
Statistical Learning with Similarity and
Dissimilarity Functions

vorgelegt von
Dipl.-Math.

Ulrike von Luxburg
aus Tübingen

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation

Promotionsausschuß:
Vorsitzender: Prof. Dr. F. Wysotzki
Berichter: Prof. Dr. S. Jähnichen
Berichter: Prof. Dr. K. Obermayer
Berichter: Prof. Dr. B. Schölkopf

Tag der wissenschaftlichen Aussprache: 24.11.2004

Berlin 2004
D83

Contents

I Introduction 9
1.1 Learning . 9
1.2 A statistical perspective on learning 10
1.3 Similarity and dissimilarity . 11
1.4 Overview of the results . 12
1.5 General definitions and notation 13

II Convergence of Spectral Clustering on Random Samples 17
1 Clustering from a theoretical point of view 17

1.1 The data space: probabilisic vs. deterministic 18
1.2 What is the goal of clustering if we have full knowledge? . . . 19
1.3 Clustering with incomplete knowledge 20
1.4 Convergence of clustering algorithms 20

2 Spectral clustering . 22
2.1 Graph Laplacians . 22
2.2 Spectral clustering algorithms 26
2.3 Why does it work? . 27

3 Mathematical background . 27
3.1 Basic spectral theory . 28
3.2 Integral and multiplication operators 30
3.3 Some perturbation theory . 31

4 Relating graph Laplacians to linear operators on C(X) 34
4.1 Definition of the operators . 35
4.2 Relations between the spectra of the operators 37

5 Convergence in the unnormalized case 39
5.1 Proof of Theorem 11 . 40
5.2 Example for λ ∈ rg(d) . 43

6 Convergence in the normalized case 44
6.1 Approach in C(X) . 44
6.2 Approach in L2(X) . 48

7 Mathematical differences between the two approaches 54
8 Interpretation of the limit partitions 56

8.1 An idealized clustering setting 56

8.2 Normalized limit operator on L2(P) in the idealized case . . . 58
8.3 Normalized limit operator in C(X) in the idealized case 59
8.4 Unnormalized limit operator in the idealized case 60
8.5 The general case . 60

9 Consequences for applications . 61
9.1 Normalized or unnormalized Laplacian? 61
9.2 Basic sanity checks for the constructed clustering 62

10 Convergence of spectra of kernel matrices: why an often cited result
does not apply . 62

11 Discussion . 65

IIIClassification in Metric Spaces Using Lipschitz Functions 69
1 The standard classification framework 70
2 Different ways of dealing with dissimilarities for classification 72

2.1 Globally isometric embeddings into a Hilbert space 73
2.2 Locally isometric embeddings into a Hilbert space 73
2.3 Isometric embeddings in Banach spaces 74
2.4 Isometric embeddings in pseudo-Euclidean spaces 75

3 Large margin classifiers . 75
4 Large margin classification on metric spaces 78
5 Lipschitz function spaces . 79
6 The Lipschitz classifier . 83

6.1 Embedding and large margin in Banach spaces 83
6.2 Derivation of the algorithm 84

7 Representer theorems . 86
7.1 Soft margin case . 87
7.2 Algorithmic consequences . 89
7.3 Hard margin case . 89
7.4 Negative results . 91

8 Error Bounds . 93
8.1 The duality approach . 93
8.2 Generalized entropy bound . 94
8.3 Covering number approach . 96
8.4 Complexity of Lipschitz RBF classifiers 97

9 Choosing subspaces of Lip(X) . 99
10 Discussion . 104

IV A Compression Approach to Support Vector Model Selection 107
1 Model selection via compression bounds 107

1.1 Model selection . 107
1.2 Data compression and learning 108

2 Compression Coefficients for SVMs 111
2.1 Relation between margin and coding precision 112
2.2 Using the shape of the data in the feature space 116

2.3 Support vectors help reducing the coding dimension 119
2.4 Reducing the coding dimension with kernel PCA 120
2.5 A pure support vector code 122

3 Experiments . 123
3.1 The setup . 123
3.2 Results . 125

4 Conclusions . 128

Notation 155

Bibliography 159

Thanks!
For me, being a PhD student was a constant source of ups and downs, times where
I would have liked to throw in the towel, and times where I was very excited about
my work. Finally I made it, and this would not have been possible without the
support and inspiration I received by many people:

Bernhard Schölkopf guided me through my whole PhD time. He was always ready
to give advice when I needed it and at the same time gave me the freedom and
encouraged me to go my own way.

Alex Smola and Bob Williamson invited me to spend half a year at the Research
School of Information Sciences and Engineering in Canberra. They introduced me
to the field of machine learning, and I am grateful for their hospitality.

Most of all I am indebted to Olivier Bousquet, without whom this thesis never would
have been completed. In countless discussions he explained me his view of learning
theory, patiently answered my questions, and gave valuable hints and suggestions for
my work. Whenever I came up with new ideas or results he shared my enthusiasm,
always egging me further by asking exactly the right questions.

Doing a PhD is one thing, but doing it in such a stimulating environment as in our
department is another thing. I would like to thank the members of the AGBS, all
of whom were always generous to share their ideas and opinions and to give advice.
In particular I am indebted to Matthias Hein, for many fruitful discussions and
moral support; Malte Kuss, never lost for cheerful comments and suggestions; Felix
Wichmann, always in the mood for a pleasant little chat at the coffee machine; and
Jeremy Hill and Karin Bierig, my office mates.

Finally I would like to thank my family, especially Volker.

Chapter I

Introduction

This thesis explores statistical properties of machine learning algorithms from dif-
ferent perspectives. We will investigate questions arising both in the fields of super-
vised and unsupervised learning, dealing with diverse issues such as the convergence
of algorithms, the speed of convergence, generalization bounds, and how statisti-
cal properties can be used in practical machine learning applications. All topics
covered have the common feature that the properties of the similarity or dissimi-
larity function on the data play an important role and are the focus of our attention.

To set the scene for the rest of the thesis we want to pick up the terms “learning”,
“statistical”, and “similarity and dissimilarity functions” from the title and briefly
introduce their meaning in our context. This will be done on an informal level.
Precise mathematical definitions will be given in the main part of the thesis, the
idea being that all three main chapters can be read independently.

1.1 Learning

Learning is the process of inferring general rules from given examples. The examples
are instances of some input space (pattern space), and the rules can consist of some
general observation about the structure of the input space, or have the form of a
functional dependency between the input and some output space. In this thesis we
will be mainly concerned with two types of learning problems: classification and
clustering. In both problems, the goal is to divide the input space into several re-
gions such that objects within the same region “belong together” and “are different”
from the objects in the other regions. The difference between the two problems is
that classification is a supervised learning technique while clustering is unsupervised.

In classification we are given a set of training points (xi, yi)i=1,...,n, each of them
consisting of a pattern xi and its label yi. The goal is to infer a rule which can assign
the correct label y to a new, previously unseen pattern x. We will introduce the
standard mathematical framework for classification in Chapter III. In this frame-
work it is well understood what we want to achieve, the question is only how we can

10 Chapter I

reach this goal efficiently under different conditions.

In clustering, our training data only consist of the training patterns (xi)i=1,...,n,
without any label information. Here the goal is less well-defined. We want to
discover “meaningful” classes in the data, but we have no information about how
these classes might look or how many classes we actually have to find. Hence,
for clustering both questions “what we want to achieve” and “how we do it” are
interesting issues. These questions will be discussed in detail in Chapter II.

1.2 A statistical perspective on learning

Learning is often studied in a probabilistic setting. For supervised learning, the data
space is given in form of a probability space (X×Y , σ(BX×BY), P) where X is the
pattern space, Y the label space, BX and BY are σ-algebras on X and Y (which we
will omit in the following for simplicity), and P is a joint probability distribution of
patterns and labels. We assume that the probability measure P is unknown, but that
we can sample points from X×Y according to P . The training points (xi, yi)i=1,...,n

are supposed to be drawn independently of each other according to the distribution
P . The model for unsupervised learning works analogously. As in this case there is
no label space Y , we model the pattern space by a probability space (X ,BX , P) and
again draw the training points (xi)i=1,...,n independently according to P .

Due to the randomness in the generation of the training set it is natural to study
properties of learning algorithms from a statistical point of view. Typically, one
is interested in convergence issues on the one hand and the finite-sample perfor-
mance on the other hand. For example, consider the following questions (which for
simplicity are formulated for classification only):

• Does the classifier constructed by a given algorithm on a finite sample converge
to a limit classifier if the sample size tends to infinity?

• In case of convergence, is the limit classifier the best one we can achieve? If
not, how far is it away from the optimal solution?

• How fast does the convergence take place?

• How many sample points do we need to be able to construct a good classifier on
the finite sample? Can we estimate the difference in performance between the
finite sample classifier and the optimal solution, given only the finite sample?

• Is the result achieved on the finite sample stable, that is, does it change a lot if
we randomly draw another training set or replace some of the training points
by different ones?

Answers to some special cases of those questions are the core of this thesis. In
Chapter II the focus will be on the convergence of clustering algorithms. For a cer-
tain class of algorithms, so-called spectral clustering algorithms, we will investigate

Introduction 11

under which conditions convergence takes place and whether the limit clustering is
a good clustering of the data space. In Chapter III we will derive a framework for
classification on metric spaces. Among other topics, we will discuss the convergence
and speed of convergence of the algorithms via generalization bounds. Finally, we
will investigate in Chapter IV how certain statistical statements, namely generaliza-
tion bounds in terms of compression coefficients, can be adopted for model selection
purposes.

1.3 Similarity and dissimilarity

In both classification and clustering, in addition to the training points we need to
have some information about the relation of the training points to each other. Of-
ten this additional information consists of similarity or dissimilarity measurements
between the data points. A dissimilarity function d : X×X → R is usually under-
stood to measure some kind of distance between points. In particular, dissimilarity
functions are supposed to be increasing the more dissimilar two points get. The
terms dissimilarity and distance are used synonymously. Special cases of dissimi-
larity functions are metrics (see below). Similarity functions s : X×X → R (also
called affinity functions) are in some sense the converse to dissimilarity functions:
the similarity between two objects should grow if their dissimilarity decreases. In
particular, a similarity function is supposed to increase the more similar the points
are. Kernel functions are a special type of similarity functions (see below). In Sec-
tion 1.5 we will define these terms more precisely and discuss their properties and
relations to each other.

Spectral clustering is an algorithm which relies on a given similarity function on
the training points. In Chapter II we will investigate which properties this similar-
ity function has to satisfy to ensure the convergence of different spectral clustering
algorithms. Chapter III deals with dissimilarities. We study in detail the structure
of metric spaces and use our insights to construct a large margin classifier on metric
spaces. Finally in Chapter IV, we study how parameters of a similarity function,
such as a Gaussian kernel, can be determined from the training data.

One topic which will not be discussed in this thesis is the question how we choose
a (dis)similarity function on the input space in the first place. Obviously, this choice
will be crucial for the success of a learning algorithm, and it is important to pick
a (dis)similarity function that reflects the relevant properties of the data. If such a
(dis)similarity function is unknown, then one possible approach is to try and learn
it from the training data. Approaches to do this have for example been discussed in
Xing et al. (2003), Bie et al. (2003), Bousquet and Herrmann (2003), and Lanckriet
et al. (2004). In this thesis, we will not discuss this question any further and just
assume the (dis)similarity function to be given. In the last chapter, however, we will
study how parameters of a given type of similarity functions can be determined.

12 Chapter I

1.4 Overview of the results

Now we want to give a short overview over the topics and results covered in the
following chapters.

Chapter II: In this chapter we will study the convergence of a certain class
of clustering algorithms, namely spectral clustering. Those algorithms rely on prop-
erties of graph Laplacian matrices, which are derived from the similarity matrix on
the training points. The graph Laplacians are used either directly (unnormalized)
or after a normalization step. Normalized or unnormalized spectral clustering then
uses the coordinates of the first few eigenvectors of the normalized or unnormalized
graph Laplacian, respectively, to obtain a partition of the training points. The first
question we will investigate is whether the clustering constructed on a finite sample
converges to some “limit clustering” of the whole input space if the sample size
tends to infinity. Secondly, if convergence takes place we want to find out whether
the limit clustering is actually a useful partition of the input space or not. The
methods used to solve these questions originate in perturbation theory, numerical
integration theory, and Hilbert-Schmidt operator theory. It will turn out that in
all situations where normalized spectral clustering can be successfully applied, its
clusterings converge to a limit clustering if we draw more and more data points.
In the unnormalized case however, we need some strong additional conditions to
guarantee the convergence of spectral clustering, and there exist examples where
these conditions are not satisfied. Assuming convergence takes place, we then in-
vestigate the form of the limit clustering. It turns out that in both the normalized
and the unnormalized case, if convergence takes place, then the limit partition has
intuitively appealing properties and accomplishes the overall goal of clustering to
group similar points in the same cluster and dissimilar points in different clusters.
Some parts of the results in this chapter have been published in von Luxburg et al.
(2004b), von Luxburg et al. (2004a).

Chapter III: Here the goal is to develop a framework for large margin classifi-
cation in metric spaces. We want to find a generalization of linear decision functions
for metric spaces and define a corresponding notion of margin such that the decision
function separates the training points with a large margin. It will turn out that
using Lipschitz functions as decision functions, the inverse of the Lipschitz constant
can be interpreted as the size of a margin. In order to construct a clean mathe-
matical setup we isometrically embed the given metric space into a Banach space
and the space of Lipschitz functions into its dual space. With this construction it is
possible to construct a large margin classifier in the Banach space which also has a
geometrical meaning in the metric space itself. We call this classifier the Lipschitz
classifier. The generality of our approach can be seen from the fact that several
well-known algorithms are special cases of the Lipschitz classifier, among them the
support vector machine, the linear programming machine, and the 1-nearest neigh-
bor classifier. Then we proceed to analyze several properties of this algorithm. We

Introduction 13

first prove several representer theorems. They state that there always exist solutions
of the Lipschitz classifier which can be expressed in terms of distance functions to
training points. Then we provide generalization bounds for Lipschitz classifiers in
terms of the Rademacher complexities of some Lipschitz function classes. Finally we
investigate the relationship of the Lipschitz classifier to other classifiers that can be
obtained by embedding the metric space into different Banach spaces. The results
of this chapter can also be found in von Luxburg and Bousquet (2003, 2004).

Chapter IV: In the last chapter we investigate connections between statis-
tical learning theory and data compression on the basis of support vector machine
(SVM) model selection, cf. von Luxburg et al. (2004c). Inspired by several gener-
alization bounds we construct “compression coefficients” for SVMs which measure
the amount by which the training labels can be compressed by a code built from the
separating hyperplane. The main idea is to relate the coding precision to geometri-
cal concepts such as the width of the margin or the shape of the data in the feature
space. The compression coefficients derived combine well known quantities such as
the radius-margin term R2/ρ2, the eigenvalues of the kernel matrix, and the number
of support vectors. To test whether they are useful in practice we ran model selec-
tion experiments on benchmark data sets, and we found that compression coefficients
are fairly accurate in predicting the parameters for which the test error is minimized.

1.5 General definitions and notation

In this section we want to introduce those definitions and notations which will be
used in all following chapters. Some more specific definitions will be made in the
respective chapters. For an overview over most of the symbols used see also the
notation table on page 155. The input space will always be denoted by X , the output
space by Y . The training points will be named (xi, yi)i=1,...,n or (Xi, Yi)i=1,...,n. We
use the latter notation if we want to stress the fact that the training points are
random variables (following the convention in probability theory to denote random
variables with capital letters). The sample size will be always be denoted by n.
Curly letters usually denote spaces: X the input space, Y the output space, H a
Hilbert space, and F and G general function spaces. The symbols 1 and 0 denote
the function (or vector) which is constant 1 or 0, respectively. The characteristic
function of a set A is denoted 1A. Dissimilarity functions and metrics will be denoted
by d, similarity functions by s and k.

Dissimilarity functions

As in all three chapters similarity and dissimilarity functions play an important
role we now want to introduce them formally and discuss several properties which
are used in the machine learning and statistics literature to describe (dis)similarity
functions.

14 Chapter I

Consider the following properties of distance functions (cf. Section 13.4 of Mardia
et al., 1979, and Section 2 of Veltkamp and Hagedoorn, 2000):

(D1) d(x, x) = 0

(D2) d(x, y) ≥ 0 (non-negativity)

(D3) d(x, y) = d(y, x) (symmetry)

(D4) d(x, y) = 0 =⇒ x = y (definiteness)

(D5) d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

Conditions (D1) and (D2) are rather harmless and are in accordance with the
intuitive meaning of “distance”. A function which satisfies (D1) and (D2) is called a
dissimilarity function or a distance function. Already the symmetry condition (D3)
is not satisfied for all commonly used dissimilarity functions, a prominent example
being the Kullback-Leibler divergence. Condition (D4) deals with invariances in
the input space. Different points which have distance 0 from each other usually
cannot be discriminated by a learning algorithm and are hence treated as being
members of the same equivalence class. For this reason one should be very careful
with dissimilarity functions not satisfying (D4). If a dissimilarity function satisfies
the axioms (D1)-(D3) and (D5) it is called a semi-metric, and it is called a metric
if (D1) - (D5) are satisfied. A space (X , d) will be called dissimilarity space or
metric space, depending on whether d is a dissimilarity or a metric. A matrix
D := (d(xi, xj))i,j=1,...,n of dissimilarities between points x1, ..., xn ∈ X is called
dissimilarity matrix or distance matrix, independently of the specific properties of
d.

An important issue in the context of distance functions is the question under
which conditions a given dissimilarity space (X , d) can be embedded isometrically
into Euclidean spaces H. Here the goal is to find a mapping Φ : X → H such
that d(x, y) = ‖Φ(x) − Φ(y)‖ is satisfied for all x, y ∈ X . As distances in vector
spaces always satisfy all axioms (D1) - (D5), isometrically embedding a dissimilarity
space into a vector space is only possible if the dissimilarity function is a metric.
This is a necessary condition, but it is not sufficient. A characterization of met-
ric spaces which can be embedded isometrically into Hilbert spaces was given by
Schoenberg (1938): A metric space (X , d) can be embedded isometrically into a
Hilbert space if and only if the function −d2 is conditionally positive definite, that
is −

∑l
i,j=1 cicjd

2(xi, xj) ≥ 0 for all l ∈ N, xi, xj ∈ X , and for all ci, cj ∈ R with∑
i ci = 0. Such a metric is called a Euclidean metric. Contrary to embeddings into

Hilbert spaces, isometric embeddings into certain Banach spaces can be constructed
for arbitrary metric spaces. Such constructions will be discussed in detail in Section
2.

Introduction 15

Another trick which is sometimes necessary is to transform a non-metric dissim-
ilarity function into a proper metric. This can for example be done as follows:

From dissimilarities to metrics:

• Let d be a distance function and x0 ∈ X an arbitrary point. Then d̃(x, y) :=
|d(x, x0)−d(y, x0)| is a semi-metric on X (cf. Veltkamp and Hagedoorn, 2000).

• Let (X , d) a finite dissimilarity space such that d is symmetric and definite.
Then the distance function

d̃(x, y) :=

{
d(x, y) + c for x 6= y

0 for x = y

with c ≥ maxp,q,r∈X |d(p, q)+d(p, r)+d(q, r)| is a metric (Theorem 1 in Gower,
1986).

• If D is a dissimilarity matrix, then there exist constants h and k such that the
matrices with the elements d̄ij = (d2

ij + h)1/2 (i 6= j) and d̃ij = dij + k (i 6= j)
are Euclidean (Theorem 7 in Gower, 1986).

• If d is a metric, so are d+ c, d1/r, d/(d+ c) for all c > 0 and r ≥ 1 (Theorem
2 in Gower, 1986).

• Let w : R→ R a monotonically increasing, continuous function which satisfies
w(x) = 0 ⇐⇒ x = 0 and w(x+ y) ≤ w(x) + w(y). If d(·, ·) is a metric, then
also w(d(·, ·)) is a metric. Examples for w are x/(1 + x), tan−1(x) or log(x)
(Section 4.1. in Veltkamp and Hagedoorn, 2000).

Similarity functions

In the context of similarity functions consider the following properties (cf. Sections
13.4 and 14.2.3 of Mardia et al., 1979):

(S1) s(x, x) > 0

(S2) s(x, y) = s(y, x) (symmetry)

(S3) s(x, y) ≥ 0 (non-negativity)

(S4)
∑n

i,j=1 cicjs(xi, xj) ≥ 0 for all n ∈ N, ci ∈ R, xi ∈ X (positive definiteness)

None of these properties is an undisputable feature of what one intuitively un-
derstands under a similarity function, maybe with the exception of (S1). We call
any function s which satisfies (S1) a similarity function or affinity function. As in
the case of distances, symmetry is a convenient property, although it is not satisfied
in all applications. The non-negativity is not satisfied for two standard examples:
correlation coefficients and scalar products. Note however, that bounded similarity

16 Chapter I

function s can always transformed into non-negative similarity functions by adding
a constant offset, that is by considering s̃(x, y) := s(x, y) + c for some large enough
constant c. Moreover, if s is a positive definite similarity function, then s̃ is still at
least conditionally positive definite (cf. Schölkopf, 2001). In general, positive defi-
niteness is a very strong requirement which is mainly satisfied by scalar products in
Hilbert spaces. Similarity functions which are positive definite will be called kernel
functions.

Machine learning algorithms are usually designed to deal with either similarities
or dissimilarities. In general it is recommended to choose an algorithm which can
deal with the type of data we are given, but sometimes it may become necessary
to convert similarities into dissimilarities or vice versa. In some situations this can
be done without loosing information, especially if the similarities and distances are
defined by a scalar product in an Euclidean space. If this is not the case, several
heuristics can be invoked. The general idea is to transform a similarity into a dis-
similarity function or vice versa by applying a monotonically decreasing function.
This is according to the general intuition that a distance is small if the similarity is
large, and vice versa. Some ways how such a transformation can be done are listed
in the following:

From similarities to dissimilarities:

• If the similarity function is a scalar product in a Euclidean space (i.e., it is
positive definite), we can compute the corresponding metric by

d(x, y)2 = 〈x− y, x− y〉 = 〈x, x〉 − 2〈x, y〉+ 〈y, y〉

• Assume that the similarity function is normalized, that is 0 ≤ s(x, y) ≤ 1 and
s(x, x) = 1 for all x, y ∈ X . Then d := 1− s is a distance function (cf. Gower,
1985, Cox and Cox, 2001).

From dissimilarities to similarities:

• If the given distance function is Euclidean, we can compute a positive definite
similarity function by

s(x, y) :=
1

2
(d(x, 0)2 + d(y, 0)2 − d(x, y)2)

where 0 is an arbitrary point in X playing the role of an origin.

• If d is a dissimilarity function, then a non-negative decreasing function of d is a
similarity function, for example s(x, y) = exp(−d(x, y)2/t) for some parameter
t or s(x, y) = 1

1−d(x,y)
.

Chapter II

Convergence of Spectral
Clustering on Random Samples

In this chapter we will study the problem of clustering from a theoretical point of
view. In general, it seems very difficult to define “what clustering is” in a precise
mathematical framework. But we will show that even if we cannot answer this
general question, there are some questions which emerge naturally once we start to
investigate specific clustering algorithms in a probabilistic framework. Perhaps the
most important requirement for clustering algorithms will be that they work “con-
sistently”: the clustering constructed on finite samples drawn from some underlying
distribution converges to a fixed limit clustering of the whole data space when the
sample size tends to infinity. We will then investigate the question of consistency in
detail for one certain class of algorithms, namely spectral clustering algorithms. It
will turn out that for some versions of spectral clustering, convergence always takes
place, while for some other versions this is not necessarily the case.

1 Clustering from a theoretical point of view

Intuitively, the ”goal of clustering” is to form several groups among a given set of
“objects” such that objects in the same group “belong together” and objects in dif-
ferent groups are “different from each other”. Clearly, this formulation is too general
to allow to describe clustering with one single mathematical framework. Instead,
clustering is studied in many different settings and with many different objectives.
This is due to the fact that clustering should discover previously unknown “struc-
ture” in given data, and the type of structure as well as the type of data varies from
application to application. Contrary to classification, where the ultimate goal is to
achieve as good results as the optimal Bayes classifier (cf. Section III.1), there is no
such indisputable optimal solution for clustering. As a consequence it is difficult to
assess the quality of a given clustering, and even more difficult to assess the quality
of a given clustering algorithm.

18 Chapter II

There exist many attempts to formalize the problem of clustering by introducing
systems of axioms to be satisfied by a clustering algorithm, see for example Jardine
and Sibson (1971), Wright (1973), Hartigan (1975), or Puzicha et al. (2000). Usu-
ally, the axioms chosen are rather intuitive, such as independence under reordering
or rotation of the sample points. The goal of defining such systems of axioms is to
restrict the class of clustering algorithms to those which produce solutions consis-
tent with all axioms. Kleinberg (2003) carries this to an extreme. He investigates
a system of only three axioms: scale invariance, richness (every partition should in
principle be possible), and consistency (shrinking distances of points within a cluster
and expanding distances between points in different clusters should not affect the
clustering). Even though all these axioms are intuitively very plausible and seem to
be quite innocuous, Kleinberg can then show that these three axioms together are
inconsistent. This means that there exists no clustering function that can satisfy all
of them simultaneously.

The drawback of all those axiomatic approaches is that even though usually
all axioms are rather intuitive, the particular choice of the set of axioms is a bit
arbitrary and lacks justification. This emphasizes the fact that it is inherently
difficult to formalize the problem of clustering. Consequently, in practice clustering
is performed in many different frameworks, with many different objectives, and in
most cases with more or less heuristic methods. In the following we want to divide
the general question “what clustering is” into several subquestions which might be
easier to answer.

1.1 The data space: probabilisic vs. deterministic

One important aspect that has to be clarified is how we assume that our training
points have been generated. One approach is to assume that someone just gives us
a fixed set of objects. We do not know where they come from or how they were
generated, and we have no means of getting additional knowledge on the objects.
An example where this situation occurs is image segmentation. We are just given
the pixel values of some digital image, and the goal is to partition the image into
different regions such as foreground and background. We call this situation the “de-
terministic setting”. The converse assumption is to consider the objects as sample
points generated by some unknown, underlying probability distribution P on some
data space X . In this case it is in principle possible to gain extra knowledge on
the data by drawing more and more sample points. We refer to this framework
as “the probabilistic setting”. The main difference between both settings is what
we consider to be the “full knowledge” about our data. In the first case, the finite
sample is the full knowledge. In the probabilistic setting, the complete knowledge
of the problem means to know the underlying distribution P . In this case, our finite
sample only contains some part of the information, and in principle we can gain
more information by drawing more and more sample points.

Convergence of Spectral Clustering 19

The most important question we have to answer when we want to do clustering
is now:

1.2 What is the goal of clustering if we have full knowledge?

Let us first discuss the probabilistic case. A point of view which is often adopted in
the probabilistic setting is that clustering should identify high-density regions which
are separated from each other by low-density regions. Note that this definition im-
plicitly requires some kind of distance d on the data space X in order to define what
”density” means. A “density” is always taken with respect to some base measure
of volume on the space X which plays the role of a uniform distribution. In R

d

this is simply the Lebesgue measure. A density tells us how the given probability
distribution deviates from the uniform one. One way to define a “uniform distri-
bution” in arbitrary spaces is to require some distance function d on the space X
and call a distribution (approximately) “uniform” if it assigns (approximately) the
same volume to all ε-balls of the space. Note that this interpretation implies that
by defining a metric on the data space we implicitly define the uniform distribution,
and hence what we consider to be a totally unclustered space.

Another point of view which requires a similarity function k rather than a dis-
tance function is to look at clustering via diffusion processes. We define a diffusion
process on the data space such that the transition probability between two points
of the space is proportional to the similarity between two points, weighted by the
probability distribution on the space: for some point x ∈ X and a measurable set
A ⊂ X we define a transition kernel by q(x,A) :=

∫
A
k(x, y)dP (y). Then we define

the diffusion process on X induced by this transition kernel. The goal of clustering is
then to identify two (or several) clusters such that the probability of staying within
the same cluster is high, and the probability of transitioning from one cluster to
another one is low.

The deterministic case, where the given sample already contains all information
we can get, can be seen as a special case of the probabilistic one with known proba-
bility distribution. We simply define our data space X to coincide with the sample,
and set the sampling distribution P to be the uniform distribution assigning the
weight 1/n to each of those points. Now we can use any of the methods above to
define what “the goal of clustering” should be, either using a similarity or a dissim-
ilarity function.

There are many more ways of defining what clustering should achieve, and there
exists a huge literature suggesting various more or less heuristically derived criteria.
Ultimately, it should depend on the application which one we choose, and here
we do not want to judge these different definitions. But we want to stress that it
is important to define what we would like to achieve in clustering if we had full
knowledge.

20 Chapter II

1.3 Clustering with incomplete knowledge

Once we have identified what we want to achieve by clustering in the case of complete
knowledge, we have to study how we can approximate this goal if we only have
partial knowledge. This situation occurs if we assume a probabilistic setting and
are given a finite sample from some larger data space drawn according to some
unknown probability measure P . We then have incomplete knowledge insofar, as
we only know some points of the (possibly infinite) input space and hence we only
know the empirical distribution Pn instead of the true distribution P . Now we
want to construct a clustering on the finite sample which comes close to the “true
clustering” which we would construct if we knew the whole distribution. Ideally,
we would like to minimize a loss function between the true clustering and the one
constructed on the finite sample. But as clustering is an unsupervised problem,
this is impossible. What we can do instead is to investigate clustering on the level
of clustering algorithms. The above questions, placed in the context of a given
clustering algorithm, are then the following:

• Do the clusterings constructed by the algorithm on finite samples converge to
some limit clustering if we draw more and more sample points?

• Is this limit clustering actually the one we wanted to achieve in the first place?

Surprisingly, even though there exists a huge literature on clustering algorithms,
those two questions are very seldom addressed. On the one hand this is due to
the fact that studying convergence properties is very difficult for many clustering
algorithms. But on the other hand it is also due to the fact that the two questions
“What should we do in the complete knowledge case” and “How can we approximate
our goal in the finite sample case” are often mixed up and not treated separately.
In the following we want to review some algorithms where convergence has been
studied.

1.4 Convergence of clustering algorithms

One class of clustering algorithms where convergence is well-established is model-
based clustering (e.g., Zhong and Ghosh, 2003). It is assumed that the data points
were generated by a mixture of Gaussians (or by some other parametric family of
distributions), and the goal is to group those points together which were generated
by the same Gaussian. In this setting, clustering reduces to the standard statisti-
cal problem of estimating the parameters of the model. The convergence of those
statistical procedures is very well studied. Note however, that often model based
approaches are too restrictive in practice. In a model-free approach, the analogue
procedure would be to use density estimation techniques to identify high-density
regions (e.g. Cuevas et al., 2001). Even though density estimation can be carried
out consistently, there are two main disadvantages of this approach. Firstly, density

Convergence of Spectral Clustering 21

estimation is very difficult in high-dimensional spaces, and many applications defi-
nitely are high dimensional (for example in bioinformatics). Secondly, using density
estimation to solve clustering violates the principle that we should never solve a
more difficult problem as an intermediate step than the one we actually want to
solve (cf. Section 1.9 of Vapnik, 1995).

Two very simple, but widely used clustering paradigms are k-centers and single
linkage. Both have been studied in terms of their convergence properties.
Given n data points x1, ..., xn in a vector space, the k-centers approach constructs
k “empirical cluster centers” c1, ..., ck that minimize

n∑
i=1

min
j=1,...,k

d(xi, cj)
2.

In Pollard (1981) it has first been established that under some conditions (essen-
tially, the data space being a Euclidean space and the true centers being unique) the
empirical cluster centers converge almost surely to the “true” cluster centers which
are the minimizers of

∫
minj=1,...,k |x−cj|2dP (x) when the number of training points

increases. Subsequently, many authors have achieved similar results under weaker
conditions, see Lember (2003) for an overview of the most recent results. Note
however, that the k-means algorithm, which is the standard algorithm to construct
empirical cluster centers, only approximates the empirical cluster centers and can
get stuck in local minima. Hence, the convergence of the empirical cluster centers
to the true cluster centers does not imply that the k-means algorithm converges to
the true centers, and in fact it does not in general (cf. Bottou and Bengio, 1995).
There exist many different algorithms which try to find k-centers empirically on a
given finite sample of points, and some of them have theoretical guarantees. For
instance, the algorithm in Hochbaum and Shmoys (1985) can be shown to be worse
than the optimal solution at most by factor of 2, and the centers constructed by the
algorithm proposed in Niyogi and Karmarkar (2000) can be shown to converge to
the true centers (but here the true centers are determined by minimizing a different
loss function than the least squares loss).

The class of linkage algorithms constructs a hierarchy of clusterings. All linkage
algorithms start by assuming that each data point is one cluster. Then they recur-
sively link the two clusters which are “closest” to each other. What “closest” means
varies between the linkage algorithms: in single linkage, the distance between two
clusters is defined as the smallest distance between its respective points. For com-
plete linkage, the distance between two clusters is defined as the maximum distance
between the respective points, and for average linkage it is some kind of average
distance between the respective points. In Hartigan (1981), single linkage is shown
to be “fractionally consistent”: If there exist two disjoint high density regions which
are separated by a region with sufficiently small density, then single linkage will
asymptotically identify two clusters which come arbitrary close to the true clusters,

22 Chapter II

and in the limit, the distance between those two sets will be positive. But small
clusters might not be correctly detected by single linkage. Hence, single linkage
can be used to correctly identify distribution modes separated by deep valleys. In
contrast, complete and average linkage are consistently misleading and asymptoti-
cally construct clusters which depend on the range of the data and not on the shape
of the probability distribution (cf. Hartigan, 1981, 1985). These differences can be
explained by the fact that single linkage mainly relies on short distances (i.e., lo-
cal neighborhoods) while especially complete linkage relies on large distances (i.e.,
it mainly considers global information). The latter is clearly problematic, as local
properties are often more important than the global ones (cf. Section III2.2). More-
over, most heuristic dissimilarity measures are only reliable on a local scale, and not
on a global one.

2 Spectral clustering

Above we explained that for a given clustering algorithm there are two main issues
to discuss: Does it converge, and if yes, is the limit clustering a reasonable clustering
of the data space? In the remaining part of this chapter we want to discuss these
questions for a special family of clustering algorithms, namely for spectral clustering.
In general, spectral clustering proceeds by analyzing the properties of eigenvectors
of certain matrices which are derived from similarity matrices on the data points.
Therefore we first have to introduce the type of matrices which are most commonly
used in spectral clustering, the so called graph Laplacians.

2.1 Graph Laplacians

In this section we want to introduce the unnormalized and normalized graph Lapla-
cian on finite weighted graphs. Comprehensive treatments of properties of graph
Laplacians can be found in in Chung (1997) for the normalized case and in Mohar
(1991) for the unnormalized case.

Assume we are given a finite set X := {X1, ..., Xn} of points and a function
k : X×X → R that measures the pairwise similarities between those points. We
will interpret the given data as a weighted, undirected graph as follows. The nodes
correspond to the data points, and two nodes Xi and Xj are connected by an edge
if k(Xi, Xj) 6= 0. The weight of the edge is then given by k(Xi, Xj) (cf. Figure 1).

The matrix Kn := (k(Xi, Xj))i,j=1,...,n containing the pairwise similarities be-
tween the data points is called the similarity matrix (or affinity matrix). The degree
di of a node Xi in the graph is the sum of the weights of all adjacent edges, that is
di :=

∑
j=1,...,n k(Xi, Xj). The degree matrix Dn is defined as the diagonal matrix

containing the degrees d1, ..., dn on the diagonal. The unnormalized graph Lapla-
cian is defined as the matrix Ln = Dn − Kn. There are two common ways of

normalizing Ln. Either we consider L′n := D
−1/2
n LnD

−1/2
n or L′′n := D−1

n Ln. To

Convergence of Spectral Clustering 23

X
3

X
2

X
4

X
1

k34
k
13

k
12

k
24

k
14

k
23

Figure 1: Interpretation of the data as a graph: data points Xi correspond to nodes, and
the edge weights are given by the similarities kij := k(Xi, Xj) of the adjacent points.

ensure that the normalizations are well defined we have to assume in both cases
that di > 0 for all i = 1, ..., n. Defining the corresponding normalized similarity

matrices H ′
n := D

−1/2
n KnD

−1/2
n and H ′′

n := D−1
n Kn we can see that L′n = Id − H ′

n

and L′′n = Id − H ′′
n. The matrix H ′

n has the advantage of being symmetric (if k
is symmetric), while H ′′

n is a stochastic matrix. Below we will see that there is a
close relationship between the eigenvalues and eigenvectors of the four matrices L′n,
H ′

n, L′′n, and H ′′
n. Thus, properties about the spectrum of one of the matrices can

be reformulated for the three other matrices as well. In particular, for studying
convergence properties of spectral clustering it will make no difference whether we
work with the normalization L′n or L′′n. In the following we will call both L′n and L′′n
normalized graph Laplacian. Which of the two matrices we use will depend on the
context.

Now we want to summarize some properties of the spectrum of normalized and
unnormalized Laplacians. Here we make the assumption that k is non-negative and
symmetric, as these are the standard assumptions in spectral clustering (this will
be explained below).

Proposition 1 (Spectrum of Ln) Let k be symmetric and non-negative. Then
the following properties hold:

1. Ln is positive semi-definite.

2. The smallest eigenvalue of Ln is 0 with eigenvector 1. If k is strictly posi-
tive, the eigenvalue 0 has multiplicity one. In general, the multiplicity of the
eigenvalue 0 equals the number of connected components of the graph.

3. The largest eigenvalue λn of Ln satisfies λn ≤ 2 maxi=1,...,n di.

Proof. Part (1) follows directly from the fact that for each v ∈ R
n

vtLnv =
n∑

i,j=1

vi(vi − vj)k(Xi, Xj) =
1

2

n∑
i,j=1

(vi − vj)
2k(Xi, Xj) ≥ 0.

24 Chapter II

Part (2): As k is symmetric, the matrix Ln is symmetric. Hence it possesses n
real-valued eigenvalues λ1 ≤ ... ≤ λn (counted with multiplicity). For the constant
one vector 1 we have Ln1 = 0, hence 0 is an eigenvalue of Ln. By part (1) it is clear
that it is the smallest one. The statement about the multiplicity of the eigenvalue
0 can be found for example in Theorem 2.1. in Mohar (1991).

Part (3): It is always the case that the absolute value of the largest eigen-
value is bounded by the operator norm. If we consider the row sum norm ‖Ln‖ :=
maxi=1,...,n

∑
j |lij| (which is the operator norm of Ln with respect to the infinity

norm on R
n) it is easy to see that

‖Ln‖ = max
i=1,...,n

(
∑
j 6=i

|kij|+ |di − kii|) = 2 max
i=1,...,n

∑
j 6=i

kij ≤ 2 max
i=1,...,n

di,

hence λn ≤ 2 maxi=1,...,n di. ,

Now we consider the normalized case. Here we assume that di > 0 for all i to
ensure that the normalized matrices are well-defined.

Proposition 2 (Spectrum of L′
n, L′′

n, H ′
n, and H ′′

n) Let k be symmetric and
non-negative. Assume that di > 0 for each i = 1, ..., n. Then the following properties
hold:

1. v ∈ R
n is eigenvector of L′n with eigenvalue λ iff D

−1/2
n v is eigenvector of L′′n

with eigenvalue λ.

2. v is an eigenvector of L′n with eigenvalue λ iff v is eigenvector of H ′
n with

eigenvalue 1− λ.

3. v is an eigenvector of L′′n with eigenvalue λ if v is an eigenvector of H ′′
n with

eigenvalue 1− λ.

4. The eigenvalues of Hn
′′ satisfy −1 ≤ λ ≤ 1. The largest eigenvalue is 1 with

the constant one vector 1 as eigenvector. Its multiplicity coincides with the
number of connected components in the similarity graph. All eigenvectors with
eigenvalue 1 are piecewise constant on the connected components.

5. L′n is positive semi-definite.

6. The smallest eigenvalue of L′n is 0 with eigenvector 1. Its multiplicity coincides
with the number of connected components in the similarity graph. In particular,
if k is strictly positive, it has multiplicity one.

7. The eigenvalues λ of L′n satisfy 0 ≤ λ ≤ 2.

Convergence of Spectral Clustering 25

Proof. Part (1): Multiplying the eigenvalue equation L′nv = λv from left with

D
−1/2
n shows that

D−1/2
n LnD

−1/2
n v = λv ⇐⇒ D−1

n LnD
−1/2
n v = D−1/2

n λv = λD−1/2
n v.

Part (2):

L′nv = λv ⇐⇒ (Id−H ′
n)v = λv ⇐⇒ H ′

nv = (1− λ)v

Part (3):

L′′nv = λv ⇐⇒ (Id−H ′′
n)v = λv ⇐⇒ H ′′

nv = (1− λ)v

Part (4): Note that H ′′
n is a stochastic matrix, that is all rows have row sum

1. In particular H ′′
n1 = 1, hence 1 is an eigenvector of H ′′

n with eigenvalue 1. It
is well known (e.g., Section 6.2.2. in Brémaud, 1999) that all eigenvalues λ of a
stochastic matrix satisfy |λ| ≤ 1. If k is symmetric, then H ′

n is symmetric, hence
its eigenvalues are real-valued. By Parts (2) and (1) this is also true for H ′′

n. The
statement about the multiplicity of the eigenvalue 1 can be found for example in
Section 6.1.1 of Brémaud (1999).
Assume the similarity graph has l connected components. When we order the data
points according to their membership to the connected components, the matrix H ′′

n

is a block diagonal matrix with blocks A1, ..., Al on the diagonal. Each block Ai

corresponds to one connected component of the graph. As all Ai are stochastic
matrices, they all have eigenvalue 1 with eigenvector 1. As the dimension of the
eigenspace is l by the statement about the multiplicity, the eigenspace of eigenvalue
1 of H ′′

n coincides with the span of the vectors (1, 0, ..., 0)′, ..., (0, 0, ..., 1)′, where 0
and 1 correspond to the constant 0 and 1 vectors on the connected components. All
these vectors are piecewise constant on the connected components, and so are their
linear combinations.

