaction region. The bold black lines represent the position of MS
and short solenoid. The grey shaded area correspond to merging and
demerging regions.

2
yo<z>\/ 1 (5] ) = =0 (4.

The overall length of interaction is then [;,; = 2z..

Fig. 4.7 shows the symmetric half of the electron trajectory in the interaction
region. The black line at y = 0 is the ion beam in CSR orbit and blue curve is
electron path yo(2). Up to ~ 400 mm electron-ion beams are collinear and remaining
electron trajectory is bent. The overlap limit z. and the coordinates of g, 2y of the
beam center at these points for the electron beam at different magnetic expansions
are presented in the table 4.2.

Table 4.2: Electron beam overlap limits on different magnetic expansion factor.

a Yo (mm) 2z (mm) 2. (mm)
10 4.71 560.24 560.78
20 6.63 574.2 575.24
30 8.08 582.8 584.24
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Figure 4.7: Tllustration of electron trajectory in the interaction region (shown in
blue). Red, green and magenta horizontal dashed lines correspond to
yo(20) and cuts of these lines with y = 0 are overlap limits z. for ex-
pansion factor a = 10, 20 and 30, respectively. The second figure is the
zoomed in part to shows the beam limits more clearly. The lengths of
the coloured solid lines are the radius, rpeqm, at a given expansion a. The
bold black lines indicate the main solenoid and the short solenoid. The

grey shaded area correspond to merging region of fig. 4.2
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4 Modelling the conditions of electron collision measurements with low energy merged beams

4.2.4 Collision energy from overlap geometry

In sec. 4.2.3, we have seen that the trajectory of the electron beam is bend in the

overlap geometry. For given geometry, the transverse angle is defined as:
B
tanf = H

B
B, and 0= arctan<‘B—L‘) (4.6)

where B, = B, is the transverse magnetic field component and B = B, is longitu-
dinal field (see sec. 4.2).
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Figure 4.8: Illustration of transverse angle in the interaction region. Red, green
and magenta lines show limit for expansion factor a = 10, 20 and 30,
respectively. The bold black lines represents the position of MS and
short solenoid. The grey shaded area correspond to merging region.

In Fig. 4.8 transverse angle in the interaction region is shown. The limit on 6
for a given « is defined based on respective yo(zp) position. In the merging and
demerging region transverse angle can rise up to 0.119, 0.157 and 0.182 radian for

a = 10, 20 and 30, respectively.

In addition, with known interaction length [;,;, transverse angle of electron beam
at a given magnetic expansion and straight ion beam, their collision energy in the
center-of-mass frame can be calculated (see eqn. 3.11). It is the most important
information of this merged beams set up, as it tells us position dependent collision
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Figure 4.9: Collision energy as function of position in the interaction region. Red,
green and grey lines show limits for expansion factor o = 10, 20 and
30 respectively. The bold black lines represents the position of MS and
short solenoid. The grey shaded area correspond to merging region.

energy for velocity matched beams. Fig. 4.9 shows collision energy from overlap
geometry of the merged beams set up at an example velocity matched electron beam
energy, /. = 20 eV. The collision energy is nearly zero up to 500 mm but in the
bending region, it can rise up to 0.67 eV, 0.47 eV and 0.26 eV for expansion factor
30, 20 and 10, respectively.

Table 4.3: Summary of the electron-ion trajectory of the merged beams set up at 20
eV velocity matched energy (FE.).

Q& Tpeam (MmM)  line/2 (mm)  Op,4, (Radian) Mazxzimum energy (eV)

10 4.74 560.78 0.119 0.26
20 6.70 575.24 0.157 0.47
30 8.21 584.24 0.182 0.67

Finally, we can summarise the obtained results of the merged beams set up at
magnetic expansion, o = 10, 20 and 30, respectively. Table 4.3 consist of interaction

length, transverse angle and collision energy for a given expansion of electron beam.
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4.3 Space charge of the electron beam

Up to now characteristic features of the electron beam has been described with a
single electron. However, to define the contribution of interaction among electrons
we have to include finite size of the beam, 74, and its density n.. The magnetically
confined electron beam experiences the space charge potential Us. due to Coulomb
repulsion. As a consequence, electrons at the center of the beam get screened and
do not experience the applied acceleration potential U.,y. The electron energy in

the center of beam in such a case is given by,
Ee = _eUcath - eUsc(ne) (47)

Since the energy at center of the beam should match ion energy for efficient phase
space cooling and therefore, space charge potential U,. should be known at a given
density. For a cylindrical electron beam of uniform density, n. inside a grounded
cylindrical tube, U, is given by the following relation:

neer?, .. (1 + 2111(&) — (L)2>, (7“ < Tbeam);

U o deg Tbeam Tbeam
sc T

neerg. ... (2111( Rqg ))7 (1 > Theam)

deg Tbeam

(4.8)

where 7peqam is the radius of the electron beam, Ry is the radius of electron cooler

beam tube, and 7 is position in radial direction.

The potential at the center of the beam along 2z axis remains constant in a uniform
cross section region of the beam tube. However, in the interaction section only drift
tube electrodes have uniform cross section and adjacent regions have very non-
uniform experimental chamber cross section. Fig. 4.10 shows the CAD model of the
symmetric half of the interaction region. From the center of electron cooler, drift
tube electrodes have uniform cross section of 100 mm and next region consist of
the cable housing for electrodes and scraper has non-uniform cross sections. Also, a
bellow decoupling merging and interaction section and only small section of beamline
has constant 150 mm cross section. For a test case of n. = 6.65 x 10° cm™ at R of
50 mm and 75 mm, U, is 0.68 V and 0.78 V, respectively at the center for electron
beam of magnetic expansion 20. However, it cannot describe the variation of U,

along the electron beam axis in non-uniform cross section region.

To solve this problem, we used Poisson solver of the SIMION 8.1 ion optics package
[71]. We selected half of the symmetric interaction region as it contains the relevent
non-uniform cross section region and also computationaly suitable. The symmetric
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4.3 Space charge of the electron beam

Figure 4.10: CAD model of the symmetric half of the interaction region.

half CAD model converted into a potential array with discretization of 0.2 mm.
All drift tube electrodes were grounded to make a realistic simulation. A charge
density array was also defined with same dimension and cylindrical charge density
of radius 6.8 mm placed at the center of potential array. In the present space charge
calculation model, electron density is treated in electrostatic manner and the Us. is
overestimated as 6.7 mm is the 7., for expansion 20.

Fig. 4.11 shows the variation of U,. along the longitudinal axis. The U,. remains
constant at ~ 0.68 V upto the end of drift tube region. Then there is small bump
of lower slope suggesting a small increament in the cross section and later slope
is steeper and reaching upto ~ 0.76 V. The potential drop near center of electron
cooler is attributed to artificial effect and not considered in further analysis. In the
experiment, the space charge potential is corrected with respect to the center of
the interaction region. Hence, the space charge corrected electron energy at cooling
is B3¢(z) = E, + e(US, - U,.). Here UZ is the nominal space charge potential in
drift tube region. The difference between UZ and U, is up to ~ - 0.08 V and this
suggests over certain part of interaction region the electron beam energy is lower up
to 0.08 eV from cooling energy. The above result can be scaled for different densities
as other beam and experimental parameters remain same.

Additionally, the electron beam potential along transverse direction in non-uniform
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Figure 4.11: Space charge potential variation along longitudinal axis. The black
dotted line shows the U, in drift tube region.

cross section of the experimental chamber is also investigated. Fig. 4.12 shows the
longtitunal slice of potential array along two orthogonal planes. The red lines are
the equipotential lines in the symmetric half of the interaction region and their cor-
responding values are shown. The equipotential lines of 0.16 V, 0.46 V and 0.58 V
from the drift tube region diverge outward in merging region as the tube dimension
increased. 0.72 V potential line near the center of beam originate only in merg-
ing region. In yz plane (A), presence of the wire scraper changes the equipotential
lines for farther from the central axis and it does not remain symmetric anymore.
However, in zz plane (B) the potential lines are nearly symmetric. For magnetic
expansion of 30, asymmetry in potential along yz plane and xz plane can be larger.
If electron beam is displaced from the central axis in the interaction region more

asymmetricity in the potential can be anticipated.

The electron-ion collision energy in the interaction region is also investigated.
Here, E%¢ is used for the cooling energy. Fig. 4.13 shows the collision energy is
very similar to the standard position dependent energy (see fig. 4.9). The difference
between the two energies show the contribution from space charge variation (~ 0.08
V) is only up to - 1 meV (fig. 4.13(b)).
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4.3 Space charge of the electron beam
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Figure 4.12: Potential array of the symmetric half of the interaction region. The

position of drift tubes are shown with respect to the center of electron

cooler.

shown.

The long drift tube, short drift tubes and wire scraper are
(A) is the sliced potential array along yz plane. Presence of

wire scraper deviates the equipotential line. (B) is the sliced potential

array in xz plane.
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Figure 4.13: (a) Collision energy as function of position with variation due to space
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charge difference included. (b) Difference between energies of standard

overlap geometry with the space charge variation included energy.



