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(Institut National de la Santé et de la Recherche Médicale) U567, Institut Cochin, Paris, France, 4 INSERM (Institut National de la Santé et de la Recherche Médicale) U570,
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Abstract

Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn
into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or
endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of
only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial
type four pili (T4P) that trigger intense host cell signalling. Among the components of the meningococcal T4P, the
concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was
believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous
reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180
epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects
on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the
motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both
total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-
mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated
meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential
adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control
through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same
molecule (i.e. PilC1 and PilC2) brings a new model to light for the analysis of the interplay between pathogenic bacteria and
human host cells.
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Introduction

Neisseria meningitidis (Nme) is a strictly human pathogen that has

two facets, a benign and a devastating one. Nme is carried by

approximately 10% of healthy populations in Western countries,

and up to 70% in military recruits [1–3]. Although carriage is most

frequently observed, the fulminant forms of meningococcal

infections break out unpredictably. The fulminant meningitis can

kill previously healthy subjects within a few hours, making Nme

one of the fastest killers of humans among known biological agents

[4]. Meningococcal pathogenesis is a rare event that relies on the

ability of the bacteria to break host defences such as cellular

epithelial or endothelial barriers [5,6]. The closely related

pathogen Neisseria gonorrhoeae (Ngo) is the causative agent of a

sexually transmitted disease and can also be responsible for

disseminated forms of infection [7]. Ngo and Nme exhibit a high

degree of genetic, structural and morphological similarity [8–10]

but preferentially target different host organs, which suggests

pathogenic Neisseria express specific determinants that allow

attachment to precisely targeted host cell populations.

Meningococcal pathogenesis, as well as carriage, involves direct

physical interactions of Nme with host cells. Nme is primarily an

extracellular pathogen with a striking feature of microcolony

formation on the surface of the infected cell [11–13]. Among

neisserial virulence factors, type IV pili (T4P) appear to be the only

bacterial attribute that allows efficient adhesion of capsulated bacteria

to host cells [14]. T4P are robust thin filaments of up to 40

micrometers long that undergo dynamic cycles of assembly, exposure

at the bacterial surface and retraction [15]. Pilus-mediated adhesion

and filament retraction participate in a signalling system in which

Nme is capable of modulating the host cell signalling machinery

through T4P [16]. T4P-mediated adhesion induces cytoskeleton re-

arrangements as well as modification of global intracellular signalling

networks [17,18]. Signalling is associated with the formation of

‘‘cortical plaques’’, with dense actin polymerisation underneath

bacterial clusters and accumulation of membrane-associated proteins
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such as ICAM-1, CD44 and EGFR (epidermal growth factor

receptor) [19]. In human brain endothelial cells, T4P-mediated

meningococcal adhesion leads to the formation of ectopic intercel-

lular junctional domains at the site of bacteria host-cell interaction.

This recruitment leads to the depletion of junctional proteins at the

cell-cell interface and to the opening of the intercellular junctions

[20]. Moreover, Nme evokes early intracellular calcium signalling

during the course of infection, paralleled by MAPK pathway

activation and interleukin release [21]. Cellular response to T4P-

mediated infection varies among cell types. Membrane shedding in

ME180 cells following gonococcal infection was shown to release

CD46-enriched vesicles in the medium in a PilT-dependent manner,

but such a phenomenon could not be observed with Hep-2 cells [22].

Besides adhesion, Nme can also enter host cells. For endothelial

cells, internalisation relies on the activation of ErbB2, cortactin

phosphorylation and activation of phosphoinositide-3-kinase

signalling pathways [17,18]. ErbB2 is a member of the EGFR

family, which belongs to receptor tyrosine kinases. However, it is

still unclear if similar signalling also exists in other cell types and

little is known about the cellular motile response upon bacterial

interaction during meningococcal infection.

Members of the EGFR family are membrane receptors involved

in various cellular processes such as cell growth, proliferation and

motility. Deregulation of EGFR was shown to be involved in the

formation of multi-cellular aggregates in vitro [23]. Upon EGF

binding to its specific membrane receptor at the cellular surface,

EGFR undergoes dimerisation and auto-phosphorylation on

multiple tyrosine residues, a key event in the activation of

downstream signalling cascades. Following phosphorylation, the

dimerised EGFR undergoes internalisation from the plasma

membrane to subcellular locations, via both clathrin-dependent

and independent endocytosis [24].

The PilC family of T4P-associated components is a major

regulator of Nme adhesion and pilus retraction [15]. The PilC

proteins enable pilus expression at the bacterial surface, transfor-

mation competence and adhesion to human cells [25–28]. Most

pathogenic Neisseria express two PilC variants, which are

independently expressed from separate loci and distinctly

regulated [29,30]. Both meningococcal PilC isoforms mediate

bacterial piliation and transformation competence. However, only

the PilC1 variant has been shown to be associated with

meningococcal adhesion to human epithelial or endothelial cells

[26,31,32]. Meningococci expressing solely the PilC2 protein were

described as non-adherent despite their ability to form pilus

structurally similar to those expressed in the presence of PilC1.

Intriguingly, in the closely related gonococcus, both PilC proteins

were shown to be functionally identical since they similarly

promote piliation, transformation competence and adhesion to

human cells [27]. Moreover, gonococcal PilC proteins have been

described as adhesins, factors allowing attachment to the host cell

[33]. The meningococcal PilC2 protein was thus considered as a

defective variant of the PilC family that would promote piliation

and transformation competence but not adhesion to host cells

[26]. The molecular basis for the functional differences between

meningococcal PilC1 and PilC2 variants could be associated with

sequences specificities in the aminoterminal part of the protein

[34].