Parts (5) and (6): As in Proposition 1.

Part (7): Follows form Parts (2) and (4).
,

In the following we will number the eigenvalues of the Laplacians in increasing
order, that is 0 = λ1 ≤ λ2 ≤ ... ≤ λn. The term ”first eigenvalue” hence refers to
the smallest eigenvalue λ1, and the ”first eigenvector” to the corresponding eigen-
vector (analogously also for ”second”, ”third”,...). Note that we always count the
eigenvalues with multiplicities. On the other hand, we will denote the eigenvalues
of the normalized similarity matrices H ′

n and H ′′
n by µ1 ≥ µ2... ≥ µn in decreasing

order, hence the “first” eigenvalues correspond to the largest ones. In the light of
Proposition 2 this seems to be the natural procedure.

26 Chapter II

2.2 Spectral clustering algorithms

Spectral clustering is a popular technique going back to graph partitioning algo-
rithms (Fiedler, 1973; Donath and Hoffman, 1973). It has been applied to such
diverse problems as load balancing (Van Driessche and Roose, 1995), parallel com-
putations (Hendrickson and Leland, 1995), VLSI design (Hagen and Kahng, 1992),
and image segmentation (Shi and Malik, 2000). There exist many different versions
of spectral clustering. All algorithms have in common that they use eigenvectors
of graph Laplacians or affinity matrices to derive a partition of the sample points.
They differ in which matrix they use, which eigenvectors they use, and how they
use the eigenvectors exactly. Overviews over some of the algorithms can be found in
Weiss (1999) or Verma and Meila (2003). A nice survey on the history of spectral
clustering can be found in Spielman and Teng (1996).

Let us explain the principle of spectral clustering by introducing an algorithm
which is usually attributed to Ng et al. (2001), but which in fact already existed
much earlier (see for example p. 9 in Bolla, 1991, or Sec. 3.4. in Shi and Malik,
2000). Assume we are given n data points X1, ..., Xn and want to partition them
into l clusters. To this end, we compute the l smallest eigenvectors v1, ..., vl ∈ R

n

of the normalized Laplacian L′n (chosen to be orthogonal in case of repeated eigen-
values) and use them to form the n×l-matrix Y containing the vectors v1, ..., vl as
columns. We now consider the n rows of the matrix Y to be new representations of
our n data points. Formally this means that we identify the data point Xi with a
point Yi := (yi1, ..., yil) ∈ R

l. We normalize the points Yi to have Euclidean norm 1
in R

l and obtain the points Ỹi. Finally, we use a simple clustering algorithm such
as k-means to cluster the points Ỹi in R

l.

We already mentioned that the standard assumptions for spectral clustering are
that k is symmetric and non-negative. Now we can see why this is the case. The
symmetry of k ensures that all eigenvalues of both the normalized and unnormal-
ized Laplacian are real-valued. In particular, this is necessary to be able to order
the eigenvalues. As we have already seen above, the non-negativity implies that the
Laplacians are positive semi-definite. With these assumptions we make sure that the
first eigenvalues and eigenvectors are the ones carrying the important information
we need.

On the first glance it is not obvious why the spectral clustering algorithm ex-
plained above should work. What is the advantage of the new representation of the
data points? To answer this question, for simplicity we assume that we only want to
construct two clusters, that is l = 2. If the algorithm above works, the new represen-
tations (Ỹi)i have to form two distinct clusters in R2 which are easy to identify by the
k-means algorithm. This means that the coordinates of the points in the same clus-
ter should be rather similar to each other. Luckily, in practice this is often the case.
The reason is that if our data is clustered, then the second eigenvector v2 of L′n turns

Convergence of Spectral Clustering 27

out to be ”piecewise constant”. By this we mean that it has approximately the form
v2 = (a1, ..., an)′ with ai ≈ c1 or ai ≈ c2, where c1 and c2 are some real numbers with
opposite signs, e.g. c1 = +1 and c2 = −1. Then we cluster the data points according
to the signs of ai, that is we put the point Xi in cluster 1 if ai > 0 and in cluster 2 if
ai < 0. In the next section we want to give an explanation why this procedure works.

2.3 Why does it work?

There are many articles where theoretical properties of spectral clustering are ana-
lyzed and explanations are given why the algorithm works in the finite sample case,
for instance Guattery and Miller (1998); Kannan et al. (2000); Meila and Shi (2001);
Shi and Malik (2000). We here want to give an explanation in terms of random
walks, as it was introduced in Meila and Shi (2001). Assume we want to perform
a discrete-time random walk on the similarity graph between our data points. We
set the transition probabilities proportional to the similarities between the points:
if two points are similar, then the probability that the random walk performs a step
between those two points is high. The exact transition probabilities are given by the
stochastic matrix H ′′

n. It can be shown that (normalized) spectral clustering tries
to achieve the following: it wants to find two clusters such that the probability of
staying within each of the clusters is high and the probability of changing from the
one to the other cluster is low. Imagine the extreme case where the data contains
two perfect clusters, that is the similarity between points in different clusters is 0.
In this case, the probability to change between the two clusters is 0, and hence the
stochastic matrix L′′n is not irreducible. It is a well-known fact (e.g., Section 6 of
Brémaud, 1999) that in this case, the second eigenvalue of L′′n is 0, and the second
eigenvector is constant with opposite signs on both parts. This can also be seen as a
consequence of Proposition 2, which a similar argument as the one that will be given
in Section 8.2. This means that spectral clustering recovers the correct solution by
thresholding the coordinates of the second eigenvector. This reasoning also extends
to the case of more than two clusters if we take into account more than the first two
eigenvectors.

3 Mathematical background

The algorithm of Ng et al. (2001) we presented above is one out of many different
spectral clustering algorithms, but it shows the general structure of most of them.
We start with a matrix, either the normalized or unnormalized graph Laplacian.
Then we look at its first eigenvectors and cluster our data points according to the
values of the coordinates of these eigenvectors. Consequently, to study the question
whether spectral clustering algorithms converge for growing sample size n, we have
to investigate whether the first eigenvectors of the considered matrix “converge” or
not. Studying this question is the main objective of this chapter. Before we can

28 Chapter II

start with the main work, we will have to recall several concepts about convergence
of operators and spectral and perturbation theory. This will be done in the following
section.

3.1 Basic spectral theory

In this section we want to recall some basic facts from spectral theory of bounded
linear operators. Most of these facts can be found in any functional analysis book,
for example in Rudin (1991), Conway (1985), or Taylor (1958). In Chatelin (1983)
there is also a nice summary of spectral theory which introduces all we need.

Let E be a real Banach space and T : E → E a bounded linear operator. An
eigenvalue of the operator T is a real or complex number λ such that Tf = λf
holds for some element f ∈ E. f is called eigenvector or eigenfunction. Note
that λ is an eigenvalue of T iff the operator (T − λ) has a non-trivial kernel,
that is (T − λ) is not injective. The resolvent of T is defined as ρ(T) := {λ ∈
R; (λ − T)−1 exists and is bounded}, and the spectrum of T as σ(T) = R \ ρ(T).
If E is finite-dimensional, every non-invertible operator is not injective. Therefore,
λ being in the spectrum implies that λ is an eigenvalue of T . This is not the case
if E is infinite-dimensional. Here it can happen that an operator is injective, but
nevertheless has no bounded inverse. Thus it is possible that the spectrum contains
more than just the eigenvalues of T . In general, the spectrum of a bounded operator
is a compact subset of the complex plane, and every possible compact subset can
occur as the spectrum of some linear operator.

A part σiso of σ(T) is called isolated if there exists some open neighborhood
U ⊂ C of σiso such that σ(T)∩U = {σiso}. Assume that the spectrum σ(T) of some
bounded operator T on a Banach space E consists of several isolated parts. For each
isolated part of the spectrum, a spectral projection Piso can be defined with the help
of the operational calculus for bounded operators. The spectral projection Piso is a
linear projection such that its range is a T -invariant subspace and σ(Piso) = σiso.
For the exact definition of operational calculus and spectral projections we refer to
Chapter 5 of Taylor (1958), Section VII.3. of Dunford and Schwartz (1957), Section
2.7. of Chatelin (1983), and Kato (Sec. 3.6.4. of 1966).

We want to stress that a spectral projection can only be defined for isolated parts
of the spectrum. The reason lies in the fact that the spectral projection correspond-
ing to some part σiso is defined, in the sense of the operational calculus, as a path
integral over a path in the complex plane which encloses σiso and separates it from
the rest of the spectrum.

Let λ be an isolated eigenvalue of σ(T). Then the dimension of the range of the
spectral projection Pλ corresponding to λ is called the algebraic multiplicity of λ.
In case of a finite-dimensional Banach space, this corresponds to the multiplicity of
the root λ of the characteristic polynomial (this is where the name ”algebraic multi-

Convergence of Spectral Clustering 29

plicity” comes from). The geometric multiplicity is the dimension of the eigenspace
corresponding to λ. By the construction of the spectral projections, the eigenspace
of an eigenvalue λ is always contained in the range of its spectral projection. Conse-
quently, the geometric multiplicity of an isolated eigenvalue is always smaller than
or equal to the algebraic one. If the algebraic and geometric multiplicities of λ
are finite and coincide, then the spectral projection is just the projection on the
eigenspace of λ. In particular this is the case if the algebraic (and hence geometric)
multiplicity is one. Such an eigenvalue is called a simple eigenvalue.

There are several ways to split the spectrum into different parts which have differ-
ent meanings or interpretations. One partition which will be helpful in our context
is the following. We define the discrete spectrum σd to be the part of σ(T) which
consists of all isolated eigenvalues of T with finite algebraic multiplicity, and the
essential spectrum σess(T) = σ(T) \σd(T) as the rest of the spectrum. The essential
spectrum is always closed, and the discrete spectrum can only have accumulation
points on the boundary to the essential spectrum. The importance of the partition
in σd and σess for spectral theory lies in the fact that the essential spectrum cannot
be changed by finite-dimensional or compact perturbations of an operator.

Finally we want to mention some basic facts about projections in general, which
we will apply to spectral projections later. Given a projection on a one-dimensional
subspace, the vector spanning this subspace is only determined up to a change of
sign. This is why we want to introduce convergence “up to a change of sign” with

the following ad-hoc notation: vn − v
+−→ 0 iff there is a sequence (an)n of signs

an ∈ {+1,−1} such that anvn − v → 0 (in the appropriate topology which will be

clear from the context). Even more sloppy, we write ‖vn − v‖ +−→ 0 when we mean

vn − v
+−→ 0 in the norm topology.

Proposition 3 (Convergence of projections) Let (E, ‖ · ‖) be an arbitrary Ba-
nach space, (vn)n and w vectors in E with norm 1, Prn the projection on vn and Pr

the projection on w. Assume that Prn converges pointwise to Pr. Then ‖vn−w‖
+−→ 0.

Proof. By the pointwise convergence, we have Prnw → Prw = w, hence ‖Prnw−
w‖ → 0. As Prn has finite range, it is in fact a continuous projection. Thus we can
split the space E in a direct sum of the null space N (Prn) and the range R(Prn). In
particular, we can write the vector w in the form w = wRn +wNn where wRn ∈ R(Prn)
and wNn ∈ N (Prn). Moreover, by the definition of Prn we know that wRn = anvn for
some an ∈ R. Thus we have ‖Prnw − w‖ = ‖anvn − w‖ → 0. This implies that
|an|‖vn‖ − ‖w‖ → 0, and as w and vn are normalized this means |an| → 1. This

shows that vn converges to w up to a change of sign, that is ‖vn − w‖ +−→ 0. ,

30 Chapter II

3.2 Integral and multiplication operators

In this section we want to recall some basic facts on integral and multiplication
operators. Let (X ,B, µ) be a probability space and let k ∈ L2(X×X ,B×B, µ×µ).
Then the operator

S : L2(X ,B, µ) → L2(X ,B, µ), Sf(x) =

∫
X
k(x, y)f(y)dµ(y)

is called integral operator with kernel k. It is a bounded linear operator with operator
norm ‖S‖ ≤ ‖k‖2 :=

∫ ∫
k(x, y)dP (x)dP (y). In general, this inequality is not

tight. Such integral operators form a subset of the compact operators, namely
they are Hilbert-Schmidt operators (cf. Section 6.2. in Weidmann, 1980). On the
class of Hilbert-Schmidt operators, a special norm is defined, the so called Hilbert-
Schmidt norm (sometimes also called the Frobenius norm). This norm is defined
as ‖S‖2

HS :=
∑

α ‖Seα‖2 where (eα)α is an orthonormal basis of the Hilbert space
L2(X). It can be shown that the definition of this norm is independent of the choice
of the basis. Moreover it is true that ‖S‖2

HS = ‖k‖2. In particular this means that
the operator norm (with respect to the underlying L2-norm) is always less or equal
than the Hilbert-Schmidt norm.

Let X be a compact space, and k a continuous function. Then the integral oper-
ator S can also be defined on the space (C(X), ‖ · ‖∞). There it has operator norm
(with respect to the underlying ‖ · ‖∞-norm) ‖S‖ ≤ ‖k‖∞ := supx,y |k(x, y)|, and it
is also compact.

Let (X ,B, µ) be a probability space and let d ∈ L∞(X ,B, µ). Define the multi-
plication operator

Md : L2(X ,B, µ) → L2(X ,B, µ), Mdf = fd.

This is a bounded linear operator with operator norm ‖Md‖ = ‖d‖∞ (cf. Example
2.2 in Section III.2 of Conway, 1985). The function d is called the multiplier function.
If d is non-constant, the operator Md is never compact. The multiplication operator
Md can also be defined on the space C(X) if X is compact and d continuous. The
following proposition recalls some well-known facts on the spectra of several types
of operators.

Proposition 4 (Spectrum of some operators)

1. Spectrum of a compact operator: Let T be a compact operator on a Banach
space. Then σ(T) is at most countable and has at most one limit point, namely
0. If 0 6= λ ∈ σ(T), then λ is an eigenvalue with finite-dimensional eigenspace,
and its algebraic and geometric multiplicities coincide.

2. Let S be an integral operator as defined above with symmetric kernel function
k. Then all eigenvalues of S are real-valued.

Convergence of Spectral Clustering 31

3. Spectrum of a multiplication operator: For a bounded function g ∈ L∞(P)
consider the multiplication operator Mg : L2(P) → L2(P), f 7→ gf . Mg is a
bounded linear operator whose spectrum coincides with the essential range of
the multiplier g (i.e., the smallest interval [l, u] such that P (g(x) ∈ [l, u]) = 1).
The same is true if Mg is defined on the space C(X) for some compact X .

4. Let A be a bounded and V a compact linear operator on a Banach space. Then
σess(A + V) = σess(A) (cf. Theorem IV.5.35 in Kato, 1966 and Theorem 9.3
in Birman and Solomjak, 1987).

3.3 Some perturbation theory

The main tool to analyze the convergence of eigenvalues and eigenvectors of linear
operators is perturbation theory. In the following we want to recall some definitions
and facts from perturbation theory for bounded operators. The standard reference
for perturbation theory in general is Kato (1966), for perturbation theory in Hilbert
spaces we also recommend Birman and Solomjak (1987) and Weidmann (1980), and
Bhatia (1997) for finite-dimensional perturbation theory. Many different types of
convergence of operators and their consequences for the spectrum are studied in
Chatelin (1983). For collectively compact perturbation theory of integral operators
we refer to Anselone (1971).

Perturbation theory studies the question whether two operators which are “close”
in some sense also have similar spectra. We will be especially interested in the
question which type of operator convergence conserves eigenvalues and eigenvectors.
In perturbation theory, the convergence of eigenvalues is often discussed in the
following terms. σ(T) is said to be upper semi-continuous if Tn → T (in some
topology to be specified) implies that every converging sequence (λn)n with λn ∈
σ(Tn) converges to some limit point λ which is in the spectrum of T . σ(T) is said to
be lower semi-continuous if Tn → T (in some topology to be specified) implies that
every point in σ(T) can be approximated by a sequence (λn)n with λn ∈ σ(Tn).

σ(T) is called continuous if it is both upper and lower semi-continuous.
Convergence of eigenvectors is not as easy to define as convergence of eigenvalues.
The reason is that if the eigenspace of some eigenvalue has more than one dimension,
then it contains infinitely many eigenvectors. Then it is difficult to define conver-
gence of eigenvectors because we would have to specify which ones we are referring
to. Instead, one usually studies convergence of the eigenspaces themselves in terms
of spectral projections. In case of one-dimensional eigenspaces, Proposition 3 shows
how this leads to convergence of the eigenvectors.

In general, to ensure that the spectral properties of a converging sequence of
operators are preserved, we need to require rather strong types of convergence of
operators, some of which we now want to introduce. For background reading we
refer to Section 3.1. of Chatelin (1983).

32 Chapter II

Definition 5 (Convergence of operators) Let E be an arbitrary Banach space,
and B its unit ball. Let (Sn)n be a sequence of bounded linear operators on E.

• (Sn)n converges pointwise, denoted by Sn
p→ S, if ‖Snx − Sx‖ → 0 for all

x ∈ E, where ‖ · ‖ denotes the norm on E.

• (Sn)n converges in operator norm, denoted by Sn
‖·‖→ S, if ‖Sn − S‖ → 0 where

‖ · ‖ denotes the operator norm.

• (Sn)n is called collectively compact if the set
⋃

n SnB is relatively compact in
E (with respect to the norm topology).

• (Sn)n converges collectively compactly, denoted by Sn
cc→ S, if it converges

pointwise and if there exists some N ∈ N such that the operators (Sn − S)n>N

are collectively compact.

• A sequence of operators converges compactly, denoted by Sn
c→ S, if it con-

verges pointwise and if for every sequence (xn)n in B, the sequence (S−Sn)xn

is relatively compact.

In general, both operator norm convergence and collectively compact convergence
are strong types of convergence. They do not imply each other, but both imply
compact convergence. Pointwise convergence is the weakest form of convergence
and is implied by all the other ones.

Proposition 6 (Types of convergence)

1. Tn
cc→ T =⇒ Tn

c→ T .

2. Tn
‖·‖→ T =⇒ Tn

c→ T .

3. Tn
cc→ T 6=⇒ Tn

‖·‖→ T

4. Tn
‖·‖→ T 6=⇒ Tn

cc→ T

Proof. Proofs for Parts (1) and (2), as well as counterexamples for Parts (3) and
(4), can be found in Section 3.2. of Chatelin (1983). ,

Operator norm convergence is sufficient to ensure the convergence of many spec-
tral properties (Sec. IV.2.6, IV.3 Kato, 1966), but often it is too strong a require-
ment. This is the reason why in the context of integral operators, the notion of
collectively compact convergence has been developed. Even more, it turns out that
already compact convergence ensures the convergence of the spectral properties we
are interested in. This is very convenient as compact convergence is implied both
by collectively compact and operator norm convergence and hence allows to treat
both in the same framework.

Convergence of Spectral Clustering 33

In general, what we can achieve under favorable conditions is is that isolated
parts of the spectrum are upper semi-continuous (e.g., Sec. IV.3. of Kato, 1966). If
these isolated parts are eigenvalues with finite multiplicity, then we also get lower
semi-continuity (Theorems 3.16 and 2.23 Kato, 1966). These results are stated in
detail in the following proposition:

Proposition 7 (Perturbation results for compact convergence) Let E be an

arbitrary Banach space and (Tn)n and T bounded linear operators on E. Let Tn
c→ T .

1. Upper semi-continuity: Let τ ⊂ σ(T) be an isolated part of σ(T), that is there
exists a neighborhood M ⊂ C of τ such that M∩σ(T) = τ . Let λn ∈ σ(Tn)∩M
be a converging sequence with limit point λ. Then λ ∈ τ .

2. Lower semi-continuity: Let λ ∈ σ(T) be an isolated eigenvalue of T with finite
algebraic multiplicity. Then there exists some neighborhood M ⊂ C of λ such
that for large n, σ(Tn) ∩M = {λn}, and (λn)n converges to λ.

3. Convergence of spectral projections: Let Pn and P be the spectral projections
associated to a converging sequence λn ∈ σ(Tn) of isolated eigenvalues with
finite multiplicity whose limit point λ is an isolated eigenvalue with finite mul-

tiplicity in σ(T). Then Pn
p→ P .

4. Convergence of eigenvectors: Under the conditions of Part (3), if λ is a simple
eigenvalue, so are λn for n large enough. Then the corresponding eigenfunc-
tions converge up to a change of sign.

Proof. See Proposition 3.18. and Sections 3.6. and 5.1. in Chatelin (1983), and
Proposition 3. ,

We will also need some results from finite-dimensional perturbation theory where
the difference between eigenvalues and eigenprojections is bounded in terms of the
operator norm of the perturbation.

Proposition 8 (Finite-dimensional perturbation results) Let A and B be
two symmetric matrices in R

n×n, and denote by ‖ · ‖ the operator norm on R
n×n

(with respect to the Euclidean norm on R
n).

1. Denote by ρ(σ(A), σ(B)) the Hausdorff distance between the spectra of A and
B. Then

ρ(σ(A), σ(B)) ≤ ‖A−B‖.

2. Let µ1 > ... > µk be the eigenvalues of A counted without multiplicity, and
Pr1, ...,Prk the projections on the corresponding eigenspaces. For 1 ≤ r ≤ k
define the numbers

δr(A) := min{|µi − µj|; 1 ≤ i < j ≤ r + 1}.

34 Chapter II

Assume that ‖B‖ ≤ δr(A)/2. Then for all 1 ≤ l ≤ r we have

‖Prl(A+B)− Prl(A)‖ ≤ 4
‖B‖
δr(A)

. (1)

Both statements are also true with the Hilbert-Schmidt norm instead of the operator
norm.

Proof. Part (1) can be found in Section VI.3 of Bhatia (1997), Part (2) in the ap-
pendix of Koltchinskii (1998) and in Lemma 5.2. of Koltchinskii and Giné (2000). ,

4 Relating graph Laplacians to linear operators on C(X)

To distinguish between spectral clustering using the normalized or the unnormalized
graph Laplacian we introduce the short terms “normalized spectral clustering” and
“unnormalized spectral clustering”.

To study the convergence of normalized or unnormalized spectral clustering we
have to investigate whether the eigenvectors of the normalized or unnormalized
Laplacians constructed on n sample points converge if n → ∞. Here we face one
technical problem: the size of the Laplacian matrix (both normalized and unnor-
malized) is n×n, hence it grows if n increases. Similarly, the eigenvectors get longer
and longer. The problem is now that to define convergence of operators, one usually
requires that the operators are defined on the same space, and the same holds for
convergence of vectors. As this is not satisfied in our case, we make the following
construction. We relate each Laplacians matrix to some other operator such that all
the operators are defined on the same space. Then convergence of these operators
is well-defined, and we can study the convergence of their eigenvalues and eigenvec-
tors. In this construction we have to ensure that the spectra of the Laplacians have
a close relation to the ones of the operators.

In the unnormalized case, we will proceed by defining a sequence (Un)n of opera-
tors which will be related to the matrices (Ln)n. Each operator Un will be defined on
the space C(X) of continuous functions on X , independently of n. Moreover, we will
ensure that the spectra of Ln and Un are closely related. Then we can investigate
the convergence of Un and the convergence of its eigenvectors. Finally, we then have
to transform this into statements about the eigenvectors of Ln. A similar approach
works in the normalized case for L′n.

In the whole Section 4, we assume that the data space X is a compact metric
space and that the similarity function k is continuous.

Convergence of Spectral Clustering 35

4.1 Definition of the operators

In this section we introduce several linear operators on C(X) corresponding to the
matrices we are interested in. In general, we will proceed by identifying vectors
(v1, ..., vn)′ ∈ R

n with functions f ∈ C(X) such that f(Xi) = vi, and extending
linear operators on R

n to deal with such functions rather than vectors. Let us start
with the unnormalized Laplacian. Recall that Ln is defined as Dn − Kn where
Dn is the diagonal matrix containing the degrees di =

∑
j k(Xi, Xj) and Kn is

the similarity matrix. First we want to relate the degree vector (d1, ..., dn)′ to some
functions in C(X). To this end we define the true and the empirical degree functions

d(x) :=

∫
k(x, y)dP (y) ∈ C(X) and dn(x) :=

∫
k(x, y)dPn(y) ∈ C(X). (2)

By definition, dn(Xi) = 1
n
di, so the empirical degree function coincides with the

degrees of the points Xi up to the scaling factor 1/n. This factor comes from the
hidden 1/n factor in the empirical distribution Pn. The function dn(·) is the natural
extension of the discrete degrees, which originally were defined on the data points
only, to the whole space X . By the law of large numbers it is clear that for n→∞,
the empirical degree function dn(x) converges pointwise to the true degree function
d(x) almost surely. As we assumed that k is continuous, both dn and d are contin-
uous functions, and if k is bounded, then dn and d are bounded.

We want to find an operator acting on C(X) which behaves similar to the
matrix Dn on R

n. Let us analyze how the matrix Dn operates on some vector
f = (f1, ..., fn)′ ∈ R

n. For each i we have (Dnf)i = difi, that is the value of the
vector f at coordinate i is multiplied by the value of di. If we now identify 1

n
di with

dn(Xi) and fi with f(Xi), then 1
n
Dn can be interpreted as a multiplication operator.

The linear operator on C(X) corresponding to the matrix 1
n
Dn will be the empirical

multiplication operator

Mdn : C(X) → C(X), Mdnf(x) := dn(x)f(x). (3)

To obtain its limit operator for n→∞ we replace the empirical measure Pn by
the true one (this will be done properly below) and define

Md : C(X) → C(X), Mdf(x) := d(x)f(x). (4)

We will call Md the true multiplication operator. Next we have a look at the matrix
Kn. Applying it to some vector f ∈ R

n yields (Knf)i =
∑

j k(Xi, Xj)fj. This will
be represented by the empirical integral operator

Sn : C(X) → C(X), Snf(x) :=

∫
k(x, y)f(y)dPn(y). (5)

Its pointwise limit operator will be

S : C(X) → C(X), Sf(x) :=

∫
k(x, y)f(y)dP (y) (6)

36 Chapter II

and will be called the true integral operator (for proper convergence statements see
below). Note that compared to the matrix Kn, the operator Sn has an extra scaling
factor 1/n hidden inside the empirical distribution Pn. Consequently, the operator
Sn corresponds to 1

n
Kn.

With these definitions, the operator corresponding to the unnormalized graph
Laplacian 1

n
Ln is the difference between the empirical multiplication and integral

operators:

Un : C(X) → C(X),

Unf(x) := Mdnf(x)− Snf(x) =

∫
k(x, y)(f(x)− f(y))dPn(y)

and has the pointwise limit

U : C(X) → C(X),

Uf(x) := Mdf(x)− Sf(x) =

∫
k(x, y)(f(x)− f(y))dP (y). (7)

Now let us consider the case of the normalized Laplacian. We start with the
symmetric normalization L′n. We have already seen in Proposition 2 that the eigen-
values and eigenvectors of L′n can be computed from the ones of H ′

n. Therefore, no
harm will be done by studying the convergence of the eigenvalues and eigenvectors
of H ′

n instead of L′n. The matrix H ′
n operates on some vector f = (f1, ..., fn)′ by

(H ′
nf)i =

∑
j

k(Xi,Xj)√
didj

fj. We can see that this is very similar to the behavior of the

unnormalized similarity matrix Kn, the difference being that k(Xi, Xj) is replaced

by k(Xi, Xj)/
√
didj. So we will define the following normalized empirical and true

similarity functions

hn(x, y) := k(x, y)/
√
dn(x)dn(y)

h(x, y) := k(x, y)/
√
d(x)d(y) (8)

and introduce the following three integral operators:

Tn : C(X) → C(X), Tnf(x) =

∫
h(x, y)f(y)dPn(y)

Tn
′ : C(X) → C(X), Tn

′f(x) =

∫
hn(x, y)f(y)dPn(y)

T : C(X) → C(X), T f(x) =

∫
h(x, y)f(y)dP (y). (9)

Note that in case of these operators, the scaling factors 1/n which are hidden in
Pn and dn cancel each other (put in different terms, the matrix H ′

n already contains a
1/n scaling factor, contrary to the case of the matrix Kn in the unnormalized case).

Convergence of Spectral Clustering 37

Therefore, contrary to the unnormalized case we do not have to scale the matrices
H ′

n and Hn with a factor 1/n. So the operator T ′n corresponds directly to the matrix
H ′

n, while the operator Tn corresponds to the matrix Hn := (h(Xi, Xj))i,j=1,...,n. The
reason to introduce Tn and Hn is a technical one. It will be easier to prove that T ′n
converges to T in two steps using the operator Tn in between. We will show that Tn

and T ′n “get close” and that Tn converges to T .

While we will always use the matrix H ′
n and the operator T ′n to prove the conver-

gence of spectral clustering, we will prefer to use the matrix H ′′
n to investigate some

properties of the limit clustering. Therefore, analogously to above we introduce the
normalized functions

gn(x, y) := k(x, y)/dn(x)

g(x, y) := k(x, y)/d(x) (10)

and the corresponding integral operators

Rn
′′ : C(X) → C(X), Rn

′′f(x) =

∫
gn(x, y)f(y)dPn(y)

R : C(X) → C(X), Rf(x) =

∫
g(x, y)f(y)dP (y). (11)

Finally, note that according to Section 3.2, all occurring integral operators (Sn,
S, Tn, T ′n, T , R′′

n, and R) are compact operators if the corresponding kernel functions
(k, hn, h, gn, and g) are square-integrable. In the following, this will always be the
case.

4.2 Relations between the spectra of the operators

The main point about all the constructions above is that they enable us to transfer
the problem of convergence of the Laplacian matrices to the problem of convergence
of a sequence of operators on C(X). Now we want to establish the connections
between the spectra of Ln and Un, H ′

n and Tn
′, and H ′′

n and R′′
n.

Proposition 9 (Spectrum of Un)

1. The spectrum of Un consists of the compact interval rg(dn), plus eventually
some isolated eigenvalues with finite multiplicity. The same holds for U and
rg(d).

2. If f ∈ C(X) is an eigenfunction of Un with arbitrary eigenvalue λ, then the vec-
tor v ∈ R

n with vi = f(Xi) is an eigenvector of the matrix 1
n
Ln with eigenvalue

λ.

3. Let λ 6∈ rg(dn) be an eigenvalue of Un with eigenfunction f ∈ C(X), and
vj := f(Xj). Then f is of the form

f(x) =
1
n

∑
j k(x,Xj)vj

dn(x)− λ
. (12)

38 Chapter II

4. If v is an eigenvector of the matrix 1
n
Ln with eigenvalue λ 6∈ rg(dn), then f

defined by equation (12) is an eigenfunction of Un with eigenvalue λ.

Proof. Part (1): By Proposition 4, the essential spectrum of the multiplication
operator Mdn consists of the range of the multiplier function dn. As Sn is a com-
pact operator, the essential spectrum of Un = Mdn −Sn coincides with the essential
spectrum of Mdn (Part (3) of Proposition 4). Apart from the essential spectrum,
an operator can only have some discrete spectrum consisting of isolated eigenvalues
with finite multiplicity (Section 3.3).

Part (2): Note that for v = (f(X1), ..., f(Xn))′ we actually have that Unf(Xi) =
1
n
(Lnv)i. This immediately shows that if f is an eigenfunction of Un, then v is an

eigenvector of 1
n
Ln with the same eigenvalue.

Part (3): If λ is an eigenvalue of Un and f the corresponding eigenfunction, we
have that

Unf(x) = f(x)dn(x)− 1

n

∑
j

k(x,Xj)f(Xj) = λf(x).

For λ 6∈ rg(dn) this leads to the continuous function defined in equation (12).

Part (4): Define f as in equation (12). It is well-defined because v is an eigen-
vector of 1

n
Ln, and f is an eigenfunction of Un with eigenvalue λ. ,

This proposition establishes a one-to-one correspondence between the eigenval-
ues and eigenvectors of 1

n
Ln and Un, provided they satisfy λ 6∈ rg(dn). The condition

λ 6∈ rg(dn) is needed to ensure that the denominator of equation (12) does not equal
0. But there is also a deeper reason for this condition which will play an important
role later on. Note that the essential spectrum of Un coincides with rg(dn). An
eigenvalue with λ ∈ rg(dn) is thus part of the essential spectrum and is not isolated
in the spectrum. As we have already seen in Section 3.3, the convergence of eigen-
values which are not isolated in the spectrum can in principle not be investigated
with perturbation theory methods. In the end this will lead to the unsatisfactory
situation that convergence of unnormalized spectral clustering can only be asserted
if the first eigenvalues of the limit operator U are not contained in the range of the
true degree function.

In the normalized case on the other hand, we are in a much more benign situation.
Contrary to the operators Un and U in the unnormalized case, the operators T ′n, Tn,
and T representing the normalized similarity matrices and their limits are compact
integral operators, and no multiplication operators are involved. The advantage is
that the essential spectrum of a compact operators consists only of the set {0}, and
all other eigenvalues are isolated and have finite multiplicity – hence they satisfy

Convergence of Spectral Clustering 39

everything we need to apply perturbation theory methods. The next proposition
shows a one-to-one relationship between the non-zero eigenvalues and eigenvectors
of the normalized empirical similarity matrix H ′

n and the ones of the operator T ′n.

Proposition 10 (Spectrum of T ′
n)

1. If f ∈ C(X) is an eigenfunction of T ′n with arbitrary eigenvalue µ, then the vec-
tor v ∈ R

n with vi = f(Xi) is an eigenvector of the matrix H ′
n with eigenvalue

µ.

2. Let µ 6= 0 be an eigenvalue of T ′n with eigenfunction f ∈ C(X), and vj :=
f(Xj). Then f is of the form

f(x) =
1

nµ

∑
j

k(x,Xj)vj. (13)

3. If v is an eigenvector of the matrix H ′
n with eigenvalue µ 6= 0, then f defined

in by equation (13) is an eigenfunction of T ′n with eigenvalue µ.

Proof. This can either be proved directly as Proposition 9, but it can also be seen
as a special case of Proposition 9. Here we just have to observe that normalizing
results in the constant degree function 1 and hence in this case, rg(dn) = {1}. More-
over, the eigenvalue λ = 1 of L′n corresponds to the eigenvalue µ = 0 of T ′n. ,

Note that combining Propositions 10 and 2 yields the analogous statement for
the operator R′′

n and matrix H ′′
n.

5 Convergence in the unnormalized case

Our main result about the convergence of spectral clustering in the unnormalized
case is the following theorem:

Theorem 11 (Convergence of unnormalized spectral clustering) Let X be
a compact metric space, k : X×X → R a continuous function, (Xi)i∈N a sequence of
data points drawn iid from X according to the unknown probability distribution P ,
and Ln the unnormalized Laplacian matrix. Let d be the degree function introduced
in equation (2) and U : C(X) → C(X) the operator defined in equation (7). Let
λ 6∈ rg(d) be an eigenvalue of U . Then there exists some neighborhood M ⊂ C of λ
such that for large n, σ(1

n
Ln)∩M = {λn}, and (λn)n converges to λ a.s. Moreover,

let Pn : C(X) → C(X) be the spectral projection corresponding to σ(Un) ∩ M ,

and P the one corresponding to λ ∈ σ(U). Then Pn
p→ P a.s. If λ is a simple

eigenvalue, then also the eigenvectors converge a.s. up to a change of sign: if vn

is the eigenvector of 1
n
Ln with eigenvalue λn, vn,i its i-th component, and f the

eigenfunction of U with eigenvalue λ 6∈ rg(d), then supi=1,...,n |vn,i− f(Xi)|
+−→ 0 a.s.

40 Chapter II

Hence, the clustering constructed on the finite sample converges a.s. to a clustering
of the whole data space X .

Let us briefly discuss the assumptions of Theorem 20. The continuity of k and
the compactness of X are technical assumptions. They do not seem indispensable,
but they considerably reduce the technical level of the proofs. We will discuss these
condition in more detail in Section 7 where we compare several convergence theo-
rems.

An important assumption in Theorem 20 which is not automatically satisfied is
that the second eigenvalue has multiplicity one. If this is not the case, Theorem 20
only asserts the convergence of the spectral projections, which then does not imply
the convergence of the eigenvectors. But note that if this assumption is not satisfied,
spectral clustering will produce more or less arbitrary results anyway, as the second
eigenvector is no longer unique. It then depends on the actual implementation of
the algorithm which of the infinitely many eigenvectors corresponding to the second
eigenvalue is picked, and the result will often be unsatisfactory.

The crucial assumption in Theorem 11 is the condition that the eigenvalue must
satisfy λ 6∈ rg(d). As we already explained above it ensures that the eigenvalue is
isolated in the spectrum of U , and hence that perturbation theory can be applied.
This fundamental assumption is always needed if one wants to prove convergence of
the eigenvectors of Un with perturbation theory methods. In case this assumption
fails, it is in principle not possible to investigate the convergence of eigenvectors
with perturbation theory methods. The reason is that the spectral projection cor-
responding to λ then corresponds to the whole part of the spectrum consisting of
rg(d), not only to the eigenvalue λ. We could then prove the convergence of this
spectral projection, but this does not allow any conclusions about the convergence
eigenvector of λ. At the end of this section we will construct an example where
the second eigenvalue indeed lies within rg(d). This means that there actually exist
situations in which Theorem 11 cannot be applied, and hence unnormalized spectral
clustering might not converge. Note however, that Theorem 11 only states sufficient
conditions for convergence. In principle it is possible that the conditions are not
necessary, and that unnormalized spectral clustering also converges if the condition
λ 6∈ rg(d) is not satisfied.

5.1 Proof of Theorem 11

In this section we want to prove Theorem 11. Let us outline the steps of the proof.
The first step consists in relating the eigenvectors of 1

n
Ln to those of Un. This has

already been done in Proposition 9. The next step is to prove that Un converges
to U compactly. This will be done by considering the multiplication operator part
Mdn and the integral operator part Sn of Un separately. It will turn out that the

Convergence of Spectral Clustering 41

multiplication operators Mdn converge to Md in operator norm (but not collectively
compactly), and the integral operators Sn converge to S collectively compactly (but
not in operator norm). The main ingredient in both parts will be the fact that
the class of similarity functions with fixed first argument is not too large: it forms
a Glivenko-Cantelli class. This makes it possible to extend some pointwise conver-
gence results to uniform ones. Having established the convergence of the two parts of
Un, we can then show that Un itself converges compactly to U . By the perturbation
theory results of Section 3.3 this ensures the convergence of the spectral projections
of isolated eigenvalues with finite multiplicity.

We start with the Glivenko-Cantelli properties.

Proposition 12 (F Glivenko-Cantelli class) Let X be a compact metric space
and k : X×X → R continuous. Then F := {k(x, ·); x ∈ X} is a Glivenko-Cantelli
class, that is

sup
x∈X

|
∫
k(x, y)dPn(y)−

∫
k(x, y)dP (y)| → 0 a.s.

The same holds for the class F×g := {k(x, ·)g(·); x ∈ X} for an arbitrary g ∈ C(X).

Proof. As k is a continuous function defined on a compact domain, it is uniformly
continuous. In this case it is easy to construct, for each ε > 0, a finite ε-cover with
respect to ‖ · ‖∞ of F from a finite δ-cover of X . Hence F has finite ‖ · ‖∞-covering
numbers. Then it is easy to see that F also has finite ‖ · ‖L1(P)-bracketing numbers
(cf. van der Vaart and Wellner, 1996, p. 84). Now the statement for F follows from
Theorem 2.4.1. of van der Vaart and Wellner (1996). The statement about F × g
can be proved similarly. ,

Note that a direct consequence of this proposition and the definition of the degree
function in Equation 2 is that the empirical degree function dn converges uniformly
to the true degree function d, that is

‖dn − d‖∞ = sup
x∈X

|dn(x)− d(x)| =
∣∣∣∣∫ k(x, y)dPn(y)−

∫
k(x, y)dP (y)

∣∣∣∣→ 0 a.s.

Next we establish the convergence of the integral operators Sn:

Proposition 13 (Sn converges collectively compactly to S a.s.) Let X be a
compact metric space, k : X×X → R a continuous function, and Sn and S as defined
in equation (6). Then Sn

cc→ S almost surely.

Proof. It is clear that Snf(x) → Sf(x) a.s. for each x ∈ X by the law of
large numbers. By the Glivenko-Cantelli property in Proposition 12, this also holds

uniformly over x ∈ X , hence Sn
p→ S a.s.

Next we prove that the operators (Sn − S)n are collectively compact a.s. As the

42 Chapter II

limit operator S is compact itself, it is enough to prove that (Sn)n are collectively
compact a.s. (cf. Anselone, 1971, Sec.4.1). This will be proved using the Arzela-
Ascoli theorem. First we fix the random sequence (Xi)i and hence the random
operators (Sn)n. It is easy to see that the operators (Sn)n are uniformly bounded:

‖Sn‖ = sup
‖f‖∞≤1

‖Snf‖∞ = sup
‖f‖∞≤1

sup
x∈X

1

n
|
∑

j

k(x,Xj)f(Xj)| ≤ ‖k‖∞.

This implies that all functions in
⋃

n SnB are uniformly bounded by

sup
n∈N,f∈B

‖Snf‖∞ ≤ ‖k‖∞.

To prove that the functions in
⋃

n SnB are equicontinuous we have to bound the
expression |g(x) − g(x′)| in terms of the distance between x and x′, uniformly in
g ∈

⋃
n SnB. For fixed sequence (Xi)i∈N and all n ∈ N we have

sup
f∈B,n∈N

|Snf(x)− Snf(x′)| = sup
f∈B,n∈N

|
∫

(k(x, y)− k(x′, y))f(y)dPn(y)|

≤ sup
f∈B,n∈N

‖f‖∞
∫
|k(x, y)− k(x′, y)|dPn(y) ≤ ‖k(x, ·)− k(x′, ·)‖∞.

