NeuroImage 209 (2020) 116486

Contents lists available at ScienceDirect

Neurolmage

Neurolmage

journal homepage: www.elsevier.com/locate/neuroimage

A novel approach to localize cortical TMS effects R)

Check for
updates

Konstantin Weise > !, Ole Numssen “', Axel Thielscher **¢, Gesa Hartwigsen “2,
Thomas R. Knosche »%2

& Methods and Development Group “Brain Networks”, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany

Y Technische Universitit Ilmenau, Advanced Electromagnetics Group, Helmholtzplatz 2, 98693, Ilmenau, Germany

¢ Lise Meitner Research Group “Cognition and Plasticity”, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germarny
9 Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
€ Technical University of Denmark, Center for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark

f Technische Universitat Ilmenau, Institute of Biomedical Engineering and Informatics, Gustav-Kirchhoff-Strape 2, 98693, Ilmenau, Germany

ARTICLE INFO ABSTRACT

Keywords:

Brain mapping

Finite element analysis

Motor cortex

Transcranial magnetic stimulation
Uncertainty and sensitivity analysis
Motor threshold

Despite the widespread use of transcranial magnetic stimulation (TMS), the precise cortical locations underlying
the resulting physiological and behavioral effects are still only coarsely known. To date, mapping strategies have
relied on projection approaches (often termed “center of gravity” approaches) or maximum electric field value
evaluation, and therefore localize the stimulated cortical site only approximately and indirectly. Focusing on the
motor cortex, we present and validate a novel method to reliably determine the effectively stimulated cortical site
at the individual subject level. The approach combines measurements of motor evoked potentials (MEPs) at
different coil positions and orientations with numerical modeling of induced electric fields. We identify sharply
bounded cortical areas, around the gyral crowns and rims of the motor hand area, as the origin of MEPs and show
that the magnitude of the tangential component and the overall magnitude of the electric field are most relevant
for the observed effect. To validate our approach, we identified the coil location and orientation that produces the
maximal electric field at the predicted stimulation site, and then experimentally show that this location produces
MEPs more efficiently than other tested locations/orientations. Moreover, we used extensive uncertainty and
sensitivity analyses to verify the robustness of the method and identify the most critical model parameters. Our
generic approach improves the localization of the cortical area effectively stimulated by TMS and may be
transferred to other modalities such as language mapping.

1. Introduction mapping study, the TMS coil is systematically moved over different po-

sitions and/or orientations while certain behavioral or physiological

Transcranial magnetic stimulation (TMS) is increasingly being used to
modulate motor and cognitive functions in the human brain. An impor-
tant application of this technique is mapping structure-function re-
lationships (see Bestmann, 2008; Bestmann and Feredoes, 2013; Hallett,
2000; Sandrini et al., 2011; Siebner et al., 2009 for review). To under-
stand brain physiology and structure-function relationships, it is essential
to exactly know which part of the brain is activated by TMS and precisely
localize it at the individual subject level. Such mappings are not only of
fundamental neuroscientific interest, but also have practical clinical
relevance, for example in the context of pre-surgical mapping for coun-
seling and planning of tumor resections or epilepsy surgeries. In a typical

variables (e.g., the degree of speech impairment or the amplitude of
motor evoked potentials (MEPs)) are measured (Picht, 2014). The coil
position/orientation producing the strongest effect is then used as a
proxy for the brain structures underlying the targeted effects, either in a
simple way by direct projection onto the cortical surface (Krieg et al.,
2014) or in a more sophisticated way by calculating the induced electric
fields (Tarapore et al., 2013). Rather than picking the grid position with
the strongest MEPs, this is usually done by determining the “center of
gravity” of the MEP responses measured across the complete grid in order
to gain robustness to measurement noise (e.g., Classen et al., 1998).
However, this approach has some shortcomings. First, its capability to
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unambiguously determine the location and orientation of activated
neural structures is limited. Even if the coil configuration associated with
the optimal effect can be accurately identified, it generates electric fields
in a wide range of neural structures, such as radial cells in adjacent sulcal
walls and tangential structures (e.g., axons) in gyral crowns. Therefore,
the location of the electric field maximum does not necessarily coincide
with the location of the functionally involved neurons driving the effect.
Second, as the search space has at least three dimensions (two for the
position on the head surface, one for coil orientation), accurate mapping
may require a very large number of TMS pulses to avoid undersampling.
Consequently, previous studies remain controversial on fundamental
aspects of the physiological TMS effects and their localization on the
cortical surface. For instance, it is still unclear which part of the primary
motor cortex is effectively stimulated by the TMS pulse (see Bungert
et al., 2017; Laakso et al., 2018; Fox et al., 2004; Krieg et al., 2013),
precluding strong conclusions on the cortical origin of the TMS effect. In
particular, previous studies remain controversial with respect to the
contribution of the gyral crowns and sulcal walls in the primary motor
cortex (see Fox et al.,, 2004; Bungert et al., 2017; Opitz et al., 2013;
Laakso et al., 2018; Krieg et al., 2013).

Resolving these limitations and establishing a link between coil po-
sition and location and size of the affected cortical area in three di-
mensions (i.e., also in depth) is not trivial. It requires detailed knowledge
of the electric field pattern at the individual subject level, biophysically
motivated hypotheses on the mechanism of action by which the electric
field causes neural excitation, and formal statistical testing to demon-
strate the validity of the obtained results.

The induced electric field distribution depends on multiple stimula-
tion parameters such as intensity, location, and orientation of the TMS
coil. The complex geometry of the individual brain (Thielscher et al.,
2011) and several biophysical parameters, such as tissue conductivity
and fractional anisotropy, are also involved. Numerical modeling of the
induced electric field is increasingly being used to address these issues
(Bestmann, 2015; Thielscher et al., 2011, 2015), but has not become a
standard procedure in medical and scientific applications so far. In
particular, calculations based on subject-specific head meshes have
improved our understanding of the impact of individual head anatomy
on field distributions (Datta et al., 2010; Opitz et al., 2011, Opitz et al.,
2013, 2014; Thielscher et al., 2011; Wenger et al., 2015; Wolters et al.,
2006; Vorwerk et al., 2014). As such, numerical field calculations using
anatomically detailed head models may assist the neurobiological
interpretation of TMS effects and aid the localization of the effectively
stimulated cortical area that underlies the observed physiological or
behavioral effect (see Hartwigsen et al., 2015; Bungert et al., 2017).
However, since a TMS pulse induces a distributed electric field over an
extended part of the cortex, it is difficult to determine the location of
neural activation, even if the field is computed in a reliable way. More-
over, any approach that makes use of field models has to account for
model errors. On the one hand, systematic errors originate, for example,
from inaccurate meshing, solving, and post-processing. The impact of
these error sources can be controlled for by an appropriate validation of
the numerical accuracy of the implemented pipeline (Saturnino et al.,
2019b). Segmentation errors are another source of inaccuracies in the
simulated fields (Puonti et al., 2019b; Huang et al., 2019). In fact, the
amount of differences in the automated segmentations created by
different pipelines have between shown to directly relate to the amount
of differences in the field estimates (Puonti et al., 2019a). It is thus
important to minimize segmentation errors by using appropriate input
images (a combination of T1-and T2-weighted structural MR images;
Nielsen et al., 2018) and to visually evaluate the anatomical accuracy of
the final head mesh in the region of interest (ROI). On the other hand,
errors may also originate from uncertainties in model parameters, such as
the ohmic tissue conductivity or the fractional anisotropy (Weise et al.,
2015; Saturnino et al., 2019), which are only coarsely known. Unfortu-
nately, these errors cannot be avoided and have to be considered during
the development of new methods. Finally, a localization approach has to
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be able to deal with uncertainties caused by the limited knowledge of
how the induced field acts on different neuron types. Recently, field
calculations have been combined with microscopic neural models based
on accurate reconstructions from histology (Seo et al., 2017; Aberra et al.,
2018). However, to a large extent, validation of these models is still
missing and the conclusions strongly depend on specific model details,
such as the types of neural elements included. Consequently, the results
of previous studies are not consistent and do not provide reliable con-
clusions yet.