In this work, we investigated the respective roles of the PilC family

members in meningococcal attachment to ME180 epithelial cells. Our

data show an unexpected role of the meningococcal PilC2 variant in

efficiently mediating adherence of Nme to ME180 cells, a role thought

to be restricted to PilC1. Intriguingly, the two meningococcal PilC

variants trigger different cellular responses, affecting cellular motility

and modulation of the EGFR signalling pathways.

Results

The meningococcal PilC2 variant enables bacterial
adhesion to ME180 cells

Until now, pilus-mediated meningococcal adhesion to eukary-

otic epithelial or endothelial cells was specifically attributed to the

expression of PilC1 [26]. Unexpectedly, we observed that

meningococci lacking PilC1 were able to efficiently adhere to

ME180 cells, which was in contrast with previous reports using the

same cell line but other bacterial strains [32]. In order to verify if

the PilC2 variant could indeed mediate the adhesion of

meningococci to ME180 cells, we employed isogenic derivatives

of the Nm2C4.3 strain solely expressing either PilC1 or PilC2 in

similar amounts under the control of the endogenous promoter of

pilC1, named Nm604a (PilC1pC1+/PilC2-) and Nm910f

(PilC2pC1+/PilC1-) [34]. With this setting, the respective roles of

each protein could be investigated independently from regulation

specificities and this strategy also excluded the possibility of

different amounts of PilC being a prime attribute for any observed

cellular response. As for PilC1, we detected that PilC2-mediated

adhesion to ME180 cells elicited cortical plaque formation [19],

with intense F-actin condensation and clustering of signalling

molecules such as the small GTPase Cdc42 (Figure 1). Compar-

ison of adhesion levels with isogenic strains expressing PilC1 and/

or PilC2, using poorly piliated or non piliated PilC/PilE null-

mutated strains as negative controls, revealed the same order of

magnitude as the wild-type (Figure 2), although PilC2-mediated

adhesion to ME180 cells appeared slightly lower than PilC1-

mediated adhesion. No systematic screening for human cell lines

or primary cells was performed, but no significant adherence was

observed for PilC1-/PilC2+ strains to other epithelial (HEC-1-B,

HeLa) or endothelial (HUVEC or HBMEC) cell types, as

previously reported [26,32], suggesting stringent cellular specific-

ity. Thus, we establish a first human cell culture model, namely the

epithelial ME180 cells, for the quantitative analysis of meningo-

coccal PilC2-mediated adhesion.

Besides PilC, numerous bacterial factors are involved in the

interaction of pathogenic Neisseria with human cells [6,35]. In

order to ascertain that PilC2 was specifically responsible for

adhesion of PilC1-/PilC2+ meningococci to ME180 cells, we

engineered isogenic strains solely expressing either PilC1 (NmPil-

C1ind) or PilC2 (NmPilC2ind) under the control of an IPTG

inducible promoter, instead of endogenous promoters [15]. This

allowed control of bacterial T4P expression and of adhesion

through IPTG-controlled expression of PilC1 or PilC2 (Figure S1).

Using live-cell microscopy, we monitored adhesion of these

inducible strains to ME180 cells over time, starting in the absence

of induction and followed by the addition of IPTG after 2 hours of

bacteria-cell interaction (Figure 3, Video S1 and Video S2). In the

absence of induction, the lack of expression of either PilC1 or

PilC2 was associated with poor bacterial clumping (linked to

defective piliation), and a lack of bacterial adhesion to cells despite

the presence of a large bacterial load. In contrast, the expression of

PilC1 or PilC2 within minutes of IPTG addition resulted in

increased bacterial piliation and bacterial adhesion to the cells

(Figure 3, 20 min post IPTG). As previously described [15],

bacterial clustering into microcolonies and twitching upon PilC

induction is consistent with an increase in bacterial expression of

functional T4P. The observation of efficient bacterial adhesion to

the host cell through IPTG-controlled expression of either PilC1

or PilC2 is coherent with data obtained with strains Nm604a and

Nm910f that constitutively express PilC1 or PilC2, and demon-

strates that, like PilC1, the meningococcal PilC2 can specifically

mediate bacterial adhesion to ME180 cells.

PilC Control of Cell Motility
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PilC1 and PilC2 trigger different cellular responses in
ME180 cells

Although both constitutively expressed PilC1 and PilC2 variants

promoted adhesion to ME180 cells and triggered apparently

similar cortical plaque formation (Figure 1), live-imaging exper-

iments using IPTG-inducible expression of PilC1 or PilC2

(Figure 3, Video S1 and Video S2) revealed that both strains

elicited strikingly different dynamic cell responses upon infection.

First, only a fraction (ca 30% to 50%) of ME180 cells were

permissive to PilC2-mediated adhesion whereas numbers were

close to 100% for PilC1. Second, host cell motility differed after

infection mediated by each variant since bacterial adhesion

mediated through the induction of PilC1 led to reduced cell

migration, while the induction of PilC2 triggered no apparent

change in the motility of these cells upon adhesion. These

observations suggested mechanistic differences in the host cellular

response elicited upon PilC1- versus PilC2-mediated adhesion.