As k is a continuous function defined on a compact domain, it is in fact uniformly
continuous. Hence the right hand side gets small uniformly in x and x′ whenever the
distance between x and x′ gets small. This implies the equicontinuity of

⋃
n SnB. By

the Arzela-Ascoli theorem we can now conclude that
⋃

n SnB is relatively compact,
hence for each fixed sequence (Xi)i the sequence (Sn)n is collectively compact. As
this reasoning holds for all possible sequences (Xi)i we get the same statement for
the random sequence (Sn)n. ,

Proposition 14 (Un converges compactly to U a.s.) Let X be a compact met-

ric space, k : X×X → R continuous, and Un and U as defined above. Then Un
c→ U

a.s.

Proof. We already know that Sn
cc→ S a.s., hence by Proposition 7 we also get

Sn
c→ S a.s. For the multiplication operators we have operator norm convergence:

‖Mdn −Md‖ = sup
‖f‖∞≤1

‖dnf − df‖∞ ≤ ‖dn − d‖∞

= sup
x∈X

∣∣∣∣∫ k(x, y)dPn(y)−
∫
k(x, y)dP (y)

∣∣∣∣ .
The latter converges to 0 a.s. by the Glivenko-Cantelli properties of Proposition 12.
As operator norm convergence implies compact convergence by Proposition 7, we
also have Mdn

c→ Md a.s. Finally, it is easy to see that the sum of two compactly

Convergence of Spectral Clustering 43

converging operators also converges compactly. Hence, Un
c→ U a.s. ,

Now we have collected all ingredients to prove Theorem 11. In Proposition 9 we
established a one-to-one correspondence between the eigenvalues λ 6∈ rg(dn) of 1

n
Ln

and Un, and we saw that the eigenvalues λ of U with λ 6∈ rg(d) are isolated and
have finite multiplicity. In Proposition 14 we proved the compact convergence of
Un to U , which according to Proposition 7 implies the convergence of the spectral
projections of isolated eigenvalues with finite multiplicity. For simple eigenvalues,
this shows the convergence of the eigenvectors up to a change of sign according to
Proposition 3. This proves Theorem 11.

5.2 Example for λ ∈ rg(d)

Here we want to construct an example where the second eigenvalue of U satis-
fies λ ∈ rg(d) to show that the conditions in Theorem 11 can be violated. Let
X = [1, 2] ⊂ R and p be a piecewise constant probability density function on X with
p(x) = r if 4/3 ≤ x < 5/3 and p(x) = (3 − r)/2 otherwise, for some fixed constant
r ∈ [0, 3] (e.g., for r = 0.5 this density has two clearly separated high density re-
gions). As similarity function we choose k(x, y) := xy. It is symmetric, positive on
X×X , and it has the advantage of being separated (i.e., it is a product of function
depending either on x or on y).

The degree function in this case is

d(x) =

∫ 2

1

xyp(y)dy = x(

∫ 4/3

1

y
3− r

2
dy +

∫ 5/3

4/3

yrdy +

∫ 2

5/3

y
3− r

2
dy) = 1.5x

(independently of r) and has range [1.5, 3] on X . A function f ∈ C(X) is eigenfunc-
tion with eigenvalue λ 6∈ rg(d) of U if the eigenvalue equation is satisfied:

Uf(x) = d(x)f(x)− x

∫
yf(y)p(y)dy

!
= λf(x). (14)

Defining the real number

β :=

∫
yf(y)p(y)dy (15)

we can solve Equation (14) for f(x) to obtain f(x) = βx
d(x)−λ

. Plugging this into

Equation (15) yields the condition

1
!
=

∫
y2

d(y)− λ
p(y)dy (16)

Hence, λ is an eigenvalue of U if Equation (16) is satisfied. For our simple density
function p, the integral in this condition can be solved analytically. It can then

44 Chapter II

been seen (for an illustration see Figure 2) that g(λ) :=
∫

y2

d(y)−λ
p(y)dy

!
= 1 is only

satisfied for λ = 0, hence the only eigenvalue outside of rg(d) is the trivial eigenvalue
0.

−6 −4 −2 0 2 4 6
−5

0

5
g(lambda) for r = 0.5

−6 −4 −2 0 2 4 6
−5

0

5
g(lambda) for r = 1.0

−6 −4 −2 0 2 4 6
−5

0

5
g(lambda) for r = 2.5

Figure 2: The three figures show g(λ) for density parameters r = 0.5, r = 1, and r = 2.5.
The vertical dotted lines show the range of d(x), i.e. they mark the essential spectrum.
We see that g(λ) = 1 only for λ = 0.

6 Convergence in the normalized case

As we have already mentioned earlier, the normalized case is more well-behaved than
the unnormalized one as all operators are compact integral operators and there are
no disturbing multiplication operators to deal with. With the same methods as
above it is possible to prove the convergence of normalized spectral clustering. This
is the content of Theorem 15, which will be presented and proved in Section 6.1.
Moreover, in the normalized case a related result can be proved under different
assumptions using different methods than the ones we already used in the unnor-
malized case. We will present this approach in Section 6.2.

As we already mentioned before, in the normalized case the eigenvalues and
eigenvectors of both L′n and L′′n are in a one-to-one relationship to the ones of the
matrix Hn

′. The smallest eigenvalues of the normalized Laplacians correspond to
the largest eigenvalues of Hn

′. In the following we will hence investigate the conver-
gence of the largest eigenvectors of the matrix Hn

′. We recall the definition of the
matrix Hn := (h(Xi, Xj))i,j=1,...,n. Remember also that contrary to the normalized
Laplacians L′n and L′′n, the matrices Hn

′ and Hn are usually not positive definite
(unless the similarity function is positive definite). Its eigenvalues can be in the
range between -1 and 1 as we have seen in Proposition 2.

6.1 Approach in C(X)

The first convergence theorem in the normalized case is of a similar form as the one
in the unnormalized case:

Convergence of Spectral Clustering 45

Theorem 15 (Convergence of normalized spectral clustering I) Let X be a
compact metric space, k : X×X → R a positive, continuous function, (Xi)i∈N a se-
quence of data points drawn iid from X according to the unknown probability distribu-
tion P , and H ′

n the normalized empirical similarity matrix. Let T ′n, Tn, T : C(X) →
C(X) be the integral operators defined in equation (9). Let µ 6= 0 be an eigenvalue
of T . Then there exists some neighborhood M ⊂ C of µ such that for large n,
σ(H ′

n)∩M = {µn}, and (µn)n converges to µ a.s. Moreover, let P ′
n : C(X) → C(X)

be the spectral projection corresponding to σ(T ′n)∩M , and P the one corresponding

to µ ∈ σ(T). Then P ′
n

p→ P a.s. If µ is a simple eigenvalue, then also the eigen-
vectors converge a.s. up to a change of sign: if vn is the eigenvector of H ′

n with
eigenvalue µn, vn,i its i-th component, and f the eigenfunction of eigenvalue µ 6= 0

of T , then supi=1,...,n |vn,i − f(Xi)|
+−→ 0 a.s. Hence, normalized spectral clustering

converges a.s. to a clustering of the whole data space X .

The assumptions in Theorem 20 are similar to those of Theorem 11. Again,
the continuity of k and the compactness of X are technical assumptions and will
be discussed in Section 7. The positivity assumption on k is one of the standard
assumptions of spectral clustering. Together with the compactness of X it ensures
that the degree function d is bounded away from 0, that is d(x) > l > 0 for some
constant l. This prevents the normalized Laplacian from getting unbounded. For
the requirement that the second eigenvalue has multiplicity one, the same remark as
in the case of Theorem 11 applies: if this assumption is not satisfied, spectral clus-
tering will produce more or less arbitrary results anyway, as the second eigenvector
is no longer unique. It then depends on the actual implementation of the algorithm
which of the infinitely many eigenvectors corresponding to the second eigenvalue is
picked, and the result will often be unsatisfactory.

The main difference to Theorem 11 is that the disturbing condition λ 6∈ rg(d)
has now been replaced by the rather harmless µ 6= 0. This condition is for example
always satisfied if k is a strictly positive function because then the similarity graph
on the data points is always connected, and then the eigenvalue 0 has only multi-
plicity 1 according to Proposition 2.

Note that the eigenvalue µ = 0 of T has been excluded in Theorem 15. The
reason is that for compact operators in general, the eigenvalue 0 plays a special role
as it might not be isolated. But this also makes sense with regard to the graph
Laplacian and can be explained using Theorem 11. Assume that k was normalized
from the beginning, that is d(x) = 1 (as it is the case for h after the normaliza-
tion). Then the range of the degree function consists of the set {1}, and the only
eigenvalue of U we cannot make any statement about according to Theorem 11 is
the eigenvalue λ = 1 of U , which corresponds to the eigenvalue 0 of T . Hence ex-
cluding the eigenvalue 0 in Theorem 15 is not an artifact of the proof of Theorem 15.

46 Chapter II

Finally, note that even though Theorem 20 is stated in terms of the second eigen-
value and eigenvector, similar statements are true for higher eigenvalues, and also
for spectral projections on finite dimensional eigenspaces with dimension larger than
1.

To summarize, all assumptions in Theorem 20 are already important for success-
ful applications of spectral clustering on a finite sample. Theorem 20 now shows that
with no additional assumptions, the convergence of normalized spectral clustering
to a limit clustering on the whole data space is guaranteed.

Now we want to prove Theorem 15 similar to Theorem 11. Instead of dealing
with multiplication and integral operators, we now only have to work with integral
operators. On the other hand, because of the normalization we have to perform
some additional steps compared to the unnormalized case.

The first step is again a Glivenko-Cantelli property, this time for the normalized
similarity function h.

Proposition 16 (H Glivenko-Cantelli class) Let X be a compact metric space
and k : X×X → R continuous and positive. Then H := {h(x, ·); x ∈ X} is a
Glivenko-Cantelli class, that is

sup
x∈X

|
∫
h(x, y)dPn(y)−

∫
h(x, y)dP (y)| → 0 a.s.

Proof. Because of the positivity of k and the compactness of X , d is bounded away
from 0, bounded from above, and continuous. Similarly, the function h is well-
defined, bounded, and continuous. Hence, the proposition follows by the same proof
as Proposition 12. ,

Note that a direct consequence of this proposition is that

‖Tnf − Tf‖∞ = sup
x
|
∫
h(x, y)f(y)dPn(y)−

∫
h(x, y)f(y)dP (y)| → 0 a.s.,

that is the pointwise convergence of Tn to T . Now we can prove the pointwise
convergence of the empirical integral operator T ′n to the limit operator T .

Proposition 17 (T ′
n converges pointwise to T a.s.) Under the conditions of Propo-

sition 16, T ′n
p→ T a.s.

Proof. For arbitrary f ∈ C(X) we have

‖T ′nf − Tf‖∞ ≤ ‖T ′nf − Tnf‖∞ + ‖Tnf − Tf‖∞.

The term ‖Tnf − Tf‖∞ on the right hand side converges to 0 a.s. by the Glivenko-
Cantelli property of Proposition 16. To prove that ‖T ′nf−Tnf‖∞ converges to 0 a.s.

Convergence of Spectral Clustering 47

it is enough to prove that supx,y∈X |hn(x, y) − h(x, y)| → 0 a.s. By Proposition 12
we know that supx |dn(x) − d(x)| → 0 a.s., that is for each ε > 0 there exists some
N such that for all n > N , |dn(x)− d(x)| ≤ ε for all x ∈ X . Then

|dn(x)dn(y)−d(x)d(y)| ≤ |dn(x)dn(y)−d(x)dn(y)|+|d(x)dn(y)−d(x)d(y)| ≤ 2(u+ε)ε,

which implies that

|
√
dn(x)dn(y)−

√
d(x)d(y)| ≤

√
|dn(x)dn(y)− d(x)d(y)| ≤

√
2(u+ ε)ε.

By the positivity of k and the compactness of X we know that there exists some
constant l > 0 such that k(x, y) ≥ l for all x, y ∈ X . This leads to∣∣∣∣∣ 1√

dn(x)dn(y)
− 1√

d(x)d(y)

∣∣∣∣∣ =

∣∣∣∣∣
√
dn(x)dn(y)−

√
d(x)d(y)√

dn(x)dn(y)
√
d(x)d(y)

∣∣∣∣∣ ≤
√

2(u+ ε)ε

l2

for all x, y ∈ X . Finally we obtain

sup
x,y∈X

|hn(x, y)− h(x, y)| ≤ sup
x,y∈X

‖k‖∞

∣∣∣∣∣ 1√
dn(x)dn(y)

− 1√
d(x)d(y)

∣∣∣∣∣
which converges to 0 a.s. by the calculation above and the boundedness of k. ,

To ensure that during the convergence of T ′n to T the eigenvectors are preserved,
we will again show collectively compact convergence.

Proposition 18 (T ′
n converges collectively compactly to T a.s.) Under the

conditions of Proposition 16, T ′n
cc→ T a.s.

Proof. As we already know that T ′n
p→ T a.s. and as T is a compact operator, we

only have to show that (T ′n)n is collectively compact. This works analogously to the
proof of Proposition 13 by the Arzela-Ascoli theorem. The functions in

⋃
n T

′
nB are

uniformly bounded as

sup
f∈B,n∈N

‖T ′nf‖∞ ≤ sup
n∈N

‖hn‖∞ ≤ ‖k‖∞ sup
n∈N

‖ 1

dn

‖∞ ≤ ‖k‖∞
1

l

where l > 0 is a lower bound on k as in the proof of the previous proposition.
Now we have to show that there exists some N ∈ N such that

⋃
n>N T

′
nB is equicon-

tinuous. As in the proof of Proposition 13 it is easy to see that for fixed x, x′ ∈ X

sup
f∈B,n>N

|T ′nf(x)− T ′nf(x′)| ≤ sup
n>N

‖hn(x, ·)− hn(x′, ·)‖∞.

48 Chapter II

Now we have to prove that the right hand side gets small whenever the distance
between x and x′ gets small.

sup
y
|hn(x, y)− hn(x′, y)| = sup

y

∣∣∣∣∣k(x, y)
√
dn(x′)− k(x′, y)

√
dn(x)√

dn(x)dn(x′)dn(y)

∣∣∣∣∣
≤ 1

l3/2
sup

y

(
|k(x, y)

√
dn(x′)− k(x′, y)

√
dn(x′)|+

+ |k(x′, y) +
√
dn(x′)− k(x′, y)

√
dn(x)|

)
≤ 1

l3/2

(
‖
√
dn‖∞‖k(x, ·)− k(x′, ·)‖∞ + ‖k‖∞|

√
dn(x)−

√
dn(x′)|

)
≤ 1

l3/2

(√
u‖k(x, ·)− k(x′, ·)‖∞ + ‖k‖∞

(
|
√
dn(x)−

√
d(x)|+

+ |
√
d(x)−

√
d(x′)|+ |

√
d(x′)−

√
dn(x′)|

))
By the uniform continuity of k and d, the terms ‖k(x, ·)− k(x′, ·)‖∞ and |

√
d(x)−√

d(x′)| only depend on the distance between x and x′. By the Glivenko-Cantelli

properties of Proposition 12 we know that the term |
√
dn(x)−

√
d(x)| ≤

√
|dn(x)− d(x)|

converges to 0 uniformly in x ∈ X a.s. Hence, there exists some N such that for
n > N the terms |

√
dn(x) −

√
d(x)| and |

√
dn(x′) −

√
d(x′)| are smaller than

ε independently of x and x′. These arguments together show that
⋃

n>N T
′
nB is

equicontinuous. This concludes the proof. ,

Now the proof of Theorem 15 follows as in the unnormalized case: In Propositions
2 and 10 we established a one-to-one correspondence between the non-zero eigenval-
ues of T ′n and those of L′n. By the compactness of T , the non-zero eigenvalues of T
are isolated and have finite multiplicity. The positivity of k and the compactness of
X imply that there exist some constants u and l such that ∞ > u > d(x) > l > 0
holds for all x ∈ X . Hence, proposition 18 proves the collectively compact con-
vergence of T ′n to T . According to Proposition 7 this implies the convergence of
the spectral projections of isolated eigenvalues with finite multiplicity. For simple
eigenvalues, this shows the convergence of the eigenvectors up to a change of sign
according to Proposition 3. This proves Theorem 11. ,

6.2 Approach in L2(X)

In this section we want to present a theorem which is slightly different from the
one above and which is proved by different methods. Here we always assume that
k is symmetric and bounded, but we do not need the assumptions that X is com-
pact and k is continuous. We will consider the same linear operators as above, but
define them on the spaces L2(Pn) and L2(P) instead of C(X). These spaces have

Convergence of Spectral Clustering 49

the advantage of being Hilbert spaces, and the integral operators Tn and T are in
then Hilbert-Schmidt operators. As such they have very nice properties, especially
concerning their eigenvalues and eigenfunctions. These properties are the key for
a series of theorems about convergence of eigenvalues and spectral projections of
random matrices approximating integral operators in Koltchinskii and Giné (2000)
and Koltchinskii (1998). Among other things, the authors show that the eigenvalues
and spectral projections of a similarity matrix converge against those of the limit
integral operator. An important tool in the proofs is to construct a Hilbert basis of
eigenfunctions. With their help the authors show that the bilinear forms induced
by the similarity matrices converge in some sense to the one induced by the integral
operator.

To state these results more precisely we first have to introduce some more nota-
tion. For a function f : X → R denote its restriction to the sample points X1, ..., Xn

by f̃ . If f is square-integrable, then f̃ ∈ L2(Pn). Let h : X ×X → R be a symmetric,
measurable similarity function such that E(h2(X, Y)) < ∞. Similar to above we
define the integral operators

Tn : L2(Pn) → L2(Pn), Tnf(x) =

∫
h(x, y)f(y)dPn(y)

T ′n : L2(Pn) → L2(Pn), T ′nf(x) =

∫
hn(x, y)f(y)dPn(y)

T : L2(P) → L2(P), T f(x) =

∫
h(x, y)f(y)dP (y) (17)

now acting on the spaces L2(Pn) and L2(P) instead of C(X). Note that the spaces
L2(Pn) and Rn are isomorphic. This can be seen by identifying a vector (v1, ..., vn)′ ∈
R

n with the function f ∈ L2(Pn) taking values f(Xi) = vi. This also induces an
isomorphism between the spaces of linear operators on R

n and those on L2(Pn).
Especially for the matrix Hn = (h(Xi, Xj))i,j=1,...,n we have

(Hnv)i =
∑

j

h(Xi, Xj)vj =

∫
h(Xi, y)f(y)dPn(y) = Tnf.

and similarly (H ′
nv)i = T ′nf . This isomorphism also extends to the eigenvalues

and eigenvectors of Hn and Tn, and H ′
n and T ′n, hence they can be identified with

each other. Condition E(h2(X, Y)) < ∞ implies that the integral operator T is
a Hilbert-Schmidt operator. Because of the symmetry of h, all eigenvalues of T
are real-valued, and by the compactness of T , the point 0 is the only accumulation
point in the spectrum. Let µ1 ≥ µ2 ≥ ... denote the eigenvalues of T counted with
multiplicity and Φ1,Φ2, ... a corresponding set of orthonormal eigenvectors. By the
Hilbert-Schmidt properties, the similarity function h can be written in the form
h(x, y) =

∑∞
i=1 µiΦi(x)Φi(y). To define the spectral projections, we have to take

into account that each isolated eigenvalue leads to one spectral projection, no mat-
ter what its multiplicity is. Hence we get one spectral projection for each non-zero

50 Chapter II

eigenvalue, where the eigenvalues this time are counted without multiplicity. As spec-
tral projections are only well defined if the eigenvalues are isolated, we only define
the first r spectral projections (i.e., the ones belonging to the largest r eigenvalues,
counted without multiplicity), where r ∈ N may be large but finite. In this way we
make sure not to get into trouble if the eigenvalues get too close to the accumulation
point 0. For 1 ≤ k ≤ r we denote by Prk the spectral projection corresponding to
the k-th eigenvalue (counted without multiplicity). As T is a compact operator, the
algebraic and geometric multiplicities of its non-zero eigenvalues coincide. Hence,
the spectral projections are the projections on the eigenspaces.
Consider a sequence of Hilbert-Schmidt operators with Tn → T , let µk 6= 0 be the
k-th largest eigenvalue of T . As it is isolated, there exists a neighborhood M ⊂ C

such that σ(T) ∩ M = {µk}. By Prk,n we denote the spectral projections corre-
sponding to σ(Tn) ∩M .
To measure the distance between two countable sets A = (ai)i∈N, B = (bi)i∈N, we
introduce the minimal matching distance δ(A,B) := infπ

∑∞
i=1 ai − bπ(i), where the

infimum is taken over the set of all permutations π of N. Recall the notation f̃ for
the restriction of a function f : X → R to the sample X1, ..., Xn.

One of the theorems in Koltchinskii (1998), slightly reworded to fit in our frame-
work, is the following:

Theorem 19 (Koltchinskii) Let (X ,B, P) be an arbitrary probability space, h :
X×X → R a symmetric, measurable similarity function such that E(h2(X, Y)) <∞
and E(|h(X,X)|) < ∞, and Tn and T the integral operators defined above. Let Φi

be the eigenfunctions of T as defined above. Then:

1. δ(σ(Tn), σ(T)) → 0 a.s.

2. Suppose that G is a class of measurable functions on X with a square-integrable
envelope G with ‖G‖L2(P) ≤ 1, that is |g(x)| ≤ G(x) for all g ∈ G. Moreover,
suppose that for all i ∈ N, the set GΦi := {gΦi; g ∈ G} is a P -Glivenko Cantelli
class. Let Prk and Prk,n be the spectral projections defined above. Then

sup
f,g∈G

∣∣∣〈Prk(Tn)f̃ , g̃〉L2(Pn) − 〈Prk(T)f, g〉L2(P)

∣∣∣→ 0 a.s. for n→∞.

There are several things to note here. First of all, this theorem states the conver-
gence of the whole spectrum uniformly in the δ-metric. This is much stronger than
the pointwise convergence of isolated eigenvalues which we used above. Secondly,
the problem that the operators Tn and T are defined on different spaces has been
overcome in a different way than the one we chose earlier. Instead of identifying
each matrix with an operator on some fixed space (which was C(X) in our case

above), Koltchinskii compares bilinear forms. This is possible as the restriction f̃ of
each P -integrable function f : X → R on the finite sample is a function in L2(Pn).
This allows to compare the operators Tn and T via the bilinear forms they induce

Convergence of Spectral Clustering 51

on L2(Pn) and L2(P), and the same holds for the spectral projections. Convergence
of the spectral projections can thus be stated in terms of convergence of the in-
duced bilinear forms. Finally, note that the random matrices which are studied in
Koltchinskii (1998) are supposed to have diagonal 0, which is not the case for our
matrices L′n. However, under the slightly stronger conditions we pose in Theorem
19 (in particular, E(h2) < ∞), the results of Koltchinskii (1998) also hold with
non-zero diagonal values and can be applied to our situation.

We now want to apply this theorem to our situation, where the function h will
be the normalized similarity function as defined in equation (8). We can see that
Theorem 19 establishes the convergence of the eigenvalues and spectral projections
of Tn to those of T . The only remaining step will be to close the gap between T ′n
and Tn. This will lead to the following theorem:

Theorem 20 (Convergence of normalized spectral clustering II) Let X be
an arbitrary metric space, k : X×X → R a symmetric, bounded, measurable func-
tion, (Xi)i∈N a sequence of data points drawn iid from X according to the unknown
probability distribution P . Let d be the degree function introduced in equation (2) and
assume that d(x) > l > 0 for all x ∈ X . Let h be the normalized similarity function
from equation 8, and assume that E(h2(X,Y)) and E|h(X,X)| are finite. Let H ′

n be
the normalized empirical similarity matrix, T : L2(P) → L2(P) the integral operator
defined in equation (17), and µ 6= 0 a simple eigenvalue of T . Then there exists some
neighborhood M ⊂ C of µ such that for large n, σ(H ′

n) ∩M = {µ′n}, µ′n is a simple
eigenvalue of H ′

n, and µ′n converges to µ a.s. Let Φ′
n and Φ be the corresponding

eigenfunctions. They converge up to a change of sign, that is ‖Φ′
n − Φ̃‖L2(Pn)

+−→ 0
a.s. Hence, normalized spectral clustering converges a.s. to a clustering of the whole
data space X .

In this theorem, we do not require k to be continuous. For this reason, the
Glivenko-Cantelli properties of Propositions 12 and 16 cannot be directly applied.
This could be fixed by making assumptions on the covering numbers of F , but in
this approach we actually do not need the full strength of a Glivenko-Cantelli class.
It is enough to show that the empirical and true degree functions approximate each
other on the finite sample. This will be showed in the following proposition:

Proposition 21 (Degrees converge uniformly on sample) Let k : X × X be
bounded. Then maxi=1,...,n |dn(Xi)− d(Xi)| → 0 almost surely.

Proof. With M := ‖k‖∞ <∞ we have

max
i=1,...,n

|dn(Xi)− d(Xi)| = max
i=1,...,n

| 1
n

n∑
j=1

k(Xi, Xj)− EXk(Xi, X)|

≤ 2M

n
+
n− 1

n
max

i
| 1

n− 1

∑
j 6=i

k(Xi, Xj)− EXk(Xi, X)|.

52 Chapter II

For fixed x ∈ X , the Hoeffding inequality gives

P

(
| 1

n− 1

∑
j 6=i

k(x,Xj)− EXk(x,X)| > ε

)
≤ exp(−M(n− 1)ε2).

As Xi is independent of the random variables Xj with j 6= i, the same is true
conditionally on Xi if we replace x by Xi. Applying the union bound and taking
expectations over Xi shows

P
(

max
i=1,...,n

| 1

n− 1

∑
j 6=i

k(Xi, Xj)− EXk(Xi, X)| > ε
)

≤
n∑

i=1

P

(
| 1

n− 1

∑
j 6=i

k(Xi, Xj)− EXk(Xi, X)| > ε

∣∣∣∣ Xi

)
≤ n exp(−M(n− 1)ε2).

This shows convergence of maxi=1,...,n |dn(Xi) − d(Xi)| → 0 in probability. As the
deviations decrease exponentially, the Borel-Cantelli lemma shows that this conver-
gence also holds almost surely. ,

The next proposition replaces the statement T ′n
p→ T with a weaker statement

which is only valid on the finite sample instead of the whole space X :

Proposition 22 (Convergence of Tn − T ′
n) Let k be a bounded similarity func-

tion. Assume that there exist constants u > l > 0 such that u ≥ d(x) ≥ l > 0 for
all x ∈ X. Then ‖Tn − T ′n‖L2(Pn) → 0 a.s. and ‖Hn −H ′

n‖2 → 0 a.s., where ‖ · ‖2

denotes the operator norm for n×n-matrices with respect to the Euclidean norm on
R

n.

Proof. By the Cauchy-Schwartz inequality,

‖Tn − T ′n‖2
L2(Pn) = sup

‖f‖L2(Pn)

∫ (∫
(hn(x, y)− h(x, y))f(y)dPn(y)

)2

dPn(x)

≤ sup
‖f‖L2(Pn)

∫ ∫
(hn(x, y)− h(x, y))2dPn(y)

∫
f 2(y)dPn(y) dPn(x)

≤
∫ ∫

(hn(x, y)− h(x, y))2dPn(y)dPn(x)

≤ max
i,j=1,...,n

|hn(Xi, Xj)− h(Xi, Xj)|2

By a similar argument as the one in the proof of Proposition 18 we can now show
that the right hand side converges to 0 a.s., which shows that ‖Tn − T ′n‖ converges
to 0 almost surely. The statement for ‖Hn −H ′

n‖ follows by a similar argument. ,

Convergence of Spectral Clustering 53

Now we can proceed to prove Theorem 20.
Proof of Theorem 20. Theorem 19 states that for large n, there exists a simple

isolated eigenvalue µn of Tn such that µn → µ. Let Prn and Pr be the corre-
sponding spectral projections. Their induced bilinear forms converge in the sense
described in Theorem 19. In particular, choosing F = {Φ} in Theorem 19 shows
that 〈Prn Φ̃, Φ̃〉 → 〈Pr Φ,Φ〉 . Denote the eigenvector corresponding to µn by Φn.
We get

〈Φn, Φ̃〉2 = 〈〈Φn, Φ̃〉Φn, Φ̃〉 = 〈Prn Φ̃, Φ̃〉 → 〈Pr Φ,Φ〉 = 〈Φ,Φ〉 = 1.

The eigenfunctions Φ and Φn are normalized to 1 in their respective spaces. By the
law of large numbers, we also have ‖Φ̃‖L2(Pn) → 1 almost surely. Hence, 〈Φn, Φ̃〉 → 1
or −1 implies the convergence of Φn to Φ up to a change of sign.

Now we have to compare µ′n to µn and Φ′
n to Φn. In Proposition 22 we have seen

that ‖Tn
′ − Tn‖L2 → 0 and ‖H ′

n −Hn‖2 → 0 almost surely. As the eigenvalues and
eigenvectors of Tn

′ and Tn correspond to the ones of the finite-dimensional matrices
H ′

n and Hn, we can now apply finite-dimensional perturbation theory. Part (1) of
Proposition 8 immediately shows that |µn − µ′n| → 0.

Let Pr′n be the spectral projection corresponding to µ′n. We want to use Part
(2) of Proposition 8 to prove that ‖Prn−Pr′n ‖ → 0 a.s. Choosing A := Hn and
B := H ′

n − Hn, Proposition 8 states that for the spectral projection belonging to
the r-th largest eigenvalue of Hn (counted without multiplicity) we have

‖Prn−Pr′n ‖ ≤ 4
‖H ′

n −Hn‖
δr(Hn)

where δr is defined as in Proposition 8. As we already showed above that ‖H ′
n −

Hn‖ converges to 0, we can conclude ‖Prn−Pr′n ‖ → 0 if we can ensure that the
denominator on the right hand side is bounded away from 0 simultaneously for all
n. But this is a consequence of the convergence of the eigenvalues. Intuitively,
this is clear by the fact that δr(Hn) measures something like the smallest distance
between the first r + 1 eigenvalues of Hn, and for large n this converges to the
smallest distance between the first r+1 eigenvalues of T . In detail, assume that the
eigenvalue µ is the r-th largest eigenvalue of T (counted without multiplicity). It is
clear that δr(T) is a finite, positive number as the r+ 1 largest eigenvalues of T are
isolated. We already showed above that the eigenvalues of Tn converge to those of
T . This convergence can be made uniformly for the first r+ 1 eigenvalues (as r is a
finite number). As a consequence, we obtain supn>N |δr(T) − δr(Tn)| ≤ ε for some
large N . As we know that δr(T) is bounded away from 0, we can now conclude that
also δr(Tn) is bounded away from 0, that is 0 < c < infn>N δr(Tn) for some constant
c and some large N . Hence, ‖Prn−Pr′n ‖ converges to 0 almost surely. This implies
in particular that

sup
‖v‖≤1

〈v, (Prn−Pr′n)v〉 → 0

54 Chapter II

almost surely and thus also

sup
‖v‖≤1

|〈v,Φn〉2 − 〈v,Φ′
n〉2| → 0

almost surely. Since |a2−b2| = |a−b||a+b|, we can conclude that ‖Φ′
n−Φ̃‖L2(Pn)

+−→ 0
a.s. ,

Theorem 20 is slightly more general than Theorem 15, but its methods cannot
be applied in the case of unnormalized spectral clustering. The reason is that the
methods in the proof of Theorem 20 heavily rely on the fact that the operators
under investigation are Hilbert-Schmidt operators, which is clearly not the case for
the non-compact multiplication operators in the unnormalized case. In the next
section we want to discuss the differences between Theorems 15 and 20 in more
detail.

7 Mathematical differences between the two approaches

Here we want to discuss which of the assumptions in the convergence theorems are
indispensable and which ones are just made for convenience. First we consider The-
orems 11 and 15, which both are proved via the collectively compact convergence
approach. Let us point out where we used the compactness assumption on X . We
defined the limit operators S, Md, U and T on the space C(X) of continuous func-
tions. If X is not compact, then the integral operators might not be well defined
because the integrals might diverge. Secondly, the Arzela-Ascoli theorem, which
was used to prove the collectively compactness of the sequence of integral opera-
tors, requires X to be compact. A third couple of arguments using the compactness
was about properties of continuous functions on a compact domain. Here the com-
pactness allows to conclude that the continuous function k is already bounded and
uniformly continuous. This was used in several steps, for instance in the proof of
the Glivenko-Cantelli properties. Here, the compactness of X could be replaced by
stronger conditions on k directly. All in all, the compactness of X is an assumption
which is used in many places in the collectively compact approach. It does not seem
impossible to find a way to prove Theorems 11 and 15 without this assumption, but
this would certainly require a lot of technical work. One way how the compactness
assumptions might be avoided is to define the operators on L2(P) instead of C(X),
define the empirical operators by discretizing the similarity function rather than
the probability measure (as it will be indicated in Section 10), and making extra
assumptions on k. In applications it would be desirable not to require compactness
of the data space. For example, it is often assumed that the data are generated by
Gaussian distributions on R

n, which do not have a compact support. On the other
hand, given a finite amount of data it seems sensible to make predictions only for
the region of the space where the given training data lives, and this region can be
assumed to have a finite diameter and be compact.

Convergence of Spectral Clustering 55

The second assumption in Theorems 11 and 15 is the continuity of the similarity
function k. This assumption is more of a technical nature. It makes life much eas-
ier, but it is not really necessary. For instance, in the proof of the Glivenko-Cantelli
properties, it could be replaced by statements about the covering numbers of the
function class F . Moreover, as long as k does not get too wild, the integral opera-
tors will still have the same properties as with continuous k, especially they will still
have continuous eigenfunctions. In all practical applications, similarity functions
are usually assumed to be continuous, hence this requirement does not restrict the
application of the theorems.

Note that for the convergence of the eigenvectors it is not necessary to assume
that k is symmetric or positive. In spectral clustering however, both assumptions
are necessary: symmetry ensures that all eigenvalues are real-valued and hence can
be ordered, and positivity ensures the positive semi-definiteness of the Laplacian Ln.
Together, both assumptions ensure that the first eigenvectors of Ln are the relevant
ones for spectral clustering.

In the normalized case we also assumed that the degree function is bounded
away from 0. This seems to be a perfectly reasonable assumption, as otherwise the
behavior of the normalized similarity function gets rather unpredictable even on a
finite sample.

Now let us turn to the assumptions in Theorem 20. The assumption about the
symmetry of k is inherited from Koltchinskii (1998), where it was needed to apply
the classical perturbation inequalities of Lidskii and Wielandt. For non-symmetric
matrices, similar results are difficult to obtain. Also the boundedness of k is an
essential requirement which cannot be relaxed so easily. For instance, it is an es-
sential ingredient in the proof of Proposition 21 which cannot be removed. Two
assumptions which are not needed in the Koltchinskii approach are the continuity
of k and the compactness of X .

An important difference between both approaches is the fact that the limit op-
erator in the collectively compact approach is defined on the space C(X), while it
is on L2(P) in the Koltchinskii approach. One first thing to note is that even in
the space L2(P), all eigenfunctions of the integral operator T are continuous. This
means that the sets of eigenvalues and eigenfunctions are the same in both cases.
A disadvantage of L2(P) is that the functions in L2(P) are not pointwise defined.
This is an unpleasant property as we are interested in the values of the functions
at particular points. There seems to be no fundamental reason why one should
prefer the space L2(P) instead of using C(X) – the reasons why this is necessary
in the Koltchinskii approach are due to the technical details of the proofs. Even
more, for “nice” similarity functions as the Gaussian kernel the eigenfunctions are
also “nice”, for example differentiable. As there are reasons to believe that the dis-
crete Laplacian matrices are closely related to the continuous Laplace operator on

56 Chapter II

R
n (Bousquet et al., 2004) or the Laplace-Beltrami operator on manifolds (Belkin,

2003), the space C(X) of all continuous functions might still be too general to dis-
cover the relevant properties of spectral clustering. It might be desirable to work in
some space of differentiable functions instead, where the norm on this space should
be defined such that it is related to the graph Laplacian. Ideally, what we would
like to achieve is to find a space that plays the same role for the graph Laplacians
as the reproducing kernel Hilbert spaces play for kernel matrices. This will be an
interesting topic for future research.

8 Interpretation of the limit partitions

In the sections above we showed that normalized spectral clustering on finite samples
converges to some fixed limit clustering of the whole data space. Now we want to
investigate whether this limit clustering partitions the data space X in a reasonable
way. We start by showing that in an idealized setting where the data contains two
“true” clusters, the limit clustering is able to recover these clusters. Then we will
have a look at the general case.

8.1 An idealized clustering setting

Let us take a step back and reflect what we would like to achieve with spectral
clustering. The overall goal in clustering is to find a partition of X into two (or
more) disjoint sets X1 and X2 such that the similarity between points in the same
set is high while the similarity between points from different sets is low. In this
section we want to investigate whether this goal is achieved by spectral clustering if
we have optimal conditions. To this end we introduce the “idealized clustering set-
ting”: We assume that the partition X = X1 ∪X2 is an ideal partition of the space,
that is the similarity function k satisfies k(x1, x2) = 0 for all x1∈X1 and x2∈X2,
and k(xi, x

′
i) > 0 for xi, x

′
i ∈ X1 or xi, x

′
i ∈ X2. Moreover, as in the last section we

assume that k is continuous and X compact.

Now we want to study the form of the limit operators of spectral clustering under
these idealized assumptions. Here, considering the operators on L2(P) is simpler
than on C(X), hence we start with the former. Let X = X1∪X2 be a partition of the
space X into two disjoint, measurable sets such that P (X̄1 ∩ X̄2) = 0. As σ-algebra
on Xi we use the restrictions Bi := {B ∩ Xi; B ∈ B} of the Borel σ-algebra B on
X . Define the measures Pi as the restrictions of P to Bi. Now we can identify the
space L2(X ,B, P) with the direct sum L2(X1,B1, P1)⊕L2(X2,B2, P2). Each function
f ∈ L2(X) corresponds to a tuple (f1, f2) ∈ L2(X1) ⊕ L2(X2), where fi : Xi → R

is the restriction of f to Xi. Let S : L2(P) → L2(P) be a linear operator. It can

be identified with the matrix

(
S11 S12

S21 S22

)
acting on L2(X1,B1, P1)⊕ L2(X2,B2, P2).

In the idealized setting, the diagonal operators Sij are the 0-operators and S corre-

Convergence of Spectral Clustering 57

sponds to

(
S11 0
0 S22

)
.

In the case where we consider the linear operators on C(X) rather than L2(P),
the situation is a bit more complicated. The reason is that in general, functions
(f1, f2) in C(X1) ⊕ C(X2) do not correspond to continuous functions on X as f1

and f2 cannot automatically be ”glued together” continuously at the boundaries
between X1 and X2. But we will see that in the idealized setting, this problem can
be circumvented. This will be a consequence of the following proposition.

Proposition 23 (Two cases in idealized setting) Let (X , dist) be a compact met-
ric space and k continuous and non-negative. Let X = X1∪X2 be a disjoint partition
of X such that k(x1, x2) = 0 for all x1∈X1 and x2∈X2, and k(xi, x

′
i) > 0 for xi, x

′
i ∈

X1 or xi, x
′
i ∈ X2. Then either the degree function d satisfies minx∈X d(x) = 0, or

X1 and X2 are two disjoint connected components of X (with respect to the topology
on X induced by the metric) with positive distance.

Be careful here not to mix up the topological connectedness of the space X (which
is independent of k) and the idealized setting which states that the similarity between
certain parts is 0.
Proof. As X is compact and k continuous, k is in fact uniformly continuous: for
all ε > 0 there exists some δ > 0 such that dist(x1, x2) ≤ δ implies |k(x1, y) −
k(x2, y)| ≤ ε for all y ∈ X . Consider x1 ∈ X1 and x2 ∈ X2. For y ∈ X1, by
the assumptions we know that k(x2, y) = 0, hence by non-negativity k(x1, y) ≤ ε.
Analogously, y ∈ X2 implies k(x1, y) = 0 and k(x2, y) ≤ ε. Together, for all y ∈ X
we have max{k(x1, y), k(x2, y)} ≤ ε, that is ‖k(x1, ·)‖∞ ≤ ε and ‖k(x2, ·)‖∞ ≤ ε.
Consequently, d(x1) ≤ ε and d(x2) ≤ ε.

We can conclude that if for all δ > 0 there exist x1 ∈ X1 and x2 ∈ X2 such that
dist(x1, x2) ≤ δ, then for all ε > 0 there exist points x ∈ X such that d(x) ≤ ε. By
the compactness of X then minx d(x) = infx d(x) = 0.

,

This proposition states that if we assume that our data space is ideally clustered,
then either there are points where the degree function is 0 or the clusters are well
separated from each other. In case that X1 and X2 are disconnected in X ,this has
some very nice consequences: it implies that C(X) is isomorphic to C(X1)⊕C(X2).
One direction of this isomorphism is trivial: each continuous function f ∈ C(X)
gives rise to two continuous functions fi := f |Xi

on the two sets Xi. But the other
way round usually fails. This is due to the fact that ”glueing together” two arbi-
trary functions fi will usually not lead to a continuous function on X . But in the
special case that the Xi are disconnected from each other, this will be no problem.
A function whose parts are continuous on the connected components of the space
automatically is continuous on the whole space (there is nothing where the functions
have to be glued together). This means that under the given conditions we have

58 Chapter II

C(X) ' C(X1)⊕ C(X2).

In case d(x) = 0, the range of the degree function has the form [0, a] for some
real number a, and in the idealized setting the second eigenvalue of Ln is λ = 0
(as the similarity graph has two connected components by the idealized assump-
tions). Hence, the second eigenvalue lies within the essential spectrum of the limit
operator, and nothing can be said about the convergence of unnormalized spectral
clustering. Moreover, normalized spectral clustering is not defined if d(x) = 0 as the
normalization is not well defined (we would have to divide by 0 at some point).

Hence, in both the normalized and unnormalized case, the condition d(x) = 0
implies that no convergence statements can be derived in our framework. In case
that X1 and X2 are two disjoint connected components of X , both normalized and
unnormalized spectral clustering are well defined and the convergence statements of
Theorems 11, 15, and 20 apply. In the following we want to investigate the form of
the limit operators in this case more closely.