In this study, we introduce a novel TMS mapping approach that links
biophysical modeling of the induced electric field with physiological
measurements within a principled statistical testing framework to
determine the effectively stimulated cortical area at the individual sub-
jectlevel. Our approach is based on the assumption of a unique functional
relationship between the observed physiological TMS effect and the
electric field induced at the cortical location underlying this effect.
Moreover, we assume that the experimental effects can be explained by
activity in a relatively focal single cortical patch. Given an experimental
effect that linearly or non-linearly scales with stimulation intensity, one
can assume that this effect also scales with the degree of excitation of the
specific neuronal population, which is functionally linked to it. Hence,
the functional relationship between the electric field component that
coincides spatially and orientation-wise with this population, and the
observed effect, should be invariant across experimental conditions, that
is, different orientations and positions of the TMS coil. Consequently, the
effectively stimulated cortical area can be identified by determining the
brain area in which the induced field shows a stable functional rela-
tionship between the measured effect across conditions. Note that this
area does not have to coincide with the field maximum. Similar but more
restricted localization approaches have been used in previous studies. For
instance, targeting the hand area of the primary motor cortex, Bungert
et al. (2017) employed a statistical approach based on the experimentally
determined motor threshold (MT) at different coil orientations. Laakso
et al. (2018) used a similar strategy but investigated the influence of
different coil positions while keeping the orientation constant. These
studies demonstrate the principal rationale to localize the effectively
stimulated cortical area using the functional relationship between
calculated fields and the observed effects. However, they remain
restricted in several important aspects. First, the ability for a precise
functional localization at the single-subject level was not demonstrated.
Second, it remains unknown how many experimental conditions are
needed to achieve a satisfying localization result and how these coil
positions and orientations should be chosen. Third, the robustness of
these approaches to uncertainties in tissue conductivity was not exam-
ined. Finally, all of the aforementioned studies lack experimental
validation.

Our novel approach differs from prior work in two important aspects
regarding localization at the single-subject level. First, it fully utilizes
information from multiple TMS conditions with different coil positions
and orientations. Second, instead of relying on motor threshold, we
exploit entire input-output curves (I/O curves; relationship between
stimulator intensity and MEP amplitude; see Fig. 1). We show that our
method provides a means of localizing the individual cortical location
that is responsible for the observed motor output with high precision.
Furthermore, we confirm the validity of this localization by numerically
optimizing the individual TMS coil position and orientation such that the
maximum of the induced electric field coincides with the identified
cortical location, and then showing in an additional experiment that
these coil positions and orientations do indeed produce lower MTs than
other tested coil configurations. We demonstrate its stability and
robustness using comprehensive permutation tests and a rigorous un-
certainty and sensitivity analysis based on the generalized polynomial
chaos (gPC) approach (Le Maitre and Knio, 2010). To account for the
limited knowledge of the neural structures affected from TMS, we tested
several components of the induced field and consistently found the
magnitude of the tangential field component and the overall field
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Fig. 1. Schematic representation of the experimental procedure of the TMS
experiments. Top left: the TMS coil is located tangentially to the scalp over the
primary motor cortex (M1). A time changing current in the coil generates a time
changing magnetic field, which induces an electric field in the brain. This de-
polarizes the upper motor neurons with corticospinal efferents. Bottom: action
potentials from the upper motor neurons excite the lower motor neurons in the
spinal cord, evoked action potentials travel through the peripheral nerves to the
first dorsal interosseous (FDI) of the hand. Sum potentials (motor-evoked po-
tentials, MEP) are recorded from hand muscles using a classical belly tendon
montage, i.e., between the dorsal interosseous and proximal interphalangeal
joint of the index finger. Top right: example cortical surface with region of in-

terest (blue), showing positions of the coil centers (colored spheres) and the coil
orientations (arrows) for the 20 experimental conditions.

First dorsal interosseous

magnitude to be the relevant quantities for modulating the observed
effect. Importantly, we demonstrate that unique results can be obtained
with relatively few measurements and indicate how the respective coil
positions and orientations should be chosen. Our approach improves the
localization of effectively stimulated areas during TMS. While demon-
strated for the motor cortex, our approach is generic and can be applied
to mapping procedures in other domains as long as our assumption of a
single relevant cortical site is not violated. However, the approach can in
principle be extended to multiple relevant cortical sites, as it is expected,
for example, in case of language mapping.

2. Materials and methods

We developed a novel framework to localize the neuronal populations
that are responsible for the effects of TMS by combining physiological
responses with numerical modeling. We applied this to primary motor
cortex stimulation and electrophysiological measurements of muscle
activation. First, we describe the experimental design to elicit and mea-
sure MEPs (Section 2.1). Second, we show how to calculate the TMS-
induced electric field distribution in the subjects’ heads (Section 2.2).
This involves models for the head, the TMS coils, as well as the differ-
ential equations numerically solved to determine the electric field inside
the brain. Third, we present a new measure to quantify the correlation
between the induced electric field and the physiological effect, the
congruence factor. Locations with high congruence are likely to house
neural populations that are linked to the observed MEP (Section 2.3). We
then show how the results are analyzed in terms of their sensitivity to-
wards uncertain model parameters such as the electrical conductivity of
the brain tissues and the measured MEPs using a generalized polynomial
chaos (gPC) approach (Section 2.4). Finally, the validation procedure for
our results is outlined (Section 2.5).
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2.1. TMS experiments

The experimental setup is shown in Fig. 1. Fifteen healthy, right-
handed participants (seven female, age 22-34 years) with a mean lat-
erality index of 92.93 (SD = 10.66) according to the Edinburgh Hand-
edness Inventory were recruited (Oldfield, 1971). Subject inclusion was
in accordance with the published safety guidelines for TMS studies (Rossi
et al., 2009; Rossini et al., 2015). Written informed consent was obtained
from all participants prior to the examination. The study was performed
according to the guidelines of the Declaration of Helsinki and approved
by the local Ethics committee of the Medical Faculty of the University of
Leipzig.

TMS pulses were applied with a MagPro X100 stimulator (MagVen-
ture, firmware Version 7.1.1) and CB-60 figure-of-eight coils, guided by a
neuronavigation system (software: Localite, Germany, Sankt Augustin;
camera: Polaris Spectra, NDI, Canada, Waterloo).

MEPs were recorded from the subjects’ right index finger with one
surface electrode positioned over the first dorsal interosseous (FDI)
muscle belly and one at the proximal interphalangeal joint (PIP). The
electrodes were connected to a patient amplifier system (D-360, Dig-
itimerLtd., UK, Welwyn Garden City; bandpass filtered from 10 Hz to 2
kHz), which in turn was connected to a data acquisition interface
(Power1401 MK-II, CED Ltd., UK, Cambridge, 4 kHz sampling rate).
Electromyography recording was performed with Signal (CED Ltd.,
version 4.11).

Localization of the initial MEP target location was guided by indi-
vidually transformed M1 coordinates based on the standardized group
coordinates from a meta-analysis (Mayka et al., 2006). These coordinates
were transformed to the individual subject’s space by using the inverse of
the normalization transformation in SPM (Penny et al., 2007; https
://www.fil.ion.ucl.ac.uk/spm/). With a standard threshold hunting
procedure, we manually determined the resting motor threshold (rMT)
and the corresponding coil position and orientation for each subject. As
this coil orientation usually is about 45° towards the fissura longitudinalis,
we call this MTys., the corresponding coil configuration M14s5-, and refer
to the coil angle as 45° in the following (Brasil et al., 1992; Mills et al.,
1992). MT4s- was defined as the minimum stimulator intensity which
evoked MEPs with an amplitude of at least 50 pV in at least 5 out of 10
consecutive TMS pulses (Pascual-Leone and Torres, 1993; Rothwell et al.,
1999; Conforto et al., 2004).

In relation to M14s, five additional conditions, shown in Fig. 2a, with
different coil positions and orientations (see Fig. 2a) were defined in the
following way. In Experiment I, the TMS coil was located over M1 and 2
cm posterior (P). At both sites, three coil orientations with respect to
M14sc were investigated, namely M1ge/Pge (—45° from M14s5:), M145:/
P4se, and M1gge/Pgge (+45° from M1lyse), resulting in six experimental
conditions.

Experiment II included three of the subjects from Experiment I and
the number of conditions was increased to further investigate the influ-
ence of different coil positions and orientations on the identification of
the relevant cortical site. In addition to M1 and P, two more coil positions
were included: 2 cm inferior and 2 cm superior to M1, respectively
(Fig. 2b). For each position, the number of coil orientations was increased
to 5 (—90°, —45°, 0°, 45°, 90°) with respect to M14s., resulting in 20
experimental conditions.