4.4 Drift tubes in the interaction region

4.4 Drift tubes in the interaction region

For cooling of heavy and singly charged ions, electron energies of only a few eV
are required. The maximum electron density at low energy is constrained by the
electron gun perveance limit, since the extraction voltage cannot be higher than the
acceleration potential of the cathode (see sec. 3.3). In addition, at low electron
energies, space charge of the beam and contact potential difference between cathode
(W,) and drift tube (V,) materials become comparable to the final electron energy.

In TSR storage ring electron target, high energy electron beam decelerated in
the interaction section with the application of drift tube electrodes up to 1 eV [67].
This resulted in an electron beam of well defined energy and also enhancement in
density by one order of magnitude even at 1 eV or lower was obtained. This beam
deceleration technique was tested in [67] which paves the way to achieve similar
scheme in CSR electron cooler for cooling and fragmentation experiments.

Main solenoid

Figure 4.14: Mechanical design of the interaction region showing the Main Solenoid
(MS) and drift tubes. From the right side electrode (E) is 3 mm long
end cap, next is set of three 30 mm long electrodes (1-3) followed by
two center electrodes (4-5) 333 mm long each. Finally, (6-11) electrodes
are 30 mm long and also contains (E) 3 mm long end cap.

Fig. 4.14 shows the mechanical model of the interaction region of the electron
cooler. It shows the main solenoid of length 944 mm with gold-coated copper drift
tube electrodes. The total combined length of all drift tube electrode is 870 mm,
technically designed as long as possible inside the uniform magnetic field of main
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4 Modelling the conditions of electron collision measurements with low energy merged beams

solenoid [48]. There is a gap of 2 mm between each electrodes to enable the possibil-
ity of applying different potentials and it also ensures the breakdown of voltage up
to several keV. Moreover, (6-11) electrodes are similar to (1-3) but with cut along
the vertical axis and can be used as clearing elctrodes. The space charge of the
electron beam creates potential difference along the radial direction of the beam
(see sec. 4.3). Rest gas present in the experimental beamline could get ionized due
to electron impact ionization and therefore, could be trapped in the space charge
potential of the electron beam. To mitigate this build up of trapped ions, equal and
opposite potential (typically 1-2 V) can be applied on the clearing electrodes to spill
out the trapped ions.

1.0

0.8

0.2

0.0

1 1 1 1 1
0 100 200 300 400 500 600
|z| (mm)

Figure 4.15: Illustration of normalized potential F(z) in the interaction region. It
is maximum in the center of the interaction region and vanish to zero
outside. The bold black lines represent the position of main solenoid
and short solenoid (see fig. 4.1). The golden yellow lines represent the

position of drift tube electrodes and the grey shaded area correspond

to merging region.

Based on change in electron beam energy from cathode region to the interaction
region, a normalized potential is defined as,

ad Ee(z) - Ecath

F(z) = (4.9)

eUdrift

where F' (z) is the normalized potential and E.qp, E.(z) are electron energy in the
cathode region and in the interaction region at point z, respectively. Ugiz is the
applied negative potential on the drift tube electrodes. G4beamline, a particle
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4.4 Drift tubes in the interaction region

tracking routine is employed to obtain this potential and effective kinetic energy of
the electron beam as function of z (see sec. 3.6)[64]. Fig. 4.15 shows the normalized
potential of drift tubes in the interaction region. For a test case, an electron starts
at E.qn = 25 eV kinetic energy from cathode position and all drift tube electrodes
(1-11) are set at Ugipr = -5 V to have 20 eV velocity matched energy at the center

of interaction region.

The electron energy at any position z in the interaction region is given by,
Eo(2) = Eoqn + W + eF(2)Ugriss — Wy — €Ul (4.10)

where W, and W, are the contact potential of the cathode and drift tube (an-
ode), repsectively. These potentials are experimentally determined and therefore,
neglected in this calculation. The electron while entering the interaction region sees
a retarding potential of the drift tube which in turn decelarates the electron to 20

eV in the region of constant potential.

25F

N
N
T

Electron kinetic energy (eV)

21

20 T T T
0 100 200 300 400 500 600

[2] (mm)

Figure 4.16: Effective kinetic energy of decelerated electron in the interaction sec-
tion. The bold black lines represent the position of main solenoid and
short solenoid (see fig. 4.1). The golden yellow lines represent the po-
sition of drift tube electrodes and the grey shaded area correspond to

merging region.

Fig. 4.16 shows the effective kinetic energy of decelerated electron beam. The
constant energy (20 eV) region is shortened in the interaction section. Also, there
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4 Modelling the conditions of electron collision measurements with low energy merged beams

is a steep rise in electron energy before and after (not shown here) drift tube region
and therefore, contributes to the position dependent increasing electron energy in
comparision to otherwise constant energy in standard operation with grounded drift
tubes. Similarly, Ugs¢ can be changed at a fix E,q;, and energy scanning can be
performed directly.
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Figure 4.17: Upper: Electron-ion collision energy of the decelerated beam in the
interaction section. Red, green and grey lines show limits for expansion
factor a = 10, 20 and 30 respectively. The bold black lines represents
the position of MS and two short solenoids. The golden yellow lines
represent the position of drift tube electrodes and the grey shaded area
correspond to merging region. Lower: Collision energy difference of
overlap geometry between drift tube operation and standard operation.

Since the trajectory of electron remains unchanged in deceleration process, trans-
verse angle defined in sec. 4.2.2 and eqn. 3.11 is used to determine the collision
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4.5 Electron-ion collision energy distribution

energy in the overlap region. Fig. 4.17 shows the electron-ion collision energy for
decelerated beam. The zero-energy region is shortened to ~ 400 mm in comparision
to ~ 500 mm in the standard operation (see fig. 4.9). As a consequence, collision
energy rise up to 0.58 eV, 0.81 eV and 1 eV for expansion factor of 10, 20 and 30,
respectively. The additional collision energy is from the steep rise in energy at the
entrance and exit of the drift tube electrodes (see fig. 4.17(b)).

This should be general scheme to use drift tubes for cooling and electron-ion
recombination experiments. However, since all drift tubes are physically seperated
from one another, more exotic scenarios can be possible. For example, electrodes
(1-4) can be placed at cooling energy and (5-11) can be applied potential to give a
finite detuned energy (see fig. 4.14). In this way cooling and electron-ion collsions
at chosen higher energy can be performed simultaneously. If only long central drift
tubes (4-5) are to be used it makes the constant potential region smaller compared
to when all the drift tube electrodes are used together.

4.5 Electron-ion collision energy distribution

In previous section, we have established one trajectory for the electron beam of
energy up to 1 keV. The corresponding electron-ion collision energy from the overlap
geometry in the center-of-mass frame leads to position dependent energy up to ~
eV. The space charge correction for varying experimental beam tube dimension has
been calculated at a fixed electron beam density. The collision energy difference with
respect to the standard overlap geometry is very small (see fig. 4.13(b)). In drift
tube operation, the new electron-ion collision energy at velocity matched condition
further increase with respect to the standard position dependent collision energy
(see sec. 4.4). In addition, finite energy spread of the electron beam originates from
transverse and longitudinal temperature of the beam (see sec. 3.3.2). Electron and
ion beams collision velocity distribution from thermal energy spread has already

been discussed (see sec. 3.4).

In sec. 3.5.2, a general position dependent velocity distribution function and cor-
responding energy distribution has been introduced. In a previous work a numerical
method has been developed to define the center-of-mass frame energy distribution
function represented by fip(E, Eg; T, T, X) [72]. Here we will use the numerical
method to define the energy distribution function for a more general case repre-
sented as fop(E, Eg; T, T), X, Use, Uy ), where E is the center-of-mass electron-ion
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4 Modelling the conditions of electron collision measurements with low energy merged beams

energy, [J; is detuning energy, 7| and T'| represents the effective energy spread of
the beam along longitudinal and transverse directions, respectively. And, X repre-
sents the contribution from overlap geometry, space charge correction and drift tube
operation if used are represented by U,. and Uy, respectively.

A Monte Carlo simulation is used to combine overlap geometry with the electron
beam energy spread. To achieve low uncertainty of f,,;,, Monte Carlo simulation
requires large number of simulated electron-ion collision events. The method con-
siders electron beam of cylindrical geometry and phase space cooled ion beam as
straight line of negligible cross section as discussed in sec. 4.2.2. The electron and
ion beams are assumed to have uniform density in order to have uniform proba-
bility distribution across the interaction region. The interaction length [;,; consists
of equidistant points, a collision event is randomly generated along the interaction
region. The corresponding angle 6 (see sec. 4.2.4) is the collision angle between
electron and ion at that point. This means electron velocity vector is rotated by
angle 6 for that event.