8.2 Normalized limit operator on L2(P) in the idealized case

In this section it will be more convenient to consider the normalized similarity ma-
trix H ′′

n instead of H ′
n as it is a stochastic matrix. Recall that the corresponding

integral operators R′′
n and R are defined as in equation (11).

We have already seen above that under the given assumptions, the space L2(X ,B, P)
is isomorphic to the direct sum L2(X1,B1, P1) ⊕ L2(X2,B2, P2). Each function
f ∈ L2(X) corresponds to a tuple (f1, f2) ∈ L2(X1) ⊕ L2(X2), where fi : Xi → R is
the restriction of f to Xi. The operator R can now be identified with the matrix(
R11 R12

R21 R22

)
acting on L2(X1,B1, P1)⊕ L2(X2,B2, P2). We denote by di the restric-

tion of d to Xi and by gij the restriction of g to Xi×Xj. With these notations, the
operators Rij for i, j = 1, 2 are defined as

Rij : L2(Xj) → L2(Xi), Rijfj(x) =

∫
gij(x, y)fj(y)dPj(y).

Now we will assume that we are in the idealized case described above, that
is k(x1, x2) = 0 for all x1∈X1 and x2∈X2, and k(xi, x

′
i) > 0 for xi, x

′
i ∈ X1 or

xi, x
′
i ∈ X2. This means that the operators Rij for i 6= j are 0, and then R has

the form

(
R11 0
0 R22

)
. Similar to Proposition 1.4, R then has eigenvalue 1 with

multiplicity 2, and the corresponding eigenspace is spanned by the functions (1, 0)
and (0, 1). Hence, all eigenfunctions corresponding to eigenvalue 1 are piecewise
constant on the sets X1,X2, and the eigenfunction orthogonal to the function (1, 1)
has opposite sign on both sets. This means that thresholding the second eigenfunc-
tion will recover the true clustering X1 ∪ X2.

Convergence of Spectral Clustering 59

Note that we can see the operator R as as describing a diffusion process on X .
The function g can be interpreted as a Markov transition kernel, and then the op-
erator R describes a Markov diffusion process on X . Hence, the limit clustering
partitions the space into two sets such that diffusion only takes place within the
sets, but not between them.

A similar reasoning also applies to the finite sample case. Here the block structure
of the matrix H ′′

n has already been investigated in Weiss (1999) and Ng et al. (2001).
The discrete equivalent to a diffusion process is a random walk on the sample.
We have already described the random walks interpretation of spectral clustering
in Section 2.3. With the notations from above, we split the finite sample space
{X1, ..., Xn} into the two sets Xi,n := {X1, ..., Xn} ∩ Xi, and define the operators
Rij,n by

Rij,n : L2(Xj,n) → L2(Xi,n), Rij,nfj(x) =

∫
gij,n(x, y)fj(y)dPj,n(y).

According to the random walk interpretation, spectral clustering in the finite case is
looking for a partition of the sample space such that the probability of staying within
the same cluster is large while the probability of going from one cluster into another
one is low, that is R11,n and R22,n are “large” and R12,n and R21,n are “small”. In
the special case R12,n = R21,n = 0, the true partition will be recovered.

So a similar interpretation of the partition constructed by spectral clustering
holds both in the finite and in the limit case. We can interpret the operator R as
describing a diffusion process on X , and the goal is to partition the space into two
sets such that diffusion mainly takes place within the sets, but not between them.

8.3 Normalized limit operator in C(X) in the idealized case

Under the additional constraints that X is compact and k continuous, we can even
make stronger statements. Again we assume that the partition X = X1 ∪ X2 is an
ideal partition of the space, that is the similarity function k satisfies k(x1, x2) = 0
for all x1∈X1 and x2∈X2, and k(xi, x

′
i) > 0 for xi, x

′
i ∈ X1 or xi, x

′
i ∈ X2. Moreover

we assume that X1 and X2 are two disjoint connected components of X (we already
discussed above that otherwise, convergence statements are impossible). As we have
already seen that C(X) = C(X1)⊕C(X2) in this case, we can proceed as in the space
L2(P) and decompose R into the four operators Rij. Additionally to the statements
in the L2(P) case we can now get even stronger results.

Proposition 24 (Structural convergence in the normalized case) In the ide-
alized clustering setting on a disconnected space, and under the conditions of Theo-
rem 15 we have Rij,n

cc→ Rij almost surely, and the eigenvalues and eigenfunctions
converge analogously to Theorem 15.

60 Chapter II

Proof. This can be proved analogously to Theorem 15. ,

This statement is much sharper than the convergence statement of Rn to R as it
shows that for any fixed partition of X , the structure of the operators is preserved
when taking the limit. This means that a partition that has been constructed on
the finite sample such that the diffusion between the two sets is small also keeps
this property when we take the limit for n→∞.

8.4 Unnormalized limit operator in the idealized case

In this section we make the same assumptions as in Section 8.3. As above, we
then have C(X) ' C(X1)⊕ C(X2). We compose the limit operator U into the four
operators (Uij)i,j=1,2 defined as

Uii : L2(Xi) → L2(Xi), Uiifi(x) = di(x)fi(x)−
∫
kii(x, y)fi(y)dPi(y)

Uij : L2(Xj) → L2(Xi), Uijfj(x) = −
∫
kij(x, y)fj(y)dPj(y) (for i 6= j).

We see that the off-diagonal operators Uij for i 6= j only consist of integral op-
erators, whereas the multiplication operators only appear in the diagonal operators
Uii. Thus the operators Uij for i 6= j can also be seen as diffusion operators, and the
same interpretation as in the normalized case is possible. If there exists a partition
such that k(x1, x2) = 0 for all x1 ∈ X1 and x2 ∈ X2, then the second eigenfunction is
constant on both parts (due to Proposition 1), and thresholding this eigenfunction
will recover the “true” partition. Moreover, on the space C(X) all four operators
Uij,n converge compactly to Uij almost surely. This means that the isolated parts of
the spectra and the corresponding spectral projections converge. But here we run
again into the same problem as in the Theorem 1: we do not know whether the
eigenvalues of the diagonal operators Uii are isolated or not, and we need the same
assumptions as in Theorem 1 to conclude the convergence of the eigenspaces.

Thus, also in the unnormalized case the goal of spectral clustering is to find
partitions such that the norms of the off-diagonal operators is small and the norms
of the diagonal operators are large. This holds both in the discrete case and in the
limit case, but only if the second eigenvalue of U is not inside the range of the degree
function.

8.5 The general case

In practice, the similarity function k will usually be irreducible, that is there will
exist no partition such that k(x1, x2) = 0 for all x1∈X1 and x2∈X2, and k(xi, x

′
i) > 0

Convergence of Spectral Clustering 61

for xi, x
′
i ∈ X1 or xi, x

′
i ∈ X2. In the non-idealized case, the normalized operators

R12 and R21 will not vanish. Then the goal will be to find a partition such that
the norms of R12 and R21 are as small as possible, while the norms of Rii should

be reasonably large. If we find such a partition, then the operators

(
R11 R12

R21 R22

)
and

(
R11 0
0 R22

)
are close in operator norm. The difference between ideal case and

non-ideal case can be measured in terms of the operator norms of the off-diagonal
operators.∥∥∥∥(T11 T12

T21 T22

)
−
(
T11 0
0 T22

)∥∥∥∥ =

∥∥∥∥(0 T12

T21 0

)∥∥∥∥ =

= sup
‖(f1,f2)‖(X ,X)≤1

‖T12f2 + T21f1‖L2(X) ≤ ‖T12‖(X1,X2) + ‖T21‖(X2,X1).

Here subscript (X1,X2) indicates that the corresponding norm is the operator norm
for the operator defined from X1 to X2.

With perturbation theory as in Proposition 8 we can then measure how different
the eigenvalues and eigenspaces in the idealized case and the non-idealized case are.
In particular, if the difference is small, then the partition constructed by the non-
idealized operator R will be approximately the same as the one constructed by the

idealized operator

(
R11 0
0 R22

)
, which is the partition X1 ∪ X2.

A similar argument also holds in the unnormalized case.

9 Consequences for applications

9.1 Normalized or unnormalized Laplacian?

There is an ongoing debate whether for practical applications it is better to use
the normalized or the unnormalized graph Laplacian. Articles using the normalized
one include Van Driessche and Roose (1995), Shi and Malik (2000), Kannan et al.
(2000), Ng et al. (2001), Meila and Shi (2001), while Barnard et al. (1995); Guattery
and Miller (1998) use the unnormalized one. In cases where the degrees di of the
different points are approximately constant (for example if similarities are based on
a k-nearest neighbor procedure as in Belkin and Niyogi (2003b)), then there is not
much difference in both approaches, but it does make a difference if the degrees
have very different sizes. Comparing both approaches, Van Driessche and Roose
(1995) and Weiss (1999) came to the conclusion that the normalized version should
be preferred. On the other hand, there is a recent study (Higham and Kibble, 2004)
which advocates for the unnormalized version in case only the second eigenvector is
used.

62 Chapter II

The question whether one should use the normalized or the unnormalized Lapla-
cian also arises in different applications of graph Laplacians to machine learning
tasks, e.g. in the field of semi-supervised learning (Belkin and Niyogi, 2003b; Zhu
et al., 2003; Zhou and Schölkopf, 2004). Here it also seems that the normalized
Laplacian obtains better results than the unnormalized one.

Our convergence theorems support the conjecture that normalized Laplacian
work at least as good as unnormalized ones. We showed that in the normalized
case, convergence of spectral clustering is always guaranteed under the standard
assumptions of spectral clustering, while we could not show this in the unnormalized
case. On the other hand, if convergence takes place, then both the normalized
and the unnormalized spectral clustering converge to an intuitively appealing limit
clustering.

9.2 Basic sanity checks for the constructed clustering

In case one wants to use unnormalized spectral clustering, it makes sense to try to
find out whether the assumptions of Theorem 11 are satisfied for the given data or
not. As we do not know P , we cannot do this exactly, but we can try to make a
sanity-check at least. To this end, we estimate the range of the degree function by
the interval [mini=1,...,n di,maxi=1,...,n di]. Then we check whether the second eigen-
value is inside or close to the boundaries of this interval or not. If this is the case,
the result of unnormalized spectral clustering should be treated with care. If the
second eigenvalue is far away from the empirical range, then we can hope that this
will also be the case for the limit operator, and we know that then convergence holds.

According to the diffusion interpretation, it also seems possible to to construct
a criterion to evaluate the goodness of the partition achieved by spectral clustering.
For a good partition, the off-diagonal operators R12,n and R21,n should have a small
norm compared to the norm of the diagonal matrices R11,n and R22,n, which is easy
to check in practical applications. It will be a topic for future investigations to work
out this idea in detail.

10 Convergence of spectra of kernel matrices: why an often
cited result does not apply

The techniques we used above to prove the convergence of the spectral properties of
graph Laplacians can similarly be applied to prove that the eigenvalues and eigenvec-
tors of kernel matrices 1

n
Kn converge to those of the corresponding integral operator

S. The term “kernel matrix” refers to a similarity matrix for a positive definite
similarity function k, as it is used in kernel algorithms such as support vector ma-
chines. The convergence of spectra of kernel matrices has already attracted some

Convergence of Spectral Clustering 63

attention, cf. Williams and Seeger (2000), Shawe-Taylor et al. (2002), and Bengio
et al. (2003). In general, the case of kernel matrices is a special case of the results
obtained in Koltchinskii (1998) and Koltchinskii and Giné (2000), where even the
distributions of the eigenvalues and spectral projections are investigated. This solves
the convergence of spectral properties of kernel matrices completely.

However, all the mentioned studies about the convergence of kernel matrices
also cite results from numerical integration theory as evidence for the convergence
of eigenvalues of kernel matrices, especially Theorem 3.4 of Baker (1977) is frequently
cited. In this section we want to show that Theorem 3.4 of Baker (1977) does not
apply to the case of random kernel matrices. The main reason is that Theorem 3.4
of Baker is proved in a deterministic setting, and the proof does not carry over to
the random case. This also explains why we had to prove the convergence of the
spectral properties of the normalized graph Laplacian “by foot” as in the collectively
compact approach or by using results of Koltchinskii (1998). The goal of this section
is to explain this in detail.

Theorem 3.4 of Baker (1977) deals with the Nyström method of numerical inte-
gration. Let us first explain how this method works. For simplicity we assume (as
Baker does) that X is a compact real interval, say X = [0, 1], and k : X×X → R a
continuous similarity function. As above, consider the integral operator

S : C(X) → C(X), Sf(x) =

∫
k(x, y)f(y)dP (y).

The aim of the Nyström method is to approximate this integral operator numerically
such that the eigenvalues of the approximation converge to the true eigenvalues of
S. There are two ways to perform this approximation.

The first approximation can be done by using a quadrature rule Jn. Instead
of computing the integral analytically, we choose some points x1, ..., xn in X and
replace the integral

∫
g(x)dP (x) by a sum Jn(g) :=

∑
i=1,...,nwig(xi), where wi are

given weights depending on the quadrature rule and g ∈ C(X) an arbitrary function.
Clearly, a valid quadrature rule has to satisfy Jn(g) →

∫
gdP for all g ∈ C(X). The

simplest quadrature rule is the Riemann sum in case of a uniform distribution P ,
where the points xi are chosen equidistant on [0, 1] and the weights wi are given by
1/n. With the quadrature method, we discretize the operator S to the operator

S̃n : C(X) → C(X), S̃nf(x) =
∑

j=1,...,n

wjk(x, xj)f(xj).

It can be shown similarly to Proposition 10 that the eigenvalues of S̃n are the same
as the ones of the matrix KnWn, where Wn is the diagonal matrix containing the
weights wi of the quadrature rule on the diagonal, and Kn = (k(xi, xj))i,j=1,...n with
the xi chosen above. So the question is whether the eigenvalues of KnWn converge

64 Chapter II

to the ones of S or not. For deterministic quadrature rules, Baker proves that they
do, by using the second discretization we will describe below. This is also plausible
by the results we already obtained in the last sections. As a special case consider
the Riemann sum. Here we have wi = 1/n for all i, and hence KnWn = 1

n
Kn. We

already showed that the eigenvalues of 1
n
Kn converge to the ones of S (even though

we proved this for random points Xi, but it is even simpler in the case of determin-
istic xi).

The other way to approximate S is not to discretize the integral operator, but
the kernel function k. Here we partition the space X into n sets A1, ..., An, denote
the characteristic functions of Ai by 1Ai

, for each i choose one representative point
xi ∈ Ai, and define

kn(x, y) :=
∑

i,j=1,...,n

k(xi, xj)1Ai
(x)1Aj

(y).

The function kn is piecewise constant on each of the sets Ai×Aj, and its value on

Ai×Aj is the value of k(xi, xj) at the two representative points. Let Ŝn be the
discretized integral operator where k has been replaced by kn:

Ŝn : C(X) → C(X), Ŝnf(x) =

∫
kn(x, y)f(y)dP (y).

Both ways of discretizing are very similar. We choose representative points in X and
evaluate the integral at these representative points. Note however that in the first
method, we only discretize with respect to y (via the discretization of the integral),
while in the second method we discretize in x and y. The trick in Baker (1977) is
now to connect both discretizations with each other. For a partition A1, ..., An of
the space X , wj := P (Aj), and xi ∈ Ai we consider the quadrature rule given by
the xi and wi, and the discretized kernel with the xi and Ai. It can be shown that
then the eigenvalues of the quadrature rule operator S̃n converge to the ones of S if
supx,y∈X |kn(x, y)−k(x, y)| → 0. A necessary condition for the latter is in particular
that maxi=1,...,n diam(Ai) → 0 a.s., where diam denotes the diameter of a bounded
set.

The connection to the convergence of the eigenvalues of kernel matrices is now
as follows. Consider the random quadrature rule which approximates an integral
with respect to P by the integral with respect to the empirical distribution Pn, that
is we approximate the integral operator S by S̃nf(x) = 1

n

∑
j k(x,Xj)f(Xj), where

Xi are the iid data points drawn from P . By the law of large numbers, this is
clearly a valid integral rule, and the weights wi are given by 1/n. By the discussion
above, the eigenvalues of S̃n are the ones of the matrix KnWn, which is simply the
matrix 1

n
Kn we are interested in. The proof described in Baker now proceeds by

showing that supx,y∈X |kn(x, y) − k(x, y)| → 0. In case of deterministic quadrature

Convergence of Spectral Clustering 65

rules this is possible, but in our random case we come upon a problem. To define the
appropriate function kn we have to construct sets Ai such that P (Ai) = 1

n
and such

that the randomly drawn points Xi are in the sets Ai (note that in general the sets
Ai will not be connected even in the simple case X = [0, 1], which might already hint
that there might be problems). To prove that kn converges to k in the sense above,
we additionally have to show that maxi=1,...,n diam(Ai) → 0. Here the problem is
the max in the expression. We have to construct the sets Ai in such a way that
Xi ∈ Ai, P (Ai) = 1

n
, and maxi=1,...,n diam(Ai) → 0. I believe that this is impossible

in general, in particular if our space X has a difficult geometric structure. In the
deterministic case, however, the quadrature rule and the sets Ai are just chosen such
that all these properties hold (consider the Riemann sum as a simple example).
Conversely, another idea is to start with a kernel function kn which we can control
and then construct the corresponding quadrature rule. For example, we can choose
the sets Ai as the neighborhoods of the data points Xi, that is we define

Ai := {x ∈ X ; dist(x,Xi) < dist(x,Xj)for all j 6= i}.

Then it is possible to prove that maxi diam(Ai) → 0 a.s., and consequently also that
supx,y |kn(x, y) − k(x, y)| → 0 a.s. But the quadrature rule corresponding to kn is

now the rule Jn(g) =
∑
wjg(Xj) where wj = P (Aj). Hence, S̃n has the eigenvalues

given by the matrix KnWn. So by proving that kn converges to k we can prove
that the eigenvalues of KnWn converge to the ones of S. But we are actually inter-
ested in the eigenvalues of the matrix 1

n
Kn. So to prove that the eigenvalues of our

kernel matrices converge to the ones of the integral operator we additionally have
to show that ‖KnWn − 1

n
Kn‖ → 0 a.s. It can be seen that a necessary condition

for this is that maxi |wi − 1
n
| = maxi |P (Ai) − Pn(Ai)| converges to 0. But this, I

believe, is wrong. We can see that the condition maxi |P (Ai) − Pn(Ai)| → 0 has a
Glivenko-Cantelli flavor, and related problems have been studied in the context of
data based histogram rules and nearest neighbor density estimation (cf. Lugosi and
Nobel, 1996). We need to show that the difference between the empirical and the
true measure of a certain family of sets converges to 0 uniformly over all sets. In
general, this is only true if more and more data points end up being in all of the
sets, which is not the case here (each Ai contains only one data point by definition).

To conclude, the proof of Theorem 3.4 of Baker (1977) cannot easily be carried
over from deterministic quadrature rules to random ones. We do not claim that it
is impossible, we just point out the difficulties one would have to solve on the way.
So before one can cite Theorem 3.4 of Baker (1977) in the context of random kernel
matrices, one first has to explain how these difficulties can be overcome.

11 Discussion

The take-home message of this chapter is the following: under the standard as-
sumptions of spectral clustering (k is continuous, symmetric, and positive) all three

66 Chapter II

convergence Theorems 11, 15, and 20 apply. In the normalized case, we then can
conclude that spectral clustering converges, while in the unnormalized case, conver-
gence can only be guaranteed under the additional assumption that the interesting
eigenvalues are not in the range of the degree function. In case that convergence
takes place, the limit clustering achieves the objective of clustering, namely to divide
the space such that the within-similarity in the clusters is high and the between-
similarity is low.

There are many open questions related to spectral clustering which have not
been addressed in our work so far. The most obvious one is what happens in the
unnormalized setting if the second eigenvalue is within rg(d). As Theorem 11 only
contained sufficient conditions it is not clear whether in this case convergence can
also take place or not. To solve this question one would either have to construct an
example where the algorithm does definitely not convergence, or to prove with other
means that we always get convergence even if the condition λ ∈ rg(d) is satisfied.

Also very important is the question about the speed of convergence and the con-
centration of the limit results. Results in this direction would enable us to make
confidence predictions about how close the clustering on the finite sample is to the
“true” clustering proposed by the limit operator.

This immediately raises a second question: Which relations are there between the
limit clustering and the geometry of the data space? For certain similarity functions
such as the Gaussian kernel kt(x, y) = exp(−‖x − y‖2/t), it has been established
that there is a relationship between the operator T and the Laplace operator on
R

n (Bousquet et al., 2004) or the Laplace-Beltrami operator on manifolds (Belkin,
2003). Can this relationship also be extended to the eigenvalues and eigenfunctions
of the operators?

There are also more technical questions related to our approach. The first one is
the question which space of functions is the “natural” space to study spectral clus-
tering. The space L2(P) is a large space and is likely to contain all eigenfunctions
we might be interested in. On the other hand, for “nice” similarity functions the
eigenfunctions are continuous or even differentiable, thus L2(P) might be too gen-
eral to discuss relevant properties such as relations to continuous Laplace operators.
Moreover, we want to use functions which are pointwise defined, as we are interested
in the value of the function at specific data points. But of all spaces, the functions
in Lp-spaces do not have this property.

Another question concerns the type of convergence results we should prove. In
this work, we fixed the similarity function k and considered the limit for n → ∞.
As a next step, the convergence of the limit operators with respect to some kernel
parameters, such as the kernel width t for the Gaussian kernel, can be studied as in
the works of Bousquet et al. (2004) and Belkin (2003). But it seems more appropriate

Convergence of Spectral Clustering 67

to take limits in t and n simultaneously. This might reveal other important aspects
of spectral clustering, for example how the kernel width should scale with n.

Chapter III

Classification in Metric Spaces
Using Lipschitz Functions

The goal of classification is to learn how to distinguish between objects from two or
several categories. Contrary to clustering, classification is a supervised learning task
where we are given a set of training points consisting of patterns with labels. These
training points are used to construct a classifier which assigns class memberships to
all patterns of the data space. To achieve this, we require some kind of information
about the relationships between the training points. In most cases, this information
either consists of similarities or dissimilarities between pairs of training points. As a
lot of attention has already been paid to similarity based classifiers such as support
vector machines, we want to focus on distance based classification.

Rather than performing classification on a metric space directly, our approach
will be to embed the given metric space into some vector space and use the additional
linear structure to construct a good classifier. In the first sections we will introduce
the problem of classification in general (Section 1) and review several ways of deal-
ing with distances from an embedding point of view (Section 2). In Section 3 we
introduce the concept of a large margin classifier and explain why it is desirable to
use them. In the main part of this chapter, our goal will be to develop a framework
for large margin classification in metric spaces. We want to find a generalization of
linear decision functions for metric spaces and define a corresponding notion of mar-
gin such that the decision function separates the training points with a large margin.
This will be accomplished by embedding the given metric space isometrically into a
certain Banach space called Arens-Eells space, and simultaneously embedding the
space of Lipschitz functions on the metric space into the dual of the Arens-Eells
space (Section 5). Performing large margin classification in the Arens-Eells space
will result in an algorithm called the Lipschitz classifier. It will turn out that using
Lipschitz functions as decision functions, the inverse of the Lipschitz constant can
be interpreted as the size of a margin (Section 6). To analyze the resulting algo-
rithm, we then prove several representer theorems (Section 7). They state that there
always exist solutions of the Lipschitz classifier which can be expressed in terms of

70 Chapter III

distance functions to training points. In Section 8 we provide generalization bounds
for Lipschitz classifiers in terms of the Rademacher complexities of some Lipschitz
function classes. As the embedding in the Arens-Eells space is not the only pos-
sible isometric embedding of a metric space into a Banach space, we investigate
relationships between the Lipschitz classifier and classifiers constructed by different
embeddings in Section 9. We will show that certain embeddings can be seen as a
special case of the Lipschitz classifier, and also several well-known algorithms such
as the support vector machine, the linear programming machine, and the 1-nearest
neighbor classifier can be interpreted in the framework of the Lipschitz classifier.

1 The standard classification framework

Let X be some arbitrary set of patterns and Y some discrete set denoting class
memberships of patterns, for instance Y = {−1,+1} in the two-class case. Assume
that the space X ×Y is endowed with an unknown probability measure P . The goal
is then to “learn” a decision function f : X → Y which can predict the label y ∈ Y
for each point x ∈ X “as accurately as possible”. Our information consists of a set
of n training points (xi, yi)i=1,...,n which are drawn iid from X × Y according to P .
The accuracy of a decision function f is measured with respect to some predefined
loss function `(x, y, f(x)). Popular choices for loss functions in classification are
the 0-1-loss `(x, y, f(x)) = 1f(x)=y, the hinge loss `(x, y, f(x)) = max{0, 1− yf(x)},
the squared hinge loss `(x, y, f(x)) = (max{0, 1 − yf(x)})2, the least square loss
`(x, y, f(x)) = (1 − yf(x))2, or the clipped hinge loss `(f(x), y) = 1 if yf(x) ≤ 0,
1 − yf(x) if 0 ≤ yf(x) ≤ 1, and 0 if yf(x) ≥ 1. For a given loss function, the
expected error (also called risk) of a classifier f is defined as

R(f) =

∫
`(x, y, f(x))dP (x, y).

The overall goal of classification is to construct a decision function f which mini-
mizes the risk R(f). If P was known, it would be clear how the best classifier would
look like. It would classify the points according to whether P (y = 1|x) is smaller or
larger than 1/2. This classifier is called the Bayes classifier, and its risk is called the
Bayes risk. But in practice we do not know P , and hence we neither can construct
the Bayes classifier, nor can we compute the risk R(f). Instead we often consider
the empirical risk

Remp(f) =

∫
`(x, y, f(x))dPn(x, y) =

1

n

n∑
i=1

`(xi, yi, f(xi)).

For every decision function f , the empirical risk can be computed from the training
data. Hence, we can try to find a decision function which has low empirical error,
and hope that its true error will also be small. As minimizing the empirical risk
often leads to overfitting, it is often better to use a regularization approach. Here

Classification in Metric Spaces 71

we minimize the regularized risk functional

Rreg(f) = Remp(f) + λΩ(f)

where, Ω is a regularization functional (also called regularizer) and λ is some trade-
off constant. Usually the regularizer measures how “well-behaved” a function is, for
instance by measuring its variation. By minimizing the regularized risk instead of
the empirical risk we artificially shrink the hypothesis class. From a theoretical point
of view this has the advantage that classifiers chosen from a small hypothesis class
have less tendency to overfit than those chosen from a large function class. This
can be seen from generalization bounds proved with methods of statistical learning
theory. Those bounds often have the form R(f) ≤ Remp(f) +C(F), where F is the
hypothesis class and C(F) a term measuring the “capacity” of this function class.
The measures of capacity we will consider later are the Rademacher average Rn and
the related maximum discrepancy R̃n. For an arbitrary class F of functions, they
are defined as

Rn(F) := E

(
1

n
sup
f∈F

|
n∑

i=1

σif(Xi)|

)

R̃n(F) := E

(
1

n
sup
f∈F

|
n∑

i=1

(f(Xi)− f(X ′
i))|

)
where σi are iid Rademacher random variables (i.e., Pr(σi = +1) = Pr(σi = −1) =
1/2), Xi and X ′

i are iid sample points according to the (unknown) sample distribu-
tion, and the expectation is taken with respect to all occurring random variables. It
holds that Rn(F) ≥ 1

2
R̃n(F). Sometimes we also consider the conditional Radema-

cher average R̂n given by

R̂n(F) := E

(
1

n
sup
f∈F

|
n∑

i=1

σif(Xi)|
∣∣∣∣X1, ..., Xn

)
where the expectation is taken only conditionally on the sample points X1, ..., Xn.

Let F be a class of bounded functions and ` the clipped hinge loss function from
above. Then the following bound can be proved with techniques using McDiarmid’s
concentration inequality, symmetrization, and the contraction property of Radema-
cher averages (cf. Bartlett and Mendelson, 2002, Anthony (2002), and Chapter 3 of
Devroye and Lugosi, 2001):

Theorem 1 (Rademacher error bound) With probability at least 1− δ over the
iid drawing of n sample points, every f ∈ F satisfies

R(f) ≤ Remp(f) + 2Rn(F) +

√
8 log(2/δ)

n
.

A similar bound can be obtained with the maximum discrepancy (see Bartlett and
Mendelson, 2002).

72 Chapter III

2 Different ways of dealing with dissimilarities for classifi-
cation

Assume that additionally to the training points, we are given a dissimilarity func-
tion d : X×X → R which measures some kind of distance between the points in X .
In the following we want to give a short overview over some approaches how this
distance information can be used for classification.

The easiest and most straightforward way for dissimilarity-based classification is
the k-nearest neighbor classifier k- NN. It classifies an arbitrary point x ∈ X by a
majority vote among the k closest training points. This classifier has the advantage
that it is easy to implement and easy to understand. Moreover, if one suitably in-
creases k with the sample size n, then it is consistent: if k →∞ and k/n→ 0, then
the error of k- NN converges to the Bayes risk. If we simply fix k and let n → ∞,
then the error of k- NN is bounded by twice the Bayes risk. On the other hand,
k- NN does not work well in high-dimensional spaces or for very noisy training data.
For a comprehensive discussion of statistical properties of k- NN we refer to Sections
5 and 11 in Devroye et al. (1996).

Another elegant classifier which works for arbitrary dissimilarity spaces X is the
Linear Programming machine (LP machine) introduced in Graepel et al. (1999b).
It constructs a decision function of the form

f(x) =
n∑

i=1

aid(x, xi) + b

which minimizes the regularized risk with respect to the regularizer Ω(f) =
∑

i |ai|.
This can be done by solving a linear program. This algorithm is easy to implement,
achieves sparse solutions, and works well in practice (Graepel et al., 1999b).

Both k- NN and the LP-machine do not require the data space X to have any
structure, apart from possessing a dissimilarity function. But for many methods
it is convenient or even necessary to work in a richer space X . For example, to
construct linear classifiers we need to have a vector space, preferably a Hilbert space
structure. If X does not possess the structure we need, we somehow have to impose
this structure on X , or have to transfer the problem to another space X̃ which has
the structure we want. During this transformation we have to make sure that we
do not loose important information about the original problem. One common way
of dealing with this problem is to embed the given space X into a vector space V
such that the original distances are preserved as well as possible. There are many
different algorithms which (approximately) solve this problem. They differ in which
requirements they have for the dissimilarity function, which information they want
to preserve (local or global distances, approximately or exact) and in which space
they want to embed. In the following we want to give an overview over some of

Classification in Metric Spaces 73

those methods.

2.1 Globally isometric embeddings into a Hilbert space

The vector space possessing the most “structure” is the Hilbert space. In general it
is not possible to embed arbitrary metric spaces isometrically into Hilbert spaces.
Recall from the introduction that a metric space (X , d) can be embedded isomet-
rically into a Hilbert space if and only if the metric−d2 is conditionally positive
definite, that is −

∑l
i,j=1 cicjd

2(xi, xj) ≥ 0 for all l ∈ N, c = (c1, ..., cl) ∈ R
l with∑

i ci = 0, and (xi)i=1,...,l ∈ X . Below we refer to this condition as Schoenberg condi-
tion. A classical method for embedding a finite metric space into an Euclidean space
is multidimensional scaling (MDS), cf. Cox and Cox (2001). Given an n×n distance
matrix D, the goal is to find points p1, ...pn ∈ R

m such that the Euclidean distances
between the points coincide with the distances in D, that is ‖pi−pj‖2 = dij. This is
only possible if the dissimilarity function satisfies the Schoenberg condition. In this
case, MDS uses the relation d2

ij = 〈pi − pj, pi − pj〉 = 〈pi, pi〉+ 〈pj, pj〉 − 2〈pi, pj〉 to
derive an inner product matrix K which is consistent with the given distance matrix.
The coordinates of the points can then be computed by decomposing K = XX t and
identifying the columns of X with the points pi. The dimension m of the Euclidean
space can be chosen to be the rank of the similarity matrix K.

If the distance function is not Euclidean, then a set of points with ‖pi−pj‖2 = dij

does not exist. In this case, the goal is to find a set of points in a Euclidean space
such that their distances are approximately the ones given in D. This is usually
done by defining a loss function which is then minimized by gradient descent. One
problem in this case is that it is not clear how the dimension m should be chosen.
The loss usually decreases for increasing dimension as in high-dimensional spaces we
have more freedom of choosing points. One heuristic to choose a reasonable dimen-
sion is then to choose the smallest dimension such that the loss does not decrease
significantly if we further increase the dimension.

2.2 Locally isometric embeddings into a Hilbert space

While in MDS we try to preserve all pairwise distances as well as possible, other
approaches suggest only to preserve local distances. Here the intuition is that the
data has a manifold structure that should be recovered by the embedding. In this
case, the information we want to preserve consists of the intrinsic distances between
points along the manifold. In small neighborhoods, those distances are close to the
distances measured by d, but for points which are far away from each other this is
not true any more. Now the goal is to find an embedding of X into a low-dimensional
space Rm which preserves the local distances. There are several approaches to this
problem. The Isomap algorithm of Tenenbaum et al. (2000) relies on classical MDS,

74 Chapter III

but replaces the original distance matrix D by a new matrix D̃ which contains the
intrinsic geodesic distances between the points. The matrix D̃ is computed as fol-
lows. First, we construct the neighborhood graph corresponding to D, consisting of
the nodes xi and connecting each node xi with its k-nearest neighbors as measured
by D (or alternatively, with all points in a ε-neighborhood). Then the length of the
shortest path between two nodes xi and xj in this graph is defined to be the new

distance d̃ij. Finally, classical MDS is used to find a configuration of points in the

Euclidean space which approximates the distances in D̃.

A similar goal is pursued with the Locally Linear Embedding algorithm (LLE)
of Roweis and Saul (2000). For simplicity let us assume that the training points xi

are points in a high-dimensional space, and we want to map them to points pi in a
low-dimensional space which has the “true” intrinsic dimension of the data. First we
look at the points in the high dimensional space. We approximate each point xi by
a linear combination of its k neighbors, that is we want to find weights wij such that
xi ≈

∑
j=i1,...,ik

wijxj, where the sum goes over the k nearest neighbors of xi. Sec-
ondly we then try to find a set of points pi in a low dimensional space such that the
linear relationships are preserved, that is we minimize the loss |pi−

∑
j=i1,...,ik

wijpj|,
where the weights are fixed to the values determined in the first step. This can be
done effectively by solving an eigenvector problem.

A third algorithm falling into the same category is the Laplacian Eigenmap, cf.
Belkin and Niyogi (2003a). As in Isomap, we first construct the neighborhood graph
corresponding to the given distance matrix. Then we transform the dissimilarities
dij to similarities wij, compute the graph Laplacian matrix L on the similarity graph
and consider the n×m matrix M containing the first generalized eigenvectors of L.
The rows of this matrix are the coordinates of the representation points xi ∈ R

m.
(For details about graph Laplacians and their eigenvalues we refer to Chapter II).
The authors show that this embedding preserves the local distance information in
some sense. This embedding is also similar to the one proposed in Ng et al. (2001)
for spectral clustering, which we already discussed in Chapter II.

2.3 Isometric embeddings in Banach spaces

If the Schoenberg condition is not satisfied for some space (X , d), then it cannot
be embedded isometrically into a Hilbert space. Instead of relaxing the isometry
condition, we can also relax the requirement that the target space should be a
Hilbert space. Below we will see that it is always possible to embed metric spaces
isometrically into Banach spaces. A Banach space is nearly “as nice” as a Hilbert
space, and in this chapter we will study many properties of embeddings in Banach
spaces. Some of those embeddings, namely the one into the predual of the space
of Lipschitz functions and the Kuratowski embedding into the space of continuous
functions, will be discussed in depth in Sections 5 and 9. For embeddings in other

Classification in Metric Spaces 75

Banach spaces such as L1-spaces we refer to Watson (1999).

2.4 Isometric embeddings in pseudo-Euclidean spaces

If the distance function d on X fails to satisfy the triangle inequality, then even
embedding X isometrically into a Banach space is no longer possible, as a norm
in a Banach space by definition always satisfies the triangle inequality. In case
the distance function is still symmetric and satisfies d(x, x) = 0 for all x ∈ X ,
it is possible to embed the space X into a pseudo-Euclidean space such that the
dissimilarities are preserved. Pseudo-Euclidean spaces (cf. Goldfarb, 1985) consist
of a direct sum of two Hilbert spaces. In both spaces, we first define the norm in
the standard way using the scalar product, but then we flip the sign of the norm
in one of the two spaces. As a consequence, the norm on the whole space can have
attain negative values and does not satisfy the triangle inequality. Embeddings into
pseudo-Euclidean spaces have been considered by several authors (Graepel et al.,
1999a; Pekalska et al., 2001), but in my opinion they are no good choice. The reason
is that the geometry in pseudo-Euclidean spaces does not behave as in standard
Euclidean spaces and has very strange properties which are difficult to understand.
Hence, just transferring algorithms which were designed for Euclidean spaces to
pseudo-Euclidean spaces is not very promising. Instead I believe that in this case,
algorithms which directly work on the dissimilarity space should be preferred.

3 Large margin classifiers

Assume the training patterns (xi)i=1,...,n are points in some Hilbert space H and are
separated by a hyperplane

h(ω,b) = {x ∈ H; 〈x, ω〉+ b = 0}.

Then the geometrical margin of the hyperplane h(ω,b) with respect to the training
patterns is defined as

ρ(ω, b) := min
i=1,...,n

d(x, h(ω,b)) := min
i=1,...,n

min
h∈h(ω,b)

‖xi − h‖

and measures the minimal distance of the training points to the separating hyper-
plane. The large margin principle states that if the training data can be separated
by linear hyperplanes, then we should choose the hyperplane that has the largest
margin. A classifier which implements the large margin principle is called a large
margin classifier. A typical example for large margin classifiers is the support vector
machine (cf. Schölkopf and Smola, 2002). If the training points are separable, we
choose the hyperplane according to the following optimization problem:

max ρ(ω, b) subject to d(xi, hω,b) ≥ ρ, yi(〈ω, xi〉+ b) ≥ 0.

The two constraints ensure that all training points lie outside the margin and that
they are correctly separated by the hyperplane. The standard formulation of the

76 Chapter III

SVM exploits the fact that we can express the margin as the inverse of the length
of the normal vector ω of the separating hyperplane, that is ρ = 1/‖ω‖. Moreover,
we can also merge the two constraints into a single one and get

min ‖ω‖2 subject to yi(〈ω, xi〉+ b) ≥ 1. (1)

This is called the hard margin support vector machine. The term “hard margin”
refers to the fact that we try to separate the training points perfectly. In the likely
case that the training points cannot be separated by a linear hyperplane because the
two classes overlap, we relax the hard margin condition. In this case, we try to find
a hyperplane that classifies most training points correctly, has a large margin with
respect to most of the training points, but is allowed to ignore that some training
points are within the margin or on the wrong side of the hyperplane. Such a classifier
will be called a soft margin classifier. The standard formulation in case of the SVM
is

min ‖ω‖2 + C
n∑

i=1

ξi subject to yi(〈ω, xi〉+ b) ≥ 1− ξi, ξi ≥ 0

where C is a trade-off parameter, sometimes called the soft margin parameter. The
slack variables ξi measure how much the training points xi violate the hard margin
principle.

There are several reasons why it is believed that large margin classifiers are
good classifiers. Intuitively, the classification of the training patterns is more ro-
bust against noise in the input patterns if the separating hyperplane is “far away”
from the input patterns. Adding noise to the positions of the patterns then does
not change their classification by the hyperplane. Secondly, there are several gen-
eralization bounds which bound the true risk of the classifier by the sum of the
empirical risk and a capacity term involving the margin of the classifier. The most
widely known bound of this type is the radius-margin bound (cf. Section 10.3 of
Vapnik, 1998 or Bartlett and Shawe-Taylor, 1999). Here the important quantity
in the capacity term is R2/ρ2, where R is the radius of the smallest sphere enclos-
ing the training patterns and ρ is the margin of the separating hyperplane. The
mathematical reason why those bounds hold true is that selecting only large margin
hyperplanes considerably reduces the capacity of the hypothesis class. An overview
over many large margin bounds can be found for example in Section 4.3 of Cristian-
ini and Shawe-Taylor (2000). Another intuitive argument in favor of large margin
classifiers will be discussed in Chapter IV. There we will see that selecting a large
margin classifier satisfies what is known as Ockham’s razor: the large margin clas-
sifier is in some sense “the simplest” classifier we can choose.

Finally, we can establish a connection between large margin classification and
regularization in the case of soft margin SVMs. The idea is to interpret the term∑

i ξi as empirical error Remp and the margin ‖ω‖2 as regularizer Ω. This connection

Classification in Metric Spaces 77

becomes interesting if we apply the “kernel trick” for SVMs. Instead of assuming
that our training patterns xi are elements of a Hilbert space, the space X is allowed
to be an arbitrary set. The the only “structure” we require on this space is that
it possesses a similarity function k : X×X → R which is positive definite. Then
we embed the data space X into a Hilbert space H by a so called feature mapping
Φ : X → H. This embedding can be constructed in such a way that the similarity
is preserved: the inner product 〈·, ·〉H in H satisfies 〈Φ(x),Φ(y)〉H = k(x, y). With
this embedding we implicitly impose a vector space structure on the formerly un-
structured data space. Now we have the advantage that we can construct a linear
classifier in the Hilbert space H. It is an important aspect of the kernel trick that
the solution of the large margin SVM in the feature space has a very special form.
Let h(ω,b) be the large margin hyperplane constructed in the Hilbert space with the
training set (Φ(xi), yi)i=1,...,n. It can be shown that the normal vector ω of the large
margin hyperplane has the form ω =

∑
i aiyiΦ(xi) for non-negative coefficients ai.