In order to further investigate the role of each PilC variant in host

cell motility independently from possible artefacts caused by IPTG

induction, we used time-lapse microscopy to monitor PilC1- or PilC2-

mediated adhesion of the meningococcal isogenic Nm604a and

Nm910f strains to ME180 cells. These strains, already used in

Figure 1 and Figure 2, express similar amounts of either PilC1 or

PilC2 proteins through the control of the endogenous promoter of

pilC1 [34]. Infection of ME180 cells with these strains (Figure 4)

elicited similar dynamic and segregation phenotypes to those

observed under conditions of PilC1 or PilC2 induction with IPTG.

Cellular tracking analysis revealed that meningococci expressing

pilC1 under the control of its endogenous promoter caused a severe

reduction of cellular motility upon infection, whereas infection with

Nme expressing pilC2 under the control of the same promoter failed

to trigger a significant alteration in ME180 motility throughout the

experiment (Figure 4, B and D).

Besides altering motility, PilC1-mediated infection was eventually

associated with loosening of cellular attachment to the substratum

that could be detected within the first hour of infection, and with

formation of infected cell aggregates. In contrast, cellular attachment

to the substratum was not altered during PilC2-mediated infection.

This phenomenon was seen using a meningococcal strain with an

IPTG-inducible promoter for pilC1 or pilC2 (Video S1 and Video

S2), as well as with non-inducible promoters. Since cell detachment

from the substratum is a trait of apoptosis, we investigated if PilC1-

mediated infection would lead to chromatin condensation, a

signature of apoptosis [36]. No significant chromatin condensation

and/or nucleus fragmentation could be observed up to 6 hours after

infection (data not shown). Together with the rapid change in

cellular motility and cell-to-substratum adhesion, the data ruled out

the possibility that apoptosis had a major role in PilC1-mediated

early detachment of ME180 cells from the substratum.

To extend our observations, we performed the same experiments

using FAM20, another previously described pathogenic meningo-

coccal strain that is unrelated to Nm2C4.3 and its derivatives. The

FAM20 strain belongs to serogroup C and attachment of this strain

to ME180 cells was reported to be facilitated by PilC1 but not PilC2

[32]. Analysis of the previously described FAM20.2 (PilC1wt+/

PilC2-) or FAM20.1 (PilC1-/PilC2wt+) derivatives of the FAM20

strain [32] in time-lapse infection experiments with ME180 cells

showed patterns of adhesion similar to those observed with the

Nm604a and Nm910f derivatives of Nm2C4.3; FAM20.1 efficiently

adhered to a fraction of ME180 cells, and FAM20.2 triggered a

severe reduction in the motility of the infected cells (Figure 4, C and

D). Thus, the ability of both PilC1 and PilC2 meningococcal

variants to mediate adhesion and a specific host cell response is

observed for unrelated meningococcal strains.

As already mentioned, IPTG-induced PilC1-expressing menin-

gococci adhered to virtually all cells present, while only a subset of

cells in a ME180 monolayer was permissive to PilC2-mediated

adhesion (Figure 3). To investigate if different ME180 clonal cell

populations could be responsible for the heterogeneity of PilC2-

mediated adhesion, we analysed an array of clonal cell subsets,

Figure 1. Cortical plaque formation following PilC1- or PilC2-mediated infection of ME180 cells. ME180 cells were infected for 15
minutes (MOI 100) with isogenic derivatives of the Nm2C4.3 wild type strain. Strains Nm604a and Nm910f respectively express solely either PilC1 or
PilC2, under the control of the endogenous promoter of pilC1. Bar is 10 mm. Both strains trigger condensation of cellular F-actin at the site of bacterial
attachment, as well as accumulation of Cdc42, suggesting intense and localised activation of cellular signalling pathways.
doi:10.1371/journal.pone.0006834.g001

PilC Control of Cell Motility
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each clone being generated from a single ME180 cell. Using

Nm604a (PilC1pC1+/PilC2-) and Nm910f (PilC2pC1+/PilC1-)

strains that constitutively express either PilC1 or PilC2, the

proportion of cells permissive to PilC1- or PilC2-mediated

infection among clones of ME180 cells was similar to that of the

parental population of cells (Figure S2). Thus, differences in

cellular susceptibility to PilC2-mediated infection are not restricted

to clonal populations among ME180 cells, but more likely due to a

particular, yet undefined, metabolic state of the cell in which a

cellular receptor(s) for PilC2 is expressed.

These results show that both meningococcal PilC1 and PilC2

variants mediate specific host cell responses upon adhesion. Together

with the fractional response of ME180 cells to PilC2-mediated

infection, our data suggest that both PilC variants might operate via

distinct, yet unknown, cellular receptors for piliated Nme.

PilC1-mediated infection is specifically associated with
EGFR degradation

Modulation of EGFR signalling through the RAF-MEK-ERK

pathway has been shown to regulate cell adhesion, formation of

cell aggregates and cellular motility [23]. Therefore, we investi-

gated whether EGFR signalling was affected upon PilC1- or

PilC2-mediated infection. ME180 cells were infected for 2 hours

with either Nm604a (PilC1pC1+/PilC2-) or Nm910f (PilC2pC1+/

PilC1-), and the level of EGFR was investigated. We observed a

dramatic decrease in the amount of EGFR for PilC1-infected cells,

in comparison to non-infected cells (Figure 5A, left panel-). This

was observed as soon as 15 min post infection (data not shown). In

contrast, PilC2-mediated infection did not notably affect EGFR

levels in the host cells despite binding efficiently.