In both experiments, single biphasic pulses with an inter stimulus
interval (ISI) of 5 s (Experiment I) or 4 s (Experiment II) were applied for
each condition. The coil positions/orientations were recorded by the
neuronavigation system. The MEPs were lowpass filtered with a 6th
order Butterworth filter with a cutoff frequency of 500 Hz. Afterwards,
the peak-to-peak amplitudes of the MEPs were calculated in a time
window of 18-35 ms after the TMS pulse (see Fig. 3a for an example
MEP). Stimulator intensities were chosen to sample the complete 1/0
curve for each experimental condition, unless maximal stimulator output
was reached before (Fig. 3b). Intensity was increased in steps of 2%
stimulator output (MSO), or 1% respectively for intensity ranges of high
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Experiment I

Experiment 11

Fig. 2. Coil positions and orientations used in (a) Experiment I and (b) Exper-
iment II. The locations are exemplarily shown for subject Sub08. The number of
experimental conditions increased from six to 20. The blue area is the region of
interest, comprised of the somatosensory cortex (BA 1, BA 3), M1 (BA 4), and
the dorsal part of the premotor cortex (BA 6).

I/0 gradients (cf. Bungert et al., 2017). For each intensity, 3-5 TMS
pulses were delivered to determine an average MEP amplitude. Trials
with deviations in coil position of +3 mm and orientation of +5° with
respect to each axis were removed. A typical set of data points is shown in
Fig. 3b (blue dots). Thereafter, a sigmoidal function was fitted in a
least-square sense:

ai

i = - /1 l
s:(x) o) @™

where q; is the saturation amplitude, b; the slope, and xo; is the location
of the turning point on the abscissa. If only a part of the I/0 curve could
be determined experimentally, a sigmoidal function could not be reliably
fitted and an exponential or linear function was used instead. The se-
lection of the optimal model was performed using the Akaike information
criterion (AIC, Akaike, 1974). The procedure was repeated for all
experimental conditions (i.e., for different coil positions and orienta-
tions) in a pseudo-randomized order.

2.2. Numerical simulations of the induced electric field

The calculations of the electric field were conducted with SimNIBS
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v2.0 (Thielscher et al., 2015) using high-resolution anisotropic finite
element models (FEMs). An example is shown for one subject in Fig. 4.
The individual head models were generated from MRI data using the
pipeline described in Windhoff et al. (2013), employing FreeSurfer (http:
//surfer.nmr.mgh.harvard.edu/, Dale et al., 1999; Fischl et al., 1999) and
FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL, Woolrich et al., 2009;
Smith et al., 2004; Jenkinson et al., 2012). The head models were
composed of ~1.3-10° nodes and ~7-10° tetrahedra with an average
volume of ~0.28 mm? in the cortex. T1 and T2 images were used for
segmenting the main tissues of the head: scalp, skull, grey matter (GM),
white matter (WM), and cerebro-spinal fluid (CSF). Diffusion weighted
images were used to reconstruct the conductivity tensors in the WM using
the volume normalized mapping approach (Giillmar et al., 2010). To this
end, the following structural images were acquired with a 3 T MRI
scanner (Siemens Verio or Skyra) and a 32 channel head coil: (i)
T1-weighted: MPRAGE with 176 sagittal slices, matrix size = 256 x 240,
voxel size = 1 x 1 x 1 mm?>, flip angle 9°, TR/TE/TI = 2300/2.98/900
ms (repetition, spin echo, inversion Time), (ii) T2-weighted: 192 sagittal
slices, matrix size = 256 x 258, voxel size = 0.488 x 0.488 x 1 mm?>, flip
angle 120° TR/TE = 5000/395 ms (iii) diffusion MRI 67 axial slices,
matrix size 128 x 128, voxel size 1.71875 x 1.71875 x 1.7 mm®, TE/TR
80/7000 ms, flip angle 90°, 67 diffusion directions, b-value 1000 s/mm>.
An additional b0 image with reversed encoding direction was acquired
and used during the calculation of the conductivity sensors for eddy
current correction and distortion correction. The T1 image was also used
for neuronavigation during TMS. If adequate scans already existed for the
subjects in the image database (age less than 1 year), these scans were
utilized.

All TMS coils were individually modelled by magnetic dipoles based
on X-ray images. Coil wiring differences (shifts of several millimeters and
tiltings of about 2-5°) were observed and accounted for. Each coil model
consisted of ~4500 magnetic dipoles, situated in 5 layers in the coil
plane. Their magnitudes were determined from the enclosed current. The
dipole models were compared to detailed current density based FEM
models using Comsol Multiphysics v4.4 (COMSOL, Inc., Burlington, MA,
USA) and yielded magnetic field errors of <0.1% at a distance of 15 mm.

The magnetic field generated by the coil determines the primary
electric field E,. It was precomputed in terms of the magnetic vector
potential A and then mapped to the FEM nodes for each coil configura-
tion. The primary electric field is then given by E, = — jwA, where w =
2zf is the angular frequency of the biphasic TMS pulse. The electric
potential ¢ in the nodes is calculated by solving the Laplace equation V
- ([6]Ve) = 0 using FEM, considering anisotropic conductivity tensors [o]
inside each element together with the boundary conditions given by the
law of current conservation V-J = — [o|(jwA + Vg) = 0. After
calculating the secondary electric field E; = — Vg, the total induced
electric field is given by E = E, + E; = — jwA — Vg. The conductivity
values for the five examined tissues (6scqp = 0.465 S/m, oy = 0.01 S/
m, ogy = 0.275 S/m, owy = 0.126 S/m, ocsr = 1.654 S/m) were taken

4.0 Fig. 3. (a) Measured motor evoked potential
15 - data R (MEP) showing the stimulation artifact (blue
_3'5 —— fit (sigmoid) l: el arrow) and the peak-to-peak amplitude (red
1.0 E 3.0 std o Ay arrow). (b) I/O curve characterizing the MEP
= o o 25 ' ' amplitudes as function of the stimulator intensity
= ™S = i . for one experimental condition. Blue dots: MEP
& pulse™y é_ 2.0 1 amplitude? for the differc?nt stimulf:ltor intensiti.es.
= & 15 . Red curve: fitted analytical function. Depending
.05 & on the best Akaike information criterion (AIC),
=10 MEP amplitudes were fitted to sigmoidal, expo-
-1.0 05 nential or linear functions (presented example:
X sigmoid function). Black lines: possible 1/0
-1.5 0 20 40 60 80 100 120 0 35 40 45 50 55 curves resulting from uncertainty in the experi-

Time [ms] Stimulator intensity [%] mental data.

(a) (b)
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Fig. 4. Example of the realistic anisotropic head model of one subject, used for
the numerical simulations of the induced electric field. The model consists of
1.26 - 10° nodes and 7.12 - 10° tetrahedra. The TMS coil is modelled using 4440
magnetic dipoles (green spheres) with optimized dipole moments located in five
layers. The grey matter surface is color coded with the magnitude of the induced
electric field for 1 A/ps intensity.

from Thielscher et al. (2011) and Wagner et al. (2004). A more detailed
description of the FEM solver is given in Windhoff et al. (2013, supple-
mental material) and Saturnino et al. (2019b).

Individual coil positions and orientations relative to the subject’s
head were saved by the neuronavigation system for each TMS pulse.
During the experiment, we placed the coil such that it touched the scalp
(with a small bias due to the hair layer) in each subject. In some cases, we
observed slight distances between coil and head surface of about 0.5-2
mm in the subsequent modeling step. We shifted the coil position
perpendicularly to the head surface to reduce these small errors, which
were presumably caused by uncertainties in the neuronavigation and the
head surface reconstruction. These coil configurations were used for
electric field calculations in SimNIBS. A ROI was defined with Freesurfer
covering the somatosensory cortex (BA 1, BA 3), primary motor cortex
M1 (BA 4), and the dorsal part of the premotor cortex (BA 6) and a mask
was created for the Freesurfer average template and transformed to each
individual subject’s brain.