The fact that the solution of the large margin optimization problem can always be
expressed as a linear combination of the training points Φ(xi) is called the represen-
ter theorem. It has the consequence that the decision function given by a hyperplane
h(ω,b) has a special form:

〈ω,Φ(x)〉H = 〈
∑

i

yiaiΦ(xi),Φ(x)〉H =
∑

i

yiai〈Φ(xi),Φ(x)〉H =
∑

i

yiaik(xi, x).

The last equality is a consequence of the construction: we chose the Hilbert space
H and the embedding Φ in such a way that the similarities were preserved. Inter-
preted as function on the input space, the decision function hence is of the form
f(x) =

∑n
i=1 yiaik(x, xi) + b where ai are the coefficients in the linear expansion of

ω and b the offset of the hyperplane. The correspondence between hyperplanes and
functions of the form f(x) =

∑n
i=1 aik(x, xi) also works the other way round. A

given function f(x) =
∑n

i=1 yiaik(x, xi) + b with non-negative ai corresponds to the
linear hyperplane h(

∑
i aiyiΦ(xi),b) with margin

‖
∑

i

aiyiΦ(xi)‖2
H = 〈

∑
i

aiyiΦ(xi),
∑

i

aiyiΦ(xi)〉 =
n∑

i,j=1

aiajyiyjk(xi, xj),

and the slack variables ξi can be recovered by ξi = max{0, 1− yif(xi)}.

Now let us come back to the connections between large margin classification and
regularization. According to the large margin principle, SVMs construct a linear
decision boundary in a Hilbert space H such that the training points are separated
with a large margin and the sum of the margin errors is small. The objective
function which is minimized in this process is given by ‖ω‖2

H + C
∑

i ξi. By the
representer theorem we know that ω will be a linear combination of training points
of the form ω =

∑
i aiyiΦ(xi) and the decision function will have the form f(x) =∑

i aiyik(xi, x)+ b. Now we can interpret SVMs from a regularization point of view.

78 Chapter III

For a given kernel function k we choose the set F := {
∑l

i=1 cik(pi, ·)+b; l ∈ N, ci, b ∈
R, pi ∈ X} as hypothesis space. The empirical error of a function f ∈ F will be
defined as Remp(f) =

∑
i ξi with ξi = max{0, 1 − yif(xi)}, and as regularizer we

choose Ω(f) = ‖
∑

i ciΦ(xi)‖2
H =

∑
ij cicjk(xi, xj). Then we construct our decision

function as minimizer of the regularized risk functional Rreg(f) = Remp(f)+λΩ(f).
By the representer theorem we know that the minimizer of the regularized risk
functional can always be chosen such that the points pi are elements of the training
set, that is the solution will have the form f(x) =

∑
i cik(xi, x)+b. With ai := ci/yi,

we can recover the SVM solution f(x) =
∑

i aiyik(xi, x) + b.
The advantage of the regularization formulation is that it is more intuitive than

the Hilbert space formulation. Moreover, we can now try to find out whether the
regularizer Ω has a geometrically plausible interpretation on the function space F .
Indeed, for many kernel functions k this is the case. In can be seen (cf. Smola et al.,
1998) that for many kernel functions k, the regularizer Ω on F measures some kind of
smoothness of the function f . This gives us one more explanation why large margin
classifiers work well, at least in the context of SVMs: choosing functions with a large
margin in H corresponds to choosing very smooth functions in F , which is a very
sensible thing to do in many applications.

4 Large margin classification on metric spaces

In the last section we explained the concept of large margin classifiers in Hilbert
spaces. The decision function was a linear hyperplane, and the margin the distance
of the closest training point to the hyperplane. Now we want to generalize the con-
cept of large margin classification to more general spaces than Hilbert spaces. In
the last section we have already seen how this can be done for an input space X
which possesses a positive definite similarity function k. We first embed X into a
Hilbert space H such that the given similarity k on X is preserved, and then con-
struct a large margin classifier in H. Now we want to consider the situation where
X is a metric space. Instead of a positive definite similarity function we are given
a metric d on X . According to the principle described above, the easiest way to
construct a large margin classifier would now be to embed the metric space X into
a Hilbert space such that the distances are preserved, and then construct a large
margin classifier in this Hilbert space. But here we come across a problem which
we already mentioned above. In general, it is not possible to embed metric spaces
isometrically into a Hilbert space. Now we have two options. Either we relax the
condition that the embedding should be an isometry. Instead, we could use one of
the methods described in Section 2 to embed X approximately isometrically into
some Hilbert space, or even only preserving local distances. The other option is to
relax the condition that we want to embed the metric space into a Hilbert space.
A space which is only a bit weaker than a Hilbert space is a Banach space. It is
also a complete vector space, but only possesses a norm instead of a scalar product.
So we still have linear structure to define hyperplanes, and we still have a norm to

Classification in Metric Spaces 79

measure the margin in this space.

This second option is the one we will follow now, and as in the support vector
machine case our construction will have close connections to regularization.

From the regularization point of view, a convenient set of functions on a metric
space is the set of Lipschitz functions, as functions with a small Lipschitz constant
have low variation. Thus it seems desirable to separate the different classes by a
decision function which has a small Lipschitz constant. We will construct the large
margin classifier which corresponds to this regularization approach. To this end,
we embed the metric space (X , d) in a Banach space B and the space of Lipschitz
functions into its dual space B′. Remarkably, both embeddings can be realized as
isometries simultaneously. By this construction, each x ∈ X will correspond to some
mx ∈ B and each Lipschitz function f on X to some functional Tf ∈ B′ such that
f(x) = Tfmx and the Lipschitz constant L(f) is equal to the operator norm ‖Tf‖.
In the Banach space B we can then construct a large margin classifier such that the
size of the margin will be given by the inverse of the operator norm of the decision
functional. The basic algorithm implementing this approach is

minimize Remp(f) + λL(f)

in regularization language and

minimize L(f) + C
∑

i
ξi subject to yif(xi) ≥ 1− ξi, ξi ≥ 0

in large margin language. In both cases, L(f) denotes the Lipschitz constant of the
function f , and the minimum is taken over a subset of Lipschitz functions on X . To
apply this algorithm in practice, the choice of this subset will be important. We will
see that by choosing different subsets we can recover the SVM, the linear program-
ming machine, and even the 1-nearest neighbor classifier. In particular this shows
that all these algorithms are large margin algorithms. So the Lipschitz framework
can help to analyze a wide range of algorithms which do not seem to be connected
at the first glance.

5 Lipschitz function spaces

In this section we introduce several Lipschitz function spaces and their properties.
For a comprehensive overview we refer to Weaver (1999).
A function f : X → R on a metric space (X , d) is called a Lipschitz function if
there exists a constant L such that |f(x) − f(y)| ≤ Ld(x, y) for all x, y ∈ X . The
smallest constant L such that this inequality holds is called the Lipschitz constant of
f , denoted by L(f). For convenience, we recall some standard facts about Lipschitz
functions:

80 Chapter III

Lemma 2 (Lipschitz functions) Let (X , d) be a metric space, f, g : X → R Lip-
schitz functions and a ∈ R. Then L(f + g) ≤ L(f) + L(g), L(af) ≤ |a|L(f) and
L(min(f, g)) ≤ max{L(f), L(g)}, where min(f, g) denotes the pointwise minimum
of the functions f and g. Moreover, let f := limn→∞ fn the pointwise limit of Lip-
schitz functions fn with L(fn) ≤ c for all n ∈ N. Then f is a Lipschitz function
with L(f) ≤ c.

For a metric space (X , d) consider the set

Lip(X) := {f : X → R; f is a bounded Lipschitz function}.

It forms a vector space, and the Lipschitz constant L(f) is a seminorm on this space.
To define a convenient norm on this space we restrict ourselves to bounded metric
spaces. These are spaces which have a finite diameter diam(X) := supx,y∈X d(x, y).
For the learning framework this is not a big drawback as the training and test data
can always be assumed to come from a bounded region of the underlying space. For
a bounded metric space X we choose the norm

‖f‖L := max

{
L(f),

‖f‖∞
diam(X)

}
as our default norm on the space Lip(X). It is easy to see that this indeed is a
norm. Note that in the mathematical literature, Lip(X) is usually endowed with
the slightly different norm ‖f‖ := max{L(f), ‖f‖∞}. But we will see that the norm
‖ · ‖L fits very naturally in our classification setting, as already can be seen by the
following intuitive argument. Functions that are used as classifiers are supposed to
take positive and negative values on the respective classes and satisfy

‖f‖∞ = sup
x
|f(x)| ≤ sup

x,y
|f(x)− f(y)| ≤ diam(X)L(f), (2)

that is ‖f‖L = L(f). Hence, the L-norm of a classification decision function is de-
termined by the quantity L(f) we use as regularizer later on. Some more technical
reasons for the choice of ‖ · ‖L will become clear later.

Another important space of Lipschitz functions is constructed as follows. Let
(X0, d) be a metric space with a distinguished “base point” e which is fixed in
advance. (X0, d, e) is called a pointed metric space. We define

Lip0(X0) := {f ∈ Lip(X0); f(e) = 0}.

On this space, the Lipschitz constant L(·) is a norm. However, its disadvantage
in the learning framework is the condition f(e) = 0, which is an inconvenient a
priori restriction on our classifier as e has to be chosen in advance. To overcome
this restriction, for a given bounded metric space (X , d) we define a corresponding

Classification in Metric Spaces 81

extended pointed metric space X0 := X ∪ {e} for a new base element e with the
metric

dX0(x, y) =

{
d(x, y) for x, y ∈ X
diam(X) for x ∈ X , y = e.

(3)

Note that diam(X0) = diam(X). Then we define the map

ψ : Lip(X) → Lip0(X0), ψ(f)(x) =

{
f(x) if x ∈ X
0 if x = e.

(4)

Lemma 3 (Isometry between Lipschitz function spaces) ψ is an isometric
isomorphism between Lip(X) and Lip0(X0).

Proof. Obviously, ψ is bijective and linear. Moreover, for f0 := ψ(f) we have

L(f0) = sup
x,y∈X0

|f0(x)− f0(y)|
dX0(x, y)

= max{ sup
x,y∈X

|f(x)− f(y)|
d(x, y)

, sup
x∈X

|f(x)− f(e)|
dX0(x, e)

}

= max{L(f),
‖f‖∞

diam(X)
} = ‖f‖L

Hence, ψ is an isometry. ,

In some respects, the space (Lip0(X0), L(·)) is more convenient to work with
than (Lip(X), ‖ · ‖L). In particular it has some very useful duality properties. Let
(X0, d, e) be a pointed metric space with some distinguished base element e. A
molecule of X0 is a function m : X0 → R such that its support (i.e., the set where
m has non-zero values) is a finite set and

∑
x∈X0

m(x) = 0. For x, y ∈ X0 we define
the basic molecules mxy := 1x − 1y. It is easy to see that every molecule m can be
written as a (non unique) finite linear combination of basic molecules. Thus we can
define

‖m‖AE := inf

{∑
i

|ai|d(xi, yi); m =
∑

i

aimxiyi

}
which is a norm on the space of molecules. The completion of the space of molecules
with respect to ‖ · ‖AE is called the Arens-Eells space AE(X0). Denoting its dual
space (i.e., the space of all continuous linear forms on AE(X0)) by AE(X0)

′ the
following theorem holds true (cf. Arens and Eells, 1956; Weaver, 1999).

Theorem 4 (Isometry between AE(X0)
′ and Lip0(X0)) AE(X0)

′ is isomet-
rically isomorphic to Lip0(X0).

This means that we can regard a Lipschitz function f on X0 as a linear functional
Tf on the space of molecules, and the Lipschitz constant L(f) coincides with the

82 Chapter III

operator norm of the corresponding functional Tf . For a molecule m and a Lipschitz
function f this duality can be expressed as

〈f,m〉 =
∑
x∈X0

m(x)f(x). (5)

It can be proved that ‖mxy‖AE = d(x, y) holds for all basic molecules mxy. Hence,
it is possible to embed X0 isometrically in AE(X0) via

Γ : X0 → AE(X0), x 7→ mxe. (6)

The norm ‖ · ‖AE has a nice geometrical interpretation in terms of the mass trans-
portation problem (cf. Weaver, 1999): some product is manufactured in varying
amounts at several factories and has to be distributed to several shops. The (dis-
crete) transportation problem is to find an optimal way to transport the product
from the factories to the shops. The costs of such a transport are defined as

∑
ij aijdij

where aij denotes the amount of the product transported from factory i to shop j and
dij the distance between them. If fi denotes the amount produced in factory i and
si denotes the amount needed in shop i, the formal definition of the transportation
problem is

min
i,j=1,...,n

∑
aijdij subject to aij ≥ 0,

∑
j

aij = sj,
∑

i

aij = fi. (7)

To connect the Arens-Eells space to this problem we identify the locations of
the factories and shops with a molecule m. The points x with m(x) > 0 rep-
resent the factories, the ones with m(x) < 0 the shops. It can be proved that
‖m‖AE equals the minimal transportation costs for molecule m. A special case is
when the given molecule has the form m0 =

∑
mxiyj

. In this case, the transporta-
tion problem reduces to the bipartite minimal matching problem: given 2m points
(x1, . . . , xn, y1, . . . , yn) in a metric space, we want to match each of the x-points to
one of the y-points such that the sum of the distances between the matched pairs is
minimal. The formal statement of this problem is

min
π

∑
i,j

d(xi, yπ(i)) (8)

where the minimum is taken over all permutations π of the set {1, ..., n} (cf. Steele,
1997).

In Section 7 we will also need the notion of a vector lattice. A vector lattice is a
vector space V with an ordering � which respects the vector space structure (i.e.,
for x, y, z ∈ V, a > 0: x � y =⇒ x+ z � y + z and ax � ay) and such that for any
two elements f, g ∈ V there exists a greatest lower bound inf(f, g). In particular,
the space of Lipschitz functions with the ordering f � g ⇐⇒ ∀x f(x) ≤ g(x) forms
a vector lattice.

Classification in Metric Spaces 83

6 The Lipschitz classifier

Let (X , d) be a metric space and (xi, yi)i=1,...,n ⊂ X × {±1} some training data. In
order to be able to define hyperplanes, we want to embed (X , d) into a vector space,
but without loosing or changing the underlying metric structure.

6.1 Embedding and large margin in Banach spaces

Our first step is to embed X by the identity mapping into the extended space X0

as described in (3), which in turn is embedded into AE(X0) via (6). We denote the
resulting composite embedding by

Φ : X → AE(X0), x 7→ mx := mxe.

Secondly, we identify Lip(X) with Lip0(X0) according to (4) and then Lip0(X0) with
AE(X0)

′ according to Theorem 4. Together this defines the map

Ψ : Lip(X) → AE(X0)
′, f 7→ Tf .

Lemma 5 (Properties of the embeddings) The mappings Φ and Ψ have the
following properties:

1. Φ is an isometric embedding of X into AE(X0): to every point x ∈ X cor-
responds a molecule mx ∈ AE(X0) such that d(x, y) = ‖mx − my‖AE for all
x, y ∈ X .

2. Lip(X) is isometrically isomorphic to AE(X0)
′: to every Lipschitz function f

on X corresponds an operator Tf on AE(X0) such that ‖f‖L = ‖Tf‖ and vice
versa.

3. It makes no difference whether we evaluate operators on the image of X in
AE(X0) or apply Lipschitz functions on X directly: Tfmx = f(x).

4. Scaling a linear operator is the same as scaling the corresponding Lipschitz
function: for a ∈ R we have aTf = Taf .

Proof. All these properties are direct consequences of the construction and Equation
(5).

,

The message of this lemma is that it makes no difference whether we classify our
training data on the space X with the decision function sgn f(x) or on AE(X0)
with the hyperplane sgn(Tfmx). The advantage of the latter is that constructing a
large margin classifier in a Banach space is a well studied problem. In Bennett and
Bredensteiner (2000) and Zhou et al. (2002) it has been established that constructing
a maximal margin hyperplane between the set X+ of positive and X− of negative
training points in a Banach space V is equivalent to finding the distance between
the convex hulls of X+ and X−. More precisely, let C+ and C− the convex hulls of

84 Chapter III

the sets X+ and X−. In the separable case, we define the margin of a separating
hyperplane H between C+ and C− as the minimal distance between the training
points and the hyperplane:

ρ(H) := inf
i=1,...,n

d(xi, H).

The margin of the maximal margin hyperplane coincides with half the distance

d(C+, C−) = inf
p+∈C+,p−∈C−

‖p+ − p−‖

between the convex hulls of the positive and negative training points. Hence, de-
termining the maximum margin hyperplane can be understood as solving the opti-
mization problem infp+∈C+,p−∈C− ‖p+−p−‖. By duality arguments (cf. Bennett and
Bredensteiner, 2000) it can be seen that its solution coincides with the solution of

sup
T∈V ′

inf
p+∈C+,p−∈C−

〈T, p+ − p−〉/‖T‖.

This can be equivalently rewritten as the optimization problem

inf
T∈V ′,b∈R

‖T‖ subject to yi(〈T, xi〉+ b) ≥ 1 ∀i = 1, ..., n. (9)

A solution of this problem is called a large margin classifier. The decision function
has the form f(x) = 〈T, x〉 + b, and its margin is given by 1/‖T‖. For details we
refer to Bennett and Bredensteiner (2000) and Zhou et al. (2002).

6.2 Derivation of the algorithm

Now we can apply this construction to our situation. We embed X isometrically
into the Banach space AE(X0) and use the above reasoning to construct a large
margin classifier. As the dual space of AE(X0) is Lip0(X0) and 〈f,mx〉 = f(x), the
optimization problem (9) in our case is

inf
f0∈Lip0(X0),b∈R

L(f0) subject to yi(f0(xi) + b) ≥ 1 ∀i = 1, ..., n.

By the isometry stated in Theorem 4, this is equivalent to the problem

inf
f∈Lip(X),b∈R

‖f‖L subject to yi(f(xi) + b) ≥ 1 ∀i = 1, ..., n.

Next we want to show that the solution of this optimization problem does not depend
on the variable b. To this end, we first set g := f + b ∈ Lip(X) to obtain

inf
g∈Lip(X),b∈R

‖g − b‖L subject to yig(xi) ≥ 1 ∀i = 1, ..., n.

Classification in Metric Spaces 85

Then we observe that if the training data contains points from both classes, then

‖g − b‖L = max{L(g − b),
‖g − b‖∞
diam(X)

} = max{L(g),
‖g − b‖∞
diam(X)

}

≥ L(g) = max{L(g),
‖g‖∞

diam(X)
} = ‖g‖L.

Here the last step is true because of the fact that g takes positive and negative
values and thus ‖g‖∞/diam(X) ≤ L(g) as we explained in Equation (2) of Section
5. Hence, under the constraints yig(xi) ≥ 1 we have infb ‖g − b‖L = L(g), and we
can rewrite our optimization problem in the final form

inf
f∈Lip(X)

L(f) subject to yif(xi) ≥ 1, i = 1, . . . , n. (∗)

We call a solution of this problem a (hard margin) Lipschitz classifier. So we have
proved:

Theorem 6 (Lipschitz classifier) Let (X , d) be a bounded metric space,
(xi, yi)i=1,...,n ⊂ X × {±1} some training data containing points of both classes.
Then a solution f of (∗) is a large margin classifier, and its margin is given by
1/L(f).

One nice aspect about the above construction is that the margin constructed in
the space AE(X0) also has a geometrical meaning in the original input space X
itself: it is a lower bound on the minimal distance between the “separation surface”
S := {s ∈ X ; f(s) = 0} and the training points. To see this, normalize the function
f such that mini=1,...,n |f(xi)| = 1. This does not change the set S. Because of

1 ≤ |f(xi)| = |f(xi)− f(s)| ≤ L(f)d(xi, s)

we thus get d(xi, s) ≥ 1/L(f).
Analogously to SVMs we also define the soft margin version of the Lipschitz classifier
by introducing slack variables ξi to allow some training points to lie inside the margin
or even be misclassified:

inf
f∈Lip(X)

L(f) + C
n∑

i=1

ξi subject to yif(xi) ≥ 1− ξi, ξi ≥ 0. (∗∗)

In regularization language, the soft margin Lipschitz classifier can be stated as

inf
f∈Lip(X)

`(yif(xi)) + λL(f)

where the loss function ` is given by `(yif(xi)) = max{0, 1− yif(xi)}.
In Section 7, we will give an analytic expression for a solution of (∗) and show how

(∗∗) can be written as a linear programming problem. However, it may be sensible
to restrict the set over which the infimum is taken in order to avoid overfitting.

86 Chapter III

We thus suggest to consider the above optimization problems over subspaces of
Lip(X) rather than the whole space Lip(X). In Section 9 we derive a geometrical
interpretation of the choice of different subspaces. Now we want to point out some
special cases.
Assume that we are given training points in some reproducing kernel Hilbert space
H. As it is always the case for linear functions, the Lipschitz constant of a linear
function in H ′ coincides with its Hilbert space norm. This means that the support
vector machine in H chooses the same linear function as the Lipschitz algorithm, if
the latter takes the subspace of linear functions as hypothesis space.
In the case where we optimize over the subset of all linear combinations of distance
functions of the form f(x) =

∑n
i=1 aid(xi, x) + b, the Lipschitz algorithm can be

approximated by the linear programming machine (cf. Graepel et al., 1999b):

inf
a,b

n∑
i=1

|ai| subject to yi(
n∑

i=1

aid(xi, x) + b) ≥ 1.

The reason for this is that the Lipschitz constant of a function

f(x) =
n∑

i=1

aid(xi, x) + b

is upper bounded by
∑

i |ai|.
Furthermore, if we do not restrict the function space at all, then we will see in the
next section that the 1-nearest neighbor classifier is a solution of the Lipschitz al-
gorithm.

These examples show that the Lipschitz algorithm is a very general approach.
By choosing different subsets of Lipschitz functions we recover several well known
algorithms. As the Lipschitz algorithm is a large margin algorithm according to
Theorem 6, the same holds for the recovered algorithms. For instance the linear
programming machine, originally designed with little theoretical justification, can
now be understood as a large margin algorithm.

7 Representer theorems

A crucial theorem in the context of SVMs and other kernel algorithms is the repre-
senter theorem (cf. Schölkopf and Smola, 2002). It states that even though the space
of possible solutions of these algorithms forms an infinite dimensional space, there
always exists a solution in the finite dimensional subspace spanned by the training
points. It is because of this theorem that SVMs overcome the curse of dimensional-
ity and yield computationally tractable solutions. In this section we prove a similar
theorem for the Lipschitz classifiers (∗) and (∗∗). To simplify the discussion, we
denote D := {d(x, ·); x ∈ X}∪{1} and Dtrain := {d(xi, ·); xi training point }∪{1},
where 1 is the constant-1 function.

Classification in Metric Spaces 87

7.1 Soft margin case

We first start by recalling a general result which implies the classical representer
theorem in the case of SVMs.

Lemma 7 (Minimum norm interpolation) Let V be a function of n + 1 vari-
ables which is non-decreasing in its n + 1-st argument. Given n points x1, . . . , xn

and a functional Ω, any function which is a solution of the problem

inf
f
V (f(x1), . . . , f(xn),Ω(f)) (10)

is a solution of the minimum norm interpolation problem

inf
f :∀i, f(xi)=ai

Ω(f) (11)

for some a1, . . . , an ∈ R.

Here, f being a solution of a problem of the form infW (f) means f = argminW (f).
We learned this theorem from M. Pontil, but it seems to be due to C. Micchelli.
Proof. Let f0 be a solution of the first problem. Take ai = f0(xi). Then for any
function f such that f(xi) = ai for all i, we have

V (f(x1), . . . , f(xn),Ω(f)) ≥ V (f0(x1), . . . , f0(xn),Ω(f0))

= V (f(x1), . . . , f(xn),Ω(f0)).

Hence, by monotonicity of V we get Ω(f) ≥ Ω(f0), which concludes the proof. ,

The meaning of the above result is that if the solutions of problem (11) have
specific properties, then the solutions of problem (10) will also have these properties.
So instead of studying the properties of solutions of (∗∗) directly, we will investigate
the properties of (11) when the functional Ω is the Lipschitz norm. We first need
to introduce the concept of Lipschitz extensions.

Lemma 8 (Lipschitz extension) Given a function f defined on a finite subset
x1, . . . , xn of X , there exists a function f ′ which coincides with f on x1, . . . , xn, is
defined on the whole space X , and has the same Lipschitz constant as f . Addition-
ally, it is possible to explicitly construct f ′ in the form

f ′(x) = α min
i=1,...,n

(f(xi) + L(f)d(x, xi)) + (1− α) max
i=1,...,n

(f(xi)− L(f)d(x, xi)) ,

for any α ∈ [0, 1], with L(f) = maxi,j=1,...,n(f(xi)− f(xj))/d(xi, xj).

Proof. Consider the function g(x) = mini=1,...,n(f(xi) + L(f)d(x, xi)). We have

|g(x)− g(y)| ≤ max
i=1,...,n

|f(xi) + L(f)d(x, xi)− f(xi)− L(f)d(y, xi)| ≤ L(f)d(x, y),

88 Chapter III

so that L(g) ≤ L(f). Also, by definition g(xi) ≤ f(xi) + L(f)d(xi, xi) = f(xi).
Moreover, if i0 denotes the index where the minimum is achieved in the definition
of g(xi), i.e. g(xi) = f(xi0) + L(f)d(xi, xi0), then by definition of L(f) we have
g(xi) ≥ f(xi0) + (f(xi) − f(xi0)) = f(xi). As a result, for all i = 1, . . . , n we have
g(xi) = f(xi), which also implies that L(g) = L(f).
Now the same reasoning can be applied to h(x) = maxi=1,...,n(f(xi)− L(f)d(x, xi)).
Since α ∈ [0, 1] we have f ′(xi) = f(xi) for all i. Moreover, L(αg + (1 − α)h) ≤
αL(g) + (1− α)L(h) = L(f) and thus L(f ′) = L(f), which concludes the proof. ,

From the above lemma, we obtain an easy way to construct solutions of minimum
norm interpolation problems like (11) with Lipschitz norms, as is expressed in the
next lemma.

Lemma 9 (Solution of the Lipschitz minimal norm interpolation problem)
Let a1, . . . , an ∈ R

n, α ∈ [0, 1], L0 = maxi,j=1,...,n(ai − aj)/d(xi, xj), and

fα(x) := α min
i=1,...,n

(ai + L0d(x, xi)) + (1− α) max
i=1,...,n

(ai − L0d(x, xi)) .

Then fα is a solution of the minimal norm interpolation problem (11) with Ω(f) =
L(f). Moreover, when α = 1/2 then fα is a solution of the minimal norm interpo-
lation problem (11) with Ω(f) = ‖f‖L.

Proof. Given that a solution f of (11) has to satisfy f(xi) = ai, it cannot have
L(f) < L0. Moreover, by Lemma 8 fα satisfies the constraints and has L(f) = L0,
hence it is a solution of (11) with Ω(f) = L(f).
When one takes Ω(f) = ‖f‖L, any solution f of (11) has to have L(f) ≥ L0 and
‖f‖∞ ≥ maxi |ai|. The proposed solution fα with α = 1/2 not only satisfies the
constraints fα(xi) = ai but also has L(f) = L0 and ‖f‖∞ = maxi |ai|, which shows
that it is a solution of the considered problem.
To prove that ‖f‖∞ = maxi |ai|, consider x ∈ X and denote by i1 and i2 the indices
where the minimum and the maximum, respectively, are achieved in the definition
of fα(x). Then one has

f1/2(x) ≤
1

2
(ai2 + L0d(x, xi2)) +

1

2
(ai2 − L0d(x, xi2)) = ai2 ,

and similarly f1/2(x) ≥ ai1 . ,

Now we can formulate a general representer theorem for the soft margin Lipschitz
classifier.

Theorem 10 (Soft margin representer theorem) There exists a solution of the
soft margin Lipschitz classifier (∗∗) in the vector lattice spanned by Dtrain which is
of the form

f(x) =
1

2
min(ai + L0d(x, xi)) +

1

2
max(ai − L0d(x, xi))

Classification in Metric Spaces 89

for some real numbers a1, . . . , an with L0 := maxi,j(ai− aj)/d(xi, xj). Moreover one
has ‖f‖L = L(f) = L0.

Proof. The first claim follows from Lemmas 7 and 9. The second claim follows
from the fact that a solution of (∗∗) satisfies ‖f‖L = L(f). ,

Theorem 10 is remarkable as the space Lip(X) of possible solutions of (∗∗) contains
the whole vector lattice spanned by D. The theorem thus states that even though
the Lipschitz algorithm searches for solutions in the whole lattice spanned by D it
always manages to come up with a solution in the sublattice spanned by Dtrain.

7.2 Algorithmic consequences

Theorem 10 states that there always exists a solution f of (∗∗) in a certain paramet-
ric form with n parameters a1, ..., an. As a consequence, we can rewrite the original
soft margin optimization problem

inf
f∈Lip(X)

L(f) + C
n∑

i=1

ξi subject to yif(xi) ≥ 1− ξi, ξi ≥ 0

in the form

min
a1,...,an∈R

max
i,j=1,...,n

i6=j

ai − aj

d(xi, xj)
+ C

n∑
i=1

ξi subject to yiai ≥ 1− ξi, ξi ≥ 0

which is equivalent to the linear program

min
a1,...,an∈R

ρ∈R

ρ+ C
n∑

i=1

ξi subject to yiai ≥ 1− ξi, ξi ≥ 0,
ai − aj

d(xi, xj)
≥ ρ

To construct a soft margin Lipschitz classifier, we thus have to find the param-
eters a1, ..., an which solve this linear program and use the function f defined in
Theorem 10 as classifier. Note, however, that in practical applications, the solution
found by this procedure will usually overfit as it optimizes (∗∗) over the whole class
Lip(X). Later we will see how this can be avoided by considering subclasses of
Lipschitz functions.

7.3 Hard margin case

The representer theorem for the soft margin case clearly also holds in the hard
margin case, so that there will always be a solution of (∗) in the vector lattice
spanned by Dtrain. But in the hard margin case, also a different representer theorem
is valid. We denote the set of all training points with positive label by X+, the set
of the training points with negative label by X−, and for two subsets A,B ⊂ X we
define d(A,B) := infa∈A,b∈B d(a, b).

90 Chapter III

Theorem 11 (Hard margin representer theorem) Problem (∗) always has a
solution which is a linear combination of distances to sets of training points.

To prove this theorem we first need a simple lemma.

Lemma 12 (Optimal Lipschitz constant) The Lipschitz constant L∗ of a solu-
tion of (∗) satisfies L∗ ≥ 2/d(X+, X−).

Proof. For a solution f of (∗) we have

L(f) = sup
x,y∈X

|f(x)− f(y)|
d(x, y)

≥ max
i,j=1,...,n

|f(xi)− f(xj)|
d(xi, xj)

≥ max
i,j=1,...,n

|yi − yj|
d(xi, xj)

=
2

minxi∈X+,xj∈X− d(xi, xj)
=

2

d(X+, X−)
.

,

Lemma 13 (Solutions of (∗)) Let L∗ = 2/d(X+, X−). For all α ∈ [0, 1], the
following functions solve (∗):

fα(x) := αmin
i

(yi + L∗d(x, xi) + (1− α) max
i

(yi − L∗d(x, xi))

g(x) :=
d(x,X−)− d(x,X+)

d(X+, X−)

Proof. By Lemma 8, fα has Lipschitz constant L∗ and satisfies fα(xi) = yi. More-
over, it is easy to see that yig(xi) ≥ 1. Using the properties of Lipschitz constants
stated in Section 5 and the fact that the function d(x, ·) has Lipschitz constant 1 we
see that L(g) ≤ L∗. Thus fα and g are solutions of (∗) by Lemma 12. ,

The functions fα and g lie in the vector lattice spanned by Dtrain. As g is a linear
combination of distances to sets of training points we have proved Theorem 11.

It is interesting to have a closer look at the functions of Lemma 13. The functions
f0 and f1 are the smallest and the largest functions, respectively, that solve problem
(∗) with equality in the constraints: any function f that satisfies f(xi) = yi and has
Lipschitz constant L∗ satisfies f0(x) ≤ f(x) ≤ f1(x). The functions g and f1/2 are
especially remarkable:

Lemma 14 (1-nearest neighbor classifier) The functions g and f1/2 defined above
have the sign of the 1-nearest neighbor classifier.

Classification in Metric Spaces 91

Proof. It is obvious that g(x) > 0 ⇐⇒ d(x,X+) < d(x,X−) and g(x) < 0 ⇐⇒
d(x,X+) > d(x,X−). For the second function, we rewrite f1/2 as follows:

f1/2(x) =
1

2
(min(L∗d(x,X+) + 1, L∗d(x,X−)− 1)

−min(L∗d(x,X+)− 1, L∗d(x,X−) + 1)) .

Consider x such that d(x,X+) ≥ d(x,X−). Then d(x,X+) + 1 ≥ d(x,X−)− 1 and
thus

f1/2(x) =
1

2

(
L∗d(x,X−)− 1−min(L∗d(x,X+)− 1, L∗d(x,X−) + 1)

)
≤ 0 .

The same reasoning applies to the situation d(x,X+) ≤ d(x,X−) to yield f1/2(x) ≥ 0
in this case. ,

Note that g needs not reach equality in the constraints on all the data points,
whereas the function f1/2 always satisfies equality in the constraints. Lemma 14
has the surprising consequence that according to Section 6, the 1-nearest neighbor
classifier actually is a large margin classifier.

7.4 Negative results

So far we have proved that (∗) always has a solution which can be expressed as
a linear combination of distances to sets of training points. But maybe we even
get a theorem stating that we always find a solution which is a linear combination
of distance functions to single training points? Unfortunately, in the metric space
setting such a theorem is not true in general. This can be seen by the following
counterexample:

Example 1 Assume four training points x1, x2, x3, x4 with distance matrix

D =

0 2 1 1
2 0 1 1
1 1 0 2
1 1 2 0

and label vector y = (1, 1,−1,−1). Then the set

{f : X → R| yif(xi) ≥ 1, f(x) =
4∑

i=1

aid(xi, x) + b}

is empty. The reason for this is that the distance matrix is singular and we have
d(x1, ·) + d(x2, ·) = d(x3, ·) = d(x4, ·). Hence, in this example, (∗) has no solution
which is a linear combination of distances to single training points. But it still has
a solution as linear combination of distances to sets of training points according to
Theorem 11.

92 Chapter III

Another negative result is the following. Assume that instead of looking for solutions
of (∗) in the space of all Lipschitz functions we only consider functions in the vector
space spanned by D. Is it in this case always possible to find solution in the linear
span of Dtrain? The answer is no again. An example for this is the following:

Example 2 Let X = {x1, ..., x5} consist of five points with distance matrix

D =

0 2 1 1 1
2 0 1 1 1
1 1 0 2 1
1 1 2 0 2
1 1 1 2 0

 .

Let the first four points be training points with the label vector y = (−1,−1,−1, 1).
As above there exists no feasible function in the vector space spanned by Dtrain. But
as the distance matrix of all five points is invertible, there exist feasible functions in
the vector space spanned by D.

In the above examples the problem was that the distance matrix on the training
points was singular. But there are also other sources of problems that can occur.
In particular it can be the case that the Lipschitz constant of a function restricted
to the training set takes the minimal value L∗, but the Lipschitz constant on the
whole space X is larger. Then it can happen that although we can find a linear
combination of distance functions that satisfies f(xi) = yi, the function f has a
Lipschitz constant larger than L∗ and thus is no solution of (∗). An example for
this situation is the following:

Example 3 Let X = {x1, ..., x5} consist of five points with distance matrix

D =

0 1 1 1 1
1 0 1 1 2
1 1 0 2 1
1 1 2 0 1
1 2 1 1 0

 .

Let the first four points be training points with the label vector y = (1, 1,−1,−1).
The optimal Lipschitz constant in this problem is L∗ = 2/d(X+, X−) = 2. The
function f(x) = −2d(x1, x)− 2d(x2, x)+3 has this Lipschitz constant if we evaluate
it on the training points only. But if we also consider x5, the function has Lipschitz
constant 4.

These examples show that, in general, Theorem 11 cannot be improved to work
in the vector space instead of the vector lattice spanned by Dtrain. This also holds
if we consider some subspaces of the set of Lipschitz functions. Thus we are in the
interesting situation that it is not enough to consider distance functions to single
training points – we have to deal with distances to sets of training points.

Classification in Metric Spaces 93

8 Error Bounds

In this section we compute error bounds for the Lipschitz classifier using Rademacher
averages (recall the definition in Section 1). We will describe two different ways to
compute Rademacher averages for sets of Lipschitz functions. One way is a classical
approach using entropy numbers and leads to an upper bound on Rn. For this
approach we always assume that the metric space (X , d) is precompact (i.e., it can
be covered by finitely many balls of radius ε for every ε > 0).
The other way is more elegant: because of the definition of ‖ · ‖L and the resulting
isometries, the maximum discrepancy of a ‖·‖L-unit ball of Lip(X) is the same as of
the corresponding unit ball in AE(X0)

′. Hence it will be possible to express R̃n as
the norm of an element of the Arens-Eells space. This norm can then be computed
via bipartite minimal matching. In the following, B always denotes the unit ball of
the considered function space.

8.1 The duality approach

The main insight to compute the maximum discrepancy by the duality approach is
the following observation:

sup
‖f‖L≤1

|
n∑

i=1

f(xi)− f(x′i)| = sup
‖Tf‖≤1

|
n∑

i=1

Tfmxi
− Tfmx′i

| =

= sup
‖Tf‖≤1

|〈Tf ,
n∑

i=1

mxi
−mx′i

〉| = ‖
n∑

i=1

mxix′i
‖AE

Applying this to the definition of the maximum discrepancy immediately yields

R̃n(B) =
1

n
E‖

n∑
i=1

mXiX′
i
‖AE. (12)

As we already explained in Section 5, the norm ‖
∑n

i=1mXiX′
i
‖AE can be inter-

preted as the costs of a minimal bipartite matching between {X1, . . . , Xn} and
{X ′

1, . . . , X
′
n}. To compute the right hand side of (12) we need to know the ex-

pected value of random instances of the bipartite minimal matching problem, where
we assume that the points Xi and X ′

i are drawn iid from the sample distribution.
In particular we want to know how this value scales with the number n of points
as this indicates how fast we can learn. This question has been solved for some
special cases of random bipartite matching. Let the random variable Cn describe
the minimal bipartite matching costs for a matching between the points X1, . . . , Xn

and X ′
1, . . . , X

′
n drawn iid according to some distribution P . In Dobric and Yukich

(1995) it has been proved that for an arbitrary distribution on the unit square of Rd

with d ≥ 3 we have limCn/(n
d−1/d) = c > 0 a.s. for some constant c. The upper

bound ECn ≤ c
√
n log n for arbitrary distributions on the unit square in R

2 was
presented in Talagrand (1992). These results, together with Equation (12), lead to
the following maximum discrepancies:

94 Chapter III

Theorem 15 (Maximum discrepancy of unit ball of Lip([0, 1]d)) Let X = [0, 1]d ⊂
R

d with the Euclidean metric. Then the maximum discrepancy of the ‖ · ‖L-unit ball
B of Lip(X) satisfies

R̃n(B) ≤ c2
√

log n/
√
n for all n ∈ N if d = 2

lim
n→∞

R̃n(B) d
√
n = cd > 0 if d ≥ 3

where cd (d ≥ 2) are constants which are independent of n but depend on d.

Note that this procedure gives (asymptotically) exact results rather than upper
bounds in cases where we have (asymptotically) exact results on the bipartite match-
ing costs. This is for example the case for cubes in R

d, d ≥ 3 as Dobric and Yukich
(1995) gives an exact limit result, or for R2 with the uniform distribution.

8.2 Generalized entropy bound

Recall that the covering number N(X , ε, d) of a totally bounded metric space (X , d)
is the smallest number of balls of radius ε with centers in X which can cover X com-
pletely. A classical theorem of Dudley (1987) bounds the Rademacher complexity
in terms of covering numbers:

Theorem 16 (Classical entropy bound) For every class F of functions there
exists a constant C such that

R̂n(F) ≤ C√
n

∫ ∞

0

√
logN(F , u, L2(µn)) du

where µn is the empirical distribution of the sample.

When we want to apply this bound to Lipschitz function classes in the next
section we come upon the problem that the integral on the right hand side diverges
in some situation. To avoid this we will now prove an adapted version of the entropy
bound where this problem does not occur:

Theorem 17 (Generalized entropy bound) Let F be a class of functions and
X1, . . . , Xn iid sample points with empirical distribution µn. Then, for every ε > 0,

R̂n(F) ≤ 2ε+
4
√

2√
n

∫ ∞

ε/4

√
logN(F , u, L2(µn)) du.

The idea of the proof of Theorem 17 is the following. Instead of bounding the
Rademacher complexity on the whole set of functions F , we first consider a maxi-
mal ε-separating subset Fε of F . This is a maximal subset such that all its points
have distance at least ε to each other. To this special set we will then apply the
classical entropy bound. Then we will estimate how much we loose by this procedure.

The following lemma can be found as Lemma 3.10 in Bousquet (2002) (for the
definition of a separable process see also van der Vaart and Wellner 1996).

Classification in Metric Spaces 95

Lemma 18 (ε-separations of an empirical process) Let {Zt; t ∈ T} be a sep-
arable stochastic process satisfying for λ > 0 the increment condition

∀s, t ∈ T : E
(
eλ(Zt−Zs)

)
≤ eλ2c2d2(s,t)/2.

Let ε ≥ 0 and δ > 0. If ε > 0, let Tε denote a maximal ε-separated subset of T and
let Tε = T otherwise. Then for all t0,

E

(
sup

t∈Tε,d(t,t0)≤δ

Zt − Zt0

)
≤ 4

√
2c

∫ δ/2

ε/4

√
logN(T, u, d)du.