To investigate if modulation of EGFR levels would be the reflect

of functional properties, we analysed the phosphorylation status of

EGFR in response to EGF stimulation of infected ME180 cells,

using non-infected cells as a control. The same experimental

protocol was used but cells were additionally stimulated with EGF

for 5 min at the end of the 2-hour infection, prior to collection of

cellular material and western blot analysis (Figure 5A, right panel-).

Similarly to non-infected cells, PilC2-mediated infection left ME180

cells permissive for EGFR phosphorylation upon EGF stimulation.

In contrast, EGF stimulation of cells infected with a PilC1+ strain

Figure 2. Adhesion of Nm2C4.3 derivatives to ME180 and HeLa cells. The ratio of adherent bacteria is expressed, on a logarithmic scale, as a
ratio of bacteria adhering to the cellular monolayer to the total amount of infecting bacteria after 3 hours infection (MOI 100). Data represent the
mean of 4 replicates of representative experiments +/2 standard deviation of the mean. Bacterial strains are WT (Nm2C4.3, PilC1wt+/PilC2wt+),
Nm604a (PilC1pC1+/PilC2-), Nm910f (PilC2pC1+/PilC1-), PilC- (PilC1-/PilC2-), PilE- (non piliated defective pilE strain). (A) ME180 cells; (B) HeLa cells. Two
orders of magnitude separate adhesion rates of non-adherent from adherent strains, either on ME180 or HeLa cells. The meningococcal PilC2 variant
mediates adhesion to Me180 but not to HeLa cells.
doi:10.1371/journal.pone.0006834.g002
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resulted in a weak phosphorylation of EGFR. Because the total

protein level of EGFR prior to EGF stimulation was low in cells

infected through PilC1 (Figure 5A, left panel-), the strong reduction

in EGFR phosphorylation was probably due to the depletion of the

total EGFR pool upon PilC1-mediated infection. RT-PCR analysis

detected no notable change in EGFR mRNA expression during the

course of the experiment, suggesting that EGFR degradation and

recycling pathways are differently involved upon PilC1- or PilC2-

mediated adhesion. Similar results were observed for the phos-

phorylated forms of ErbB2 (data not shown). Figure 5-A also shows

that PilC1-mediated adhesion of meningococci to other cell types

such as HBMEC or HEC-1-B did not result in the depletion of the

EGFR cellular pool and supports previous reports on EGFR

clustering under meningococcal microcolonies [19].

We further analysed the response of ME180 cells to EGF during

infection with meningococci expressing constitutively PilC1

(Nm604a) or PilC2 (Nm910f), by monitoring cell motility for 30

minutes just prior to, or just following, addition of EGF to the cells.

Figure 5-B shows that non-infected ME180 cells respond to EGF

stimulation by increasing motility. Consistent with western blot

analysis of EGFR phosphorylation, we found that PilC1-infected

cells were poorly responsive to EGF activation. In the case of

PilC2-mediated infection, EGFR phosphorylation response to

EGF stimulation was slightly lower in comparison to non-infected

control cells. We therefore investigated if this difference could be

due to fractional susceptibility of ME180 cells by separately

analysing ME180 cells susceptible or refractory to PilC2-mediated

adhesion. We observed that PilC2-mediated infection did not alter

the motility response to EGF, neither for cells associated with

bacteria nor for cells devoid of attached meningococci. Thus, our

results suggest that PilC1 is specifically responsible for the

depletion of the EGFR pool in ME180 cells upon infection.

Taken together, our results show that both meningococcal

PilC1 and PilC2 variants mediate specific adhesion to ME180

cells, but trigger different cellular responses for cellular motility

and signalling affecting EGFR pathways. The difference in host

cell response is associated with the expression of closely related

pilus-associated components that are independently regulated in

wild type strains, thus presenting a new and intriguing model for

studying the modulation of the eukaryotic response to infection by

T4P-expressing pathogens.

Discussion

In this study, we investigated how meningococcal infection

differentially modulates host cell motility and EGFR signalling

pathways through two independently regulated variants of T4P

components. Infection of human cells by pathogenic Neisseria is a

complex process that involves bacterial attachment to the eukaryotic

cell and intracellular signalling. In the case of Nme, T4P play a

central role since they are the only attributes allowing adhesion of

capsulated bacteria to cells and are present in most, if not all, clinical

bacterial isolates [14]. These events are associated with the

formation of ‘‘cortical plaques’’ at the site of bacterial attachment,

where numerous components of actin microfilaments and signalling

molecules are recruited [19]. Our results show that both

meningococcal variants of the T4P-associated PilC component,

PilC1 and PilC2, are capable of mediating adhesion independently.

Moreover, these two proteins, which are concomitantly expressed

but distinctly regulated in wild type strains of Nme, elicit different

structural and signalling responses in the host cell.