The following analyses were performed on the midlayer between the
outer surfaces of the GM and WM compartments to avoid boundary ef-
fects of the electric field due to conductivity discontinuities. The electric
field interpolation followed the procedure described in Saturnino et al.
(2019b), using the super-convergent patch recovery method (Zienkie-
wicz and Zhu, 1992) to determine the electric field at the nodes within
grey matter and then computed the electric field at the grey matter center
using linear interpolation. Fig. 5 shows the magnitude |E|, the normal
component E; and the magnitude of the tangential component |E | of the
electric field at the midlayer surface for three different coil positions and
orientations in one exemplary subject. The different electric field distri-
butions are shown in the highlighted ROI for the different experimental
conditions.
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2.3. Determining the site of effective stimulation

The core concept of the proposed method is illustrated in Fig. 6. We
assume that at the site of activation the relationship between electric
field and MEP is stable, i.e., the same electric field strength always evokes
the same behavioral output, independent of the location or orientation of
the TMS coil. Furthermore, we assume that exactly one focal cortical area
at M1 is functionally relevant for evoking MEPs. Exploiting these as-
sumptions, the site of effective stimulation can be pinpointed by calcu-
lating cortical I/O curves that represent the relationship between the
electric field in the cortex and the resulting MEP. At the functionally
relevant cortical site of activation, the cortical I/0 curves of all condi-
tions have to be similar. Practically, this was achieved by transforming
the measured I/0 curves for each condition (representing the relation-
ship between stimulator intensity in percent of maximal stimulator
output, %MSO, and MEP amplitude) to E-MEP curves (representing the
relationship between the electric field at a particular cortical location and
the respective MEP amplitude). The electric field distribution throughout
the brain was computed as a function of %MSO using the numerical
techniques described above, taking 100% MSO as corresponding to a
maximal change of the coil current of 143 A/ps for the specific
stimulator-coil combination. Due to the linear relationship between the
electric field strength and the stimulator intensity, the E-MEP curves are
shifted, horizontally-scaled versions of the measured I/0 curve, with
different shift and scale parameters in each position. Hence, the function
types of each I/0 curve and their corresponding E-MEP curves are similar
(i.e., sigmoidal, exponential, or linear). E-MEP curves can be determined
for all different components of the electric field vector (|[E|, E,, \E” |) or,
in principle, any other derived quantities thereof. This approach allows
the computation of a position-wise congruence factor c(r), which quan-
tifies the similarity between the E-MEP curves of the different experi-
mental conditions.

The agreement between different I/0 curves was quantified by
computing the inverse variance of the optimal shifts 7; with i = 1...N; of
the N, I/0 curves across the experimental conditions.

(1 @) —nm))
0= (5% ") @

The congruence factor c(r) was calculated for each element in the
cortical ROI by determining the inverted variance of the 7;, additionally
weighted by the average electric field magnitude (or the normal
component or the magnitude of the tangential component) squared at

this location: E- (r). Hence, the congruence factor quantifies a relative
similarity between the observations in the different experimental con-
ditions, independent of the scale of the electric field. Higher similarity
between curves leads to higher inverse variance. The optimal shifts 7;
were obtained by determining the individual locations where the overlap
against a reference curve, e.g. the first E-MEP curve, is maximized. As a
result, the problem of determining the congruence factor turns into many
optimization problems calculating the shifts 7; for each condition and in
each element in the ROI:

iy (E(7)) = 5 (E(r) =), ®)

Where sy and s denote the reference and one of the I/0 curves the shift
is calculated for, respectively. This method is very general, as it is inde-
pendent of the involved function types.

It should be noted that the direction of the normal component of the
electric field along the pyramidal apical dendrites is likely to have an
influence on the activation of the neurons. For a particular voxel, the
normal field component might point outwards (positive) for some stim-
ulation conditions, and inwards (negative) for others. As a consequence,
the curves for the negative and positive ranges must be analyzed sepa-
rately and their respective congruencies must be merged afterwards. A
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Fig. 5. Three electric field distributions, i.e., the overall magnitude of the electric field [E|, the normal component E |, and the magnitude of the tangential component
\EH | for one exemplary subject. The electric field was normalized to allow comparability between the different experimental conditions. The white circle shows the M1

hand knob area.

more detailed description of this procedure is given in Section 1.2 of the
Supplementary Material.

Because the electric field scales the I/0 curves linearly eq. (3) can be
reformulated in terms of stimulator intensity which allows a highly
efficient implementation. A detailed mathematical description is also
given in Section 1.2 of the Supplementary Material. The above described
shift approach for the computation of the congruence factor is especially
useful, if the experimentally determined I/O curves capture only a linear
or exponential part of the relationship between the electric field and MEP
amplitude (see above). If, however, each E-MEP curve can be represented
as an analytical sigmoidal function, parameterized by its turning point
Xo, the shifts 7; are directly given by 7; = xo;E;(r). This approach is ad-
vantageous in terms of computational cost and is preferred in the current
study if all I/O curves are modelled by sigmoidal functions.

As the standard Freesurfer average template (FsAverage) suffers from
several malformed elements at the primary motor cortex, each roughly
20-fold the size of the average elements, we created a group-based
average with Freesurfer. In this iterative procedure a randomly chosen
subject was used as the initial template and all other subjects were
registered to this. In the second step, the template was updated based on
these registrations. The third step comprised the registration of all sub-
jects to this updated template. The second and third steps were then
repeated to improve the template.

2.4. Uncertainty and sensitivity analysis

The congruence factor is influenced by several parameters. For
example, previous studies have shown that, because of their large un-
certainties, the electrical ohmic conductivity of brain tissues have a
strong influence on the magnitude of the electric field (Weise et al., 2015;
Codecasa et al., 2016; Saturnino et al., 2019). Furthermore, the estimated
parameters of the fitted MEP curves are also uncertain due to

measurement uncertainties (Fig. 3b, grey interval). Therefore, uncer-
tainty and sensitivity analyses are important to investigate the stability of
the results and identify the parameters and their combinations with the
largest impact on the results.

Since the problem is computationally complex and features a large
number of parameters p, an efficient approach is necessary to conduct the
analyses. Here, we applied the generalized polynomial chaos (gPC)
method (Ghanem et al., 2016). Its mathematical background is described
in detail in Section 1.4 of the Supplemental Material. In short, the gPC is
based on the construction of a polynomial surrogate of the congruence
factor depending on the uncertain model parameters and their associated
probability density functions.

Since the electric field depends on the electrical conductivity [o] of the
brain tissues, the congruence factor will be influenced by varying con-
ductivity as well. The conductivity of GM, WM, and CSF were modelled
as beta distributed random variables. The impact of errors of conductivity
values in other tissues (e.g., skull and scalp) on the electric field has been
shown to be negligible in previous studies (Codecasa et al., 2016; Sat-
urnino et al., 2019). However, extending previous studies, the impact of
the level of conductivity anisotropy was included in our analysis. The
conductivity tensor [s] for each voxel was derived from the diffusion
tensor using the volume normalize approach (Giillmar et al., 2010). This
tensor can be visualized as ellipsoid (see Fig. S3). A spherical ellipsoid
represents isotropic conductivity with equal conductivity in each direc-
tion, while a cigar shaped tensor indicates that the conductivity is much
larger in one direction. We implemented an anisotropy scaling factor o
that transforms the diffusion tensor from the isotropic case (@ = 0) via
the original tensor obtained from DTI (¢ = 0.5) to a very anisotropic case
(a = 1). Although, in principle, a could be different in each voxel, this
would render the resulting problem intractable. Instead, we assume that
a is the same for all voxels. This reflects systematic errors and un-
certainties in the transformation between the diffusion tensor, which
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Fig. 6. Principled approach to determine the functionally relevant site of activation by TMS. The congruence factor is based on the assumption that the electric field,
which is causal to the observed behavioral effect, corresponds for the experimental conditions. The measured I/0O curves are transformed to element wise E-MEP
curves using electromagnetic field modeling (see text). The congruence factor between the E-MEP curves inversely depends on the amount of transformation (shift)

necessary to obtain maximum overlap between the E-MEP curves in each element.

depends on the mobility of water molecules, and the conductivity tensor,
which represents the mobility of charges. A detailed mathematical
description of the parametrization of the fractional anisotropy is given in
Supplemental Material: Section 1.3.

In addition to the conductivity and anisotropy uncertainties, the

turning points xo; from the sigmoidal I/0 curves were included in the
uncertainty analysis. Their uncertainties were derived from the confi-
dence intervals of the curve fits (see Fig. 3b). The stochastic properties of
all investigated parameters are summarized in Table 1. The model of the
congruence factor used in the gPC-based uncertainty and sensitivity



K. Weise et al.

analyses is described in detail in Supplemental Material: Section 1.5.
After deriving the polynomial surrogate using the gPC, the spatial
distribution of the expectation y(r) and the variance v(r) of the congru-
ence factors c(r) can be calculated. We further analyzed the relative
standard deviation RSD = \/v(r)/u(r) to identify possible parameter
ranges where the congruence factor is primarily influenced. Finally, in
the sensitivity analysis, the variance was decomposed into its origins by a
Sobol decomposition. The Sobol indices S;(r) represent portions of the
total variance v(r), which are due to individual parameters p; or a com-
bination thereof, e.g. the conductivity of GM or the combination between
different measurement parameters (Sobol, 2001; Sudret, 2008).