To apply this lemma to the Rademacher complexity of a function class F , we choose
the index set T = F , the fixed index t0 = f0 for some f0 ∈ F , the empirical process
Zf = 1

n

∑
σif(Xi), and δ → ∞. Note that the Rademacher complexity satisfies

the increment condition of Lemma 18 with respect to the L2(µn)–distance with
constant c =

√
n. Moreover, observe that E(supt Zt − Zt0) = E(supt Zt) − E(Zt0)

and E(Zt0) = E(1
n

∑
σif0(Xi)) = 0. Together with the symmetry of the distribution

of Zf we thus get the next lemma:

Lemma 19 (Entropy bound for ε-separations) Let (Xi)i=1,...,n be iid training
points with empirical distribution µn, F an arbitrary class of functions, and Fε a
maximal ε-separating subset of F with respect to L2(µn)- norm. Then

E

(
sup
f∈Fε

1

n
|
∑

i

σif(Xi)|
∣∣∣X1, . . . , Xn

)
≤ 4

√
2√
n

∫ ∞

ε/4

√
logN(F , u, L2(µn)) du.

With this lemma we achieved that the integral over the covering numbers starts
at ε/4 instead of 0 as it is the case in Theorem 16. The price we pay is that the
supremum on the left hand side is taken over the smaller set Fε instead of the whole
class F . Our next step is to bound the mistake we make by this procedure.

Lemma 20 Let F be a class of functions and Fε a maximal ε-separating subset of
F with respect to ‖ · ‖L2(µn). Then |Rn(F)−Rn(Fε)| ≤ 2ε.

Proof. We want to bound the expression

|Rn(F)−Rn(Fε)| = E
1

n

∣∣∣∣sup
f∈F

|
∑

σif(Xi)| − sup
f∈Fε

|
∑

σif(Xi)|
∣∣∣∣.

First look at the expression inside the expectation, assume that the σi and Xi are
fixed and that supf∈F |

∑
σif(xi)| = |

∑
σif

∗(xi)| for some function f ∗ (if f ∗ does
not exist we additionally have to use a limit argument). Let fε ∈ Fε such that
‖f ∗ − fε‖L2(µn) ≤ 2ε. Then,

1

n

∣∣∣∣sup
f∈F

|
∑

σif(xi)| − sup
f∈Fε

|
∑

σif(xi)|
∣∣∣∣ ≤ 1

n

∣∣∣|∑ σif
∗(xi)| − |

∑
σifε(xi)|

∣∣∣
≤ 1

n

∣∣∣∑ σi(f
∗(xi)− fε(xi))

∣∣∣ ≤ ‖f ∗ − fε‖L1(µn) ≤ ‖f ∗ − fε‖L2(µn) ≤ 2ε

96 Chapter III

As this holds conditioned on all fixed values of σi and Xi we get the same for the
expectation. This proves the lemma. ,

To prove Theorem 17 we now combine lemmas 19 and 20.

8.3 Covering number approach

To apply this theorem we need to know covering numbers of spaces of Lipschitz
functions. This can be found for example in Kolmogorov and Tihomirov (1961),
pp.353–357.

Theorem 21 (Covering numbers for Lipschitz function balls) For a totally
bounded metric space (X , d) and the unit ball B of (Lip(X), ‖ · ‖L),

2N(X ,4ε,d) ≤ N(B, ε, ‖ · ‖∞) ≤
(

2

⌈
2 diam(X)

ε

⌉
+ 1

)N(X , ε
4
,d)

.

If, in addition, X is connected and centered (i.e., for all subsets A ⊂ X with
diam(A) ≤ 2r there exists a point x ∈ X such that d(x, a) ≤ r for all a ∈ A),

2N(X ,2ε,d) ≤ N(B, ε, ‖ · ‖∞) ≤
(

2

⌈
2 diam(X)

ε

⌉
+ 1

)
· 2N(X , ε

2
,d).

Combining Theorems 17 and 21 and using N(F , u, L2(µn)) ≤ N(F , u, ‖ · ‖∞) now
gives a bound on the Rademacher complexity of balls of Lip(X):

Theorem 22 (Rademacher complexity of unit ball of Lip(X)) Let (X , d) be a
totally bounded metric space with diameter diam(X) and B the ball of Lipschitz
functions with ‖f‖L ≤ 1. Then, for every ε > 0,

Rn(B) ≤ 2ε+
4
√

2√
n

∫ 4 diam(X)

ε/4

√
N(X , u

4
, d) log

(
2

⌈
2 diam(X)

u

⌉
+ 1

)
du.

If, in addition, X is connected and centered, we have

Rn(B) ≤ 2ε+
4
√

2√
n

∫ 2 diam(X)

ε/4

√
N(X , u

2
, d) log 2 + log(2

⌈
2 diam(X)

u

⌉
+ 1) du.

In our framework this is a nice result as the bound on the complexity of balls of
Lip(X) only uses the metric properties of the underlying space X .

Now we want to compare the results of Theorems 15 and 22 for two simple
examples.

Classification in Metric Spaces 97

Example 4 (d-dimensional unit square, d ≥ 3) Let X = [0, 1]d ⊂ R
d, d ≥ 3,

with the Euclidean metric ‖·‖2. This is a connected and centered space. In Theorem
15 we showed that R̃n(B) asymptotically scales as 1/ d

√
n, and this result cannot be

improved. Now we want to check whether Theorem 22 achieves a similar scaling rate.
To this end we choose ε = 1/ d

√
n (as we know that we cannot obtain a rate smaller

than this) and use that the covering numbers of X have the form N(X , ε, ‖ · ‖2) =
c/εd (e.g., page 1 of Mendelson and Vershynin, 2003). After evaluating the second
integral of Theorem 22 we find that Rn(B) indeed scales as 1/ d

√
n.

Example 5 (2-dimensional unit square) Let X = [0, 1]2 ⊂ R
2 with the Eu-

clidean metric. Applying Theorem 22 similar to Example 4 yields a bound on Rn(B)
that scales as log n/

√
n.

In case of Example 4 the scaling behavior of the upper bound on Rn(B) obtained by
the covering number approach coincides with the exact result for R̃n(B) derived in
Theorem 15. In case of Example 5 the covering number result log n/

√
n is slightly

worse than the result
√

log(n)/
√
n obtained in Theorem 15.

8.4 Complexity of Lipschitz RBF classifiers

In this section we want to derive a bound for the Rademacher complexity of radial
basis function classifiers of the form

Frbf := {f : X → R| f(x) =
l∑

k=1

akgk(d(pk, x)), gk ∈ G, l <∞}, (13)

where pk ∈ X , ak ∈ R, and G ⊂ Lip(X) is a (small) set of ‖ · ‖∞-bounded Lipschitz
functions on R whose Lipschitz constants are bounded from below by a constant
c > 0. As an example, consider G = {g : R→ R| g(x) = exp(−x2/σ2), σ ≥ 1}. The
special case G = {id} corresponds to the function class which is used by the linear
programming machine. It can easily be seen that the Lipschitz constant of an RBF
function satisfies L(

∑
k akgk(d(pk, ·))) ≤

∑
k |ak|L(gk). We define a norm on Frbf by

‖f‖rbf := inf

{∑
k

|ak|L(gk); f =
∑

k

akgk(d(pk, ·))

}

and derive the Rademacher complexity of a unit ball B of (Frbf , ‖·‖rbf). Substituting
ak by ck/L(gk) in the expansion of f we get

sup
f∈B

|
n∑

i=1

σif(xi)| = sup∑
|ak|L(gk)≤1,pk∈X ,gk∈G

|
n∑

i=1

σi

l∑
k=1

akgk(d(pk, xi))|

= sup∑
|ck|≤1,pk∈X ,gk∈G

|
n∑

i=1

σi

l∑
k=1

ck
L(gk)

gk(d(pk, xi))|

98 Chapter III

= sup∑
|ck|≤1,pk∈X ,gk∈G

|
l∑

k=1

ck

n∑
i=1

σi
1

L(gk)
gk(d(pk, xi))|

= sup
p∈X ,g∈G

|
n∑

i=1

σi
1

L(g)
g(d(p, xi))| (14)

For the last step observe that the supremum in the linear expansion in the second
last line is obtained when one of the ck is 1 and all the others are 0. To proceed we
introduce the notations hp,g(x) := g(d(p, x))/L(g), H := {hp,g; p ∈ X , g ∈ G}, and
G1 := {g/L(g); g ∈ G}. We rewrite the right hand side of Equation (14) as

sup
p∈X ,g∈G

|
n∑

i=1

σi
1

L(g)
g(d(p, xi))| = sup

hp,g∈H
|

n∑
i=1

σihp,g(xi)|

and thus obtain Rn(B) = Rn(H). To calculate the latter we need the following:

Lemma 23 N(H, 2ε, ‖ · ‖∞) ≤ N(X , ε, d)N(G1, ε, ‖ · ‖∞).

Proof. First we observe that for hp1,g1 , hp2,g2 ∈ H

‖hp1,g1 − hp2,g2‖∞ = sup
x∈X

|g1(d(p1, x))

L(g1)
− g2(d(p2, x))

L(g2)
|

≤ sup
x∈X

(
|g1(d(p1, x))

L(g1)
− g1(d(p2, x))

L(g1)
|+ | |g1(d(p2, x))

L(g1)
− g2(d(p2, x))

L(g2)
|
)

≤ sup
x∈X

|d(p1, x)− d(p2, x)|+ ‖ g1

L(g1)
− g2

L(g2)
‖∞

≤ d(p1, p2) + ‖ g1

L(g1)
− g2

L(g2)
‖∞ =: dH(hp1,g1 , hp2,g2) (15)

For the step from the second to the third line we used the Lipschitz property of g1.
Finally, it is easy to see that N(H, 2ε, dH) ≤ N(X , ε, d)N(G1, ε, ‖ · ‖∞). ,

Plugging Lemma 23 in Theorem 17 yields the following Rademacher complexity:

Theorem 24 (Rademacher complexity of unit ball of Frbf) Let B be the
unit ball of (Frbf , ‖ · ‖rbf), G1 the rescaled functions of G as defined above, and
w := max{diam(X , d), diam(G1, ‖ · ‖∞)}. Then, for every ε > 0,

Rn(B) ≤ 2ε+
4
√

2√
n

∫ w

ε/4

√
logN(X , u

2
, d) + logN(G1,

u

2
, ‖ · ‖∞) du.

This theorem is a huge improvement compared to Theorem 22 as instead of the
covering numbers we now have log-covering numbers in the integral. As an example
consider the linear programming machine on X = [0, 1]d. Because of G = {id},
the second term in the square root vanishes, and the integral over the log-covering
numbers of X can be bounded by a constant independent of ε. As result we obtain
that in this case Rn(B) scales as 1/

√
n.

Classification in Metric Spaces 99

9 Choosing subspaces of Lip(X)

So far we always considered the isometric embedding of the given metric space into
the Arens-Eells space and discovered many interesting properties of this embed-
ding. But there exist many different isometric embeddings which could be used
instead. Hence, the construction of embedding the metric space isometrically into
some Banach space and then using a large margin classifier in this Banach space is
also possible with different Banach spaces than the Arens-Eells space. For example,
Hein and Bousquet (2003) used the Kuratowski embedding, which maps a metric
space X isometrically in the space of continuous functions (C(X), ‖·‖∞) (see Exam-
ple 6 below). Now it is a natural question whether there are interesting relationships
between large margin classifiers constructed by the different isometric embeddings,
especially with respect to the Lipschitz classifier.

A second question concerns the choice of subspaces of Lip(X). At the end of Sec-
tion 6 we already explained that we have to work on some “reasonable” subspace
of Lipschitz functions to apply the Lipschitz classifier in practice. This is justi-
fied by complexity arguments, but does the large margin interpretation still hold if
we do this? Is there some geometric intuition which could help choosing a subspace?

It will turn out that both questions are inherently related to each other. We will
show that there is a correspondence between embedding X into a Banach space V
and constructing the large margin classifier on V on the one hand, and choosing a
subspace F of Lip(X) and constructing the Lipschitz classifier from F on the other
hand. Ideally, we would like to have a one-to-one correspondence between V and F .
In one direction this would mean that we could realize any large margin classifier on
any Banach space V with the Lipschitz classifier on an appropriate subspace F of
Lipschitz functions. In the other direction this would mean that choosing a subspace
F of Lipschitz functions corresponds to a large margin classifier on some Banach
space V . We could then study the geometrical implications of a certain subspace F
via the geometric properties of V .

Unfortunately, such a nice one-to-one correspondence between V and F is not
always true, but in many cases it is. We will show that given an embedding into
some vector space V , the hypothesis class of the large margin classifier on V always
corresponds to a subspace F of Lipschitz functions (Lemma 28). In general, this
correspondence will be an isomorphism, but not an isometry. The other way round,
given a subspace F of Lipschitz functions, under some conditions we can construct
a vector space V such that X can be isometrically embedded into V and the large
margin classifiers on V and F coincide (Lemma 29).

The key ingredient in this section is the fact that AE(X0) is a free Banach space.
The following definition can be found for example in Pestov (1986).

100 Chapter III

Definition 25 (Free Banach space) Let (X0, d, e) be a pointed metric space. A
Banach space (E, ‖ · ‖E) is a free Banach space over (X0, d, e) if the following prop-
erties hold:

1. There exists an isometric embedding Φ : X0 → E with Φ(e) = 0, and E is the
closed linear span of Φ(X0).

2. For every Banach space (V, ‖ · ‖V) and every Lipschitz map Ψ : X0 → V with
L(Ψ) = 1 and Ψ(e) = 0 there exists a linear operator T : E → V with ‖T‖ = 1
such that T ◦ Φ = Ψ.

It can be shown that the free Banach space over (X , d, e) always exists and is
unique up to isomorphism (cf. Pestov, 1986).

Lemma 26 (AE is a free Banach space) For any pointed metric space
(X0, d, e), AE(X0) is a free Banach space.

Proof. Property (1) of Definition 25 is clear by construction. For a proof of prop-
erty (2), see for example Theorem 2.2.4 of Weaver (1999). ,

We are particularly interested in the case where the mapping Ψ : X0 → V of
Definition 25 is an isometric embedding of X0 into some vector space V . Firstly
we want to find out under which conditions its dual V ′ is isometric isomorphic to
some subspace F of Lip(X). Secondly, given a subspace F of Lip(X) the question is
whether there exists a Banach space V such that X0 can be embedded isometrically
into V and simultaneously V ′ is isometric isomorphic to F . Both questions will be
answered by considering the mapping T of Definition 25 and its adjoint T ′. The
following treatment will be rather technical, and it might be helpful to have Figure
1 in mind, which shows which relations we want to prove.

X
0

AE’ = Lip

V’ = F

T’

exist?V, ψ
?

isometry T’ exists

?
AE

V

φ

ψ

T

exists T’ isometry?isometry ψ

Figure 1: Relations between Banach spaces and subspaces of Lipschitz functions. The left
part shows the commutative diagram corresponding to the free Banach space property of
AE(X0). The right part shows the adjoint mapping T ′ of T . The dotted arrows in the
middle show the relationships we want to investigate.

Now we want to go into detail and start with the first question. For simplicity,
we make the following definition.

Classification in Metric Spaces 101

Definition 27 (Dense isometric embedding) Let (X0, d) a metric space and V
a normed space. A mapping Ψ : X0 → V is called a dense isometric embedding if
Ψ is an isometry and if V is the norm-closure of span{Ψ(x);x ∈ X0}.

Lemma 28 (Construction of F for given V) Let (X0, d) be a pointed metric
space, (V, ‖ · ‖V) a normed space and Ψ : X0 → V a dense isometric embedding.
Then V ′ is isomorphic to a closed subspace F ⊂ Lip0(X0), and the canonical injec-
tion i : F → Lip0(X0) satisfies ‖i‖ ≤ 1.

Proof. Recall the notation mx := Φ(x) from Section 6 and analogously denote
vx := Ψ(x). Let T : AE(X0) → V the linear mapping with T ◦Φ = Ψ as in Definition
25. As Ψ is an isometry, T satisfies ‖T‖ = 1, and maps AE(X0) on some dense sub-
space of V . Consider the adjoint T ′ : V ′ → AE(X0)

′. It is well known (e.g., Chapter
4 of Rudin, 1991) that ‖T‖ = ‖T ′‖ and that T ′ is injective iff the range of T is dense.
Thus, in our case T ′ is injective. As by construction also 〈Tmx, v

′〉 = 〈T ′v′,mx〉, we
have a unique correspondence between the linear functions in V ′ and some subspace
F := T ′V ′ ⊂ AE(X0)

′: for g ∈ V ′ and f = T ′g ∈ Lip0(X0) we have g(vx) = f(mx)
for every x ∈ X0. The canonical inclusion i corresponds to the adjoint T ′. ,

Lemma 28 shows that the hypothesis space V ′ constructed by embedding X
into V is isomorphic to a subset F ⊂ Lip0(X0). But it is important to note that
this isomorphism is not isometric in general. Let g ∈ V ′ and f ∈ Lip0(X0) be
corresponding functions, that is f = T ′g. Because of ‖T ′‖ = 1 we know that
‖f‖AE′ ≤ ‖g‖V , but in general we do not have equality. This means that the
margins ‖g‖V ′ and ‖f‖AE′ of corresponding functions are measured with respect to
different norms and might have different sizes. As a consequence, the solutions of
the two large margin problems

min
g∈V ′

‖g‖V ′ subject to yig(vxi
) ≥ 1

and

min
f∈F

‖f‖L subject to yif(xi) ≥ 1

might be different, even though the sets of feasible functions are the same in both
cases.

To illustrate this we will consider two examples. The first one shows how the
large margin classifier in V can give different results than the one constructed by
using the corresponding subspace for the Lipschitz classifier. In the second example
we show a situation where both classifiers coincide.

Example 6 (Kuratowski embedding) Let (X , d) be an arbitrary compact metric
space and (C(X), ‖ · ‖∞) the space of continuous functions on X . Define Ψ : X →
C(X), x 7→ d(x, ·). This mapping is an isometric embedding called Kuratowski

102 Chapter III

embedding, and it has been used in Hein and Bousquet (2003) to construct a large
margin classifier. We want to compare the large margin classifiers resulting from the
Kuratowski embedding and the embedding in the Arens-Eells space. As an example
consider the finite metric space X = {x1, ..., x4} with distance matrix

D =

0 5 3 6
5 0 4 1
3 4 0 5
6 1 5 0

 .

Let V = span{d(x, ·); x ∈ X} ⊂ C(X), endowed with the norm ‖ · ‖∞. V is
a 4-dimensional vector space. Let V ′ its dual space. Via the mapping T ′, each
linear operator g ∈ V ′ corresponds to the linear operator f ∈ Lip0(X0) with f(xi) =
〈g, d(xi, ·)〉 =: ci. Now we want to compare the norms of g in V ′ and f in Lip(X).The
norm of g in V ′ can be computed as follows:

‖g‖V ′ = sup{〈g, v〉 : v ∈ V, ‖v‖V ≤ 1}

= sup{〈g,
4∑

i=1

aid(xi, ·)〉 : ai ∈ R, ‖
4∑

i=1

aid(xi, ·)‖∞ ≤ 1}

= sup{
4∑

i=1

aici : ai ∈ R, −1 ≤
4∑

i=1

aid(xi, xj) ≤ 1 for all j = 1, ..., 4 }.

For given function g ∈ V ′ (that is, for given values ci) this norm can be computed by
a linear program. Consider the two functions g1, g2 ∈ V ′ with values on x1, x2, x3, x4

given as (−1,−1,−1,−1) and (1, 0, 1, 0), respectively, and let f1, f2 ∈ Lip0(X0) be
the corresponding Lipschitz functions. Then we have ‖f1‖L = 0.166 < 0.25 = ‖f2‖L

and ‖g1‖V ′ = 0.366 > 0.28 = ‖g2‖V ′. So the norms ‖ · ‖V ′ and ‖ · ‖L do not
coincide, and moreover there is no monotonic relationship between them. If the
maximal margin algorithm had to choose between functions f1 and f2, it would come
to different solutions, depending whether the underlying norm is ‖ · ‖V ′ as for the
large margin classifier in V ′ or ‖ · ‖L as for the Lipschitz classifier in T ′V ′.

Example 7 (Normed space) Let (X , ‖ · ‖X) be a normed vector space with dual
(X ′, ‖ · ‖X ′). As the norm of linear functions coincides with their Lipschitz constant,
X ′ is isometrically isomorphic to a subspace of Lip0(X0). This means that it makes
no difference whether we construct a large margin classifier on the normed space X
directly or ignore the fact that X is a normed space, embed X into AE(X0) and then
construct the Lipschitz classifier on AE(X0) with the subspace T ′X ′. We already
mentioned this fact in Section 6 when we stated that the SVM solution is the same
one as the Lipschitz classifier on X ′.

Now we want to investigate our second question: given some subspace F ⊂
Lip0(X0), is F the dual space of some Banach space V such that X0 can be embedded
isometrically into V and V ′ ' F? To answer this question we have to deal with some

Classification in Metric Spaces 103

technical problems. First of all, F has to possess a pre-dual, that is a vector space
V whose dual V ′ coincides with F . In general, not every Banach space possesses
a pre-dual, and if it exists, it needs not be unique. Secondly, it turns out that the
canonical injection T ′ : F → Lip0(X0) has to have a pre-adjoint, that is a mapping
T : AE(X0) → V whose adjoint coincides with T ′. Pre-adjoints also not always exist.
In general, neither the existence of a pre-dual nor the existence of pre-adjoints are
easy to prove. One situation where both can be handled is the case where F is
closed under pointwise convergence:

Lemma 29 (Construction of V for given F) Let X0 be a bounded metric space,
and F a subspace of (Lip0(X0), L(·)) which is closed under pointwise convergence and
satisfies the condition

sup
f∈F,L(f)≤1

|f(x)− f(y)| = d(x, y) (16)

for all x, y ∈ X0. Then there exists a normed space V such that X0 can be isometri-
cally embedded into V and its dual V ′ is isometrically isomorphic to F .

Before we can start with the proof we need two more definitions: Let M be a
subspace of some Banach space V and N a subspace of the dual space V ′. Then the
annihilator M⊥ and the pre-annihilator ⊥N are defined as M⊥ = {T ∈ V ′; Tm =
0 for all m ∈ M} and ⊥N = {e ∈ V ; Te = 0 for all T ∈ N}. As the proof is a bit
technical, we refer to Megginson (1998) for background reading.

Proof. For a bounded metric space X0, the topology of pointwise convergence on
Lip0(X0) coincides with its weak* topology. Thus by assumption, F is weak*-closed,
which implies that ⊥F is a closed subspace of AE(X0). Hence, the quotient space
V := AE(X0)/

⊥F exists, and there exists an isometric isomorphism between V ′

and (⊥F)⊥. As F is weak*-closed, (⊥F)⊥ = F . So V is a pre-dual of F . Let T ′ :
F → Lip0(X0) be the canonical inclusion. It has a pre-adjoint, namely the quotient
mapping π : AE(X0) → V . Define the mapping Ψ : X0 → V , x 7→ πmx =: vx. We
have

〈f, vx〉 = 〈f, πmx〉 = 〈T ′f,mx〉 = 〈f,mx〉 = f(x).

Hence, by assumption (16), Ψ is an isometry:

‖Ψ(x)−Ψ(y)‖V = sup
f∈F,L(f)≤1

{|〈f, vx − vy〉|} = sup
f∈F,L(f)≤1

{|f(x)− f(y)|} = d(x, y).

,

Lemma 29 gives a nice interpretation of what it means geometrically to choose a
subspace F of Lipschitz functions: the Lipschitz classifier with hypothesis space F
corresponds to embedding X isometrically into the pre-dual V of F and constructing
the large margin classifier on V directly. Condition (16), which F has to satisfy to
allow this interpretation, intuitively means that F has to be a “reasonably large”
subspace.

104 Chapter III

Example 8 (Linear combination of distance functions) Let F be the sub-
space of Lip(X) consisting of functions of the form f(x) =

∑
i aid(xi, x) + b, and

F̄ ⊂ Lip(X) its closure under pointwise convergence. As norm on F̄ we take the
Lipschitz constant. On F̄ , condition (16) is satisfied: trivially, we always have ≤
in (16), and for given x, y ∈ X , equality is reached for the function f = d(x, ·). So
we can conclude by Lemma 29 that the Lipschitz classifier on F̄ has the geometrical
interpretation explained above.

10 Discussion

We derived a general approach to large margin classification on metric spaces which
uses Lipschitz functions as decision functions. Although the Lipschitz algorithm,
which implements this approach, has been derived in a rather abstract mathemat-
ical framework, it boils down to an intuitively plausible mechanism: it looks for a
decision function which has a small Lipschitz constant. This agrees with the regu-
larization principle that tries to avoid choosing functions with a high variation. The
solution of the Lipschitz algorithm is well behaved as, by the representer theorems
of Section 7, it can always be expressed by distance functions to training points.
For some special cases, the solution corresponds to solutions of other well known
algorithms, such as the support vector machine, the linear programming machine,
or the 1-nearest neighbor classifier. We provide Rademacher complexity bounds for
some of the involved function classes which can be used to bound the generalization
error of the classifier.

In spite of all those nice properties there are several important questions which
remain unanswered. To apply the Lipschitz algorithm in practice it is important to
choose a suitable subspace of Lipschitz functions as hypothesis space. In Section
9 we found a geometrical explanation of what the choice of certain subspaces F
means: it is equivalent to using a different isometric embedding of the metric space
into some Banach space. But this explanation does not solve the question of which
subspace we should choose in the end. Moreover, there exist isometric embeddings
in certain Banach spaces which have no such interpretation in terms of subspaces of
Lipschitz functions. For example, Hein and Bousquet (2003) studied the Kuratowski
embedding of a metric space into its space of continuous functions to construct a
large margin algorithm. As we explained in Example 6, the large margin classifier
resulting from this embedding can be different from the Lipschitz classifier. It is an
interesting question how different embeddings into different Banach spaces should
be compared. One way to do this could be comparing the capacities of the induced
function spaces. An interesting question in this context is to find the “smallest
space” (for instance, in terms of the Rademacher complexities) in which a given
data space can be embedded isometrically.

There is also a more practical problem connected to the choice of the subspace

Classification in Metric Spaces 105

of Lipschitz functions. To implement the Lipschitz algorithm for a given subspace
of Lipschitz functions, we need to know some way to efficiently compute the Lip-
schitz constants of the functions in the chosen subspace. For example, in case of
the linear programming machine it was possible to bound the Lipschitz constants of
the functions in the parameterized subspace of functions

∑
i aid(xi, ·) + b in terms

of their parameters by
∑

i |ai|. But in many cases, there is no obvious parametric
representation of the Lipschitz constant of a class of functions. Then it is not clear
how the task of minimizing the Lipschitz constant can be efficiently implemented.

An even more heretic question is whether isometric embeddings should be used
at all. In our approach we adopted the point of view that a meaningful distance
function between the training points is given by some external knowledge, and that
we are not allowed to question it. But in practical applications it is often the case
that distances are estimated by some heuristic procedure which might not give a
sensible result for all the training points. In those cases the paradigm of isometric
embedding might be too strong. Instead we could look for bi-Lipschitz embeddings
or low distortion embeddings of the metric space into some Banach space, or even
into some Hilbert space. We would then loose some (hopefully unimportant) infor-
mation on the distances in the metric space, but the gain might consist in a simpler
structure of the classification problem in the target space.

Finally, many people argue that for classification only “local properties” should
be considered. One example is the assumption that the data lies on some low
dimensional manifold in a higher dimensional space. In this case, the meaningful
information consists of the intrinsic distances between points along the manifold.
In small neighborhoods, those distances are close to the distances measured in the
enclosing space, but for points which are far away from each other this is not true
any more. In this setting it is not very useful to perform an isometric embedding of
the metric space into a Banach space as the additional linear structure the Banach
space imposes on the training data might be more misleading than helpful. Here a
different approach has to be taken, but it is not clear how a large margin algorithm
in this setting can be constructed, or even whether in this case the large margin
paradigm should be applied at all.

Chapter IV

A Compression Approach to
Support Vector Model Selection

In the last chapters we studied the behavior of machine learning algorithms for a
fixed similarity or dissimilarity function. The topic of this chapter is how the pa-
rameters of a similarity function can be determined from the given training data. To
make an optimal choice of parameters we first have to decide which learning algo-
rithm we want to use. In this chapter this will be simply a support vector machine
with Gaussian kernels. For this algorithm we will then interpret the constructed
classifiers with methods from information theory and data compression. This will
lead to an implementation of Ockham’s razor: we choose the set of parameters such
that the resulting classifier is as “simple to describe” as possible. This will be done
by constructing “compression coefficients” which measure how well the information
about the training labels can be encoded with the help of a given hyperplane. The
main idea is to relate the coding precision to geometrical concepts such as the width
of the margin or the shape of the data in the feature space. These compression
coefficients will then be tested in model selection experiments. As a result we find
that compression coefficients can fairly accurately predict the parameters for which
the test error is minimized.

1 Model selection via compression bounds

1.1 Model selection

In statistical learning theory, a model M is simply a class of functions. For a given
model, the learning step consists in choosing the function from the model which best
explains our training data. In many applications, it is not clear from the beginning
which kind of function class is appropriate to model the data. If the model is too
simple, it might not contain a good classifier at all. If the model is too complex it is
very likely that we will overfit. The term model selection now refers to the problem
of choosing a model from a given class of models (Mi)i∈I which is well suited to our

108 Chapter IV

training data.

In the case of hard margin support vector machines, the model class only de-
pends on the kernel function we choose. Each kernel function k gives rise to a
model Mk := {

∑
i aik(xi, ·) + b; ai, b ∈ R}. In this context, model selection is

the problem of choosing a good kernel function. Often we already know what
the type of the kernel function we want to use, for example the Gaussian kernel
kσ(x, y) = exp(−‖x− y‖2/σ2). Here the class of models is a parametric class, each
particular value of σ corresponding to some model Mσ. Model selection then re-
duces to choosing the best parameter σ. For the soft margin support vector machine,
additionally to the kernel function we also have to determine the soft margin pa-
rameter C (recall the soft margin optimization problem in Section III.3). Choosing
both σ and C is the model selection problem we will study in this chapter.

One standard way to perform model selection is to use model complexity es-
timates and generalization bounds. The model complexity assesses “how large” a
function class is. Examples for such complexity measures are covering numbers of
the function space, the VC dimension, or the Rademacher complexity. The gener-
alization bounds derived in statistical learning theory usually have the form

R(f) ≤ Remp(f) + C(F)

where F is the given function class, C some complexity measure of it, and f a func-
tion in F (which might be chosen by a certain algorithm). Given the training data,
such a bound can be used for model selection by choosing the model F which min-
imizes the right hand side minf∈F Remp(f) + C(F) over the given set of models. To
make this feasible in practice, the complexity measure C has to be easy to compute.
Often this is not the case, for example if the complexity is expressed in terms of
covering numbers of the function space.

1.2 Data compression and learning

One particular measure of complexity of a function class can be obtained by data
compression arguments. The general idea is that the complexity of a model (with
respect to the given training data) is low if the information contained in the training
data can be compressed effectively with the help of the model. Following the conven-
tions in the compression literature, models will also be called hypothesis spaces in
the following, and the terms “classifier” and “hypothesis” will be used synonymously.

In the framework of Vapnik (1998, Section 6.2), classifiers are used to construct
codes that can transmit the labels y1, ..., yn of a set of training patterns x1, ..., xn.
What those codes essentially do is to tell the receiver which classifier h from a given
hypotheses class he should use to reconstruct the training labels from the training

A Compression Approach to Model Selection 109

patterns (this is described in detail in Section 2). For such a code, the compression
coefficient C(h) is defined as

C(h) :=
number of bits to code y1, ..., yn using h

n
. (1)

The denominator corresponds to the number of bits we need to transmit the uncom-
pressed binary vector (y1, ..., yn). The numerator tells us how many bits we need to
transmit the same information using the code constructed with help of classifier h.
Hence, the compression coefficient is a number between 0 and 1 which describes how
efficient the code works. Intuitively, if the compression coefficient C(h) is small, h is
a “simple” hypothesis which we expect not to overfit too much and hence to have a
small generalization error. This belief is supported by the following theorem, which
bounds the risk R(h) of a classifier h with respect to the 0-1-loss in terms of the
compression coefficient:

Theorem 1 (Section 6.2 in Vapnik 1998) With probability at least 1−η over n
random training points drawn iid according to the unknown distribution P , the risk
R(h) of classifier h is bounded by

R(h) ≤ 2 ln(2)C(h)− ln(η)

n

simultaneously for all classifiers h in a finite hypotheses set.

This bound has the disadvantage that it is only valid in the restricted setting where
the hypotheses space is finite and independent of the training data.

A different bound that directly works in the coding setting has been stated
by Blum and Langford (2003). Their setting is slightly different from the one of
Vapnik. For a given set of training and test points, the sender constructs a code h
that transmits the labels of both training and test points. Rtest is then defined as
the error which the code h makes on the given test set.

Theorem 2 (Corollary 3 in Blum and Langford 2003) With probability at least
1 − η over n random training points and n random test points drawn iid according
to the unknown distribution P , and for all codes h which encode the training labels
without error, the error Rtest(h) on the test set satisfies

Rtest(h) ≤ C(h)− ln η

n
.

The advantage of this bound is that the problem of data dependency does not oc-
cur. It is proved within the coding framework, without assuming a fixed hypotheses
space. It is valid for all codes, as long as receiver and sender agree on how the
code works before the sender knows the training data. In particular, the codes may
depend on the training data in some predefined way, as it will be the case for the
codes we are going to construct.

110 Chapter IV

In general it is well-known that there is a tight connection between learning and
coding. In some way, the process of learning corresponds to finding efficient codes to
describe the input space. In the minimum description length (MDL) framework (cf.
Barron et al., 1998, and references therein), this connection is made explicit. The
MDL principle states that, among a given set of hypotheses, one should choose the
hypothesis that achieves the shortest description of the training data. Intuitively,
this seems to be a reasonable choice: by Shannon’s source coding theorem (cf.
Cover and Thomas, 1991) we know that an efficient code is closely related to the
data generating distribution. Moreover, an easy-to-describe hypothesis is less likely
to overfit than a more complicated one.

There are several connections between the MDL principle and other learning
methods. It can be shown that selecting the hypothesis with the highest posterior
probability in a Bayesian setting is equivalent to choosing the hypothesis with the
shortest code (cf. Hansen and Yu, 2001). For SVMs, the compression scheme ap-
proach of Floyd and Warmuth (1995), which describes the generalization of a learn-
ing algorithm by its ability to reduce the training set to a few important points, leads
to a bound in terms of the number of support vectors. Combining this result with
large margin bounds yields the sparse margin bound of Herbrich et al. (2000). In
McAllester (1999), a PAC-Bayesian bound for learning algorithms was derived. For
a given prior distribution P on the hypotheses space, it bounds the generalization
error essentially by the quantity − lnP (U)/m, where U is the subset of hypotheses
consistent with the training examples. Intuitively we can argue that, according to
Shannon’s theorem, − lnP (U) corresponds to the length of the shortest code for
this subset.

In the following we want to explore whether the connection between statistical
learning theory and data compression is only of theoretical interest or whether it
can also be exploited for practical purposes. Our idea is to use the compression
coefficient bounds above for model selection. The main work will consist in find-
ing a way to actually compute compression coefficients for a given model and given
training data. The special case we will consider is model selection for soft mar-
gin SVMs. The first part of the work (Section 2) will consist in using hyperplanes
learned by SVMs to construct codes for the training labels. Those codes work by
encoding the direction of the separating hyperplane. To make them efficient, we
will use geometric concepts such as the size of the margin or the shape of the data
in the feature space, and sparsity arguments. The main insight of this section is
on how to transform those geometrical concepts into an actual code for labels. In
the end we obtain compression coefficients that contain quantities already known to
be meaningful in the statistical learning theory of SVMs, such as the radius-margin
term R2/ρ2, the eigenvalues of the kernel matrix, and the number of support vec-
tors. In the second part (Section 3) we then test the model selection performance of
our compression coefficients on benchmark data sets. We find that the compression
coefficients perform comparable or better than several standard bounds.

A Compression Approach to Model Selection 111

Now we want to establish some notation for this chapter. For a given kernel
function k we denote the kernel matrix by K := (k(xi, xj))i,j=1,...,n. We will denote
its eigenvalues by λ1, ..., λn, where the λi are sorted in non-increasing order. Later
on we will also consider the kernel matrix KSV restricted to the span of the support
vectors. To define it, let {xi1 , ..., xis} ⊂ {x1, ..., xn} the set of support vectors,
SV := {k | xk ∈ span{xi1 , ..., xis}} the indices of those training points which are in
the subspace spanned by the support vectors. Then the kernel matrix restricted to
the span of the support vectors is defined as KSV := (k(xi, xj))i,j∈SV .

The sphere Sd−1
R is the surface of a ball with radius R in the space R

d. The
function log will always denote the logarithm to the base 2. Code lengths will often
be given by some logarithmic term, for instance dlog ne. To keep the notations
simple, we will omit the ceil brackets and simply write log n.

2 Compression Coefficients for SVMs

The basic setup for the compression coefficient framework is the following. We
are given n pairs (xi, yi)i=1,...,n of training patterns with labels and assume that an
imaginary sender and receiver both know the training patterns. It will be the task of
the sender to transmit the labels of the training patterns to the receiver. This reflects
the basic structure of a classification problem: we want to predict the labels y for
given patterns x. That is, we want to learn something about P (y|x). Sender and
receiver are allowed to agree on the details of the code before transmission starts.
Then the sender gets the training data and chooses a classifier that separates the
training data. He transmits to the receiver which classifier he chose. The receiver
can then apply this classifier to the training patterns and reconstruct all the labels.

To understand how this works let us consider a simple example. Before know-
ing the data, sender and receiver agree on a finite hypotheses space containing k
hypotheses h1, ..., hk. The sender gets the training patterns and the labels, and the
receiver is allowed to look at the training patterns only. Now the sender inspects
the training data. For simplicity, let us first assume that one of the hypotheses, say
h7, classifies all training points correctly. In this case the sender transmits “7” to
the receiver. The receiver can now reconstruct the labels of the training patterns by
classifying them according to hypothesis h7. Now consider the case where there is
no hypothesis that classifies all training patterns correctly. In this case, the receiver
cannot reconstruct all labels without error if the sender only transmits the hypoth-
esis. Additionally he has to know which of the training points are misclassified by
this hypothesis. In our example, assume that hypothesis 7 misclassifies the training
points 3, 14, and 20. The information the sender now transmits is “hypothesis: 7;
misclassified points: 3, 14, 20”. The receiver can then construct the labels of all
patterns according to h7 and flip the labels he obtained for patterns 3, 14, and 20.
After this, he has labeled all training patterns correctly.

This example shows how a classification hypothesis can be used to transmit the
labels of training points. In general, a finite, fixed hypothesis space as it was used

112 Chapter IV

in the example may not contain a good hypothesis for previously unseen training
points and will result in long codes. To avoid this, the sender will have to adapt the
hypothesis space to the training points and communicate this to the receiver.

One principle that can already be observed in the example above is the way
training errors are handled. As above, the code will always consist of two parts: the
first part which serves to describe the hypothesis, and the second part, which tells
the receiver which of the training points are misclassified by this hypothesis.

2.1 Relation between margin and coding precision

In the following we want to investigate how SVM hyperplanes can be used for
coding the labels. The main part of those codes will consist in transmitting the
direction of the separating hyperplane constructed by the SVM. We will always
consider the simplified problem where the hyperplane goes through the origin. The
hypotheses space consists of all possible directions the normal vector can take. It
can be identified with the unit sphere in the feature space. In case of an infinite
dimensional feature space, recall that by the representer theorem the solution of an
SVM always lies in the subspace spanned by the training points. Thus the normal
vector we want to code is a vector in a Hilbert space of dimension at most m (where
m is the number of training points). The trick to determine the precision by which
we have to code this vector is to interpret the margin in terms of coding precision:
Suppose the data are (correctly) classified by a hyperplane with normal vector ω and
margin ρ. A fact that often has been observed (e.g., Schölkopf and Smola, 2002,
p. 194) is that in case of a large margin, small perturbations of the direction of
the hyperplane will not change the classification result on the training points. In
compression language this means that we do not have to code the direction of the
hyperplane with high accuracy – the larger the margin, the less accurate we have to
code. So we will adapt the precision by which we code this direction to the width
of the margin. Suppose that all training patterns lie in a ball of radius R around
the origin and that they are separated by a hyperplane H through the origin with
normal vector ω and margin ρ. Then every “slightly rotated” hyperplane that still
lies within the margin achieves the same classification result on all training points
as the original hyperplane (cf. Figure 1a). Thus, instead of using the hyperplane
with normal vector ω to separate the training points we could use any convenient
vector v as normal vector – as long as the corresponding hyperplane still remains
inside the margin. In this context, note that rotating a hyperplane by some angle α
corresponds to rotating its normal vector by the same angle. We denote the set of
normal vectors such that the corresponding hyperplanes still lie inside the margin
the rotation region of ω. The region in which the corresponding hyperplanes lie will
be called the rotation region of H (cf. Figures 1a and b).

To code the direction of ω, we will construct a discrete set of “codebook vectors”
on the sphere. An arbitrary vector will be coded by choosing the closest codebook
vector. From the preceding discussion we can see that the set of codebook vectors has
to be constructed in such a way that the closest codebook vector for every possible

A Compression Approach to Model Selection 113

H

R
α

ρ

a.

rotation region of H

ω

α

ω

b.

rotation region of

normal vector

codebook vector v

Figure 1: (a) The training points are separated by hyperplane H with margin ρ. If
we change the direction of H such that the new hyperplane still lies inside the rotation
region determined by the margin (dashed lines), the new hyperplane obtains the same
classification result on the training points as H. (b) The hyperplanes in the rotation
region of H (indicated by the dashed lines) correspond to normal vectors inside the rotation
region of ω. The black points indicate the positions of equidistant codebook vectors on
the sphere. The distance between those vectors has to be chosen so small that in each
cone of angle α there is at least one codebook vector. In this example, vector v is the
codebook vector closest to normal vector ω, and by construction it lies inside the rotation
region of ω.

normal vector ω is inside the rotation region of ω (cf. Figure 1b). An equivalent
formulation is to construct a set of points on the surface of the sphere such that the
balls of radius ρ centered at those points cover the sphere. The minimal number of
balls we need to achieve this is called the covering number of the sphere.