Our observation that the PilC2 variant of the meningococcal

FAM20 strain promotes adhesion to ME180 cells differs from

previous work [32]. However, technical points may account for

Figure 3. Adhesion monitoring of meningococci to ME180 cells upon IPTG-mediated PilC1 or PilC2 induction: Semi-confluent ME180
cells are monitored prior to (pre-infection) and during infection with Nm2C4.3 derivatives NmPilC1ind and NmPilC2ind that express virtually no PilC in
the absence of induction. Infection (MOI 50) is initially carried out in the absence of IPTG for approximately 2 hours (no induction), and continued
after addition of IPTG (20 min post IPTG). No meningococcal adhesion to ME180 cells is visible until expression of PilC1 or PilC2 is induced, despite
heavy bacterial load due to replication over the experiment. Within minutes following addition of IPTG, all cells are covered with adhering bacteria in
the case of PilC1-mediated infection, whereas only a fraction of ME180 cells are associated with PilC1-/PilC2+ meningococci (arrows).
doi:10.1371/journal.pone.0006834.g003

PilC Control of Cell Motility
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Figure 4. Cell-tracking analysis of ME180 cells upon PilC1- or PilC2-mediated infection. ME180 cells were infected (MOI 50) with strains
Nm604a or Nm910f that express constitutively either PilC1 or PilC2, and tracked throughout the experiment. Cell monitoring was started before
infection and continued throughout the experiment. In each panel, the upper image shows the cells prior to infection, and the lower image the
cellular path after 60 min tracking. A: Non-infected cells. B: Infection with the Nm2C4.3 derivative strains Nm604a (PilC1pC1+/PilC2-) and Nm910f
(PilC2pC1+/PilC1-). C: Infection with the FAM20 derivative strains FAM20.2 (PilC1wt+/PilC2-) and FAM20.1 (PilC2wt+/PilC1-). Virtually all cells were
infected by PilC1-expressing strains Nm604a or FAM20.2. For the cells infected with strains Nm910f or FAM20.1, arrows indicate tracks corresponding
to cells susceptible to PilC2-mediated adhesion, whereas cells that remained not infected in the course of the experiment are unmarked. D:
Comparison of cellular velocity over 60 min following infection with either Nm2C4.3 derivatives (Nm604a and Nm910f) or FAM20 derivatives
(FAM20.2 and FAM20.1), using non-infected cells as control (in mm/min). Data represent the average velocity for all cells in the field, +/2 standard
error of the mean. For both series of mutants derived from unrelated strains Nm2C4.3 and FAM20, PilC1-mediated infection is specifically associated
with a decrease in cellular motility, whereas cells infected through PilC2 remain motile.
doi:10.1371/journal.pone.0006834.g004

PilC Control of Cell Motility
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Figure 5. EGFR status upon PilC-mediated infection. Panel A: ME180, HBMEC or HEC-1-B cells were infected (MOI 100) with strains Nm604a
(PilC1pC1+/PilC2-) or Nm910f (PilC2pC1+/PilC1-) for 2 hours before cells were stimulated with EGF (25 ng/ml, 5 min). Non-infected cells (no infection)
were used as control. Cellular extracts were probed in western blot analysis for the presence of all forms of EGFR (EGFR), for a phosphorylated form of
the receptor (EGFR-P992), or for ATP-synthase as a marker for the protein load of cellular extracts. Cells were collected just prior to addition of EGF
(left panel), or 5 min after EGF stimulation (right panel). Exposure time of western blot was extended until signal was detectable in all lanes. Panel B:
cells infected for 2 hours with either Nm604a (PilC1pC1+/PilC2-) or Nm910f (PilC2pC1+/PilC1-) were monitored using time-lapse microscopy for 30 min
immediately before and after EGF stimulation (25 ng/ml). In the case of PilC2-mediated infection, tracking data were analysed separately for ME180
cells susceptible or refractory to infection. Data represent average velocity for all cells in the field in mm/min, +/2 standard error of the mean.
doi:10.1371/journal.pone.0006834.g005

PilC Control of Cell Motility
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the differences in phenotype observed here. First, Rahman et al.

measured bacterial adhesion by optical evaluation of bacterial

counts on 50 cells. In our experiments, optical numeration of cell-

associated diplococci appeared poorly reproducible since attaching

meningococci form three-dimensional aggregates of various size

and shape. Instead, we calculated adhesion ratios comparing the

number of CFU recovered from cell-associated bacteria to the

total amount of bacteria in the well, at the corresponding time-

point. Second, figures in previous report were obtained using non-

confluent ME180 cells, whereas adhesion ratios reported here

were obtained with cells at higher densities (sub-confluent).

Moreover, the fractional susceptibility of ME180 cells to PilC2-

mediated adhesion may have artificially lowered the average

bacterial count per cell. Third, alteration of phenotype might be

due to phase variation in the expression of PilC1 or PilC2 in the

FAM20 derivatives, since FAM20.1 and FAM20.2 were obtained

by simple cassette-mutagenesis and carry endogenous pilC

promoters. For this reason, we used Nm2C4.3 derivatives with

engineered pilC promoters that prevent phase variation and allow

identical regulation for both pilC variants. Forth, both unrelated

Nm2C4.3 and FAM20 strains express strain-specific PilC1 or

PilC2 variants with different primary structures. Last, dynamic

aspects of meningococcal adhesion might also be involved. The

regulation of both pilC1 and pilC2 genes was shown to be

drastically different in the Nm2C4.3 strain [30] but was not

investigated in the FAM20 strain. Taken together, the FAM20.1

and FAM20.2 strains express PilC1 or PilC2 variants with specific

primary structures and with uncharacterised promoters. For these

reasons, our analysis was focused on the isogenic Nm2C4.3

derivatives, Nm604a and Nm910f, which express either pilC1 or

pilC2 with identical regulation. The observation that, in live-

imaging experiments, unrelated meningococcal strains with

endogenous pilC promoters (i.e. FAM20.1 and FAM20.2) lead to

results similar to those obtained with promoter-engineered strains

(i.e. Nm2C4.3 derivatives) strengthens our conclusions on the

respective roles of PilC1 and PilC2 in the motility control of

infected human cells.