2.5. Validation

To validate the estimated sites of effective stimulation, we first
determined the corresponding optimal coil position and orientation that
maximizes the electric field magnitude in the previously determined
congruence factor hotspot for each of the three subjects in Experiment II.
This was done by using an exhaustive search optimization procedure.
First, we projected the individual congruence factor hotspot to the skin
surface. Thereafter, we defined a dense circular grid (radius 20 mm,
spacing 1.5 mm) of coil positions and orientations around that position,
as shown in Fig. S5. The orientations were defined in the interval from
—90° to 90° around the PA-45 orientation in steps of 15°. This was
motivated by the fact that the magnitude does not uniquely reflect the
electric field vector. At least, there are always two vectors with opposite
signs originating from opposite coil orientations (or current directions)
that generate the same magnitude. Therefore, for the optimization we
only considered coil orientations with a positive component into the PA-
45 direction. Finally, the search grid comprised about 4500 different coil

Table 1

Limits and shape parameters of the model parameters for subject SubO1. The
parameters p and g denote the shape parameters of the beta distributions and x,
are the turning points of the sigmoidal I/0 curves.

Parameter Description Min Max p/ Reference/
q source
owMm White matter 0.1 0.4 3/ Li et al. (1968)
conductivity in S/m 3 Nicholson
(1965)
Akhtari et al.
(2010)
oGM Grey matter 0.1 0.6 3/ Li et al. (1968)
conductivity in S/m 3 Ranck (1963)
Logothetis et al.
(2007)
Yedlin et al.
(1974)
e Cerebrospinal fluid 1.2 1.8 3/ Gabriel et al.
conductivity in S/m 3 (2009)
Baumann et al.
(1997)
a Anisotropy scaling 0.4 0.6 3/ Tuch et al.
3 (2001)
X0.5(90°) % MEP curve turning point ~ 145.9  185.9 4/ experiment
in A/ps 4
Xo.5(135°) * «“ 150.0 190.0 4/
4
Xo1(45%) « 80.7 87.9 4/
4
X0,1(135°) « 125.7 1457 4/ “
4
Xo.p(0°) « 1242 1333 4/
4
Xo,M1(90°) « 86.0 98.7 4/ “
4

Note: These parameters were considered in the uncertainty and sensitivity
analysis to determine the site of activation by means of the congruence factor.
The asterisk marks conditions, where only the lower tail of the I/O curve could be
determined. These curves are subject to a higher measurement uncertainty.
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configurations. On this grid, we searched for the coil position and
orientation that produces the maximum electric field magnitude at the
cortical target. We implemented this optimization routine in SimNIBS
v3.1 (https://github.com/simnibs).

If the determined congruence factor hotspot is indeed the origin of the
observed effects, then the MT should be lowest for the optimized coil
position/orientation. We therefore experimentally compared the MTs
obtained for these optimal coil configurations to those obtained for other
adjacent coil configurations. For MT determination, single biphasic pul-
ses with 5 s ISI were applied.

3. Results

In the following sections, we present the results from Experiment I (15
subjects and 6 experimental conditions, Section 3.1) and Experiment II (3
subjects and 20 experimental conditions, Section 3.2). The latter includes
a permutation analysis to determine the minimum number of TMS con-
ditions, that is coil positions and orientations required to identify the
location of the cortical representation of the MEPs reliably. Then, we
validated the predicted cortical sites of activation for the subjects in
Experiment II (Section 3.3). Finally, the results of the uncertainty and
sensitivity analyses of the congruence factor are presented for one
exemplary subject (Section 3.4). The most influential parameters of the
numerical model and experimental data are identified in the ensuing
sensitivity analysis.

3.1. Experiment I (15 subjects, 6 experimental conditions)

An average of 981.6 (SD = 173.1) single pulses were applied per
subject (163.6 (SD = 49.4) per coil position/orientation). Fig. 7 shows
the congruence factors of the group average and the 15 individual sub-
jects. The electric field distributions of all conditions were determined for
each subject and combined with the fitted MEP curves using the optimal
curve shift approach because not all MEP curves could be fitted to
sigmoidal functions. In 6/15 subjects (marked with an asterisk, *), no I/O
curve could be determined for the posterior coil position Py-. Hence, the
congruence factor was determined using only 5 of the 6 conditions. The
congruence factor was calculated for the overall magnitude (|E|), as well
as the normal (E;. = E-n) and the magnitude of the tangential (|E|)
component of the induced electric field. The overall magnitude and the
magnitude of the tangential component reached substantially higher
congruence factors and smoother spatial distributions than the normal
component ¢(E, ). In general, a clear hotspot for c(|E|) and c(|E|) could
be identified in the hand knob area of M1 on the gyral crown of the
average template. Considering the individual congruence factor maps we
found clear and unique hotspots on the gyral crowns in the hand knob
area in 7/15 subjects (Sub01-Sub07, highlighted in Fig. 7 with a green
background). In 4/15 subjects (Sub08-Subll, Fig. 7, yellow back-
ground), we observed a second hotspot in the somatosensory cortex. In
4/15 subjects (Sub12-Sub15, Fig. 7, orange background), we could only
identify a dominant hotspot in the somatosensory cortex. We reasoned
that this was due to array ambiguities, i.e., spurious overlaps, of the
realized electric fields and the missing I/0 curve of condition Py, in 2/4
and 3/4 subjects of the two groups, respectively. Note that maximum
values of the congruence factors substantially differ across subjects. This
is because small differences in near zero variances among I/0 curves may
result in large differences in their inverse, that is, the associated
congruence factors.

We expected that additional experimental conditions, i.e., more coil
positions and orientations, would improve the results of the congruence
factor towards more plausible hotspot locations in the M1 hand knob
area. This hypothesis was investigated in Experiment II by increasing the
number of coil positions and orientations from 6 (respectively 5) to 20
(see Fig. 2b). We selected one subject from each of the three result groups
described above (Sub01, Sub08, and Sub12) for this experiment.
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(b) ([E) (IF.) (IEx) (k) (B]) (Fa)