Proposition 3 (Covering numbers of spheres) The number ud of balls of ra-
dius ρ which are required to cover the sphere Sd−1

R of radius R in d-dimensional
Euclidean space (d ≥ 2) satisfies(

R

ρ

)d−1

≤ ud ≤ 2

⌈
Rπ

ρ

⌉d−1

.

The constant in the upper bound can be improved, but as we will be interested in
log-covering numbers later, this does not make much difference in our application.
Proof. We prove the upper bound by induction. For d = 2, the sphere is a circle
which can be covered with d2Rπ/ρe ≤ 2 dRπ/ρe balls. Now assume the proposition
is true for the sphere Sd−1

R . To construct a ρ-covering on Sd
R we first cover the

cylinder Sd−1
R × [−Rπ/2, Rπ/2] with a grid of ũd+1 := ud · dRπ/ρe points. This grid

is a ρ-cover of the cylinder. The grid is then mapped on the sphere such that the

114 Chapter IV

one edge of the cylinder is mapped on the north pole, the other edge on the south
pole, and the ’equator’ of the cylinder is mapped to the equator of the sphere. As
the distances between the grid points do not increase by this mapping, the projected
points form a ρ-cover of the sphere Sd

R. By the induction assumption, the number
of points in this ρ-cover satisfies

ud+1 ≤ ũd+1 = ud · dRπ/ρe ≤ 2 dRπ/ρed−1 · dRπ/ρe = 2 dRπ/ρed .

We construct a lower bound on the covering number by dividing the surface area of
the whole sphere by the area of the part of the surface covered by one single covering
ball. The area of this part is smaller than the whole surface of the small ball. So we
get a lower bound by dividing the surface area of Sd−1

R by the surface area of Sd−1
ρ .

As the surface area of a sphere with radius R is Rd−1 times the surface area of the
unit sphere we get (R/ρ)d−1 as lower bound for the covering number. ,

Now we can explain how the sender will encode the direction of the separating
hyperplane. Before getting the data, sender and receiver agree on a procedure on
how to determine the centers of a covering of a unit sphere, given the number of
balls to use for this covering, and on a way of enumerating these centers in some
order. Furthermore, they agree on which kernel the sender will use for his SVM.
Both sender and receiver get to see the training patterns, the sender also gets the
training labels. Now the sender trains a (soft margin) SVM on the training data
to obtain a hyperplane that separates the training patterns with some margin ρ
(maybe with some errors). Then he computes the number u of balls of radius ρ one
needs to cover the unit sphere in the feature space according to Proposition 3. He
constructs such a covering according to the procedure he and the receiver agreed
on. The centers of the covering balls form his set of codebook vectors. The sender
enumerates the set of codebook vectors in the predefined way from 1 to u. Then he
chooses a codebook vector which lies inside the rotation region of the normal vector
(this is always possible by construction). We denote its index iu ∈ {1, ..., u}. Now
he transmits the total number u of codebook vectors and the index iu of the one he
chose. The receiver now constructs the same set of codebook vectors according to
the common procedure, enumerates them in the same predefined way as the sender
and picks vector iu. This is the normal vector of the hyperplane he was looking for,
and he can now use the corresponding hyperplane to classify the training patterns.
In the codes below, we refer to the pair (u, iu) as position of the codebook vector.

When we count how many bits the sender needs to transmit the two numbers u
and iu we have to keep in mind that to decode, the receiver has to know which parts
of the binary string belong to u and iu, respectively. The number u of codebook
vectors is given as in Proposition 3, but as it depends on the margin it cannot
be bounded independent from the training data. So the sender cannot use a fixed
number of bits to encode u. Instead we use a trick described in Cover and Thomas
(1991, p. 149): To build a code for the number u, we take the binary representation
of u and duplicate every bit. To mark the end of the code we use the string 01.

A Compression Approach to Model Selection 115

As an example, u = 27 with the binary representation 11011 will be coded as
111100111101. So the receiver knows that the code of u is finished when he comes
upon a pair of nonequal bits. We now apply this trick recursively: to code u, we first
have to code the length log u of its binary code and then send the actual bits of the
code of u. But instead of coding log u with the duplication code explained above, we
can also first transmit the length log log u of the code of log u and then transmit the
code of log u, and so on. At some point we stop this recursive procedure and code the
last remaining number with the duplication code described above. This procedure
of coding u needs log∗(u) := log u+log log u+ ... bits, where the sum continues until
the last positive term (cf. p. 150 in Cover and Thomas, 1991). Having transmitted
u, we can send iu with log u bits, because iu is a number between 1 and u and
the sender now already knows u. All in all, the sender needs log∗ u + log u bits to
transmit the position of the codebook vector.

The second part of the code deals with transmitting which of the training patterns
are misclassified by the hyperplane corresponding to the chosen codebook vector.
We have to be careful how we define the misclassified training points in case of a
soft margin SVM. For a soft margin SVM it is allowed that some training points lie
inside the margin. For those training points which end up inside the rotation region
of the hyperplane, our rotation argument breaks down. It cannot be guaranteed
that when the receiver uses the hyperplane corresponding to the codebook vector,
the points inside the rotation region are classified in the same way as the sender
classified them with the original hyperplane. Thus the sender has to transmit which
points are inside the rotation region, and he also has to send their labels. All other
points can be treated more easily. The sender has to transmit which of the points
outside the rotation region were misclassified. The receiver knows that those points
will also be misclassified by his hyperplane, and he can flip their labels to get them
right. Below we will refer to the part consisting of the information on the points
inside the rotation region and on the misclassified points outside the rotation region
as misclassification information.

The number r of points inside the rotation region is a number between 0 and n,
thus we can transmit its binary representation using log n bits. After transmitting
r, the receiver knows how many training points lie inside the region, but not which
of them. There are

(
n
r

)
possibilities which of the training points are the points inside

the rotation region. Before transmission, sender and receiver agree on an ordering
on those possibilities. Now the sender can transmit the index ir of the one that is
the true one. As this is a number between 1 and

(
n
r

)
, and as the receiver at this point

already knows r, this can be encoded with log
(

n
r

)
bits. Next the sender can use r

bits to send the labels of the r points inside the rotation region. Finally the sender
has to transmit the number l of misclassified training points outside the rotation
region. It is a number between 1 and n− r, thus we can use log(n− r) bits for this.
To transmit which of the vectors are the misclassified ones, we send the index il with
log
(

n−r
l

)
bits. All together, we need log n+log

(
n
r

)
+r+log(n−r)+log

(
n−r

l

)
bits to

transmit the misclassification information. For simplicity, we bound this quantity
from above by (r + l + 2) log n+ r.

116 Chapter IV

Now we can formulate our first code:

Code 1 Sender and receiver agree on the training patterns, a fixed kernel, and on
a procedure for choosing the positions of t balls to cover the unit sphere in a d-
dimensional Euclidean space. Now the sender trains an SVM with the fixed kernel on
the training patterns, determines the size of the margin ρ and the number u of balls
he needs to cover the sphere up to the necessary accuracy according to Proposition
3. Furthermore, he determines which of the training patterns lie inside the rotation
region and which patterns outside this region are misclassified by the SVM solution.
Now he transmits

• the position of the codebook vector (log∗ u+ log u bits)

• the misclassification information ((r + l + 2) log n+ r bits)

To decode this information, the receiver constructs a covering of the sphere in the
feature space with t := u balls according to the common procedure, determines the
used codebook vector i, and constructs a hyperplane using this vector as normal
vector. He classifies all training patterns according to this hyperplane, labels the
points inside the rotation region as transmitted by the sender, and flips the labels of
the misclassified training points outside the rotation region.

As defined in Equation (1), the compression coefficient of a code is given by the
number of bits it needs to transmit all its information, divided by the number n
of labels that were transmitted. Hence, according to our computations above, the
compression coefficient of Code 1 is given by

C1 =
1

n
(log∗ u+ log u+ (r + l + 2) log n+ r)

with u = 2 dRπ/ρed−1 according to Proposition 3.

2.2 Using the shape of the data in the feature space

Now we want to refine this code in several aspects. In the construction above we
worked with the smallest sphere which contains all the training points. But in
practice, the shape of the data in the feature space is typically ellipsoid rather than
spherical. This means that large parts of the sphere we used above are actually
empty, and thus the code we constructed is not very efficient. Now we want to
take into account the shape of the data in the feature space to construct a shorter
code. In this setting it will turn out to be convenient to choose the hypotheses
space to have the same shape as the data space. The reason for this is the following:
When using the rotation argument from above, we observe that in the ellipsoid
situation the maximal rotation angle of the hyperplane induced by some fixed margin
ρ depends on the actual direction of the hyperplane (cf. Figure 2). This means
that the sets of points on a spherical hypotheses space which classify the training
data in the same way as the hyperplane also have different sizes, depending on the

A Compression Approach to Model Selection 117

H
1

H2

B2

B
1

B’
2

β

α

Figure 2: In this figure, the ellipse represents the data domain and the large circle rep-
resents a spherical hypotheses space. Consider two hyperplanes H1 and H2 with equal
margin. The balls B1 resp. B2 indicate the sets of hypotheses that yield the same clas-
sification result as H1 resp. H2. The sizes of those balls depend on the direction of the
hyperplane with respect to the ellipse. In the example shown, B1 is smaller than B2, hence
H1 must be coded with higher accuracy than H2. Note that if we use the ellipse itself
as hypotheses space, we have to consider the balls B1 and B′

2 which are centered on the
surface of the ellipse and have equal size.

direction of the hyperplane. To construct an optimal set of codebook vectors on the
spherical hypotheses space we thus had to cover the sphere with balls of different
sizes. Instead of this spherical hypotheses space now consider a hypotheses space
which has the same ellipsoid form as the data space. In this case, the sets of vectors
which correspond to directions inside the rotation regions can be represented by
balls of equal sizes, centered on the surface of the ellipsoid (cf. Figure 2).

Now we want to determine the shape of the ellipsoid containing the data points
in the feature space. The lengths of the principal axes of this ellipse can be described
in terms of the eigenvalues of the kernel matrix:

Proposition 4 (Shape of the data ellipse) For given training patterns
(xi)i=1,...,m and kernel k, let λ1,, λd be the eigenvalues of the kernel matrix
K = (k(xi, xj))i,j=1,...,m. Then all training patterns are contained in an ellipse with
principal axes of lengths

√
λ1, ...,

√
λd in the feature space.

Proof. The trick of the proof is to interpret the eigenvectors of the kernel matrix,
who originally live in R

d, as vectors in the feature space. Let Hm := span{δxi
|i =

1, ...,m} the subspace of the feature space spanned by the training examples. It is
endowed with the scalar product 〈δxi

, δxj
〉K = k(xi, xj). Let (ei)i=1,...,m the canonical

basis of Rm and 〈·, ·〉Rm the Euclidean scalar product. Define the mapping T : Rm →

118 Chapter IV

Hm, ei 7→ δxi
. For u =

∑m
i=1 uiei, v =

∑m
j=1 vjej ∈ R

m we have

〈Tu, Tv〉K = 〈
m∑

i=1

uiδxi
,

m∑
j=1

vjδxj
〉K =

m∑
i,j=1

uivj〈δxi
, δxj

〉K = (2)

=
m∑

i,j=1

uivjk(xi, xj) = u′Kv . (3)

Let v1, ..., vd ∈ R
m be the normalized eigenvectors of the matrix K corresponding to

the eigenvalues λ1, ..., λd, that is Kvi = λivi and 〈vi, vj〉Rm = δij. From Equation (3)
we can deduce

〈Tvi, T vj〉K = v′iKvj = v′iλjvj = λj〈vi, vj〉Rm = λiδij,

in particular ‖Tvi‖K =
√
λi. Furthermore we have

〈δxi
, T vj〉K = 〈δxi

,
m∑

l=1

(vj)lδxl
〉K =

m∑
l=1

(vj)lk(xi, xl) = (Kvj)i = (λjvj)i = λj(vj)i.

Altogether we can now see that in the feature space, all data points δxi
lie in the

ellipse whose principal axes have direction Tvj and length
√
λj because the ellipse

equation is satisfied:

d∑
j=1

(
〈δxi

,
Tvj

‖Tvj‖K
〉K√

λj

)2

=
∑

j

((vj)i)
2 ≤ 1.

Here the last equality follows from the fact that
∑

j ((vj)i)
2 is the Euclidean norm

of a row vector of the orthonormal matrix containing the eigenvectors (v1, ..., vd). ,

Now that we know the shape of the ellipse, we have to find out how many balls of
radius ρ we need to cover its surface. As surfaces of ellipses in high dimensions are
complicated to deal with, we simplify our calculation. Instead of covering the surface
of the ellipse, we will cover the ellipse completely. This means that we use one extra
dimension (volume instead of area), but in high dimensional spaces this does not
make much difference, especially if some of the axes are very small. Computing a
rough bound on the covering numbers of an ellipse is easy:

Proposition 5 (Covering numbers of ellipses) The number u of balls of radius
ρ which are required to cover a d-dimensional ellipse with principal axes c1, ..., cd
satisfies

d∏
i=1

ci
ρ
≤ u ≤

d∏
i=1

⌈
2ci
ρ

⌉
.

A Compression Approach to Model Selection 119

Proof. The smallest parallelepiped containing the ellipse has side lengths 2c1, ..., 2cd
and can be covered with a grid of

∏d
i=1 d2ci/ρe balls of radius ρ. This gives an upper

bound on the covering number.
To obtain a lower bound we divide the volume of the ellipse by the volume of

one single ball. Let vd be the volume of a d-dimensional unit ball. Then the volume
of a d-dimensional ball of radius ρ is ρdvd and the volume of an ellipse with axes
c1, ..., cd is given by vd

∏d
i=1 cd. So we need at least

∏d
i=1(ci/ρ) balls. ,

Now we can formulate the refined code:

Code 2 This code works analogously to Code 1, the only difference is that sender
and receiver work with a covering of the data ellipse instead of a covering of the
enclosing sphere.

The compression coefficient of Code 2 is

C2 =
1

n
(log∗ u+ log u+ (r + l + 2) log n+ r) ,

with u =
∏d

i=1d2
√
λi/ρe according to Propositions 4 and 5.

It is interesting to notice that the main complexity term in the compression
coefficient is the logarithm of the number of balls needed to cover the region of
interest of the hypotheses space. So the shape of the bounds we obtain is very
similar to classical bounds based on covering numbers in statistical learning theory.
This is not so surprising since we explicitly approximate our hypotheses space by
covers, but there is a somewhat deeper connection. Indeed, when we construct our
code, we consider all normal vectors in a certain region as equivalent with respect
to the labeling they give of the data. This means that we define a metric on the set
of possible normal vectors which is related to the induced Hamming distance on the
data (that is the natural distance in the ”coordinate projections” of our function
class on the data). Hence, when we adapt the size of the balls to the direction in
hypotheses space (in Figure 2), we actually say that Hamming distance 1 on the data
translates into a certain radius. Hence, we are led to build covers in this induced
distance which is exactly the distance which is used in classical covering number
bounds for classification. So the compression approach gives another motivation, of
information theoretic flavor, for considering that the right measure of the capacity
of a function class is the metric entropy of its coordinate projections.

2.3 Support vectors help reducing the coding dimension

Both compression coefficients we derived so far implicitly depend on the dimension d
of the feature space in which we code the hyperplane. Above we always used d = n
as the solution of an SVM always lives in the subspace spanned by the training
examples. But as the solution even lies in the subspace spanned by the support
vectors, an easy dimension reduction can be achieved by working in this subspace.

120 Chapter IV

The procedure then works as follows: the sender trains the SVM and determines
the support vectors and the margin ρ. The ellipse that we have to consider now is
the ellipse determined by the kernel matrix KSV restricted to the linear span of the
support vectors (cf. notations at the end of Section 1). The reason for this is that
we are only interested in what happens if we slightly change the direction of the
normal vector within the subspace spanned by the support vectors.

To let the receiver know the subspace he is working in, the sender has to transmit
which of the training patterns are support vectors. This part of the code will be
called support vector information. As the number s of support vectors is between 0
and n, the sender first codes s with log n bits and then the index is of the actual
support vectors among the

(
n
s

)
possibilities with log

(
n
s

)
bits. So the support vector

information can be coded with log n+ log
(

n
s

)
≤ (s+ 1) log n bits. After submitting

the information about the support vectors, the code proceeds analogously to Code
2.

Code 3 Sender and receiver agree on the training patterns, the kernel, and the
procedure of covering an ellipsoid. After training an SVM, the sender transmits

• the support vector information ((s+ 1) log n bits),

• the position of the codebook vector (log∗ u+ log u bits),

• the misclassification information ((r + l + 2) log n+ r bits).

To decode, the receiver constructs the hypotheses space consisting of the data ellipse
projected on the subspace spanned by the support vectors. He covers this ellipse with u
balls and chooses the vector representing the normal vector of the hyperplane. Then
he labels the training patterns by first projecting them into the subspace and then
classifying them according to the hyperplane. Finally, he deals with the misclassified
training points as in the codes before.

The compression coefficient of Code 3 is given as

C3 =
1

n
(log∗ u+ log u+ (r + l + s+ 3) log n+ r) ,

with u ≤
∏s

i=1d2
√
γi/ρe according to Propositions 4 and 5. Here γi denote the

eigenvalues of the restricted kernel matrix KSV .

2.4 Reducing the coding dimension with kernel PCA

A further dimension reduction can be obtained with the following idea: It has been
empirically observed that on most data sets the axes of the data ellipse decrease fast
for large dimensions. Once the axis in one direction is very small, we want to discard
this dimension by projecting in a lower dimensional subspace using kernel principal
component decomposition (cf. Schölkopf and Smola, 2002). A projection P will be
allowed if the image P (ω) of the normal vector ω is still within the rotation region

A Compression Approach to Model Selection 121

induced by the margin ρ. In this case we construct codebook vectors for P (ω) in
the lower dimensional subspace. We have to make sure that the vector representing
P (ω) is still contained in the original rotation region.

In more detail, this approach works as follows: First we train the SVM and
get the normal vector ω and margin ρ. For convenience, we now normalize ω to
length R by ω0 := ω

||ω||R. After normalizing, we know that a vector v still lies

inside the rotation region if ‖ω0 − v‖ ≤ ρ. Now we perform a kernel PCA of the
training data in the feature space. For dP ∈ {1, ..., n} let P be the projection on
the subspace spanned by the first dP eigenvectors. To determine whether we are
allowed to perform projection dP we have to check whether ‖P (ω0) − ω0‖ ≤ ρ. If
not, the hyperplane corresponding to P (ω0) is not within the rotation region any
more, and we are not allowed to make this projection. Otherwise, we are still within
the rotation region after projecting ω0, so we can discard the last n−dP dimensions.
In this case, we call P a valid projection. We then can encode the projected normal
vector P (ω0) in an dP -dimensional subspace. As P (ω0) is not in the center of the
rotation region any more, we have to code its direction more precisely now. We
have to ensure that the codebook vector v for P (ω0) still is in the original rotation
region, that is ‖v − ω0‖ ≤ ρ. Define

cP :=
1

ρ
‖ω0 − P (ω0)‖

(note that for a valid projection, cP ∈ [0, 1]), and choose the radius r of the covering

balls as r = ρ
√

1− c2P . Then we have

‖ω0 − v‖2 ≤ ‖ω0 − P (ω0)‖2 + ‖P (ω0)− v‖2 ≤ c2Pρ
2 + (1− c2P)ρ2 = ρ2 .

Thus the codebook vector v is still within the allowed distance of ω0.
All in all our procedure now works as follows: The sender trains an SVM. From

now on he works in the subspace spanned by the support vectors only. In this
subspace, he performs the PCA and determines the smallest dP such that the pro-
jection on the subspace of dP dimensions is a valid projection.The principal axes of
the ellipse in the subspace are now given by the first dP eigenvalues of the restricted
kernel matrix KSV , and we have to construct a covering of this ellipse with covering
radius r = ρ

√
1− c2P . Then the code proceeds as before. The number dP will be

called the projection information and can be encoded with logm bits.

Code 4 Sender and receiver agree on the training patterns, the kernel, the procedure
of covering ellipsoids, and on how to perform kernel PCA. The sender trains the
SVM and chooses a valid projection on some subspace. He transmits

• the support vector information ((s+ 1) log n bits),

• the projection information (log n bits),

• the position of the codebook vector (log∗ u+ log u bits),

• the misclassification information ((r + l + 2) log n+ r bits).

122 Chapter IV

To decode, the receiver constructs the hypotheses space consisting of the ellipse in the
subspace spanned by the support vectors. Then he performs a PCA in this subspace
and projects the hypotheses space on the subspace spanned by the first dP principal
components. He covers the remaining ellipse with u balls and continues as in the
codes before.

The compression coefficient of this code is given by

C4 =
1

n
(log∗ u+ log u+ (r + l + s+ 4) log n+ r) ,

with u ≤
∏dP

i=1d2
√
γi/(ρ

√
1− c2P)e, cP as described above, and γi the eigenvalues

of the restricted kernel matrix KSV .

2.5 A pure support vector code

So far we always considered codes which use the direction of the hyperplane as hy-
pothesis. A totally different approach is to reduce the data by transmitting support
vectors and their labels. Then the receiver can train his own SVM on the support
vectors and will get the same result as the sender. Note that in this case, we not
only have to transmit which of the vectors are support vectors as in the other codes,
but also the labels of the support vectors. On the other hand we have the advan-
tage that we do not have to treat the points inside the rotation region separately as
they are support vectors anyway. The misclassification information only consists in
the misclassified points which are not support vectors. This simple code works as
follows:

Code 5 Sender and receiver agree on training patterns and a kernel. The sender
sends

• the support vector information ((s+ 1) log n bits),

• the labels of the support vectors (s bits),

• the information on the misclassified points outside the rotation region ((l +
1) log n bits).

To decode this information, the receiver trains an SVM with the support vectors as
training set. Then he computes the classification result of this SVM for the remaining
training patterns and flips the labels of the misclassified non-support vector training
points.

This code has a compression coefficient of

C5 =
1

n
((s+ l + 2) log n+ s) .

A Compression Approach to Model Selection 123

3 Experiments

To test the utility of the derived compression coefficients for applications, we ran
model selection experiments on different artificial and real world data sets.

3.1 The setup

We used all data sets in the benchmark data set repository compiled and ex-
plained in detail in Rätsch et al. (2001). The data sets are available at
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm. Most of the data
sets in this repository are preprocessed versions of data sets originating from the
UCI, Delve, or STATLOG repositories. In particular, all data sets are normalized.
The data sets are called banana (5300 points), breast cancer (277 points), diabetis
(768 points), flare-solar (1066 points), german (1000 points), heart (2700 points), im-
age (2310 points), ringnorm (7400 points), splice (3175 points), thyroid (215 points),
titanic (2201 points), twonorm (7400 points), waveform (5100 points). To be con-
sistent with earlier versions of this manuscript we also used the data sets abalone
(4177 points), Wisconsin breast cancer (683 points) from the UCI repository, and
the US postal handwritten digits data set (9298 points). In all experiments, we first
permuted the whole data set and divided it into as many disjoint training subsets
of sample size m = 100 or 500 as possible. We centered each training subset in
the feature space as described in Section 14.2. of Schölkopf and Smola (2002) and
then used it to train soft margin SVMs with Gaussian kernels. The test error was
computed on the training subset’s complement.

For different choices of the soft margin parameter C ∈ [100, ..., 105] and the
kernel width σ ∈ [10−2, ..., 103] we computed the compression coefficients and chose
the parameters where the compression coefficients were minimal. Note that as we
centered the data in the feature space, the radius R can be approximately computed
as the maximum distance of the centered training points to the origin. We compared
the test errors corresponding to the chosen parameters to the ones obtained by model
selection criteria from different generalization bounds. Recall that we denote the
empirical and true risk of a classifier by Remp and R, respectively. Note that the
definition of the risks varies slightly for the different bounds, for example with respect
to the used loss function. We refer to the cited papers for details. The bounds we
consider are the following:

• The radius-margin bound of Vapnik (1998). We here cite the version stated in
Bartlett and Shawe-Taylor (1999): with probability at least 1− δ,

R ≤ Remp +

√
c

n
(
R2

ρ2
log2 n− log δ).

The quantity we compute in the experiments is Remp +
√

(R2 log n)/(ρ2n).

124 Chapter IV

• The rescaled radius-margin bound of Chapelle and Vapnik (2000). It uses the
shape of the training data in the feature space to refine the classical radius
margin bound. In this case, the quantity R2/ρ2 in the above bound is replaced
by

n∑
k=1

λ2
k max

i=1,...,n
A2

ik(
∑

j=1,...,n

Ajkyjαj)
2,

where A is the matrix of the normalized eigenvectors of the kernel matrix K,
λk are the eigenvalues of the kernel matrix, and α the coefficients of the SVM
solution.

• The trace bound of Bartlett and Mendelson (2001) which contains the eigen-
values of the kernel matrix: with probability at least 1− δ,

R ≤ Remp +Rn +

√
8 ln(2/δ)

n
,

where the Rademacher complexity Rn is given as follows. Let λ1, λ2, ... the
eigenvalues of the integral operator Tkf(x) =

∫
k(x, y)f(y)dP (y). Then the

Rademacher complexity is bounded by Rn ≤
√∑∞

j=1 λj/n. As we cannot

compute
∑

j λj in practice, in the experiments we replace this quantity by∑n
i=1 σi where σi are the eigenvalues of the kernel matrix. This is a reasonable

procedure as the trace of the kernel matrix is concentrated and converges to
the trace of the integral operator (Shawe-Taylor et al., 2002). The quantity we

thus compute in the experiments is Remp +
√∑n

i=1 σi/n.

• The compression scheme bound of Floyd and Warmuth (1995) using the spar-
sity of the SVM solution: with probability at least 1− δ,

R ≤ 1

n− s

(
ln

(
n

s

)
+ ln

n2

δ

)
,

where s is the number of support vectors. In the experiments we computed the
quantity ln

(
n
s

)
/(n− s). Note that if s = n this bound is infinite. We omitted

those cases from the plots.

• The sparse margin bound of Herbrich et al. (2000) which uses the size of the
margin and the sparsity of the solution: with probability at least 1− δ,

R ≤ 1

n− s

(
κ ln

en

κ
+ ln

n2

δ

)
,

where κ = min(dR2

ρ2 +1e, d+1). For our experiments we compute the quantity
1

n−s

(
κ ln en

κ

)
. In case s = n this bound is infinite and we omit those cases from

the plots.

A Compression Approach to Model Selection 125

• The span estimate of Vapnik and Chapelle (2000), cf. also Opper and Winther
(2000). This bound is different from all the other bounds as it estimates the
leave-one-out error of the classifier. To achieve this, it bounds for each support
vector how much the solution would change if this particular support vector
were removed from the training set.

All experimental results shown below were obtained with training set
size n = 100; the results for n = 500 are comparable. The interested
reader can study those results, as well as many more plots which we can-
not show here because they would use too much space, on the webpage
http://www.kyb.tuebingen.mpg.de/bs/people/ule.

3.2 Results

The goal of our first experiment is to use the compression coefficients to select the
kernel width σ. In Figure 3 we study which of the five compression coefficients
achieves the best results on this task. The plots in this figure were obtained as
follows. For each training set, each parameter C and each compression coefficient
we chose the kernel width σ for which the compression coefficient was minimal. Then
we evaluated the test error for the chosen parameters on the test set and computed
the mean over all runs on the different training sets. Plotted are the means of these
test errors versus parameter C, as well as the means of the minimal true test errors.

We can observe that for nearly all data sets, the compression coefficients C2,
C3, and C4 yield better results than the simple coefficients C1 and C5. This can be
explained by the fact that C1 and C5 only use one part of information (the size of the
margin or the number of support vectors, respectively), while the other coefficients
combine several parts of information (margin, shape of data, number of support
vectors). When we compare coefficients C3 and C4 we observe that they have nearly
identical values. This indicates that the gain we obtain by projecting into a smaller
subspace using kernel PCA is outweighed by the additional information we have to
transmit about this projection. As C3 is simpler to compute, we thus prefer C3 to
C4. From now on we want to evaluate the results of the most promising compression
coefficients C2 and C3.

In Figure 4 we compare compression coefficients C2 and C3 to all the other model
selection criteria. The plots were obtained in the same way as the ones above. We
see that for most data sets, the performance of C2 is rather good, and in most
cases it is better than C3. It performs nearly always comparable or better than the
standard bounds, in particular it is nearly always better than the widely-used radius
margin bound. Among all bounds, C2 and the span bound achieve the best results.
Comparing those two bounds shows that no one is superior to the other one: C2 is
better than the span bound on five data sets (abalone, banana, diabetis, german,
usps), the span bound is better than C2 on five data sets (image, ringnorm, splice,
thyroid, waveform), and they achieve similar results on six data sets (breast-cancer,
flare-solar, heart, titanic, twonorm, wisconsin).

126 Chapter IV

The goal of the next experiment was not only to select the kernel width σ, but
to find the best values for the kernel width σ and the soft margin parameter C
simultaneously. Its results can be seen in Table 1, which was produced as follows.
For each training set we chose the parameters σ and C for which the respective
bounds were minimal, and evaluated the test error for the chosen parameters. Then
we computed the means over the different training runs. The first column contains
the mean value of the minimal test error. The other columns contain the offset by
which the test errors selected by the different bounds are worse than the optimal
test error. On most data sets, the radius margin bound, the rescaled radius margin
bound, and the sparse margin bound perform rather poorly. Often their results are
worse than those of the other bounds by one order of magnitude. Among the other
bounds, C2 and the span bound are the two superior bounds. Between those two
bounds, there is a tendency towards the span bound in this experiment: C2 beats
the span bound on 6 data sets, the span bound beats C2 on 10 data sets. Thus C2

does not perform as good as the span bound, but it gets close.
To explain the good performance of the compression coefficients we now want to

analyze their properties in more detail. As the compression coefficients are a sum
of several terms it is a natural question which of the terms has the largest influence
on the actual value of the sum. To answer this question we look at Figure 5, where
we plotted the different parts of C3: the term (s + 1) log n corresponding to the
support vector information, the term log∗ u+ log u corresponding to the position of
the codebook vector, the term (r+1) log n+r corresponding to the points inside the
rotation region, and the term (l + 1) log n corresponding to the information on the
misclassified points outside the rotation region. For each fixed soft margin parameter
C we chose the kernel width σ where the value of the compression coefficient C3 is
minimal. For this value of σ, we plotted the means of the different terms. Here
we only show the plots for compression coefficient C3 (as C3 has more different
terms than C2). The plots on the other data sets, as well as the plots for C2,
are very similar to the ones we show. We find that all terms (except the term
“misclass. inside” which is negligible) are of the same order of magnitude, with no
term consistently dominating the other ones. This behavior is attractive as it shows
that all different parts of information have substantial influence on the value of the
compression coefficient.

Finally we want to study the shapes of the curves of the different bounds. As we
use the values of the bounds to predict the qualitative behavior of the test error it is
important that the shapes of the bounds’ curves are similar to the shape of the test
error curve. In Figure 6 we plot those shapes for the compression coefficients C2,
C3, and the other bounds versus the kernel width σ. We show the plots for every
second value of C (to cover the whole range of values of C we used). First of all
we can observe that the value of the compression coefficient is often larger than 1.
This is also the case for several of the other bounds, and is due to the fact that most
bounds only yield nontrivial results for very large sample sizes. This need not be a
problem for applications as we use the bounds to predict the qualitative behavior of
the test error, not the quantitative one. Secondly, the compression scheme and the

A Compression Approach to Model Selection 127

data set test error C2 C3 span rm rrm trace sm cs
abalone 0.224 0.017 0.036 0.029 0.137 0.134 0.012 0.084 0.072
banana 0.124 0.021 0.024 0.020 0.347 0.278 0.141 0.202 0.047
breast-cancer 0.251 0.062 0.065 0.209 0.034 0.034 0.028 0.034 0.042
diabetis 0.247 0.012 0.049 0.025 0.103 0.103 0.059 0.103 0.080
flare-solar 0.339 0.026 0.027 0.020 0.120 0.110 0.030 0.101 0.101
german 0.263 0.037 0.042 0.026 0.037 0.037 0.060 0.037 0.044
heart 0.156 0.015 0.015 0.021 0.303 0.168 0.071 0.159 0.053
image 0.105 0.074 0.028 0.023 0.275 0.235 0.031 0.183 0.028
ringnorm 0.021 0.054 0.052 0.007 0.405 0.017 0.075 0.178 0.068
splice 0.198 0.039 0.053 0.016 0.249 0.035 0.054 0.084 0.053
thyroid 0.026 0.030 0.017 0.026 0.178 0.178 0.022 0.178 0.017
titanic 0.220 0.010 0.010 0.012 0.103 0.103 0.008 0.065 0.041
twonorm 0.027 0.016 0.026 0.007 0.029 0.006 0.027 0.009 0.026
usps 0.103 0.075 0.071 0.020 0.278 0.141 0.072 0.190 0.072
waveform 0.118 0.047 0.040 0.019 0.179 0.120 0.045 0.179 0.042
wisconsin 0.028 0.007 0.011 0.015 0.006 0.013 0.027 0.005 0.008

Table IV.1: Model selection results for selecting the kernel width σ and the soft margin
parameter C simultaneously. For each training set and each bound we chose the parameters
σ and C for which the bound was minimal, and evaluated the test error for the chosen
parameters. Shown are the mean values of the test errors over the different training sets.
The first column contains the value of the test error. The other columns contain the offset
by which the test errors achieved by the different bounds are worse than the optimal test
error.

128 Chapter IV

sparse margin bound suffer from the fact that they only attain finite values when the
number of support vectors is smaller than the number of training vectors. Among
all bounds, only C2, C3 and the span bound seem to be able to predict the shape of
the test error curve.

The main conclusions we can draw from all experimental results is that in all
three tasks (predicting the shape of the test error curve, choosing parameter σ,
choosing parameters σ and C) the span bound and compression coefficient C2 have
the best performance among all bounds, where none of the two bounds is clearly
superior to the other one. The latter fact is also remarkable for the following reason.
All considered bounds apart from the span bound use the capacity of the model class
to bound the expected risk of the classifier. The span bound on the other hand is a
clever way of computing an upper bound on the leave-one-out error of the classifier,
which is known to be an almost unbiased estimator of the true risk. Thus the
methods by which those bounds are derived are intrinsically different. Our results
now show that the bounds derived by studying the size of the model class can achieve
results in practice that are comparable to using the state of the art span bound.

4 Conclusions

We derived five compression coefficients for SVMs which combine information on the
geometry of the training data in the feature space with information about geometry
and sparsity of the classifier. In our model selection experiments it turned out that
the compression coefficients can be readily used to predict the parameters where
the test error is small. Our favorite compression coefficient is C2 because it is easy
to compute and yields good results in the experiments. The results it achieves are
comparable to those of the state of the art span bound. The theoretical justification
for using compression coefficients are the generalization bounds we cited in Section 2.
They were proved in an abstract coding theoretic setting. We now derived methods
to apply these bounds in practical applications. This shows that the connection
between information theory and learning can be exploited in every-day machine
learning applications.

A Compression Approach to Model Selection 129

0 1 2 3 4 5
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
dataset abalone

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
dataset banana

log10(C)
m

ea
n

te
st

 e
rr

or
s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34
dataset breast−cancer

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.24

0.26

0.28

0.3

0.32

0.34

0.36
dataset diabetis

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.34

0.36

0.38

0.4

0.42

0.44

0.46
dataset flare−solar

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33
dataset german

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

Figure 3: Comparison among the compression coefficients. For each training set,
each soft margin parameter C and each compression coefficient we chose the kernel
width σ for which the compression coefficient was minimal and evaluated the test
error for the chosen parameters. Plotted are the mean values of the test errors over
the different training sets, as well as the means of the true minimal test errors (this
figure is continued on the next page).

130 Chapter IV

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
dataset heart

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.1

0.15

0.2

0.25

0.3
dataset image

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
dataset ringnorm

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.2

0.25

0.3

0.35

0.4

0.45
dataset splice

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25
dataset thyroid

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.22

0.24

0.26

0.28

0.3

0.32

0.34
dataset titanic

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.025

0.03

0.035

0.04

0.045

0.05

0.055
dataset twonorm

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.1

0.15

0.2

0.25

0.3

0.35
dataset usps

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

Figure 3, continued

A Compression Approach to Model Selection 131

0 1 2 3 4 5
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
dataset waveform

log10(C)

m
ea

n
te

st
 e

rr
or

s
test error
C1
C2
C3
C4
C5

0 1 2 3 4 5
0.025

0.03

0.035

0.04

0.045

0.05

0.055
dataset wisconsin

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C1
C2
C3
C4
C5

Figure 3, continued

132 Chapter IV

0 1 2 3 4 5
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
dataset abalone

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
dataset banana

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.25

0.3

0.35

0.4

0.45

0.5
dataset breast−cancer

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.24

0.26

0.28

0.3

0.32

0.34

0.36
dataset diabetis

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.34

0.36

0.38

0.4

0.42

0.44

0.46
dataset flare−solar

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33
dataset german

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

Figure 4: Comparison between C2, C3, and the other bounds. For each training set,
each soft margin parameter C and each bound we chose the kernel width σ for which
the bound was minimal and evalutated the test error for the chosen parameters.
Plotted are the mean values of the test errors over the different training sets. In the
legend we use the abbreviations rm = radius margin bound, rrm = rescaled radius
margin bound, sm = sparse margin bound, and cs = compression scheme bound
(continued on the next page).

A Compression Approach to Model Selection 133

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
dataset heart

log10(C)

m
ea

n
te

st
 e

rr
or

s
test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
dataset image

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
dataset ringnorm

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.2

0.25

0.3

0.35

0.4

0.45
dataset splice

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
dataset thyroid

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.22

0.24

0.26

0.28

0.3

0.32

0.34
dataset titanic

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
dataset twonorm

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
dataset usps

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

Figure 4, continued

134 Chapter IV

0 1 2 3 4 5
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
dataset waveform

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

0 1 2 3 4 5
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
dataset wisconsin

log10(C)

m
ea

n
te

st
 e

rr
or

s

test error
C2
C3
rm
rrm
trace
sm
cs
span

Figure 4, continued

A Compression Approach to Model Selection 135

0 1 2 3 4 5
0

2

4

6

8

10
dataset abalone

log10(C)

co
m

po
ne

nt
s

of
 C

3
C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10
dataset banana

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10
dataset breast−cancer

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10
dataset diabetis

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10

12
dataset flare−solar

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10
dataset german

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

Figure 5. Here we study the relationship between the different components of C3.
We plot the lengths of the codes for the support vector information (“sv info”), the
position of the codebook vector (“codebook”), the information on the points inside
the rotation region (“misclass. inside”), and the information about the misclassified
points outside the rotation region (“misclass. outside”).

136 Chapter IV

0 1 2 3 4 5
0

2

4

6

8

10
dataset heart

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10

12
dataset image

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8
dataset twonorm

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16
dataset splice

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

1

2

3

4

5
dataset thyroid

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10
dataset titanic

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8
dataset twonorm

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

2

4

6

8

10

12

14
dataset usps

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

Figure 5, continued

A Compression Approach to Model Selection 137

0 1 2 3 4 5
0

2

4

6

8

10
dataset waveform

log10(C)

co
m

po
ne

nt
s

of
 C

3
C3
codebook
sv info
misclass. inside
misclass. outside

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3
dataset wisconsin

log10(C)

co
m

po
ne

nt
s

of
 C

3

C3
codebook
sv info
misclass. inside
misclass. outside

Figure 5, continued

138 Chapter IV

−2 0 2
0.276
0.278
0.28

0.282
0.284
0.286
0.288

te
st

 e
rr

or

C = 1

−2 0 2
0.25

0.3

C = 4.641589e+01

−2 0 2

0.25

0.3

C = 2.154435e+03

−2 0 2

0.25

0.3

C = 100000

−2 0 2

6
7
8

C
2

−2 0 2

6

8

−2 0 2

6

8

−2 0 2

5
6
7
8
9

−2 0 2

10

12

14

C
3

−2 0 2

10

12

−2 0 2
8

10

12

−2 0 2

8

10

12

−2 0 2

1.2

1.4

1.6

rm

−2 0 2

2

4

6

−2 0 2

10

20

30

−2 0 2

50
100
150

−2 0 2

0.8

1

rr
m

−2 0 2
1

1.1

1.2

−2 0 2

1.5
2

2.5
3

−2 0 2

2

4

6

−2 0 2

1

1.2

tr
ac

e

−2 0 2
0.6

0.8

1

−2 0 2
0.5
0.6
0.7
0.8
0.9

−2 0 2
0.4

0.6

0.8

−2 0 2
2
4
6
8

10

sm

−2 0 2
2

4

6

−2 0 2
2

4

6

−2 0 2
2

4

6

−2 0 2

3
3.5

4
4.5

cs

−2 0 2

2.5
3

3.5

−2 0 2

2
2.5

3
3.5

−2 0 2

2
2.5

3
3.5

−2 0 2
0.276
0.278
0.28

0.282
0.284
0.286
0.288

sp
an

log10(sigma)
−2 0 2

0.28
0.3

0.32

log10(sigma)
−2 0 2

0.25

0.3

log10(sigma)
−2 0 2

0.25

0.3

log10(sigma)

dataset abalone

Figure 6: Shapes of curves. Plotted are the mean values of the bounds themselves
over the different training runs versus the kernel width σ, for fixed values of the soft
margin parameter C.