Among different epithelial (HeLa, HEC-1-B) or endothelial

(HUVEC, HBMEC) cell types tested, the endometrium-derived

ME180 was the only cell line that was permissive for PilC2-

mediated adhesion. The endometrium is unlikely to play a central

role in the pathogenesis of Nme, but restriction of Nme PilC2-

mediated adhesion to ME-180 cells could indicate a highly specific

modulation of meningococcal cellular binding to yet unrecognised

cell types of the nasopharynx. Although we did not investigate

primary cell types isolated from the nasopharynx for this

phenotype, our results show that human cells (i.e. ME180) can

express a cellular receptor(s) for PilC2. This suggests that

meningococci have evolved a highly discriminative tool for

differential adhesion in specific microenvironments where different

cell types are present.

Both meningococcal PilC variants promote cortical actin

rearrangements upon adhesion to ME180 cells but we show that

only PilC1 induces reductions in EGFR levels and motility, thus

suggesting complementary functions for both variants. Based on

these results, the meningococcal PilC2 variant should no longer be

considered as a defective variant for adhesion, but as a functional

variant with specificities for restricted cell types. Therefore, the

independent regulation of both PilC variants in wild type bacteria

could enable meningococci to sequentially modulate host cell

response in a controlled manner, with partially overlapping (i.e.

cellular binding) and partially antagonising (i.e. depletion of EGFR

pool and motility) effects, depending on the cellular diversity of

each ecological niche. The hypothesis of selective PilC-mediated

modulation of cellular response is emphasized by the observation

that, although being closely related, both gonococcus and

meningococcus show highly specific tropism for host tissue. In

the genetically related gonococcus, both variants of PilC have been

described as mutually replaceable [9,31] but the differential

regulation of both genes was not investigated. Further work is thus

needed to decipher (i) if, beside adhesion to host cells, gonococcal

PilC1 and PilC2 variants promote qualitatively different host cell

responses, and (ii) how the regulation of both pilC genes is in

control of the cellular response. The future development of

experimental models for the ecological niches of Nme and Ngo,

involving different cell types as well as the extracellular matrix, will

help to shed new light on this central, but poorly investigated,

aspect of neisserial interaction with the human host.

The different responses elicited by meningococcal infection

among various cell types can be regarded as a hallmark of

neisserial infection. Our data showing EGFR degradation in

ME180 cells upon meningococcal infection contrast with previous

data on gonococcal infection of HEC-1-B and A431 cells showing

EGFR accumulation [19]. Specificities in cell-type response to

neisserial infection was also described for other cellular pathways

such as membrane shedding upon gonococcal infection, which is

seen with ME180 cells but could not be observed on Hep2 cells

[22]. Only a fraction of ME180 cells are susceptible to PilC2-

mediated infection whereas virtually all cells are infected through

PilC1. We hypothesised that a particular physiological state of the

cell would be responsible for this phenomenon. Although our

search for a link with the cell cycle was unconclusive, recent work

from other groups has shown that gonococcal infection of

epithelial cells, including ME180 cells, is increased for cells in

interphase (G1, S or G2) rather than in M or G0 of the cell cycle

[37].

Taken together, we show that, unlike PilC1 that enables

meningococcal attachment to many epithelial or endothelial cells,

the meningococcal PilC2 protein selectively mediates adhesion to

restricted cell types. Moreover, the different cellular response

mediated by PilC1 and PilC2, combined with the independent

regulation of both variants of the same protein, suggests a new

model for the fine-tuning of host cell behaviour by the

meningococcus during infection.

Materials and Methods

Bacterial strains and media
Nm2C4.3 is a derivative of Nme strain 8013, a serogroup C,

class 1 strain [38]. This strain is piliated and adherent to human

cells, Opa-, Opc-, PilC1+ and PilC2+. Neisseria were grown at

37uC in a 5% CO2 atmosphere on GC medium (Difco-BD, NJ,

USA) containing Kellogg’s supplement [39]. For selection of

meningococcal strains, kanamycin was used at a concentration of

100 mg/ml, erythromycin at 2 mg/ml, chloramphenicol at 10 mg/

ml and tetracycline at 1 mg/ml. The PilE-defective mutant (PilE-)

of Nm2C4.3 has been previously described [11], as well as the

PilC-null (PilC-) derivative [34]. Nm604a (PilC1pC1+/PilC2-) and

Nm910f (PilC2pC1+/PilC1-), the isogenic derivatives of the

Nm2C4.3 strain expressing solely either pilC1 or pilC2 under the

control of the endogenous pilC1 promoter, showing an inactivated

wild type pilC2 locus (pilC2::ermAM) and harbouring an aphA3

kanamycin resistance cassette downstream of the expressed pilC

gene, were previously described and allowed to investigate the

respective role of each protein independently from regulation

specificities [34]. Piliation and sequence of pilin gene, expression

of capsule and absence of both Opa and Opc were verified.

Unrelated to strain 8013, the FAM20 meningococcal strain is
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piliated, expresses both PilC1 and PilC2 and belongs to capsular

serogroup C. The meningococcal FAM20 derivatives FAM20.1

(PilC1-/PilC2wt+) and FAM20.2 (PilC1wt+/PilC2-) were previ-

ously described [32] and kindly provided by A.B. Jonsson.