For the present simulation, we have chosen temperature of the electron beam
along longitudinal direction, T} = 50 peV/kp and along transverse direction, 7'
= 1 meV/kg. The corresponding velocity spread can be given by Gaussian width
centered at 0 and at longitudinal electron velocity, respectively as,

ksl kT,
o= /2L and o) =42 (4.11)
me Me

where kp is Boltzmann constant and m, is the mass of electron. For given colli-

sion event, transverse velocity components along x and y directions are separately

randomly generated from the Gaussian distribution as oi™) and U?STL)

, respectively.
Similarly, longitudinal velocity spread is also randomly generated as 'UgT”). Finally,
the longitudinal component of electron velocity at any detuning energy E, (see eqn.

3.12) and phase space cooled nearly monoenergetic ion beam velocity are given by:

0
Ve =V +vqg and U= |0 (4.12)
U;
In a more general case of drift tube operation and inclusion of space charge variation,
as we have already seen that the electron energy is position dependent. The position
dependent longitudinal electron velocity is defined as,

@e(z) = Ve, + 6(’2) - vsC(Z> (413)
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4.5 Electron-ion collision energy distribution

where v, | is the electron velocity in the center of interaction region. ¢(z) and vy,
are the additional velocity in the beam direction in drift tube operation and due to
space charge variation, respectively. The definition of respective velocity terms are,

i(z) = \/Tie ( cath — (V/ Be + V/Eg)? + eF(z Udm’ft) (4.14)

A constant energy E, = (v/E.+ v/ Eq)? is subtracted from E.(z) given in eqn. 4.10.
The last term in eqn. 4.13 is

ul) = [ 2 (e~ 0.1). (4.15)

Similarly, the energy F, is subtracted from E,(z) = E. + e(U%, — U,.). where U<, is

the space in the drift tube region. The variation in Uy, decreases the velocity.

Based on above defined relations, final electron velocity for the given event in-
cluding overlap geometry contribution for a general case is given as,

10 0 o) o)
7 =10 cosh sind Uéﬂ) = ( "D cos + (Te(2) + ng”))sine
0 —sinf costl) \v.(z)+ i —vg(, sinf + (ve(2) + v,gT”))COSQ

(4.16)

The first matrix in eqn. 4.16 is the rotation matrix in yz plane amounts to angle
f. The electron velocity can be separated into electron velocity along the trajectory
and rotated thermal velocity component:

0 UQ(CTJ_)
ﬁf = | sinf | v.(2) + U?STL)COSQ + v,gT”)sinﬁ (4.17)
cost (TL)sm@ + vi )C089

The relative velocity of the electron and ion collision is,

(TL)

0 Uz 0

=00 = [ sing | (vi+va+0(2)—vse)+ | 05 cost + v Wsing | =10 | w
cosf —o{™sing + o cosh 1

(4.18)
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4 Modelling the conditions of electron collision measurements with low energy merged beams

0 0 0 i
U=10|wvg+]| sind (vitvg)+ | sinfd | (6(2)—vse)+ UZ(/TL)COSQ + o ging
1 cost) — 1 cost — i sing + v cosd
(4.19)

The relative velocity is decomposed into several individual contributions. The first
vector is the average collision velocity of the electron and ion beam, the second
term is contribution from overlap geometry of the set up, third term is position
dependent longitudinal velocity due to the drift tube operation (if used) and space
charge variation and last term is the thermal velocity contribution for the given
event. The electron-ion collsion energy is described in center-of-mass frame with F
= %/w?. Here p = mem;/(me + m;) is the reduced mass of electron and ion. Since

ion is much heavier than electron, u = m, and, hence, £ = %mev2.

Likewise, collision events are generated and FE is calculated for each event. For
all cases of f,,, simulation, we generated normalized distribution for 107 collision
events at . = 20 eV for magnetic expansion a = 20. In addition, unless stated it is
assumed that the space charge potential is compensated with respect to the center
of the interaction region to obtain velocity matched cooling energy. We use log —log
scale to plot energy distribution functions to show the features especially in the high
energy region where collision events are few orders of magnitude less than the peak
of the distribution.
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4.5 Electron-ion collision energy distribution
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Figure 4.18: Comparision of simulated electron-ion collision energy distribution at
E; = 0 in the interaction region. Red distribution shows the effect
of energy spread only due to the electron temperature. Grey curve
represents the distribution of center-of-mass energy coming only from
the overlap geometry. And the blue curve depicts the electron energy
spread due to the combined effect of temperature and overlap geometry.

Fig. 4.18 shows the comparision of f,,;, with thermal distribution, also denoted
by fr,, and the distribution only from overlap geometry of the beam at velocity
matched condition(£,; = 0). Red curve shows the flattend energy distribution due
to asymmetric temperature of the electron beam and it is dominated by transverse
beam temperature. To compare the enhancement in distribution energy from the
overlap geometry is the grey curve and maximum energy in the distribution is ~ 0.5
eV same as overlap energy spread (see sec. 4.2.4). Blue curve is the final f,,;, with
overlap geometry X contributing to the tail in the high energy.

Energy distribution with space charge

Here we study the effect of position dependent longitudinal velocity v,. due to the
variation in space charge in addition to the overlap geometry (see eqn. 4.19) and
denoting the corresponding energy distribution function as f,,;(Us.). Fig. 4.19 shows
the comparision between nominal fi.p, frs(Use) and f, distribution at E; = 3 eV.
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4 Modelling the conditions of electron collision measurements with low energy merged beams

This distribution differs only in the high energy tail region which is more than 2
orders of magnitude lower than the peak of the f,,,(Us.) distribution. In fact, it has
also less energy spread than the nominal f,,;. In total, the accurate usage of space
charge variation makes very small difference and hence, can be neglected in further

calculations.
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Figure 4.19: Collision energy distribution comparision at E; = 3 eV with space
charge f,.5(Us) and standard distribution f,,;,. Grey curve is space
charge included distribution and blue distribution is the nominal f,,.

Energy distribution in drift tube

In the next step we include the position dependent longitudinal velocity §(z) in the
energy distribution simulation (see eqn. 4.19). Fig. 4.20 shows the drift tube mode
collision energy distribution f,,;(Ug-) and nominal f,,;, at velocity matched condition
(E4 = 0). The distribution in low energy region is further lowered in amplitude and
tail in the high energy is also increased in f,,,;(Uyg). In drift tube operation 30 eV
(Ecatn) electron beam decelerated by -10 V to reach 20 eV velocity matched energy
in the center of the interaction region.
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Figure 4.20: Electron-ion collision energy distribution at E; = 0 in the standard
mode (without drift tube) and with drift tube mode of operation. For
drift tube mode collision energy distribution goes higher energy region
due to shortening of the zero collision energy region (see sec. 4.4).

In addition, the energy distribution at £; = 1 meV, 10 meV, 0.1 €V, 0.5 eV, 1 eV
and 10 eV are compared for f,,;,(Uy) and corresponding nominal f,,, as shown in

*
mb

fig. 4.21. For each distribution, the energy spread in thermal distribution (f*,) is
also shown in red which shows that for increasing F,; it becomes more narrower in
relative size. The fraction of distribution below E; shows the contribution of k7|
and it decreases with increasing Fy;. Furthermore, at a given detuning energy in
all three distributions, the peak position remains close to E4; and the peak of the
distribution is lowest in f,,,(Ug,) as anticipated than respective f,,;, and f, (up to
0.5 V). An inset showing the peak amplitude of the energy distribution function is
also included. However, at Eq = 1 €V the f,,,(Uy,) distribution is nearly same to the
fmp and this due to the fact that E. is 29.94 €V and E.qy, is 30 €V (see eqn. 4.10)
and therefore, (z) amplitude is rather small. At F; = 10 eV thermal distribution
and standard energy distributions are narrow. However, f,,,;(Ug.) is distributed over
nearly 1-10 eV and this stems from the fact that the role of drift tube is reversed.
At E; = 10 eV the constant energy in the center of interaction region is 58.28 eV
which is higher than ., and it means we accelerate the electrons in the interaction

region. Therefore, the 0(z) (see eqn. 4.14) is very high but with reversed sign.
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4 Modelling the conditions of electron collision measurements with low energy merged beams

The energy distribution near the peak is proportional to the straight part of the
interaction region which has been introduced as l.s; in earlier sec. 3.5.2. However,
the absolute value of l.¢; cannot be determined based on this information.
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Figure 4.21: Electron-ion collision energy distribution at £y = 1 meV, 10 meV, 100
meV, 0.5 eV, 1 eV, and 10 €V in the standard operation (shown in blue),
drift tube operation (shown in magenta) and thermal distribution in
red, respectively. In drift tube operation collision energy distribution
extends up to energy region higher than standard operation due to
additional position dependent velocity component (see eqn. 4.14). Also,

Ucarn = 30 V is used in drift tube operation.
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4 Modelling the conditions of electron collision measurements with low energy merged beams

4.6 Model merged beams rate coefficient

Electron-ion merged beams rate coefficient relation shown below has already been
described in sec. 3.5.2 as the convolution of ov over the energy distribution function
fmp- In this section we will use the known energy distributions to simulate rate
coefficients in separate cases of standard operation and drift tube operation. We
will also discuss the energy range to obtain the . ;s and scaling factor (I;,,:/lcss) also
introduced earlier to scale the rate coefficient «,,;.