Group II: M1 & S hotspot

Group I: M1 hotspot

Group III: S hotspot

Fig. 7. (a) Average and (b) individual congruence factor maps of all 15 subjects including six experimental conditions (Experiment I). The congruence factors were
calculated for the overall magnitude, the normal component, and the magnitude of the tangential component of the electric field using the optimal curve shift
approach. 7/15 subjects show unique hotspots in M1 (highlighted in green); 4/15 subjects show hotspots in M1 and the somatosensory cortex (highlighted in yellow)
and 4/15 subjects show hotspots in the somatosensory cortex only (highlighted in orange); the asterisks (*) mark subjects where no evaluable MEPs could be
determined for the posterior coil position Py-. In these cases, the congruence factor was determined using only five conditions; all results were normalized, mapped and
superimposed on the group average template shown on the top (highlighted in blue).
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3.2. Experiment II (3 subjects, 20 experimental conditions) more. Since this would not be feasible in everyday (clinical) applications,
we investigated how the congruence factor convergences depending on
This experiment was conducted with an extended set of coil positions the number of experimental conditions. This enabled us to determine an
and orientations (Fig. 2b). For each subject, 20 electric field distributions optimal number and selection of coil positions/orientations to reduce the
were calculated and combined with the obtained MEP curves to deter- experimental effort. Consequently, a permutation study was performed
mine the congruence factor maps. An average of 1831.3 (SD = 300.52) for each subject by determining the congruence factor for all combina-
single pulses were applied per subject (85.84 (SD = 17.19) per condi- tions of k = 2...20 available experimental conditions. The total number
tion). In this experiment, all I/O curves could be fitted to sigmoidal . . 20 /20 .
functions, which avoids the computationally expensive optimization step of considered conditions was 2 ( k ) = 1,048,555. We quantified the
k=2
from eq. (3) by directly using the variance of the turning points. focality of each congruence factor map by determining the area with
Applying 2000 single pulses with a comparatively short 4 s ISI alone ¢ > 30. This threshold was chosen based on the permutation results to
takes about 2.5 h; additional time for subject preparation, changing the  allow comparability between the combinations and subjects. The smaller
coil position and rotation, potential pauses due to coil heating, rest pe- this area, the more concentrated the map is. That is, the more uniquely
riods for the subject, etc. may lead to experiment durations of 5 h or the relationship between electric field and MEP could be determined.
(a) Cor(|E]) (b) Number of active conditions k
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Fig. 8. Permutation analysis interrelating the cross-correlation of the electric fields from the different experimental conditions of Experiment II for subject Sub01 with
the corresponding hotspot area. The hotspot area was defined as the region where ¢ > 30. For each case k, the congruence factor was determined (20 k ) times. (a)
Relationship between the cross-correlation of the electric field magnitude and the resulting hotspot area size. Colors: active conditions k. The correlation coefficient
between the hotspot size and the cross-correlation of the electric fields over all k (black line) isr = 0.57 (p <« 0.001). (b) Boxplot of the hotspot area of the congruence
factor depending on the number of active conditions k. Box areas indicate the 25%-75% quantiles with notch at median. Correlation coefficients between the hotspot
size and the cross-correlation of the electric fields for each k are given. ** depict p < 0.01 (after Bonferroni correction). Grey lines: 5th percentile of the best condition
combinations for each k. Dashed lines: absolute range. The variation of the hotspot area size decreases with increasing k. (c) Relationship between the cross-correlation
coefficient of the electric fields and the number of active conditions k. Box areas indicate the 25%-75% quantiles with notch at median. Grey lines: 5th percentile of
the best condition combinations for each k. Dashed lines: absolute range. The dashed red lines highlight the case of the 6 coil positions and orientations, where the
congruence factor map was most focal. Its cross-correlation coefficient is with 0.921 lower than the first quartile of possible solutions. (d) Chord graph highlighting the
interaction and relative contribution between different coil positions (outer circle) and coil orientations (inner circle) from the 5th percentile of best condition
combinations over all k resulting in small hotspot areas (highlighted with black lines in (b)).
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The results of the permutation study are shown in Fig. 8 for one
exemplary subject (Sub01). The results for the remaining subjects were
similar (see Figs. S7-S9, respectively). We expected that a lower cross-
correlation across the condition-wise electric fields would allow for a
higher discriminative power in the determination of the stimulation site.
This was confirmed by the analysis in Fig. 8a, showing a correlation of
r =0.57 (p < .001) between the size of the hotspot area and the cross-
correlation of the electric fields over all k. As obvious from the individual
number of conditions k, the correlation between the resulting hotspot
area and the cross-correlation of the electric fields was stronger for low k
(Fig. 8b, correlation coefficients). The median of the hotspot area con-
verges when increasing the number of active conditions. Moreover, the
spread of the area decreases by adding more information to the
congruence factor calculation. Importantly, the smallest areas (lower
dashed line in Fig. 8b) indicate that some condition combinations for k >
5 result in similar or even smaller areas than for k = 20. This suggests
that the cortical site of activation can be determined with relatively few
measurements by selecting optimal coil positions and orientations.

The relationship between the cross-correlation of the electric fields
and the number of active conditions k is shown in Fig. 8c. Cases resulting

Exp. I (6 cond)

Exp. II (6-0f-20 cond)

Group I: M1 hotspot

Exp. II (20-0f-20 cond)
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in the smallest 5th percentile of the hotspot area are shown as thin lines
in the shaded area, corresponding to those shown in Fig. 8b. As expected,
these cases are concentrated in regions of low cross-correlation.

The data were further analyzed to identify which combinations of
experimental conditions were especially informative and produce very
focal hotspots (Fig. 8d). This analysis was performed for k = 6. The
appearance of each condition and its co-occurrence with other conditions
was accumulated across all condition combinations, which are part of the
smallest 5th percentile of the hotspot area (grey shaded area in Fig. 8b).
We found that the co-occurrence was not random and combinations
surrounding M1, i.e., inferior, superior, and posterior, appeared more
often than coil positions directly over M1. The corresponding coil ori-
entations differ considerably and connections between Sgp°, S135°, I4s5°,
and I 350 stand out. Moreover, it can be observed that posterior condi-
tions occurred frequently in combination with Sgge, which further con-
firms the need for highly varying electric field distributions. This
behavior was even more pronounced for subjects Sub08 and Sub12 (see
Figs. §7-S9).

Next, the condition combination that led to the smallest hotspot (k =
6) is described in more detail and compared to Experiment I and the full

Fig. 9. Normalized congruence factor maps of 3
subjects. The first column shows the results of
Experiment I with 6 experimental conditions; the
middle row depicts the 6-0f-20 condition combi-
nation with the smallest hotspot area from
Experiment II; the right column shows the
congruence factor maps when all 20 experimental
conditions of study II are included in the analysis.
The subjects were chosen to include on partici-
pant from each result group in study I (M1 only,
M1 and somatosensory cortex, and somatosen-
sory cortex only, see Fig. 7).

Group II: M1 & S hotspot

Group III: S hotspot

Group average

11
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k = 20 result. Applying the method for 6 different coil conditions and
orientations is also feasible, as the total experiment duration should not
exceed 1 h.

The results are shown in Fig. 9 for each subject. The congruence factor
maps were normalized with respect to their individual maxima to allow
comparability. For subject Sub01, we already found a unique hotspot in
the M1 hand knob area in Experiment I. The results of Experiment Il show
that this pattern is reproducible and even more focused (as the deflection
on the somatosensory cortex is weaker) for the best 6 condition combi-
nation (6-0f-20). Hence, for this subject, the coil positions of Experiment I
were already sufficient to determine the site of activation in a plausible
manner. The second subject belonged to the group with hotspots in both
M1 and the somatosensory cortex (Experiment I). In Experiment II, a
single hotspot was found, limited to the M1 region, with the deflection in
the somatosensory cortex disappearing. The M1 hotspot was also slightly
shifted inferiorly. The third subject belonged to the group that showed a
hotspot only in the somatosensory cortex in Experiment I. In Experiment
11, however, the hotspot moved to M1. This supports our assumption of
insufficient information content concerning the combination of electric
field profiles and measured MEP amplitude curves, likely due to a limited
classification ability of the electric fields. As indicated by the conver-
gence results of the permutation study (Fig. 8a), adding the remaining
conditions of Experiment II (20-of-20 case) does not yield any improve-
ment for any of the three subject groups.

For subject Sub01 (first row in Fig. 9), the cross-correlation of the
electric field distributions in the ROI was 0.951 for Experiment I, and
0.921 for Experiment II. For subject Sub08 (second row in Fig. 9), the
cross-correlation was 0.953 and 0.925 for Experiment I and II, respec-
tively. We found that the use of less correlating electric field distributions
increased the quality of the reconstruction. Finally, for subject Sub12
(third row in Fig. 9) the cross-correlations were nearly the same with
0.951 and 0.953 from Experiment I to II, respectively. However, the
improvement of the results indicates that the selected coil positions and
orientations in Experiment II were more suitable to determine the
congruence factor, resulting in a higher distinguishability between the
cortical positions. We wish to emphasize that this property is only partly
reflected by the cross-correlation coefficient. A definition of a more so-
phisticated ambiguity measure to determine an optimal set of coil posi-
tions and orientations will be the subject of a future study.

3.3. Validation

After determining the optimal coil positions and orientations for the
subjects in Experiment II, we validated the predicted cortical sites of
activation, as described in Section 2.5.

Due to health issues unrelated to this study, subject Sub12 from group
III (see Fig. 9) was not able to participate in the validation study. We
replaced this subject with subject Sub15 from group III and repeated
Experiment II. It turned out that using the predefined 20 conditions did
not yield a single pronounced congruence factor hotspot for this subject.

Exp. I (5 cond)

Group III: S hotspot
Subl15

Exp. II (6-0f-30 cond)
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To increase electric field variance, we added further conditions at
different positions, orientations, and tilting angles of the TMS coil (see
Fig. S6). We additionally determined the corresponding best 6-of-30
condition combination yielding very similar results compared to the
full 30 condition analysis. The results are shown in Fig. 10. Notably, all
computationally determined optimal coil orientations were similar to the
commonly used 45° angle towards the fissura longitudinalis (Brasil et al.,
1992; Mills et al., 1992). Note that by using the field magnitude we are
not able to distinguish between opposite coil orientations. Therefore, our
optimization space was restricted to £90° around the PA-45 direction.

In an additional validation experiment, we determined the MTs for
the determined optimal coil configuration as well as for a number of
adjacent positions and orientations. Based on our observations regarding
the sensitivity of the MT towards coil position and orientation we chose
spacings of about 7 ... 10 mm in position and 30° for orientation between
the tested configurations (see Fig. 11).

As shown in Fig. 11, the MTs were always lowest for the predicted
optimal coil configuration. This confirms the validity of the calculated
congruence factor hotspots.