FAM20.1 and FAM20.2 are cassette mutagenesis defective

mutants that express either pilC1 or pilC2 under the control of

their respective endogenous promoters, in contrast to Nm604a and

Nm910f derivatives of the Nm2C4.3 strain that express pilC1 or

pilC2 under the control of an identical promoter. They were

restreaked on chloramphenicol-containing agar GC plates and no

additional engineering was performed on these strains.

Construction of strains harbouring inducible pilC genes
Meningococcal derivatives of Nm2C4.3 expressing IPTG-

inducible pilC1 and pilC2 genes were engineered as previously

described for a pilC1 inducible strain, allowing tight control of PilC

expression [15], with the difference that both recombinant PilC

variants carried a 6-HIS tag at the amino-terminal end of the

mature protein. Briefly, the previously described Nm2C4.3

derivatives Nm604a and Nm910f, expressing either pilC1 or pilC2,

were used for the construction of pilC-inducible strains. The

endogenous pilC1 promoter region was replaced by an IPTG-

inducible promoter (gift of H. S. Seifert), carrying a tetracycline-

resistance cassette together with the 59-moiety of either pilC1 or

pilC2. Oligonucleotides used for inserting the region coding for a

6-His tag at the amino-terminal end of the mature PilC protein

were: C1N-HIS-APA (59-GGG CCC AGG CGCA AAC CCA

TCA CCA CCA TCA TCA CAG TAA ATA CGC TAT TAT

CAT GAA CGA A-39), C2N-HIS-APA (59-GGG CCC AGG

CGC AAA CCC ATC ACC ACC ATC ATC ACA ACA CCT

ATC CAT ACG TTA TTG TAA TG-39), and CR328BsiWI (59-

GAA ACC TTG CCG TAC GGC GGC AGG TAG GT-39).

Constructs were made in E. coli and subsequently introduced in

Nme using natural transformation competence and selection of

transformants with erythromycin, kanamycin and tetracycline, as

the concentrations listed above. Under conditions of IPTG

induction, both resulting strains NmPilC1ind (PilC1ind+/PilC2-)

and NmPilC2ind (PilC2ind+/PilC1-) exhibited phenotypes similar

to those of the corresponding mother-strains expressing solely one

PilC variant, and the nucleotide sequence of each pilC gene was

verified. Similarly to previously described strains [15], virtually no

expression of PilC was detected in the absence of induction. The

T4P-related phenotypes (piliation and adhesion level to epithelial

cells) of the resulting NmPilC1ind and PilC2ind strains are shown

in Figure S1.

Cell culture and adhesion assays
The cell lines used in the experiments were ME180 human

cervix carcinoma (ATCC HTB-33), HeLa human cervix carcino-

ma (ATCC CCL-2), human uterus endometrium adenocarcinoma

HEC-1-B cells (ATCC HTB-113) and human bone-marrow

endothelial HBMEC cells. The ME180 cells were maintained in

McCoy’s 5A medium supplemented with L-glutamine and 10%

FCS. HeLa cells were cultured in RPMI-1640 medium supple-

mented with 2 mM L-glutamine and 10% FCS. HEC-1-B cells

were cultured in minimum essential medium supplemented with

2 mM L-glutamine, 0.1 mM non essential amino acids, 1 mM

sodium pyruvate and 10% FCS. HBMEC cells [40,41] were

kindly provided by C. R. Hauck (Zentrum für Infektionsforschung,

Universität Würzburg, Würzburg, Germany), and cultured in

DMEM Glutamax supplemented with 10% FCS, 7.5 mg/ml

endothelial-cell growth supplement (Sigma), 7 IU heparin and

10 mM Hepes (pH 7.4) on gelatin-coated plates. Cells were grown

at 37uC in a humidified incubator under 5% CO2.

For adhesion counts, cells were grown in 24-well plastic cell

culture dishes to sub-confluency. Monolayers were washed with

medium and bacteria were added to the cells at a multiplicity of

infection (MOI) of 100, as for other end-point adhesion

experiments. Infection was performed in medium without FCS.

Infected and non-infected monolayers were centrifuged for 3 min

at 120 g to synchronise infection, and incubated at 37uC in 5%

CO2. At the end of incubation time (up to 3 hours depending on

experiment), infection was stopped and non-adherent bacteria

were removed by washing the cells three times with medium. Cell-

associated bacteria were quantified after cell lysis with 1% saponin

in medium. Colony forming units (CFU) were determined by

plating serial dilutions.

For immunofluorescence experiments, cells were cultured on

collagen-coated glass coverslips and infected as described for

adhesion counts. At the end of infection time, infected cells were

rinsed three times with PBS to remove non-adherent bacteria and

immediately fixed with 3.7% paraformaldehyde (PFA), before

immunostaining.

Live cell-imaging
Live imaging adhesion assays were performed with ME180 cells

grown in 35 mm cell-culture plastic dishes (BD Falcon, Bedford,

MA, USA). One day prior to the experiment, cells were seeded at

a density of approximately 16104 cells/cm2 (30–50% confluency).

Three hours before infection, culture medium was replaced by

warm RPMI medium. Infection was performed with freshly grown

bacteria resuspended in RPMI medium with sufficient time given

(10–30 min) so that piliated bacteria displayed twitching activity.