a(Ey) = (0\/2E fmy) = / 0(E)N2E [me fo(E. E¢; Ty T), X)dE  (4.20)

In low collision energy region, electron induced processes like indirect dissociative
recombination or dielectronic recombination cross section consist of very sharp res-
onances. To understand the combined effect of thermal energy spread and overlap

geometry, a delta-like cross section at 10 meV is convolved with energy distribution

fmb~
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o
o)

Rate coefficient [arb.]
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> o
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Detuning energy(eV)

Figure 4.22: Mlustration of convolved delta-like cross section with energy distribu-
tion fmp (shown in blue) at kg7, = 1 meV and kgTj = 50 peV. The
resonance position is at E,., = 10 meV. Also, the rate coefficient is
obtained for the flattend distribution (shown in red). The low ener-
getic broadening (AFE),) of the resonance is defined by T and the high
energetic (AEy,) by T (see fig. 3.5 and eqn. 3.31).
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4.6 Model merged beams rate coefficient

Fig. 4.22 illustrates the asymmetric lineshape of the rate coefficient of delta-like
resonance. The FWHM of such lineshape for flattend distribution as a function
of detuning energy has already been shown in fig. 3.31 and for comparision also
simulated and shown in the fig. 4.22. The lineshape in case of standard operation
is lowered in peak amplitude than thermal rate coefficient. The obtained FWHM
for both curves are equal ~ 3 meV and slightly higher than 2.5 meV estimated from
eqn. 3.31. The possible reason could be because the eqn. 3.31 is an approximated
relation. Furthermore, the lineshape is similar to a Gaussian distribution at least
within the half maximum and therefore, we will use the energy range of + 3 ¢ for
energy integration of rate coefficient.

In addition, we have also simulated rate coefficient of delta-like cross section at
higher detuning energies, E; = 0.1 eV, 0.5 eV, 1 €V, and 10 €V in standard and drift
tube operation. The rate coefficient curves are normalized to the maximum of their
respective standard operation rate coefficient. Fig. 4.23 shows the panel of overlaid
curves. For increasing Fy the rate coefficient curves become more symmetric in
shape. In the drift tube operation rate coefficient peak is also at same position but
with lowered peak amplitude similar to the energy distribution functions (see fig.
4.21). It has been discussed earlier that the energy integration of a,;, is lower than
the theoretical energy integrated rate coefficient ég(see eqn. 3.26) due to elevated
energy in the full overlap region of length [;,;, the effective straight region is shorter
and denoted by l.;s. As rate coeflicient peaks near the E,.,, we will integrate f,;
over energy within £+ 30 of Iy = E,.s to obtain .y shown in eqn. 4.21. The 3 o
limits at £; = 10 meV, 100 meV, 500 meV, 1 eV and 10 €V are 3.82 meV, 9.95 meV,
23 meV, 31.3 and 96 meV, respectively .

Eres+30
legp(E.,) = lmt/E ) Jmb(Eres; Eg; T, T, X, Ugr )d Eg (4.21)

The integrated f,,, within £ 30 in increasing order of Ej; are 0.78, 0.85, 0.88,
0.89 and 0.92, respectively. In standard operation nearly 80-90 % of the collision
events lies within + 30 of few meV in otherwise energy spread of ~ eV. The effect
of thermal energy decreases with increasing E;. Likewise, integrated f.,(Ug) in
increasing order of E,; are 0.58, 0.612, 0.65, 0.87 and 0.58, respectively. The fraction
of collision events is proportional to the beam deceleration which is highest at 10
meV, very small at 1 eV and again high at 10 eV due to acceleration of the beam
(see fig. 4.21). Based on the integrated energy distribution values, the obtained l.f¢
in standard and drift tube operation as function of E; are shown in fig. 4.24. Fig.
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Figure 4.23: Comparision of rate coefficient of delta-like resonance at £y = 10 meV,
100 meV, 0.5 eV, 1 €V, and 10 eV, respectively. The blue and red curves
are the rate coefficient in standard operation and thermal distribution,
respectively. Magenta curves are rate coefficient for drift tube operation
with electron decelerated from 30 eV to 20 eV at cooling energy.

4.24 also shows the ratio of l;;,;/l.ss, the scaling factor for the rate coefficient ay.
The scaled a,,; is a,, and its energy integration within FE,.; £+ 30 is equivalent to
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Figure 4.24: Illustration of the I in the standard and drift tube operation obtained
from energy integration in the E,..; + 3 ¢ range for l;,; = 1150.5 mm
(see table. 4.3) . The scaling factor l;,;/l.ss is used to scale simulated

rate coefficient .

the theoretical energy integrated rate coefficient . The scaled rate coefficient «,
is shown in fig. 4.25. The scaled standard and drift tube operation rate coefficients
peak amplitude nearly matches with each other and also with the thermal rate

coeflicients.
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Figure 4.25: Illustration of scaled rate coefficient «,, of delta-like resonance at F; =
10 meV, 100 meV, 500 meV, 1 eV and 10 eV, respectively. After scaling
rate coefficients in standard and drift tube operations are nearly equal
to the thermal rate coeffcients.

The above discussion facilitates an attractive method to eliminate the offset due
to the overlap geometry or drift tube operation of the merged beams set up. Thus,
the scaled rate coefficient v, can be compared with other experiments. In addition,
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4.6 Model merged beams rate coefficient

experimental measurements can also be directly compared among the standard op-
eration and drift tube operation. In the next chapter we will also use this method
of scaling experimental rate coefficients of a cross section peak.
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Figure 4.26: Illustration of rate coefficient of E~! cross section in standard operation
(shown in blue) and drift tube operation (shown in magenta) in the
energy range of 0.1 meV to 1 eV at kg1’ = 1 meV and kpTj = 50 peV.
Also, the rate coefficient for the thermal distribution is plotted.

Furthermore, another most common type of cross section follows E~! dependence
on collision energy. The convolution of such cross section with energy distributions
fmbs fon(Ugr) and f¥, is illustrated in fig. 4.26. The thermal rate coefficient is
highest in amplitude in low energy region than standard and drift tube operations.
The finite energy spread from overlap geometry and drift tube potential lowers the
rate coefficient at low energy.
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5 Electron-ion collision studies

This chapter deals with the first dissociative recombination measurements on HeH™
ions under cryogenic condition in the newly comissioned electron cooler. It starts
with a general method to find the cooling energy (velocity matched energy) with the
aid of diagnostic tools of the CSR. A measurement scheme is generated based on a
sequence of short beam period at changing electron beam energy and the electron-
induced signal is separated from the background signal. A relative merged beams
rate coefficient is defined based on the electron induced signal and a proxy signal
proportional to the number of ions.

The experiment is broadly divided into three parts. The first part deals with long
storage time measurement giving the DR rate coefficient for a dominant population
of the ro-vibrational ground state. Then measurement at short storage time to
obtain time dependent rate coefficient. Finally, the usage of drift tubes in the
interaction section to scan electron beam energy is realized for the first time at the
CSR. The absolute rate coefficient is calculated and compared with previous room
temperature measurement and recent theoretical results.

5.1 Introduction

The CSR and its various experimental platforms have been introduced earlier in
sec. 3.1. Also, the fragmentation scheme of the electron-ion collision experiments
has been described in sec.3.5. In the 2018 experimental campaign, we performed
the first DR measurement at the CSR on the HeH" molecular ion. The HeH™ ions

were produced in a Penning ion source from a mixture of Hy and He.

The detailed study of properties of the molecule has been already discussed in the
sec.2.3. Briefly, HeH" ion is an infrared active molecule and therefore, rotationally
relaxes in the CSR background temperature of less than 20 K of the experimental
chambers (see sec.2.4). The produced HeH™ ions are accelerated to 250 keV and
stored in the CSR. The revolution frequency of the stored ions can be precisely
determined with the aid of the current pick-up in the section C of the CSR (see
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5.2 Determination of the velocity matched energy
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Figure 5.1: Electronic circuit used in the electron cooler for finding cooling energy
and later use it as target for collision experiment. In standard opera-
tion (shown in blue), cathode is connected to Uy static voltage and an
USB-DAQ controlled fast switching power supply Ug.p. The drift tubes
are at ground in this configuration. The electron current /. is measured
in the main cup of the collector as I,,.. The details are discussed in the
text.

fig. 3.1). From this, the velocity of ions is found by v; = foCy, where f, = 88.264
kHz was the revolution frequency of the stored ion and Cy = 35.12(5) m is the CSR

circumeference. The velocity matched electron beam energy can then be determined
as E. = (1/2)m.v} = 27.32(6) €V (see eqn.3.1).