3.4. Uncertainty and sensitivity analysis

We analyzed the congruence factor in terms of uncertainty and
sensitivity towards the electrical conductivity in the 6-0f-20 case for the
following parameters: the brain tissues, CSF, fractional anisotropy, and
measurement inaccuracies informed from I/0 curve fit deviations, for all
subjects of Experiment II. The results from subject Sub01 are shown in
Fig. 12. The results of subject Sub08, Sub12, and Sub15 are shown in
Figs. S10-S12. The uncertainties of the model parameters are listed in
Table 1 and Table S1-S3. The spatial distributions of the mean, the
relative standard deviation (RSD), and the variance (VAR) of the
congruence factor are shown in Fig. 12a. The mean distribution shows a
hotspot, which extends from the gyral crown of M1 to the upper parts of
the anterior sulcal wall. RSD and VAR indicate that the congruence factor
could be determined with a greater certainty (RSD =~ 12%) on the gyral
crown than on the anterior sulcal wall (RSD ~ 40%).

To identify the most influential model parameters, we decomposed
VAR into its origins with a Sobol decomposition. The spatial distributions
of the absolute first order Sobol indices on the cortex are shown in
Fig. 12b. The Sobol coefficient maps of the MEP curve parameters are
accumulated on one Sobol index termed Sobol (EXP). The average first
order and highest second order Sobol indices are depicted in Fig. 12c for
all subjects of Experiment II. The average was computed over the ele-
ments in the ROIL. The parameters that contributed most to the uncer-
tainty of the congruence factor were the electrical conductivity of GM
(ogm) and WM (o) as well as the uncertainty of the measured MEP
curves (EXP) for all subjects. Their relative contribution to the total
variance, shown in Fig. 12d and in Figs. S10d-S12d, was subject specific
and depended on the accuracy of the measured MEP curves as well as the
brain anatomy influencing the electric field distribution. The uncertainty

Exp. II (30-0f-30 cond)

Fig. 10. Normalized congruence factor maps of subject Sub15, replacing subject Sub12 from subject group III for the validation. The first column shows the results of
Experiment I with 5 experimental conditions; the middle row depicts the 6-0f-30 condition combination with the smallest hotspot area from Experiment II; the right
column shows the congruence factor map when all 30 experimental conditions of study II are taken into account.
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Sub01
Motor Threshold (%)
430 460 480 510 540

Sub08
Motor Threshold (%)
350 366 382 39.8 414 430
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Subl5
Motor Threshold (%)

330 360 380 410 440

Fig. 11. Coil positions and orientations used to validate the identified cortical site of activation. The optimal coil position is marked with a dashed purple circle and its
corresponding optimal orientation is indicated by “opt”. Numbers represent the rMTs: the lowest stimulator intensity, that elicited 5 of 10 consecutive MEPs with
amplitudes >50 pV. Lowest rMTs at the optimal coil positions and orientations are marked with an asterisk.

of the congruence factor hotspot in the anterior sulcal wall predomi-
nantly originated from the uncertainty of ogy and the measurement
uncertainties indicated that this hotspot was likely to be spurious.

4. Discussion

In the present study, we introduce a novel approach to localize the
functional relevant cortical site for a given physiological variable with
transcranial magnetic stimulation (TMS). We link numerical modeling of
the induced electric field with measurements of peripheral physiological
responses to demonstrate considerably improved localization. With this
approach, we were able to localize the cortical area most likely respon-
sible for the observed motor output caused by single TMS pulses applied
over the primary motor cortex. Our main finding is that sharply bounded
neural structures located in the gyral crowns, and extending to the upper
parts of the sulcal wall of the motor hand area, represent the most likely
origin of the motor evoked potentials. We identified the overall magni-
tude and the magnitude of the tangential component of the electric field
as the relevant quantities for modulating the observed effect.

Our results suggest that unique results can be obtained with relatively
few trials or measurements per subject. Based on our findings, we derive
principles for the selection of the respective coil positions that may help
to improve localization of TMS effects in future applications, both at the
single subject and group level. Our first experiment combined two
different coil positions with three coil rotations each, yielding 6 condi-
tions. The induced electric fields were computed with finite element
models (FEM), allowing for the assessment of element-wise E-MEP re-
lations. We identified three groups with a hotspot at either primary motor
cortex only, the somatosensory cortex only, or both. One subject from
each group was included in the extended second experiment with 4 sites
and 5 rotations, yielding 20 conditions. For the subject from the M1-
group, the hotspot was replicated at the same spot. For the subjects
from the other two groups, the original results could be significantly
improved with single hotspots at the gyral crowns and the upper parts of
the sulcal walls of the motor hand area observed in each case. The final
validation study in three subjects confirmed that optimizing the TMS coil
position and orientation, such that it maximized the electric field at the
predicted cortical target, indeed resulted in a minimization of the motor
thresholds (MTs).

The congruence factor employed in our study quantifies the correla-
tion between the measured physiological variable (here, the MEP) and
the induced electric field profiles. Note that the proposed approach does
not depend on the involved function types to describe the 1/0 behavior.
This provides a high level of flexibility and makes the method easy to
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adapt to other applications and domains. We conclude that our approach
significantly improves the localization of effectively stimulated areas
during TMS and may increase the power and reliability of the resulting
effects in future TMS studies at the individual level.

4.1. Linking our results to prior studies relating TMS electric fields to MEPs

Based on our results, we argue that voxels with maximum congruence
factors are good candidates for functionally relevant cortical areas.
Importantly, in all subjects, we found that higher variability between
electric fields sharpened the localization results. Sets of experimental
conditions that selectively varied coil position or coil orientation did not
contain sufficient information to uniquely determine the location of
cortical representation. Moreover, placing the TMS coil directly over M1
with a 45° orientation, though yielding the strongest effect, was by far
not the most informative condition using our method. This can be
explained by the relatively wide distribution of the electric field in the
motor area, resulting in low discriminative power for such a coil (stan-
dard figure-of-eight). These observations may also provide an explana-
tion for the spurious second hotspot in the somatosensory cortex
observed by Bungert et al. (2017), when applying TMS pulses selectively
over M1, and Laakso et al. (2018), when orienting the TMS coil 45° to-
wards the fissura longitudinalis (Brasil et al., 1992; Mills et al., 1992).
Notably, we observed similar effects in Experiment I, when only 5 or 6
non-optimal experimental conditions were considered (subject group II
and III, Fig. 7). Reducing the correlation of the electric fields across the
tested positions and orientations considerably enhanced the localization
capabilities of our method in all subjects (Experiment II). This observa-
tion was further supported by a permutation analysis showing that higher
variability between the spatial patterns of the electric fields, using spe-
cific combinations of coil positions and orientations, considerably
increased the accuracy of the localization results.

Interestingly, previous studies that selectively incorporated the 45°
coil orientation (corresponding to coil orientations M14se, P4se, Sss¢ in
this study) towards the fissura longitudinalis (Laakso et al., 2018; Krieg
et al., 2013; Salinas et al., 2011) appear to support sulcal wall activation
by the normal component of the electric field. In contrast, studies that
involved different coil orientations (Bungert et al., 2017) highlight |E|
and gyral crowns (corresponding to coil orientations M1.335c M1.gge,
M1.45°, M1ge, M14s- in this study). Recent results from direct electric
stimulation (Aonuma et al., 2018) support the latter, which contrasts
with the conclusions drawn from studies using only imaging techniques
(Fox et al., 2004; Krieg et al., 2013). However, both methods have the
major disadvantage that their resolution is not sufficient to identify the
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the effects.

part of the cortex that is effectively stimulated. By changing both, i.e.,
coil position and orientation, we observed low congruence factors for the
normal component of the electric field at the anterior wall of the central
sulcus. Since low congruence factors highlight areas where the behav-
ioral effect does not correlate with changes in the local electric field, our
results indicate that the previously proposed stimulation mechanism by
the normal component (Laakso et al., 2018; Fox et al., 2004; Krieg et al.,
2013) cannot explain the observed effects for all experimental condi-
tions. In contrast, we found that the magnitude of the tangential
component (and therefore also the overall magnitude) of the field
showed reasonable congruence factor maps. This finding suggests that
the gyral crowns and upper parts of the sulcal wall are the most likely
origin of the motor evoked potentials.