Microscopic detection of twitching activity was deemed an

indicator of the establishment of bacteria-cell interaction. Cell

monolayers were infected at an MOI of 50 since incubation was

carried out for up to 5 hours without washing nor disturbing

infection of the monolayer. Time-lapse live imaging was

performed with a ZEISS Axiovert 200 microscope, using a 40x

objective. Imaging was performed with a time lapse of 30 seconds

throughout the experiment, which allowed tracking of individual

cells before and throughout infection. Addition of bacteria to the

medium interrupted cell monitoring for less than one minute. In

order to ensure minimal interference with cellular adhesion and

migration processes, ME180 cells were devoid of any plasmid

constructs and experiments were all made using the same brand of

dishes. For adhesion experiments with strains carrying inducible

pilC constructs, 1 mM IPTG was added to the bacteria after

approximately 2 hours of established bacteria-cell interaction, and

maintained until the end of the experiment.

Image analysis
Image analysis was performed using the ImageJ software and

the plug-in ‘‘Manual Tracking’’ from Fabrice Cordelières, Institut

Curie, Orsay (France). For velocity analysis, results are expressed

in mm/min.

Proteins and immunoblotting
For Western blot analysis, antibodies recognising the following

proteins were used (1:1000 dilution): phospho-EGF receptor (Tyr-

992) (Cell Signaling 2235), EGF receptor (Cell Signaling 2232) and

ATP synthase (BD Biosciences 612516). Cell lysates were resolved

by 10% sodium-dodecyl-sulfate (SDS)-poly-acrylamide gel elec-

trophoresis and transferred to poly-vinylidene difluoride mem-

branes. After blocking with Tris-buffered saline containing 0.1%

Tween 20 and 5% non-fat dry milk, membranes were probed with

specific antibodies. Proteins were visualised with peroxidase-
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coupled secondary antibody (1:1000 dilution) using the ECL

system (Amersham).

Immunofluorescence of infected cells
After 5 min fixation with 3.7% PFA, cells fixed to glass

coverslips were treated as previously described [34]. A Phalloidin-

A635 probe (Molecular Probes) and primary antibodies recognis-

ing the following antigens were used (1:1000 dilution): Cdc42

(Santa Cruz SC8401) or meningococci (rabbit anti-‘‘Rou’’ serum

recognising the whole bacteria).

Supporting Information

Figure S1 Phenotypes associated with PilC1 or PilC2 induction

in N. meningitidis. T4P-associated phenotypes (adhesion to human

cells and piliation) were investigated for meningococcal strains

upon induction of either PilC1 (strain NmPilC1ind) or PilC2

(strain NmPilC2ind) with IPTG. Control strains are wild-type

Nm2C4.3 (WT) and, respectively, non/poorly piliated defective

PilE/PilC mutants. A: Adhesion to either ME180 or HeLa cells

was measured after 1-hour incubation (MOI 100) in the presence

of IPTG concentrations ranging up to 1 mM (representative

experiment). Meningococcal adhesion to ME180 cells was

dependent on either PilC1 or PilC2 expression. However, as

expected, adhesion to HeLa cells was exclusively restricted to

PilC1-expressing strains. B: Liquid-grown bacteria were tested for

the presence of pili after 1H of induction with IPTG, using a

polyclonal anti-pilin antibody. For both NmPilC1ind and

NmPilC2ind strains, piliation correlates with IPTG-controlled

induction of PilC1 or PilC2.

Found at: doi:10.1371/journal.pone.0006834.s001 (0.45 MB TIF)

Figure S2 Clonal permissivity of ME180 cells to PilC1- or

PilC2-mediated infection. Adhesion assays with either PilC1- or

PilC2-expressing meningococci (strains Nm604a and 910f, respec-

tively) were performed on 17 (a–q) single-cell derived ME180

populations (MOI 100). For each cellular clone, the percentage of

cells permissive to infection is indicated for each meningococcal

strain. Controls are early (p-4) and late (p-26) passages of ME180

cells, as well as two populations derived from 100 pooled ME180

single cells (100-A and 100-B). No difference was observed for

single-cell derived populations and controls.

Found at: doi:10.1371/journal.pone.0006834.s002 (0.10 MB TIF)

Video S1 Live-imaging of ME180 cells infected with strain

NmPilC1ind. ME180 cells were infected with meningococcal

strains NmPilC1ind (PilC1ind/PilC2-) that expresses pilC1 under

the control of an IPTG-inducible promoter. Cells were monitored

continuously before infection (in the absence of IPTG), after

addition of infecting bacteria (MOI 50, no IPTG), and after the

induction of PilC1 expression by addition of IPTG to the medium.

Adhesion to ME180 cells relies on the expression of PilC1, upon

IPTG-mediated induction. However, cellular motility is reduced

in the case of PilC1-mediated infection, whereas it remains

unaffected in the case of PilC2-mediated adhesion (Video S2).

Found at: doi:10.1371/journal.pone.0006834.s003 (1.66 MB RV)

Video S2 Live-imaging of ME180 cells infected with strain

NmPilC2ind. Me180 cells were infected with meningococcal strain

NmPilC2ind (PilC2ind/PilC1-) that expresses pilC2 under the

control of an IPTG-inducible promoter. Cells were monitored

continuously before infection (in the absence of IPTG), after

addition of infecting bacteria (MOI 50, no IPTG), and after the

induction of PilC expression with addition of IPTG to the

medium. Adhesion to ME180 cells relies on the expression of

PilC2, upon IPTG-mediated induction. However, although

cellular motility is reduced in the case of PilC1-mediated infection

(Video S1), it remains unaffected in the case of PilC2-mediated

adhesion.

Found at: doi:10.1371/journal.pone.0006834.s004 (1.56 MB RV)
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