In the present work, a method of electron beam acceleration and the related energy
change of the beam is discussed briefly. As shown in fig. 5.1, the cathode is lifted to
a negative potential with respect to ground with Uy power supply (Uk, is set to 0
during electron cooling) and drift tubes in the interaction section are also grounded.
The electron energy FE. at cooling is given by the cathode potential, U.., = —Up
after correcting for the difference in contact potential of the cathode (W,) and drift
tube electrodes (W,) (see sec. 4.4). And, U, is the space charge potential (see sec.
4.3). In terms of these potentials the cooling energy F. is obtained as

Ec = _eUcath + Wc - Wa - eUsc (51)

5.2 Determination of the velocity matched energy

From eqn.5.1 it is seen that the cooling energy E., where ion and electron beams
velocities are matched, is given by the directly controlled cathode potential plus

73



5 FElectron-ion collision studies

small corrections (W,, W,, U,.). Also, the cooling energy is sensitive to the overlap
between the electron and ion beams. There is a need to identify a tool box for
achieving the cooling energy. For a given position of the ion beam, electron beam
position and angle can be manipulated by the application of vertical and horizontal
magnetic fields in the interaction region. The wire scraper is used to check the
overlap between the beams. After finding a reasonable overlap, U, is scanned
to fine adjust the cooling energy. Therefore, finding exact cooling energy is an
iterative process. The RF bunching system used in conjunction with the current
pick-up electrode gives a strong electrical signal at the onset of electron cooling that
sensitively depends on the cooling energy F..

Electrons off Electrons on

JAVAVAVANNS L iwlwi;

t

Figure 5.2: Illustration of intensity distribution of bunched ion beam on pick-up elec-
trode in time domain for electron beam off (before cooling) and electron
on, respectively.

A RF voltage signal with frequency frr = 4f, is applied to one of the drift tube
electrodes of the RF bunching system in the CSR (see fig. 3.1) which in turn leads
to the formation of a bunched ion beam. The bunched ion beam induces stronger
signal on pick-up electrode in comparison to the non-structured ion beam [48]. In
an uncooled bunched ion beam, ions are widely distributed over the four sections of
the beam circumference created by frp. At a fixed point the longitudinal intensity
distributions is I(s, t) & Igcos?(m frrt — do(s)). Here ¢o(s) is a reference phase point
s with respect to the RF frequency. The non-zero longitudinal velocity spread in
presence of electron beam experiences a cooling force that compresses the initial
occupied intensity distributions. This leads to a narrower distribution than initial
~ cos’t distribution as shown in fig. 5.2. The observation of the signal shows
emerging peaks in frequency domain at the higher order of the revolution frequency.
Therefore, spectrum analyser in the zero span mode at 2frpr was used to observe
the longitudinal electron cooling.

The ion beam was in bunched configuration throughout the F, search measure-

74



5.2 Determination of the velocity matched energy

ment. However, electron beam was switched on after ~ 0.75 s to observe a clear
signal. Fig. 5.3 shows the strongest signal at U, = - 30.65 V for electron current
I, = 42.7pA and magnetic expansion 20. The detailed study on electron cooling of
HeH™ ions and its characteristics, e.g. the cooling time (7..0), the size of cooled ion
beam and comparision with theoretical predictions, will be presented another PhD

work [66].

The electron density n. and size of the beam 7., in the interaction region are
essential informations to calculate space charge U,. of the beam and interaction
length l;,,; (see sec. 4.2.2). At nominal magnetic expansion o = 20 (see sec. 3.3),
electron current I, was continously measured in the main cup of the collector (shown
as I in fig. 5.1). The main cup of the collector also consists of a pin-hole to allow
electron current (part of the beam) to be analysed. Based on steering the expanded
beam in transverse horizontal and vertical directions over the main cup, a 2D current
distribution was obtained as shown in fig. 5.4. The average height of the distribution
after backgound correction is calculated. Then a cylinder volume of radius 7.y is
obtained after integrating the current distribution over each transverse points for
the given average height. A magnetic field measurements and calculations revealed
expansion factors of 8.9 and 21.5 in the collector and interaction region with respect
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Figure 5.3: Second harmonic freqeuncy of RF signal as a function of storage time.
When electron is on, signal can be seen rising due to the increase in
bunch signal strength and it reaches equilibrum.
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5 FElectron-ion collision studies

to gun side magnetic field. From this, the effective size of cathode is refp = 7,1/ V8.9
= 1.1(3) mm [66]. Also, the size of the electron beam in the interaction region is
obtained as Tpeqm = Tefr-v/21.5 = 5.1(14) mm.

y [mm]

o 1 2 3 4 éx[mém]% 8 9 10 11 12

Figure 5.4: Illustration of a typical 2D electron current distribution at I, = 27 uA.
The red dot is the center of the distribution and average height is es-
timated from horizontal and vertical line current density through the

center of the beam.

For Uey, = -30.65 V at I, = 42.7uA, the space charge U,. of the beam is 0.69 V
and offset W, — W, is -2.64 V. However, the collision experiments were perfomed
at typical current, I, — 27 pA with Uy, — 0.43 V. The space charge varies with
changing electron energy for a fixed electron density. But the resulting error is very
small if variation is neglected. Therefore, space charge variation is neglected in later

sections.

Table 5.1: Table of experimental parameters for HeH™ DR measurements with elec-

tron cooler.

E;(keV) E.(eV) I, (pA) mne(10°)(cm™3) Time (s) Feature
250 27.32 26(1) 6.4(4) 10.5-50 J-independent
250 27.32 52(1) 12.8(3) 0.1-45 J-dependent
125 13.67  18.4(1) 6.4(4) 10.5-50  Drift tube operation

The table 5.1 shows the typical experimental parameters at cooling energy for
coasting ion beam during recombination measurement. The transverse and longitu-
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5.3 Electron cooler as target

dinal energy spread of photocathode is kpT'| = 1.65 4= 0.35 meV and kpTj = 100
peV and are assumed to be similar to a previous experiment [72]. Number of ions
N; was nearly 1x107 at the time of injection.

5.3 Electron cooler as target

In previous section, electron cooler as a tool for phase space cooling of bunched
ion beam was presented. Here, we demonstrate the electron cooler device acting as
target for HeH" ion-electron collision experiments. The detector signal at any given
detuning energy E; (see eqn. 3.12) is the sum of electron induced signal, residual
gas induced, and the intrinsic dark count of the NICE detector. For N counts within

time interval At, rate R is expressed as,

R(E,) = Aﬁt = NeQmp(Ea, J)lgj—":Nine(Ed) + npk‘pé—iNmP + Raark (5.2)
The first term is the electron induced term with a,,;,(Ey, J) being the merged beams
rate coefficient (see sec. 3.5.2) as function of detuning energy and internal state of
the molecular ions. It has contribution from DR and DE signal and, it will be
discussed later. [;,;N;/Cy is the fraction of total number of ions in the interaction
region of length [;,,; with Cj being the total circumference of the CSR (see sec. 3.5.2).
Moreover, n, is the electron density and 7, is the collision event detection efficiency
of the NICE.

The second term is due to inelastic collisions between residual gas and stored ions.

In collision with residual gas, the ion can react through DE-type proceses as

He+H"+ R
HeH"™ + R —» , (5.3)
Het +H+ R

or by dissociative charge exchange (DCE).
HeH" + R — He+ H+ R’ (5.4)

Previously measured cross section of DCE type reaction with Hy molecules (main rest
gas contribution at cryogenic temperature) after extrapolating up to 250 keV is ~
one order of magnitude higher than DE-type [73]|. Also, in our imaging measurement
data ~ 1.4 times more double neutral fragments than single neutral fragments have
been observed and therefore, suggesting towards DCE type of mechanism [74].
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5 FElectron-ion collision studies

In the second term of eqn. 5.2 the residual gas induced count rate is proportional
to (I,/Co)N;, fraction of ions in the interaction length [, with n, being the rest gas
density. The interaction length [, is different from [;,,; accounting for the fact that
residual gas induced signal can occur roughly over the region between corner 2 and 3
(see fig.3.1). k, is the rate coefficient for residual gas collisons induced signal and the
corresponding count rate is defined as R,,. In addition, 7, is the residual gas event
detection efficiency with single counting efficiency p = 0.614 4+ 0.009 [74]. Residual
gas induced signal can be measured at electron beam off condition (n. = 0) or with
a suitable detuning energy at n. # 0, where recombination is negligible.

We will use a measurement scheme to change the electron collision energy E; and
filter out the electron induced signal from the total count rate. Based on merged rate
coefficient defined in eqn.3.29, the rate coefficient can also be defined with present
relations in eqn. 5.2 as

R(Ed) - Rp - Rdark
CiRine(Ed)

Oémb(Ed, J) = (55)
where R, is the residual gas signal and R; is the proxy signal for the number of
stored ions N; and C; is the scaling factor l;,;/Cy.

5.3.1 Measurement scheme for long storage time

To measure energy dependent rate coefficient «,,;,, a well known method of energy
wobble is used which has been succesfully employed in the previous DR investigations
[14, 15, 72]. In this section, DR measurements of long storage time data of 10.5-50
s are presented. The injected ions are stored in the CSR without electron beam for
the first 3 s. At the onset of 3 s, a sequence of pre-cooling steps of 100 ms time
period starts and lasts up to 10.5 s.