A Compression Approach to Model Selection 139

−2 0 2
0.15
0.2

0.25
0.3

0.35

te
st

 e
rr

or

C = 1

−2 0 2

0.2

0.3

0.4

C = 4.641589e+01

−2 0 2

0.2

0.3

0.4

C = 2.154435e+03

−2 0 2
0.15
0.2

0.25
0.3

0.35

C = 100000

−2 0 2
6

8

C
2

−2 0 2
4

6

−2 0 2
4

6

8

−2 0 2
4

6

8

−2 0 2

10

15

C
3

−2 0 2
5

10

−2 0 2
5

10

−2 0 2
5

10

−2 0 2

1.4

1.6

1.8

rm

−2 0 2

2

4

6

−2 0 2
5

10
15
20
25

−2 0 2

20
40
60
80

100

−2 0 2
0.8

1

1.2

rr
m

−2 0 2

0.8
1

1.2
1.4

−2 0 2

2

4

−2 0 2
2
4
6
8

10
12
14

−2 0 2
1.06
1.08
1.1

1.12
1.14

tr
ac

e

−2 0 2

0.7
0.8
0.9

−2 0 2
0.6

0.8

−2 0 2
0.5
0.6
0.7
0.8
0.9

−5 0 5
0

10

20

sm

−5 0 5
0

10

20

−5 0 5
0

10

20

−5 0 5
0

10

20

−5 0 5
2

4

6

cs

−5 0 5
0

5

−5 0 5
0

5

−5 0 5
0

5

−2 0 2
0.15
0.2

0.25
0.3

0.35

sp
an

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)
−2 0 2

0.2
0.25
0.3

0.35

log10(sigma)

dataset banana

Figure 6, continued

140 Chapter IV

−2 0 2

0.285

0.29

0.295

te
st

 e
rr

or

C = 1

−2 0 2

0.29
0.3

0.31

C = 4.641589e+01

−2 0 2

0.3

0.4

C = 2.154435e+03

−2 0 2
0.3

0.4

0.5
C = 100000

−2 0 2

6

8

C
2

−2 0 2

6

8

−2 0 2
6

8

10

−2 0 2

8

10

−2 0 2

10

15

C
3

−2 0 2

10

12

14

−2 0 2

10

15

−2 0 2

10

15

−2 0 2
0.5

1

1.5

rm

−2 0 2

2

4

6

−2 0 2

5
10
15
20

−2 0 2

20
40
60

−2 0 2

0.5

1

rr
m

−2 0 2
0.8

1

1.2

−2 0 2

1

1.5

−2 0 2
1

2

3

−2 0 2
0.5

1

tr
ac

e

−2 0 2
0.5

1

−2 0 2
0.5

1

−2 0 2

0.4
0.6
0.8

1
1.2

−5 0 5
0

2

4

sm

−5 0 5
0

20

40

−5 0 5
0

20

40

−5 0 5
1

2

3

−5 0 5
2

3

4

cs

−5 0 5
2

4

6

−5 0 5
2

4

6

−5 0 5
1.5

2

2.5

−2 0 2
0.28

0.3

0.32

sp
an

log10(sigma)
−2 0 2

0.3
0.32
0.34
0.36
0.38

log10(sigma)
−2 0 2

0.3

0.4

0.5

log10(sigma)
−2 0 2

0.2

0.3

log10(sigma)

dataset breast−cancer

Figure 6, continued

A Compression Approach to Model Selection 141

−2 0 2

0.3

0.35

te
st

 e
rr

or

C = 1

−2 0 2

0.3

0.35
C = 4.641589e+01

−2 0 2

0.3

0.35
C = 2.154435e+03

−2 0 2

0.3

0.35
C = 100000

−2 0 2

6

8

C
2

−2 0 2
5

6

7

−2 0 2

6

8

−2 0 2

6.5
7

7.5
8

8.5

−2 0 2
10

15

C
3

−2 0 2

10

12

14

−2 0 2
8

10
12
14

−2 0 2
8

10
12
14

−2 0 2
0.5

1

1.5

rm

−2 0 2
2

4

6

−2 0 2
5

10
15
20
25

−2 0 2

20
40
60
80

100

−2 0 2
0.5

1

rr
m

−2 0 2

1

1.2

−2 0 2
1

1.5

2

−2 0 2

2

4

−2 0 2
0.5

1

tr
ac

e

−2 0 2
0.5
0.6
0.7
0.8
0.9

−2 0 2
0.4

0.6

0.8

−2 0 2

0.4
0.6
0.8

−5 0 5
0

10

20

sm

−5 0 5
0

10

20

−5 0 5
0

10

20

−5 0 5
0

10

20

−5 0 5
2

4

6

cs

−5 0 5
0

5

−5 0 5
0

5

−5 0 5
0

5

−2 0 2
0.26
0.28
0.3

0.32
0.34

sp
an

log10(sigma)
−2 0 2

0.24
0.26
0.28
0.3

0.32
0.34

log10(sigma)
−2 0 2

0.26
0.28
0.3

0.32
0.34

log10(sigma)
−2 0 2

0.3

0.32

0.34

log10(sigma)

dataset diabetis

Figure 6, continued

142 Chapter IV

−2 0 2
0.36

0.38

0.4

te
st

 e
rr

or

C = 1

−2 0 2
0.36

0.38

0.4

C = 4.641589e+01

−2 0 2
0.355

0.36

0.365

C = 2.154435e+03

−2 0 2

0.36

0.38

C = 100000

−2 0 2
5

6C
2

−2 0 2

4.5
5

5.5
6

6.5

−2 0 2
4.2

4.4

−2 0 2
4.4
4.6
4.8

5
5.2
5.4

−2 0 2

12

13

C
3

−2 0 2
10

11

12

−2 0 2
9.6
9.8
10

10.2
10.4
10.6
10.8

−2 0 2

10
10.5

11
11.5

−2 0 2

1.3

1.4

1.5

rm

−2 0 2

2

3

4

−2 0 2
2
4
6
8

10
12

−2 0 2

20

40

−2 0 2
0.82
0.84
0.86
0.88
0.9

0.92

rr
m

−2 0 2

1
1.1
1.2

−2 0 2
1

1.5

−2 0 2
1

2

−2 0 2

1
1.1
1.2

tr
ac

e

−2 0 2
0.6
0.8

1
1.2

−2 0 2

0.5

1

−2 0 2

0.5

1

−5 0 5
18

20

22

sm

−5 0 5
0

20

40

−5 0 5
5

10

15

−5 0 5
5

10

15

−5 0 5
4

6

8

cs

−5 0 5
2

4

6

−5 0 5
3

4

5

−5 0 5
3

4

5

−2 0 2
0.36

0.38

0.4

sp
an

log10(sigma)
−2 0 2

0.35

0.4

log10(sigma)
−2 0 2

0.3

0.35

log10(sigma)
−2 0 2

0.25

0.3

0.35

log10(sigma)

dataset flare−solar

Figure 6, continued

A Compression Approach to Model Selection 143

−2 0 2

0.285
0.29

0.295

te
st

 e
rr

or

C = 1

−2 0 2

0.28

0.29

0.3

C = 4.641589e+01

−2 0 2
0.3

0.31

C = 2.154435e+03

−2 0 2
0.3

0.31

0.32

C = 100000

−2 0 2

6

8

C
2

−2 0 2

6

7

8

−2 0 2

7.8
8

8.2
8.4
8.6

−2 0 2

7.8
8

8.2
8.4
8.6
8.8

−2 0 2

10

15

C
3

−2 0 2

10

12

14

−2 0 2

10

12

14

−2 0 2

10

12

14

−2 0 2
0.5

1

1.5

rm

−2 0 2
2

4

6

−2 0 2

10

20

−2 0 2

20

40

−2 0 2

0.5

1

rr
m

−2 0 2

0.8

1

1.2

−2 0 2

0.8

1

1.2

−2 0 2

1

1.5

2

−2 0 2

0.6

0.8

1

tr
ac

e

−2 0 2

0.6

0.8

−2 0 2

0.4
0.6
0.8

−2 0 2
0.2
0.4
0.6
0.8

−5 0 5
0

2

4

sm

−5 0 5
2

3

4

−5 0 5
2

3

4

−5 0 5
2

3

4

−5 0 5
2.5

3

3.5

cs

−5 0 5
2

3

4

−5 0 5
2

3

4

−5 0 5
2

3

4

−2 0 2

0.29

0.295

0.3

sp
an

log10(sigma)
−2 0 2

0.3

0.31

0.32

log10(sigma)
−2 0 2

0.3

0.305

0.31

log10(sigma)
−2 0 2

0.3

0.305

0.31

log10(sigma)

dataset german

Figure 6, continued

144 Chapter IV

−2 0 2

0.2

0.3

0.4

te
st

 e
rr

or

C = 1

−2 0 2

0.2

0.3

0.4

C = 4.641589e+01

−2 0 2
0.2

0.3

0.4

C = 2.154435e+03

−2 0 2
0.2

0.3

0.4

C = 100000

−2 0 2
6

8

10

C
2

−2 0 2
4

6

−2 0 2
5.5

6
6.5

7
7.5

−2 0 2

7.2
7.4
7.6
7.8

−2 0 2
10

15

C
3

−2 0 2

8
10
12
14

−2 0 2
6
8

10
12
14

−2 0 2
6
8

10
12
14

−2 0 2
0.8

1
1.2
1.4
1.6
1.8

rm

−2 0 2

2

3

4

−2 0 2

5

10

15

−2 0 2

10
20
30

−2 0 2

0.8
1

1.2

rr
m

−2 0 2
0.8

1
1.2
1.4

−2 0 2

1

1.5

−2 0 2
0.8

1
1.2
1.4
1.6

−2 0 2

0.8

1

tr
ac

e

−2 0 2
0.4

0.6

0.8

−2 0 2

0.4
0.6
0.8

−2 0 2
0.2
0.4
0.6
0.8

−5 0 5
0

5

10

sm

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
2

3

4

cs

−5 0 5
0

2

4

−5 0 5
0

2

4

−5 0 5
0

2

4

−2 0 2

0.2

0.3

0.4

sp
an

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)

dataset heart

Figure 6, continued

A Compression Approach to Model Selection 145

−2 0 2

0.2

0.3

0.4

te
st

 e
rr

or

C = 1

−2 0 2

0.2

0.3

0.4

C = 4.641589e+01

−2 0 2

0.2

0.3

0.4

C = 2.154435e+03

−2 0 2

0.2

0.3

0.4

C = 100000

−2 0 2

8

10

C
2

−2 0 2
5.5

6
6.5

7
7.5

−2 0 2
5

6

7

−2 0 2
6

7

−2 0 2

12
14
16

C
3

−2 0 2

8
10
12
14

−2 0 2
6
8

10
12
14

−2 0 2
5

10

−2 0 2
1.4

1.6

1.8

rm

−2 0 2
2

4

6

−2 0 2

5
10
15
20
25

−2 0 2

20
40
60
80

−2 0 2
0.8

1

1.2

1.4

rr
m

−2 0 2

1

1.2

1.4

−2 0 2
1

2

−2 0 2

2

4

−2 0 2
0.8

0.9

1

tr
ac

e

−2 0 2

0.6

0.8

−2 0 2
0.4
0.6
0.8

−2 0 2

0.4
0.6
0.8

−5 0 5
0

5

10

sm

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
2

4

6

cs

−5 0 5
0

2

4

−5 0 5
0

2

4

−5 0 5
0

2

4

−2 0 2

0.2

0.3

0.4

sp
an

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)

dataset image

Figure 6, continued

146 Chapter IV

−2 0 2

0.2

0.4

te
st

 e
rr

or

C = 1

−2 0 2

0.2

0.4

C = 4.641589e+01

−2 0 2

0.2

0.4

C = 2.154435e+03

−2 0 2

0.2

0.4

C = 100000

−2 0 2

8

10

C
2

−2 0 2

6
6.5

7
7.5

−2 0 2

6
6.5

7
7.5

−2 0 2

6
6.5

7
7.5

−2 0 2
8

10
12
14
16

C
3

−2 0 2
5

10

−2 0 2

6
8

10
12
14

−2 0 2

6
8

10
12
14

−2 0 2

1.5

2

rm

−2 0 2
1.5

2
2.5

3
3.5

−2 0 2
2
4
6
8

−2 0 2
2
4
6
8

−2 0 2
0.5

1

rr
m

−2 0 2
0.5

1

−2 0 2
0.5

1

−2 0 2
0.5

1

−2 0 2
0.8

0.9

1

tr
ac

e

−2 0 2
0.4

0.6

0.8

−2 0 2
0.2
0.4
0.6
0.8

−2 0 2
0.2
0.4
0.6
0.8

−5 0 5
0

5

10

sm

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
2

4

6

cs

−5 0 5
0

5

−5 0 5
0

5

−5 0 5
0

5

−2 0 2

0.2

0.4

sp
an

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)

dataset ringnorm

Figure 6, continued

A Compression Approach to Model Selection 147

−2 0 2

0.25
0.3

0.35
0.4

0.45

te
st

 e
rr

or

C = 1

−2 0 2

0.25
0.3

0.35
0.4

0.45

C = 4.641589e+01

−2 0 2

0.25
0.3

0.35
0.4

0.45

C = 2.154435e+03

−2 0 2

0.25
0.3

0.35
0.4

0.45

C = 100000

−2 0 2

10.5

11

C
2

−2 0 2

7.6

7.8

−2 0 2

7.6

7.8

−2 0 2

7.6

7.8

−2 0 2
16.6
16.8

17
17.2
17.4
17.6
17.8

C
3

−2 0 2

10

12

14

−2 0 2

10

12

14

−2 0 2

10

12

14

−2 0 2
1.5

2

rm

−2 0 2
2.2
2.4
2.6
2.8

3

−2 0 2

2.5
3

3.5

−2 0 2

2.5
3

3.5

−2 0 2

0.8

1

rr
m

−2 0 2

0.8

1

−2 0 2

0.8

1

−2 0 2

0.8

1

−2 0 2

1.01
1.02
1.03
1.04
1.05

tr
ac

e

−2 0 2
0.4

0.6

0.8

−2 0 2
0.4

0.6

0.8

−2 0 2
0.4

0.6

0.8

−5 0 5
0

50

sm

−5 0 5
0

20

40

−5 0 5
0

20

40

−5 0 5
0

20

40

−5 0 5
4

5

6

cs

−5 0 5
2

4

6

−5 0 5
2

4

6

−5 0 5
2

4

6

−2 0 2
0.25
0.3

0.35
0.4

0.45

sp
an

log10(sigma)
−2 0 2

0.3

0.4

0.5

log10(sigma)
−2 0 2

0.3

0.4

0.5

log10(sigma)
−2 0 2

0.3

0.4

0.5

log10(sigma)

dataset splice

Figure 6, continued

148 Chapter IV

−2 0 2
0.05
0.1

0.15
0.2

0.25

te
st

 e
rr

or

C = 1

−2 0 2
0.05
0.1

0.15
0.2

0.25

C = 4.641589e+01

−2 0 2
0.05
0.1

0.15
0.2

0.25

C = 2.154435e+03

−2 0 2
0.05
0.1

0.15
0.2

0.25

C = 100000

−2 0 2

4

6

8

C
2

−2 0 2
3
4
5
6
7

−2 0 2
3
4
5
6
7

−2 0 2
3
4
5
6
7

−2 0 2
5

10

15

C
3

−2 0 2

4
6
8

10
12
14

−2 0 2
2
4
6
8

10
12
14

−2 0 2
2
4
6
8

10
12
14

−2 0 2

1

1.5

rm

−2 0 2

2

3

4

−2 0 2

5
10
15

−2 0 2

20

40

60

−2 0 2
0.5

1

rr
m

−2 0 2

1

1.5

2

−2 0 2

2
4
6

−2 0 2

5

10

15

−2 0 2
0.5

1

tr
ac

e

−2 0 2

0.4
0.6
0.8

−2 0 2

0.4
0.6
0.8

−2 0 2
0.2
0.4
0.6
0.8

−5 0 5
0

20

40

sm

−5 0 5
0

20

40

−5 0 5
0

20

40

−5 0 5
0

20

40

−5 0 5
0

5

10

cs

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
0

5

10

−2 0 2

0.1

0.2

0.3

sp
an

log10(sigma)
−2 0 2

0.1

0.2

0.3

log10(sigma)
−2 0 2

0.1

0.2

0.3

log10(sigma)
−2 0 2

0.1

0.2

0.3

log10(sigma)

dataset thyroid

Figure 6, continued

A Compression Approach to Model Selection 149

−2 0 2

0.25

0.3

te
st

 e
rr

or

C = 1

−2 0 2
0.226
0.228
0.23

0.232
0.234

C = 4.641589e+01

−2 0 2

0.23

0.235
C = 2.154435e+03

−2 0 2
0.23

0.24

0.25

C = 100000

−2 0 2

3

4

C
2

−2 0 2

2.3
2.4
2.5
2.6
2.7

−2 0 2

2.25

2.3

2.35

−2 0 2

2.25
2.3

2.35
2.4

2.45

−2 0 2

9

9.5

10

C
3

−2 0 2
8.2
8.4
8.6
8.8

−2 0 2

8.4
8.6
8.8

−2 0 2

8.5

9

−2 0 2
0.4

0.6

0.8

rm

−2 0 2
1

1.5

2

−2 0 2

2

4

6

−2 0 2

5
10
15
20

−2 0 2
0.4

0.5

0.6

rr
m

−2 0 2

0.68
0.7

0.72
0.74
0.76

−2 0 2

0.7

0.8

0.9

−2 0 2

0.8

0.9

1

−2 0 2

0.5

1

tr
ac

e

−2 0 2

0.5

1

−2 0 2

0.5

1

−2 0 2

0.5

1

−5 0 5
0

0.5

1

sm

−5 0 5
0

0.5

1

−5 0 5
16

18

20

−5 0 5
0

0.5

1

−5 0 5
0

0.5

1

cs

−5 0 5
0

0.5

1

−5 0 5
2

4

6

−5 0 5
0

0.5

1

−2 0 2

0.25

0.3

sp
an

log10(sigma)
−2 0 2

0.22

0.225

0.23

log10(sigma)
−2 0 2

0.15

0.2

log10(sigma)
−2 0 2

0.12
0.14
0.16
0.18
0.2

0.22

log10(sigma)

dataset titanic

Figure 6, continued

150 Chapter IV

−2 0 2

0.2

0.4

te
st

 e
rr

or

C = 1

−2 0 2

0.2

0.4

C = 4.641589e+01

−2 0 2

0.2

0.4

C = 2.154435e+03

−2 0 2

0.2

0.4

C = 100000

−2 0 2
6

8

10

C
2

−2 0 2

4

6

−2 0 2

4

6

−2 0 2

4

6

−2 0 2
8

10
12
14
16

C
3

−2 0 2
4
6
8

10
12
14

−2 0 2

4
6
8

10
12
14

−2 0 2

4
6
8

10
12
14

−2 0 2
1

1.5

2

rm

−2 0 2

1.5

2

−2 0 2

1.5

2

−2 0 2

1.5

2

−2 0 2
0.5

1

rr
m

−2 0 2
0.5

1

−2 0 2
0.5

1

−2 0 2
0.5

1

−2 0 2
0.6

0.8

1

tr
ac

e

−2 0 2

0.4
0.6
0.8

−2 0 2
0.2
0.4
0.6
0.8

−2 0 2
0.2
0.4
0.6
0.8

−5 0 5
0

1

2

sm

−5 0 5
1

1.5

2

−5 0 5
1

1.5

2

−5 0 5
1

1.5

2

−5 0 5
1.5

2

2.5

cs

−5 0 5
0

2

4

−5 0 5
0

2

4

−5 0 5
0

2

4

−2 0 2

0.2

0.4

sp
an

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)

dataset twonorm

Figure 6, continued

A Compression Approach to Model Selection 151

−2 0 2

0.2

0.3

0.4

te
st

 e
rr

or

C = 1

−2 0 2

0.2

0.3

0.4

C = 4.641589e+01

−2 0 2

0.2

0.3

0.4

C = 2.154435e+03

−2 0 2

0.2

0.3

0.4

C = 100000

−2 0 2
8.5

9
9.5
10

10.5

C
2

−2 0 2
6.6
6.8

7
7.2
7.4
7.6
7.8

−2 0 2
6.6
6.8

7
7.2
7.4
7.6
7.8

−2 0 2
6.6
6.8

7
7.2
7.4
7.6
7.8

−2 0 2

14

16

C
3

−2 0 2
8

10
12
14

−2 0 2
8

10
12
14

−2 0 2
8

10
12
14

−2 0 2

1.6

1.8

rm

−2 0 2
2

3

4

−2 0 2
2

4

6

−2 0 2
2

4

6

−2 0 2

0.8

1

1.2

rr
m

−2 0 2

0.8
1

1.2

−2 0 2

0.8
1

1.2

−2 0 2

0.8
1

1.2

−2 0 2

1

1.05

1.1

tr
ac

e

−2 0 2

0.5
0.6
0.7
0.8
0.9

−2 0 2
0.4

0.6

0.8

−2 0 2
0.4

0.6

0.8

−5 0 5
0

10

20

sm

−5 0 5
0

10

20

−5 0 5
0

10

20

−5 0 5
0

10

20

−5 0 5
3

4

5

cs

−5 0 5
2

4

6

−5 0 5
0

5

−5 0 5
0

5

−2 0 2

0.2

0.3

0.4

sp
an

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)
−2 0 2

0.2

0.3

0.4

log10(sigma)

dataset usps

Figure 6, continued

152 Chapter IV

−2 0 2

0.15
0.2

0.25
0.3

te
st

 e
rr

or

C = 1

−2 0 2

0.2

0.3

C = 4.641589e+01

−2 0 2

0.2

0.3

C = 2.154435e+03

−2 0 2

0.2

0.3

C = 100000

−2 0 2

7

8

9

C
2

−2 0 2

5
6
7

−2 0 2
6

7

−2 0 2

6.5

7

7.5

−2 0 2
10

15

C
3

−2 0 2
6
8

10
12
14

−2 0 2
5

10

−2 0 2

6
8

10
12
14

−2 0 2

1.2

1.4

1.6

rm

−2 0 2

2
2.5

3

−2 0 2
2

4

6

8

−2 0 2
2
4
6
8

−2 0 2
0.6

0.8

1

rr
m

−2 0 2
0.6
0.8

1
1.2

−2 0 2

1
1.5

2

−2 0 2

1
1.5

2

−2 0 2
0.9

1

1.1

tr
ac

e

−2 0 2
0.4

0.6

0.8

−2 0 2

0.4
0.6
0.8

−2 0 2

0.4
0.6
0.8

−5 0 5
1

1.5

2

sm

−5 0 5
1.5

2

2.5

−5 0 5
1

2

3

−5 0 5
1

2

3

−5 0 5
2

2.2

2.4

cs

−5 0 5
1

1.5

2

−5 0 5
1

1.5

2

−5 0 5
1

1.5

2

−2 0 2
0.15
0.2

0.25
0.3

sp
an

log10(sigma)
−2 0 2

0.2

0.3

log10(sigma)
−2 0 2

0.2

0.3

log10(sigma)
−2 0 2

0.2

0.3

log10(sigma)

dataset waveform

Figure 6, continued

A Compression Approach to Model Selection 153

−2 0 2

0.1

0.2

0.3

te
st

 e
rr

or

C = 1

−2 0 2

0.1

0.2

0.3

C = 4.641589e+01

−2 0 2

0.1

0.2

0.3

C = 2.154435e+03

−2 0 2

0.1

0.2

0.3

C = 100000

−2 0 2

4
6
8

C
2

−2 0 2
2

4

6

−2 0 2

4

6

−2 0 2

4

6

−2 0 2

5

10

15

C
3

−2 0 2
2
4
6
8

10
12

−2 0 2
2
4
6
8

10
12

−2 0 2
2
4
6
8

10
12

−2 0 2
0.8

1
1.2
1.4
1.6

rm

−2 0 2

1.5

2

2.5

−2 0 2

2

4

−2 0 2

2

4

−2 0 2
0.5

1

rr
m

−2 0 2
0.5

1

−2 0 2
0.5

1

1.5

−2 0 2
0.5

1

1.5

−2 0 2
0.5

1

tr
ac

e

−2 0 2
0.4

0.6

0.8

−2 0 2
0.4

0.6

0.8

−2 0 2
0.4

0.6

0.8

−5 0 5
0

5

10

sm

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
0

5

10

−5 0 5
0

2

4

cs

−5 0 5
0

2

4

−5 0 5
0

2

4

−5 0 5
0

2

4

−2 0 2

0.2

0.4

sp
an

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)
−2 0 2

0.2

0.4

log10(sigma)

dataset wisconsin

Figure 6, continued

Notation

General:

X input space
Y output space
xi or Xi training patterns
yi or Yi training labels
n number of training points
1 constant-1 function (or vector)
0 constant-0 function (or vector)
1A characteristic function of the set A
(C(X), ‖ · ‖∞) space of continuous functions on X with infinity

norm
P probability distribution on the data space
Pn empirical distribution
` loss function
R true risk (p. 70)
Remp empirical risk (p. 70)
Rreg regularized risk (p. 71)
Rn Rademacher complexity (p. 71)

R̃n maximum discrepancy (p. 71)

R̂n empirical Rademacher complexity (p. 71)
N(F , ε, d) ε-covering numbers of the space F with respect to

metric d (p. 94)

Chapter II:

k similarity function
Kn similarity or kernel matrix of size n× n (p. 22)
Dn degree matrix (p. 22)
Ln unnormalized graph Laplacian (p. 22)
L′n symmetrically normalized graph Laplacian (p. 22)
L′′n row-sum normalized graph Laplacian (p. 22)

156 Notation

H ′
n symmetrically normalized similarity matrix (p.

23)
H ′

n row-sum normalized similarity matrix (p. 23)
d and dn degree functions, true and empirical (p. 35)
h and hn symmetrically normalized similarity functions,

true and empirical (p. 36)
g and gn row-sum normalized similarity functions, true and

empirical (p. 37)

Sn
p→ S pointwise convergence (p. 32)

Sn
c→ S compact convergence (p. 32)

Sn
cc→ S collectively compact convergence (p. 32)

Sn
‖·‖→ S convergence in operator norm (p. 32)

Sn
+−→ S convergence up to a change of sign (p. 29)

Chapter III:

(X , d) metric space
(X0, d0) extended metric space (p. 81)
diam diameter of a metric space (p. 80)
L(f) Lipschitz constant of function f (p. 79)
(Lip(X), ‖ · ‖L) Lipschitz function space (p. 80)
(Lip0(X0), L(·)) another Lipschitz function space (p. 80)
(AE(X), ‖ · ‖AE) Arens-Eells space (p. 81)

Chapter IV:

log logarithm to base 2
R radius of the smallest ball sphere the training data
ρ margin
d dimension of the feature space
C1 − C5 compression coefficients

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

The little movie in the right bottom corner of the pages illustrates the convergence
of normalized spectral clustering on the two moons data set (courtesy of Dengyong
Zhou). For each page, we randomly draw one additional data point and show the
resulting clustering. As similarity function we used the Gaussian kernel with kernel
width σ = 0.2. The separation line between the classes is computed by assigning to
each point in the space the label of the nearest training point.

Bibliography

P. Anselone. Collectively compact operator approximation theory. Prentice-Hall,
Englewood Cliffs, New Jersey, 1971.

M. Anthony. Uniform Glivenko-Cantelli theorems and concentration of measure in
the mathematical modelling of learning. CDAM Research Report LSE-CDAM-
2002-07, 2002.

R. Arens and J. Eells. On embedding uniform and topological spaces. Pacific J.
Math., 6:397–403, 1956.

C. Baker. The numerical treatment of integral equations. Oxford University Press,
1977.

S. Barnard, A. Pothen, and H. Simon. A spectral algorithm for envelope reduction of
sparse matrices. Numerical Linear Algebra with Applications, 2(4):317–334, 1995.

A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in
coding and modeling. IEEE Trans. Inform. Theory, 44(6):2743 – 2760, 1998.

P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds
and structural results. In D. Helmbold and B. Williamson, editors, Proceedings
of the 14th annual conference on Computational Learning Theory, pages 273–288,
2001.

P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds
and structural results. JMLR, 3:463–482, 2002.

P. L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machines and other pattern classifiers. In B. Schölkopf, C. J. C. Burges, and A. J.
Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages
43–54. MIT Press, Cambridge, MA, 1999.

M. Belkin. Problems of Learning on Manifolds. PhD thesis, University of Chicago,
2003.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–1396, June 2003a.

160 Bibliography

M. Belkin and P. Niyogi. Using manifold structure for partially labeled classification.
In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15, Cambridge, MA, 2003b. MIT Press.

Y. Bengio, P. Vincent, J.-F. Paiement, O. Delalleau, M. Ouimet, and N. Le Roux.
Spectral clustering and kernel PCA are learning eigenfunctions. Technical Report
TR 1239, University of Montreal, 2003.

K. Bennett and E. Bredensteiner. Duality and geometry in SVM classifiers. In
P. Langley, editor, Proceedings of the Seventeenth International Conference on
Machine Learning, pages 57–64. Morgan Kaufmann, San Francisco, 2000.

R. Bhatia. Matrix Analysis. Springer, New York, 1997.

T. De Bie, M. Momma, and N. Cristianini. Efficiently learning the metric with side-
information. In Algorithmic Learning Theory, 14th International Conference, ALT
2003, Sapporo, Japan, October 2003, Proceedings, volume 2842 of Lecture Notes
in Artificial Intelligence, pages 175–189. Springer, 2003.

M. Birman and M. Solomjak. Spectral theory of self-adjoint operators in Hilbert
space. Reidel Publishing Company, Dordrecht, 1987.

A. Blum and J. Langford. PAC-MDL bounds. In B. Schölkopf and M.K. Warmuth,
editors, Learning Theory and Kernel Machines, pages 344–357. 16th Annual Con-
ference on Learning Theory, Springer, Berlin, 2003.

M. Bolla. Relations between spectral and classification properties of multigraphs.
Technical Report 91-27, DIMACS Technical Report, 1991.

L. Bottou and Y. Bengio. Convergence properties of the k-means algorithm. In
D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in Neural Informa-
tion Processing Systems 8. MIT Press, Denver, 1995.

O. Bousquet. Concentration Inequalities and Empirical Processes Theory Applied to
the Analysis of Learning Algorithms. PhD thesis, Ecole Polytechnique, 2002.

O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

O. Bousquet and D. Herrmann. On the complexity of learning the kernel matrix. In
S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information
Processing Systems, 15, Cambridge, MA, 2003. MIT Press.

Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues,
volume 31 of Texts in Applied Mathematics. Springer-Verlag, New York, 1999.

O. Chapelle and V. Vapnik. Model selection for support vector machines. In S. A.
Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information
Processing Systems 12. MIT Press, Cambridge, MA, 2000.

Bibliography 161

F. Chatelin. Spectral Approximation of Linear Operators. Academic Press, New
York, 1983.

F. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series in
Mathematics. Published for the Conference Board of the Mathematical Sciences,
Washington, DC, 1997.

J. Conway. A Course in Functional Analysis. Springer, New York, 1985.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York,
1991.

T. Cox and A. Cox. Multidimensional Scaling. Chapman & Hall, London, 2nd
edition, 2001.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, Cambridge,
UK, 2000.

A. Cuevas, M. Febrero, and R. Fraiman. Cluster analysis: a further approach based
on density estimation. Computational Statistics and Data Analysis, 36:441–459,
2001.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, New York, 1996.

L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer,
New York, 2001.

V. Dobric and J. Yukich. Asymptotics for transportation costs in high dimensions.
J. Theor. Probab., 8(1):97–118, 1995.

W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs.
IBM J. Res. Develop., 17:420–425, 1973.

R. M. Dudley. Universal Donsker classes and metric entropy. Ann. Probab., 15(4):
1306–1326, 1987.

N. Dunford and J. Schwartz. Linear Operators, Part I. Interscience Publishers, New
York, 1957.

M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23:298–305,
1973.

S. Floyd and Manfred K. Warmuth. Sample compression, learnability, and the
Vapnik-Chervonenkis dimension. Machine Learning, 21(3):269–304, 1995.

L. Goldfarb. A new approach to pattern recognition. In L. Kanal and A. Rosenfeld,
editors, Progress in Pattern Recognition, volume 2, pages 241–402. Elsevier, North-
Holland, 1985.

162 Bibliography

J. Gower. Measures of similarity, dissimilarity, and distance. In S. Kotz and N. John-
son, editors, Encyclopedia of Statistical Sciences, volume 5, pages 397–405. Wiley,
New York, 1985.

J. Gower. Metric and Euclidean properties of dissimilarity coefficients. Journal of
classification, 3:5–48, 1986.

T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification on
pairwise proximity data. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors,
Advances in Neural Information Processing Systems, volume 11, pages 438–444.
MIT Press, Cambridge, MA, 1999a.

T. Graepel, R. Herbrich, B. Schölkopf, A. Smola, P. Bartlett, K. Müller, K. Ober-
mayer, and R. Williamson. Classification of proximity data with LP machines. In
Proceedings of the Ninth International Conference on Artificial Neural Networks,
pages 304–309, 1999b.

S. Guattery and G. L. Miller. On the quality of spectral separators. SIAM Journal
of Matrix Anal. Appl., 19(3), 1998.

L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and
clustering. IEEE Trans. Computer-Aided Design, 11(9):1074–1085, 1992.

M. Hansen and B. Yu. Model selection and the principle of minimum description
length. Journal of the American Statistical Association, 96(454):746–774, 2001.

J. Hartigan. Clustering algorithms. Wiley, New York, 1975.

J. Hartigan. Consistency of single linkage for high-density clusters. JASA, 76(374):
388–394, 1981.

J. Hartigan. Statistical theory in clustering. Journal of classification, 2:63–76, 1985.

M. Hein and O. Bousquet. Maximal margin classification for metric spaces. In
M. Warmuth B. Schölkopf, editor, Proceedings of the 16. Annual Conference on
Computational Learning Theory, pages 72–86. Springer Verlag, Heidelberg, 2003.

B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm
for mapping parallel computations. SIAM J. on Scientific Computing, 16:452–469,
1995.

R. Herbrich, T. Graepel, and J. Shawe-Taylor. Sparsity vs. large margins for linear
classifiers. In N. Cesa-Bianchi and S. Goldman, editors, Proceedings of the Thir-
teenth Annual Conference on Computational Learning Theory, pages 304–308.
Morgan Kaufmann, San Francisco, 2000.

D. Higham and M. Kibble. A unified view of spectral clustering. Mathematics
Research Report 2, University of Strathclyde, 2004.

Bibliography 163

D. Hochbaum and D. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10(2):180–184, 1985.

N. Jardine and R. Sibson. Mathematical taxonomy. Wiley, London, 1971.

R. Kannan, S. Vempala, and A. Vetta. On clusterings - good, bad and spectral.
Technical report, Computer Science Department, Yale University, 2000.

T. Kato. Perturbation theory for linear operators. Springer, Berlin, 1966.

J. Kleinberg. An impossibility theorem for clustering. In S. Thrun S. Becker and
K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
pages 446–453. MIT Press, Cambridge, MA, 2003.

A. N. Kolmogorov and V. M. Tihomirov. ε-entropy and ε-capacity of sets in func-
tional space. Amer. Math. Soc. Transl. (2), 17:277–364, 1961.

V. Koltchinskii. Asymptotics of spectral projections of some random matrices ap-
proximating integral operators. Progress in Probabilty, 43, 1998.

V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral
operators. Bernoulli, 6(1):113 – 167, 2000.

G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan. Learning
the kernel matrix with semidefinite programming. JMLR, 5:27–72, 2004.

J. Lember. On minimizing sequences for k-centres. Journal of Approximation The-
ory, 120:20–35, 2003.

G. Lugosi and A. Nobel. Consistency of data-driven histogram methods for density
estimation and classification. Ann. Statist., 24(2):687–706, 1996.

K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press, London,
1979.

D. McAllester. Some PAC–Bayesian theorems. Machine Learning, 37(3):355–363,
1999.

R. Megginson. An introduction to Banach space theory. Springer, New York, 1998.

M. Meila and J. Shi. A random walks view of spectral segmentation. In 8th Inter-
national Workshop on Artificial Intelligence and Statistics, 2001.

S. Mendelson and R. Vershynin. Entropy and the combinatorial dimension. Inven-
tiones Mathematicae, 152(1):37–55, 2003.

B. Mohar. The Laplacian spectrum of graphs. In Graph theory, combinatorics, and
applications. Vol. 2 (Kalamazoo, MI, 1988), Wiley-Intersci. Publ., pages 871–898.
Wiley, New York, 1991.

164 Bibliography

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.
In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14. MIT Press, 2001.

P. Niyogi and N. K. Karmarkar. An approach to data reduction and clustering with
theoretical guarantees. In P. Langley, editor, Proceedings of the Seventeenth In-
ternational Conference on Machine Learning. Morgan Kaufmann, San Francisco,
2000.

M. Opper and O. Winther. Gaussian processes and SVM: mean field and leave-one-
out. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 311–326. MIT Press, Cambridge, MA,
2000.

E. Pekalska, P. Pacĺık, and R. Duin. A generalized kernel approach to dissimilar-
ity based classification. Journal of Machine Learning Research, 2:175–211, 2001.
Special Issue ”New Perspectives on Kernel Based Learning Methods”.

V. Pestov. Free Banach spaces and representations of topological groups. Funct.
Anal. Appl, 20:70–72, 1986.

D. Pollard. Strong consistency of k-means clustering. Annals of Statistics, 9(1):
135–140, 1981.

J. Puzicha, T. Hofmann, and J. Buhmann. A theory of proximity based clustering:
Structure detection by optimization. Pattern Recognition, 33(4):617–634, 2000.

G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, March 2001.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290:2323–2326, 2000.

W. Rudin. Functional Analysis. McGraw-Hill Inc., Singapore, 2nd edition, 1991.

I. Schoenberg. Metric spaces and positive definite functions. TAMS, 44:522–536,
1938.

B. Schölkopf. The kernel trick for distances. In T. G. Dietterich T. K. Leen and
V. Tresp, editors, Advances in Neural Information Processing Systems 13. MIT
Press, Cambridge, MA, 2001.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

J. Shawe-Taylor, C. Williams, N. Cristianini, and J. Kandola. On the eigenspec-
trum of the Gram matrix and its relationship to the operator eigenspectrum. In
N. Cesa-Bianchi, M. Numao, and R. Reischuk, editors, Proceedings of the 13th
International Conference on Algorithmic Learning Theory. Springer, Heidelberg,
2002.

Bibliography 165

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

A. J. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization
operators and support vector kernels. Neural Networks, 11:637–649, 1998.

D. Spielman and S. Teng. Spectral partitioning works: planar graphs and finite
element meshes. In 37th Annual Symposium on Foundations of Computer Science
(Burlington, VT, 1996), pages 96–105. IEEE Comput. Soc. Press, Los Alamitos,
CA, 1996.

J. M. Steele. Probability theory and combinatorial optimization, volume 69 of CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

M. Talagrand. The Ajtai-Komlós-Tusnády matching theorem for general measures.
In Probability in Banach spaces, 8 (Brunswick, ME, 1991), volume 30 of Progr.
Probab., pages 39–54. Birkhäuser Boston, Boston, MA, 1992.

A. Taylor. Introduction to Functional Analysis. Wiley, New York, 1958.

J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes.
Springer, New York, 1996.

R. Van Driessche and D. Roose. An improved spectral bisection algorithm and its
application to dynamic load balancing. Parallel Comput., 21(1), 1995.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York,
1995.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

V. Vapnik and O. Chapelle. Bounds on error expectation for support vector ma-
chines. Neural Computation, 12(9):2013–2036, 2000.

R. Veltkamp and M. Hagedoorn. Shape similarity measures, properties and con-
structions. In Advances in Visual Information Systems, Proceedings of the 4th
International Conference, pages 467–476. Springer, 2000.

D. Verma and M. Meila. A comparison of spectral clustering algorithms. Technical
Report UW CSE Technical report 03-05-01, University of Washington, 2003.

U. von Luxburg and O. Bousquet. Distance-based classification with Lipschitz func-
tions. In B. Schölkopf and M.K. Warmuth, editors, Proceedings of the 16th Annual
Conference on Learning Theory (COLT), pages 314–328. Springer, 2003. This ar-
ticle won the prize for the best student paper.

166 Bibliography

U. von Luxburg and O. Bousquet. Distance-based classification with Lipschitz func-
tions. Journal for Machine Learning Research, 5:669–695, 2004.

U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. In
Advances in Neural Information Processing Systems 18, 2004a. to appear.

U. von Luxburg, O. Bousquet, and M. Belkin. On the convergence of spectral
clustering on random samples: the normalized case. In J. Shawe-Taylor and
Y. Singer, editors, Proceedings of the 17th Annual Conference on Learning Theory
(COLT), pages 457–471. Springer, 2004b.

U. von Luxburg, O. Bousquet, and B. Schölkopf. A compression approach to support
vector model selection. Journal for Machine Learning Research, 5:293–323, 2004c.

S. Watson. The classification of metrics and multivariate statistical analysis. Topol-
ogy and its Applications, 99:237–261, 1999.

N. Weaver. Lipschitz algebras. World Scientific, Singapore, 1999.

J. Weidmann. Linear Operators in Hilbert spaces. Springer, New York, 1980.

Y. Weiss. Segmentation using eigenvectors: A unifying view. In Proceedings of the
International Conference on Computer Vision, pages 975–982, 1999.

C. K. I. Williams and M. Seeger. The effect of the input density distribution on
kernel-based classifiers. In P. Langley, editor, Proceedings of the 17th Interna-
tional Conference on Machine Learning, pages 1159–1166. Morgan Kaufmann,
San Francisco, 2000.

W. Wright. A formalization of cluster analysis. Pattern Recognition, 5:273–282,
1973.

E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application
to clustering with side-information. In S. Thrun S. Becker and K. Obermayer,
editors, Advances in Neural Information Processing Systems 15, pages 505–512.
MIT Press, Cambridge, MA, 2003.

S. Zhong and J. Ghosh. A unified framework for model-based clustering. JMLR, 4:
1001–1037, 2003.

D. Zhou and B. Schölkopf. Learning from labeled and unlabeled data using random
walks. Technical report, Max Planck Institute for Biological Cybernetics, March
2004.

D. Zhou, B. Xiao, H. Zhou, and R. Dai. Global geometry of SVM classifiers. Techni-
cal Report 30-5-02, Institute of Automation, Chinese Academy of Sciences, 2002.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian
fields and harmonic functions. In T. Fawcett and N.Mishra, editors, Proceedings
of the 20th International Conference of Machine Learning. AAAI Press, 2003.