Two prior studies have superimposed the calculated electric fields,
either in an additive or multiplicative fashion, to localize the cortical
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position targeted by TMS (Opitz et al., 2013; Aonuma et al., 2018). Opitz
et al., 2013 weighted the computed electric fields with the strengths of
the observed effects and overlaid the fields in an additive fashion. In
contrast, Aonuma et al. (2018) superimposed the fields in a multiplica-
tive fashion after selecting the experimental conditions for which the
observable effect exceeded a particular threshold. The latter may be
disadvantageous since it uses only a small portion of the information
contained in the measurement. Both methods approximate a covariance
between the field strength and the MEP amplitude. However, this
covariance does not only depend on the correlative relationship between
the two, but also on the general magnitude of the field across conditions.
This leads to a strong bias towards voxels which generally receive higher
field strengths (i.e., on gyral crowns) for both approaches.

Our validation study confirmed the general optimality of the PA-45
coil orientation towards the fissura longitudinalis (Brasil et al., 1992;
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Mills et al., 1992). The slight deviations between the optima confirm the
inter-individual variability in optimal coil orientation observed, for
example, by Balslev et al. (2007) and Bungert et al. (2017).

4.2. Linking our results to simulations of neural excitation by TMS

Recent studies combined electric field simulations with compartment
models of neurons. Seo et al. (2017) have proposed the initial segments
of pyramidal cells, in layer 3 and 5, as the sites of primary excitation by
TMS. In contrast, Aberra et al. (2018) found that the terminals of the axon
collaterals, which are equally distributed in all directions around the
main axon, have the lowest thresholds. Our results, namely high
congruence factors of the overall magnitude and the magnitude of the
tangential component of the electric field in the gyral crown and rim,
indicate that the stimulation mechanism of TMS may indeed occur due to
the dense collateralization in all directions of pyramidal cells and in-
terneurons. This is in line with predictions from previous (Silva et al.,
2008; Salvador et al., 2011) and very recent modeling studies (Aberra
etal., 2020), providing a mechanistic explanation for our findings. Future
studies may extend the congruence factor approach to more detailed
neuronal models (Moezzi et al., 2018; Aberra et al., 2020) and
tractography-based fiber tracts (De Geeter et al., 2015; De Geeter et al.,
2016).

4.3. Factors influencing the stability of the results

The uncertainty and sensitivity analyses confirmed robust hotspots on
the gyral crowns, extending to upper parts of the sulcal wall of M1 (see
Fig. 10, Figs. S10-S12). The maxima of the means coincide well with the
results of the deterministic case (see Fig. 9). The relative standard devi-
ation (RSD) in the hotspots on the gyral crowns varied between 10 and
25%, depending on the subject. The uncertainties mainly translate into
uncertainties of the congruence factor on the anterior sulcal wall of the
precentral gyrus rather than the gyral crown, where the primary hotspot
was detected.

The hotspots on the anterior sulcal wall lie in line with the normal
vector of the head surface, towards the center of the brain. We hypoth-
esize that these spurious hotspots are projections from the gyral crown
hotspots. Since our approach is independent of the magnitudes of the
electric field, but sensitive to their spatial profiles, these spurious hot-
spots might result from insufficient electric field variance between these
locations.

Decomposing the variance by origin revealed a strong contribution
from GM and WM conductivity as well as from the accuracy of the
measured I/0 curves. This is in line with previous studies, which showed
that the electrical conductivity of GM and WM are the most influential
parameters considering the induced electric field in grey matter (Weise
et al., 2015; Codecasa et al., 2016; Saturnino et al., 2019). The impact of
the measurement uncertainty was lower for subject SubO8 compared to
the other subjects, which can be explained by the fact that the MEP
curves could be determined with a higher certainty (Table 1,
Table S1-S3). Nevertheless, its contribution was still high and special care
should be taken when recording characteristic regions of the I/0 curve,
like the turning points of the sigmoids, to reduce its influence on the
congruence factor. In contrast, the conductivity of CSF and the level of
anisotropy had a small impact on the congruence factor and could be
treated as deterministic in future analyses.

Note that, besides the factors that we investigated in our study,
further potential sources of error include inaccurate segmentation,
meshing, solving, and post-processing (Puonti et al., 2019a; Puonti et al.,
2019b; Huang et al., 2019).

4.4. Towards a clinically suitable TMS mapping procedure

To enable clinical applicability of the proposed method, for instance
in presurgical mapping, the experimental effort has to be reduced to a
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minimum while ensuring high reliability. Regarding our second research
question, the permutation analysis from Experiment II (Fig. 8,
Figs. S7-S9) revealed that six TMS conditions, at three different locations
around M1, with different orientations are sufficient to address the
localization problem at hand. Notably, the actual condition combinations
that result in a minimum hotspot area differ strongly between subjects.
This is likely due to inter-individual differences in anatomy and func-
tional brain organization. Using a high number of experiments increases
the stability and reliability of the solution. However, at the same time, it
also reduces the resolution by introducing more measurement uncer-
tainty. This became evident in the permutation study, in Fig. 8b, where
the minimal hotspot area had a minimum for k = 6 conditions and
slightly increased for higher values of k. Increasing the field variability is
a promising starting point for subject-specific optimization to determine
the optimal number and selection of coil positions and orientations
before the experiment. An even more sophisticated scheme could involve
maximizing the distinguishability between voxels based on their sensi-
tivity profiles. A sensitivity profile of a voxel is defined as the vector of E
fields caused by the different coil positions and orientations with iden-
tical stimulator intensity. It reflects how this particular E field value
depends on the coil configuration. To distinguish two voxels with respect
to their congruence factor, their sensitivity profiles should be as different
as possible. Establishing an optimization procedure that identifies the
best combination of coil positions and orientations to maximize the dif-
ferences in the sensitivity profiles between any two voxels in the region
of interest is a goal for future research.

Beyond the localization of the origin of MEPs, our approach allows
the localization of cortical areas functionally involved in other processes,
provided that it is possible to observe a quantitative response variable
that depends on the TMS induced electric field strength. Considering
adapted experimental paradigms, which are able to capture this, future
studies may use our approach for pre-surgical language or somatosensory
mapping purposes.

4.5. Study limitations

When using short inter stimulus intervals (ISI) like the 4 s we used in
Experiment II, potential carry over effects might affect the I/0 relation-
ships. In our study, the ISI was kept constant during each experiment and
the intensity of the TMS pulse was increased systematically and mono-
tonically. Therefore, the correlative relationship between electric field
and MEP amplitude should remain unaffected, even if the absolute value
of the MEP is changed. This is corroborated by the observation that the
results of subject Sub01 with different ISIs (4 and 5 s in Experiments I and
II, respectively) are strikingly similar, and confirmed by the successful
validation study.

Another potential limitation arises from the inhomogeneous distri-
bution of the MEP variance over the I/O curve (heteroscedasticity). The
variance is larger for the slope and upper saturation portions than for the
lower saturation portion of the curve (Fig. 3b), which may have affected
curve fitting. This problem could be ameliorated by a suitable data
transformation, as suggested in the literature (Nielsen, 1996; Goetz et al.,
2014). In fact, one could use sensitivity analysis as described in Section
3.4 to identify the data transformation that yields the smallest Sobol
coefficient and therefore has the least impact on the congruence factor.

To compute E-MEP curves, the vector valued electric field needs to be
converted into a scalar. This can be done by computing the magnitude in
3D (|E|), by computing the magnitude within the tangential plane ([E||),
or by projecting onto a particular direction, in our case the cortex normal
(E.). In the latter case, the projection value can be positive or negative.
Since we only used positive stimulator intensities in this study, each E-
MEP curve based on the normal component covers either only positive or
negative electric field values. As the excitability of cells potentially may
depend on the field orientation, positive and negative curves occurring in
one voxel cannot be compared directly. Therefore, we analyzed them
separately (see Supplementary Material Section 1.2). A more rigorous
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solution would be to use positive and negative intensities (by reversing
the current direction) to obtain complete E-MEP curves, which can then
be used to compute the congruence factor by using the shift approach in a
straightforward way.

So far, our method relies on the assumption that the experimental
effects can be explained by activity in a single cortical patch. This holds in
the current motor experiment, identifying the cortical origin of FDI
activation. In other experimental paradigms, however, several network
nodes may exist that might influence the effect. These nodes may also
influence each other in different ways, which would lead to partial cor-
relations. Incorporating connections into our model will tremendously
increase the computational cost and efficient algorithms will need to be
developed to combine the electric field profiles and the physiological
response data. Since numerous connections can be analyzed indepen-
dently, the problem can be analyzed in parallel and is thus well suited for
GPU or HPC implementations. The extension of our technique to identify
multivariate relationships between externally observable effects and
excitation of neural populations is subject of ongoing work.
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