To change the electron energy, a relatively fast and stable power supply Uy is
added to lift the voltage of cathode in addition to the Uy power supply (see fig. 5.1).
A USB-DAQ input, U, is used for fast switching with a range of + 1. Here, U
— =£ 1 correspond to Uy, voltage of & 100V and negative input means acceleration
to higher energy. Therefore, lab energy of electron beam is defined in the standard
operation as F, = E, — 10eV X Ugyy.

The second part of the injection comprise of cooling, measurement and reference
steps with a single cycle as shown in the fig. 5.5. Here, cooling step is 100 ms at
Uy = 0 to prepare ion beam in a well-defined state. In measurement step of 25
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cooling measurement  reference
(Background)
One measurement cycle
Rief
e
W Rn(Ed) Eref=1eV |\
(Emeas \
\
\\
0 e
Ec
100 130 155
Time (ms)

Figure 5.5: Measurement cycle for energy dependent rate measurments. The cooling,

measurement and reference steps constitute one measurement cycle.

ms electron energy is changed to measure electron induced signal. And, last step
is also 25 ms long reference always fixed at U.,; = —1.147 which is E; = 1.0 eV,
where electron induced signal is known to be very low [39]. Also, 5 ms is added in
the begining of each energy step as a settling time for stable voltage condition. In
the next measurement cycle electron energy is changed in measurement step with a
small step in energy. In a typical complete energy scan there are 40-60 measurement
cycles. In the end of the injection cycle ion and electron beams are off to measure
Rgurk. In one injection, typically 4-5 times such complete energy scan is possible
and after completion of one injection it starts over.

Analysis

In the experimenal campaign, several meaurement runs of high resolution energy
scans were performed. It was not possible to cover the complete energy ranging
from sub-meV to 30 eV in one measurement run. Therefore, several piecewise runs
of appropriate resolution were combined together. Each energy scan was analyzed
independently. The count rate in each measurement step is defined as the ratio of
number of events trigger to the integrated time in the step. The count rate in cooling
step is defined as R.. Similarly, the count rate in measurement step is R,,, similar to
eqn 5.2 as residual gas induced background events also contributes. And, reference
step count rate R,y is similar to I, due to very low cross section at £y = 1 eV and
therefore identical to electron beam off condition (n. = 0). In addition, R,cr — Raark
is also proportional to the number of stored ions and hence, can be used as proxy
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signal for the number of ions.

The electron induced signal is obtained from R, — R,.s. Based on above relations

a relative merged beams rate coefficient can be defined as,

Ron(By) — Ryes(1 6V)

rel E)) =
“ ( d) Rref(l eV) - Rdark

mb

(5.6)

The above defined relative rate coefficient can be scaled to the absolute rate coefli-

cient measured at one energy for the complete energy spectrum.

Measurements were performed over several days, this could cause pressure fluctu-
ations over different measurement runs which must be corrected. R, — R,s is the
background corrected electron signal measured at E; = 0 and it should be nearly
constant over different measurement for a fixed storage time. However, R,c; — Raark
signal is susceptible to pressure change and therefore, we used their ratio shown
below to correct for pressure fluctuations across different runs and the maximum

correction factor was ~ 18% higher with respect to the stable measurement.

Rc - Rref

Qmp(pressure) = ——————
" Rref - Rdark

(5.7)

Amplitudes of combined runs visually confirmed to be matching after scaling. More-
over, the electron density decreases with increasing F, and corresponding actual
electron density can be calculated with the relation,

ne(Ee) = ne(Ec) Fnl <58)

where F, and E,. are the lab frame electron energies. Therefore, relative count rate
ar® is scaled with factor /F,/E. to maintain constant electron density condition
across entire energy range. The count rate from several runs were combined to cover
the whole energy range. A special variable binning was created to adapt the density
of the measurement points to the observed structures in the spectrum and to a
logarithmic energy scale. In this variable binning, histograms were filled with their
corresponding weight. Weighted averaging was performed according to following

formula:

%i<zwi>%7 w; = ! (5.9)

where z; is relative rate o

7

rel

re.(Fq) and weighting factor w; is the corresponding un-

certainties.
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Figure 5.6: Relative merged beams rate coefficient at F; = 250 keV and I, = 27 puA
for storage time of 10.5-50 s. Data points are normalized to the R,.s at
Eq =1 eV (shown with black arrow E,.r). Inset shows the some of the
negative data points between 1-10 eV. The green vertical line corresponds
to By = 18eV.

Fig. 5.6 shows the relative merged beams spectrum defined in eqn. 5.6 for storage
time of 10.5-50 s. The spectrum shows several sharp structures and will be discussed
later in absolute rate coefficient section. In 1-10 eV collision energy range some
negative values are observed. This is due to small but non-zero cross section of
the electron induced events at 1 eV. In sec. 5.4 we introduce a correction term to

account for the electron induced signal at 1 eV.

5.3.2 Time dependent relative rate

In next measurement sequence, we performed a series of collision experiments to
study the time evolution of the merged beams rate coefficient. In the storage time
of 10.5-50 s, internal states of the molecule mainly, J = 0 and 1 with an average
86% relative population in J = 0 (see fig. 5.7). However, at short time interval
J = 1 and higher J states are present in the system (see fig. 5.7). To measure
the contribution of all internal states, storage time of 2 s up to 45 s have been used
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without pre-cooling step. The measurement cycle consists of cooling, measurement,
and reference steps similar to the previous measurement (see fig.5.5). However,
they are shortend to 60 ms, 20 ms and 20 ms, respectively and electron energy in
the measurement step remains same for a complete injection cycle and changes
injection after injection. Also, this set of experiment was performed at high electron

current, I, = 52uA.
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Figure 5.7: HeH™ radiative cooling (see sec.2.4) with relevant .J states (0-4 legends
are .J levels). Horizontal lines are time averaged relative rotational state
population in time slices of 0.1-1 s, 1-1.8 s, 1.8-3.3 s, 3.3-5.7 s, 5.7- 10.5
s and 10.5-45 s, respectively.

The time slices of 0.1-1 s, 1-1.8 s, 1.8-3.3 s, 3.3-5.7 s, 5.7- 10.5 s and 10.5-45 s
have been used to study the electron induced signal. The corresponding average
relative population is shown with horizonatal lines in fig.5.7. The pressure fluctua-
tion defined in eqn. 5.7 was again checked and found out to be nearly stable during
the measurement. Therefore, individual measurement runs are not scaled. At short
time slice, electron signal R,, — R,y should be corrected for the 20 ms delay between
the two steps. The ion beam decays very fast in first few second and therefore ref
signal should be scaled by a factor before subtraction. The scaling factor is 1.1 at
0.1 s and has been used, 1.0007 at 1 s which is small and we will neglect in further
analysis. Furthermore, the relative rate coefficient defined in eqn. 5.6 is used to
calculate the relative rate. Fig. 5.8 shows the relative rates in 6 time slices (see fig.
5.7). They are scaled by a common scaling factor of 0.53 obtained from comparing
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5.3 Electron cooler as target

the present measurement in the time slice of 10.5-45 s to the previous 10.5-50 s
measurement accounting for 12.8 x 10° em™ and 6.4 x 10° cm™3 electron density.
Each time sliced relative rate is overlaid with time independent relative rate to show

the comparision of time evolution.
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Figure 5.8: Time dependent relative rate coefficient at 6 storage time slices at I, =
52pA. The common blue curve is the relative rate of long storage time
(see fig. 5.6). All relative rates are scaled by 0.53 to match the long

storage measurement.
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5.3.3 Drift tube operation

In the previous section, experiments were performed with grounded drift tubes in
the interaction section (see fig. 5.1). However, electron cooler is also designed to
perform phase space cooling and collision experiments with drift tube lifted to a
finite potential and decelerate the electron beam to velocity matched condition and

to well a defined collision energy (see sec. 4.4).
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Figure 5.9: Electronic circuit used in drift tube operation. Uy, directly controls the
drift tube potential and cathode stays at static and higher volatge U.u,
controlled by Uy. The electron current I, is measured in the main cup
of the collector as I,,,,.

In this section, a comparative study of standard operation and drift tube oper-
ation of the electron cooler is presented at ion beam energy FE; ~ 125 keV. The
corresponding velocity matched energy, E. = 13.67 eV is again calculated from the
revolution frequency of stored HeH™ ions which is fy = 62.451 kHz (see sec. 5.1).
Measurements were again performed at long storage time 10.5-50 s with measure-
ment scheme, duration of steps, and electron density similar to the long storage time
measurement at 250 keV ion beam energy (see sec. 5.3.1). In drift tube operation,
cathode potential U, controlled with Uy is always set to a higher static potential
than cooling potential (see eqn. 4.10). The drift tube potential is defined with Uk,
which is added to Uy. The USB-DAQ controlled U, is used to control Uk, to
change electron beam energy in the interaction section. The electron energy in the
center of the interaction region is defined as,

E€<D) = _eUcath + Wc - (e<_Ucath - Ukep) + Wa) - eUsc (510)

where sum of work function difference and space charge of the beam is defined as
A. Therefore, electron energy in drift tube mode is given by E.(D) = €Uy + O
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5.3 Electron cooler as target

= e(-10xUq) + A. And electron beam energy in standard operation is given by
E.(standard) = E. - 10xUg,; (see sec. 5.3.1). The relative rate coefficient defined
previously is also used here to calculate electron induced signal (see sec. 5.3.1).
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Figure 5.10: Comparision of merged beams relative rate spectra of standard opera-
tion and drift tube operation at E. = 13.67 eV with I, = 18.4 pA. For
drift tube mode Uy, = —23 V, —28 V and —38 V, respectively were
used.

As illustrated in sec.4.6 at given detuning energy the peak amplitude of rate
coefficient of a delta-function cross section in drift tube operation is lower than
corresponding standard operation. HeH™ relative DR spectrum has sharpest peak
near F; = 44 meV in the 25—65 meV region (see fig.5.6). Therefore, we also scanned
the drift tubes potential within this energy range to study the effect of electron
beam deceleration on peak position and amplitude of the peak. Fig.5.10 shows the
overlaid relative merged beams rate coefficient for drift tube operation and standard
operation. In drift tube operation U, = —23 V, —28 V and —38 V were used and
the position of peak remains nearly at same position as in the standard operation.
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Figure 5.11: Comparision of energy distribution in standard operation and drift tube

operation at Fy; = 44 meV for E. = 13.67 eV. The total interaction
length [;,; is 1127 mm. In drift tube operation Uy, = —23 V, —28 V
and —38 V| respectively were used. The thermal energy spread of the
electron beam are kgT'y = 2 meV and kpT) = 125 peV and 100 peV
at B, = 13.67 eV and 27.32 eV (see eqn. 3.7), respectively. The orange
shaded region is the 30-65 meV range used in the energy distribution
integration. The integrated values are 0.9, 0.68, 0.65 and 0.62 in stan-
dard operation and in drift tube operation at U.,, = —23, —28 , —38
V, respectively. The energy distribution of F, = 27.32 €V is also shown

and it will be used in sec. 5.4.

In addition, l.;f(E,4) defined in sec. 3.5.2 and shown in sec.4.6, the straight part

of the overlap geometry of total length l;,,, is different in standard and drift tube

operations (see fig.4.24). It is possible to scale the drift tube operation relative rate

to the standard operation. Therefore, the ratio of l.¢; in standard and drift tube

operation, (l.s¢(standard)/l.s¢(drift tube)) is used to calculate scaling factor from

the energy distribution function in standard operation and in drift tube operation

at E. = 13.67 eV. Fig. 5.11 shows the typical lowering of amplitude of energy
distribution at £y = 44 meV. The calculated scaling factor are 1.33, 1.38 and 1.44
for Uesn = —23 V, —28 V and —38 V, respectively. Fig. 5.12 shows scaled relative
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5.3 Electron cooler as target

rates in drift tube operation show reasonable agreement with the standard operation
within the uncertainty limit. Therefore, it demonstrates that the additional effect
of the deceleration of electron beam in drift tube operation in an experiment can be
corrected and, hence, similar results as in the standard operation can be obtained.
It will be very useful especially in case when electron density is limited in standard

operation (see sec.4.4).

0.5 ‘ ‘
ﬁUcath='23V
Mthh='28V
: : ‘ ﬂ Ucath='38V
0.4 p o |H=¥ Standard operation ||
S
£E
02 s
o1l et )

0.01 0.02 0.03 0.04 _ 0.05 0.06 007 0.8

Detuning energy (eV)

Figure 5.12: Scaled relative rate spectra of standard operation and drift tube oper-
ation at F; = 125 keV and E, =13.67 eV with I, = 18.4 pA. For drift
tube mode U,y = —23 V, —28 V and —38 V, respectively were used.

Moreover, the present relative rate at E; = 125 keV should be compared with
the 250 keV relative rate. The peak amplitude in both cases are diferent (higher
at F; = 125 keV) and also, the peak position at F; = 250 keV is at slightly higher
detuning energy. This will be further studied in near future in more systematic
manner.
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5.4 Absolute rate coefficient measurement

In previous DR measurements at TSR storage ring, the ion beam lifetime method
was used to determine absolute rate coefficient based on the work of Pedersen et
al.[15]. In this method the ion beam decay at fixed electron energy is measured
with electron beam being on and off within one injection. Assuming an exponential
decay in both cases it is possible to extract the absolute rate coefficient from the
inverse difference of two decay constants. However, we observed that the electron
beam off condition during ion beam storage could not be realized for any given ion
injection in the CSR. This is likely due to the incoherent tune shift of the CSR
[75]. Therefore, unfortunately we could not rely on the ion beam lifetime method
for absolute rate coefficient determination.

Absolute rate coefficient at 18 eV

Another independent method of absolute rate coefficient determination depends on
knowing the individual terms in eqn. 5.5. The DR rate coefficient in the high-energy
region of the spectrum is independent of rotational relaxation due to the direct DR
mechanism (see sec. 2.3). This leads to count rates independent of the storage time.
Therefore, we choose to calculate a,,;, at £y = 18 eV for absolute scaling purpose.

The electron induced count rate at F; = 18 €V is,
Rn(18 V) — R,y = (43.2 £ 3.8) 57! (5.11)

The number of ions, /V; is generally calculated from the current pick-up measur-
ment of ion beam in RF-bunched configuration at the time of injection. However, we
are interested in /V; during the measurement period of 10.5-50 s and current pick-up
cannot be used for several second due to fast decaying signal. Therefore, current
pick-up signal at short storage time (up to 0.1 s) and NICE detector measuring R,s
signal at later time were combined together. When the measured ion number was
scaled from initial to later time using the measured count rates, N; = (1.2 £ 0.2) x
10° was obtained [76]. The estimated error of ~ 17 % is from the calibration of the

current pick-up and statistical uncertainty of the count rate.

The calculated NICE detector counting efficiency from imaging of the neutral
fragments was p = 0.617 £ 0.009 [74]. The probability of getting at least one
neutral fragment in the case of DR is given by

e = p* + 2p(1 — p) = 0.853 & 0.007 (5.12)
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5.4 Absolute rate coefficient measurement

where p? is the probability of both H and He fragments hitting and creating counting
pulses on the detector. In addition, p(1 — p) corresponds to H fragment hitting and
He missing and (1 — p)p is H fragment missing and He hitting the detector.

The electron density at E; = 18 €V is calculated from the relation, n.(18 eV) =
ne(E.) \/E./E. (see eqn. 5.8). The electron current during measurement is I, =
(26 + 1) pA and the density at cooling is n, = (6.4 £+ 0.4) x 10° cm™3. Thus, the
scaled electron density at E; = 18 eV is,

n(18 eV) = (3.5 4+ 0.2) x 10°cm 2. (5.13)

The interaction length [;,; is calculated using eqn. 4.4 for the electron beam of
radius 5.1 mm. The determined value is (1.127 £ 0.003) m (see eqn. 4.4) and the
CSR circumference, Cy = (35.12 £+ 0.05) m. The uncertainty in interaction length

is due to the propagated error from the estimated cathode radius.
Based on the above calculated individual terms, the absolute rate coefficient at

E; =18 eV is,

(18 V) = (3.76 + 0.74) x 107 cm3s™* (5.14)

mb

Absolute rate coefficient

We then obtain a scaling factor, f.,s defined as the ratio of absolute and relative
rate coefficient at 18 eV (see fig. 5.6).

mb

ar?(18 eV)

a®®s(18 eV)

fabs = =6.05 x 1078 (5.15)

rel
mb

the absolute rate coefficient also this has an uncertainty. Furthermore, as already

The relative rate coefficients o’% (F4) (see eqn. 5.6) can be scaled by fus to obtain
shown in fig. 5.6 in the collision energy range of 1-10 eV some negative relative rates
due to finite electron induced rates at E; = 1 eV have been observed. Therefore,
we need to add the absolute rate coefficient of 1 €V as correction term. Previously
measured absolute rate e.g. from CRYRING measurement [37] could not be used
directly due to the fact that in the CRYRING electron cooler overlap geometry is
different. Therefore, deconvolution procedure developed earlier by Novotny et al.
[72] has been employed to calculate cross section based on known overlap geometry
of the CRYRING electron cooler and thermal energy spread etc. The obtained cross
section is then convolved with the collision velocity and energy distribution and at
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16V rate coefficient is a¢%"(1 eV) = 1.3 x107!% cm3s™! |76]. Hence, absolute merged

beams rate coefficient for the whole collision energy range after correction is,

A (Ey) = fas™(Ey) + a7 (1 eV) (5.16)

mb mb

Rescaled rate coefficient

Moreover, it has been already illustrated that the rate coefficient of a narrow-width
cross section is lowered due to elevated collision energy over a significant part of a
the full overlap geometry of length [;,; (see sec. 4.6). Consequently, the straight
region [y is shorter and experimentally obtained rate coefficient is proportional
to the l.;r. Also, the cross section peak position changes the l.;; which in turn
changes the rate coefficient (see fig. 4.24). Therefore, the experimentally obtained

rate coefficient a?% should in principle be rescaled as,

o lint abs
am(Ed) = leff<Ed) b (Ed) (517)

The HeH™ energy spectrum has two prominent peaks at ~ 44 meV and ~ 0.23 eV,
respectively. Since the two peak positions are very close and decrease in % is
higher at 44 meV than 0.23 eV peak and therefore, we should consider one rescaling
factor for the energy range up to 1 eV. Moreover, 18 eV peak is nearly 10 eV broad,
and the [.sf is also very nearly same as l;,; in this energy region, therefore we will
not rescale after 1 eV. We decide here to rescale the rate coefficient by a factor of

lint/leff (44meV) =1.15
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Figure 5.13: Rescaled absolute merged beams rate coefficeint of HeH™ ion in 10.5-
50 s. The data has 1o statistical uncertainty and the absolute scaling
uncertainty is +20%. At the start of this time window rotational state
J = 0 is more than 50 % populated (see fig. 2.7) and increases further
while J =1 state vanishes. Up to 1.8 €V the spectrum represents DR
rate coefficient for J = 0 state and after 1.8 eV it consists of DR (direct
DR) and DE rate coefficients (see text below). Inset shows the rate
coefficient in 1-10 eV after correction still has some negative values.
Green vertical line is at E; = 18 eV. The black spectrum is the 300
K absolute DR rate coefficient [37|. The features of the spectrum are
discussed in the text below.
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5.5 Discussion of the rate coefficient

The observed features of the rescaled rate coefficient shown in fig. 5.13 are following;:

5.5.1 Low energy region

In the low energy region, DR is due to the indirect mechanism (see sec. 2.3) where
initial ro-vibrational state of the ion plays a role as can be seen from difference
in spectrum of the present measurement and 300 K measurement [37] shown in
fig. 5.13. From radiative cooling model, time averaged population of J=0 state
between 10.5-50 s is ~ 86% (see fig. 5.7). The CRYRING measurement represents
the thermal equilibrated rotational state averaged DR rate coefficient at 300 K.
Hence, the enhanced DR rate in the first few meV energy range in the CRYRING
measurement is due to the contributions from several J-states with only 15 % relative
population in J = 0 state. In 0.1-1 eV energy range the DR rate coefficient is
nearly in aggreement with the room temperature mesurement. The discrepancy in
amplitude is mainly due to the different J = 0 level populations. In our measurement
the peak near 44 meV is the feature of J = 0 rotational state. It has also been
predicted in the theoretical calculation and attributed to the neutral vibrationally
excited Rydberg states converging to the vibrational levels of the HeH™ ion [41,
77]. Fig. 5.14 shows the overlaid curves of simulated rate coefficient obtained
after convolution of theoretical cross section and relative velocity with the energy
distribution function in the standard operation (see eqn. 4.20) [41]. The simulated
rate coeffcient is scaled to match the amplitude of the experimental rate coefficient.
It looks similar to the experimentally measured rate coefficient near 44 meV peak

but however, rate coefficient amplitude below 3 meV does not match.

Moreover, the rate in 1-10 eV is of the order of 1072 of the maximum observed DR
rate. As expected, at the given uncertainty of the count rates, still some negative
measurement results remain in the range of 1-10 €V, as shown in fig. 5.13.
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Figure 5.14: Illustration of simulated rate coefficient for J = 0 rotational state at
E, = 27.32 eV with kgT) = 100 peV and kg1 = 2 meV.

5.5.2 Storage time dependence

We will also explore the origin of 44 meV peak with storage time dependent relative
rate coefficient already introduced in sec. 5.3.2. The corresponding absolute time
dependent rate coefficient is also calculated using eqn.5.16 and eqn. 5.17 and shown
in fig. 5.15. In the first time slice of 0.1-1 s, the DR rate is dominantly averaged over
rotational states J = 2, 1 and 3 with ~ 45%, ~ 30% and ~ 15% relative populations,
respectively and therefore, the peak at 44 meV does not exist. Moreover, the rate
coefficient nearly matches to the CRYRING measurement at 300 K (shown in black).
In 1-1.8 s J = 1 and 2 states are dominant and a broad and energy shifted peak
appears. The rate coefficient in 0.1-10 meV range decreases with increasing time
slices. The amplitude and shape of the 44 meV peak increases and becomes narrower
with increasing relative population in J = 0 states. Therefore, the above time
dependent spectra together with the rotational cooling model proves the origin of

peak and lower rate coefficient below 44 meV.
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Figure 5.15: Comparision of the rotationally relaxed DR rate coefficient to the time
dependent rotationally excited DR rate in time slices of 0.1-1, 1-1.8 s,
1.8-3.3 s, 3.3-5.7 s, 5.7-10.5 s and 10.5-45 s, respectively where J = 3,2
and 1 are also populated (see fig. 5.7).
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5.6 Summary

5.5.3 Influence of DE

In fig. 5.13 spectrum also consists of DE signal after 1.8 eV due to the fact that the
MCP-based detector could not distinguish in case of a single fragment originating
from DR or DE and also, multiplicities could not be resolved due to very short time
of flight difference of 6-8 ns. Therefore, in 10-30 eV region DR peak could not be
observed and a broad increasing in amplitude shoulder including DR and DE events
is observed. Moreover, DR cross section after 18 eV peak has decreasing amplitude
while DE cross section for H and He' channel has rising amplitude after 18 eV and
therefore, it is has main contribution to the observed shape [37].

5.6 Summary

In the present experiment electron cooler has been used as target to study dissocia-
tive recombination of HeH™ ions with electrons. The absolute rate coefficient of the
ro-vibrationally relaxed HeH™ ion has been measured in a cryogenic environment.
Also, the drift tubes in the interaction region has been successfully used during
the experiment. The method of scaling between standard operation and drift tube

operations has also been shown.
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6 Conclusion and Outlook

In this work the low energy CSR electron cooler as target for electron-ion collision
experiments is modelled and related experiments are performed. The electron cooler
is designed to operate in standard and drift tube configurations. In standard con-
figuration, the cathode potential drives the electron beam acceleration and defines
average relative velocitiy between electron and ion merged beams. In another con-
figuration the difference between the cathode potential and the drift tubes in the
interaction region defines the electron beam energy, both in the laboratory frame
and as relative collision energy with respect to the ions. This later mode is especially
important in electron cooling and collision experiments at collision energies below
10 eV. The numerically calculated overlap of the phase space cooled ion beam and
the magnetically expanded electron beam shows that the electron beam is bent in
the merging regions which in turn gives rise to collision energies elevated up to eV

range as a function of position along the ion beam axis.

The modelled collision energy distributions in both configurations at given detun-
ing energy show higher energy spread for the drift tube configuration. The energy
distribution broadening by the overlap geometry and the drift tube potential has
been studied with simulated rate coefficient based on delta function cross section
at several detuning energies. The influence in both configurations is observed to be
highest in the low energy region and to be changing with detuning energy. Also, it
is proportional to the effective straight region of the full overlap geometry. There-
fore, a method has been developed to correct the obtained rate coefficient based
on the theoretical energy-integrated rate coefficient. In electron-ion collision exper-
iments, especially in DR, narrow-width peaks occur at low collision energies. Thus,
the method employed in the model provides a framework to correct experimentally
obtained rate coefficient for the beam overlap limits of known geometries of mag-
netically expanded electron beam and known detuning energy.

In the second part dissociative recombination of ro-vibrationally cold HeH™ ions at
250 keV is investigated in the collision energy range of 0.2 meV-30 eV. The absolute
rate coefficient is rescaled at 44 meV peak with the method given in the model.
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With the time dependent DR rate coefficients the radiative cooling model, it is
shown that the contribution from higher rotational states decreases with storage
time. Moreover, the time dependent scaled rate coefficient in short time scale when
higher rotational states are present is nearly equivalent to the previously measured

room temperature absolute rate coefficient.

Furthermore, a drift tube configuration has also been realized for the first time for
the collision experiments at 125 keV ion beam energy. The electron energy scanning
was performed at three different cathode voltages and the obtained relative rate
coefficients were also scaled based on the method developed earlier.

Outlook

The CSR electron cooler has been successfully operated in standard and drift tube
configurations in the first cold DR measurement on HeH™ ions. This opens oppor-
tunities to study the electron-ion collision experiments at new time scales and thus
enable measurements of ro-vibrationally resolved DR spectra. However, one of the
most important near future goal is to study drift tube operation in more systematic
manner to understand and address the remaining small differences discrepancies
observed between 125 keV and 250 keV HeH™ measurements.

In principle, infrared active hydride ions are the natural candidates for future
experimental studies. For all types of ions, the electron induced rotational excitation
and de-excitation is another important reaction in the interstellar medium. In future

storage ring experiments, it can also be studied for two isotopes e.g. Hy (not IR
active) and HD™.
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