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a b s t r a c t

Allelopathy plays an important role in plant-plant interactions, particularly through
compounds released from litter exudates and decomposition. We conducted a greenhouse
experiment to examine how additions of Cinnamomum septentrionale Hand. Mazz leaf
litter (A) versus leaf litter aqueous extracts (B) can impact Eucalyptus grandis Hill ex Maid
saplings, focusing on growth, physiology and photosynthesis. We show that both A and B
significantly inhibited the growth and photosynthesis of E. grandis saplings, and this in-
hibition strengthened with increasing soil A content (range from 0 to 120 g pot�1) and
concentrations of B (range from 0 to 80 g L�1). Additions of leaf litter or its aqueous ex-
tracts decreased chlorophyll content and intercellular CO2 concentration (Ci) while sto-
matal conductance (Gs) increased, reflecting that non-stomatal limitation might be the
reason for the reduction of the photosynthetic rate. After treatment with A, the peroxidase
(POD) and superoxide dismutase (SOD) activity were reduced, while there was a reduction
in POD and non-changed SOD activity after treatment with B. Furthermore, sugar and
proline levels declined under both A and B treatments. This study demonstrates that both
A and B of C. septentrionale influenced the growth, chlorophyll synthesis and photosyn-
thesis of E. grandis saplings, and caused oxidative damage in E. grandis. The Synthesis Effect
(SE) indicates that B has stronger allelopathic effect than A under the same treatment. This
stronger allelopathic effect of C. septentrionale leaf litter aqueous extracts than its
decomposing leaf litter can be reflected by greater damage to membrane systems, and
greater reductions of both chlorophyll content and photosynthesis on treated plants.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Allelopathy is an interference mechanismwhere living or dead plant materials release chemical substances that inhibit or
stimulate the growth of other plants (May and Ash, 1990; Harper, 1977; Schenk et al., 1999; Vivanco et al., 2004; Das et al.,
2012; Mushtaq et al., 2013). The chemical substances (allelochemicals) can be either actively released by plant exudation
(Bais et al., 2003, 2006) or passively produced during the decomposition process of plant residues (Singh et al., 1999;
Bonanomi et al., 2006). Many previous studies have reported that aqueous extracts from leaves or roots of Eucalyptus uro-
phylla S.T. Blake, Nepeta meyeri Benth., Mikania micrantha H.B.K. and Potentilla acaulis L. presented a risk to seedling
germination and growth (Fang et al., 2009; Mutlu and Atici, 2009; Wu et al., 2009; Zhang et al., 2015), of M. micrantha and
Juglans regia L. affecting antioxidant enzyme activity andmalondialdehyde (MDA) content (Li and Jin, 2010; Cui et al., 2013), of
Acacia melanoxylon R. Br. influencing quantum efficiency of open PSII reaction centers (Fv/Fm) and quantum yield (FPSII) of
photosystem II of target plants (Hussain et al., 2011). In addition, the chemical substances produced by leaves and shoots
decomposing in soil could potentially affect a seedling’s growth (Ruprecht et al., 2010; Huang et al., 2012, 2013), resistance
physiology (Huang et al., 2012), phenology (Chen et al., 2014) and photosynthesis (Wu et al., 2012; Huang et al., 2015).
Bonanomi et al. (2006)’s study of four plant tissue functional groups for 25 species found that phytotoxicity varied strongly
among plant tissue functional parts and was higher for leaves than for roots.

Cinnamomum septentrionale Hand. Mazz is a member of the Lauraceae family, and is an evergreen broadleaf tree species
that in China primarily grows in areas with an average temperature of 14 �C and with precipitation over 800 m, such as the
Sichuan Basin, south Shanxi Province, south Gansu Province, and Hunan Province, China (Zheng, 1983; Huang et al., 2013).
Few grasses survive beneath and near C. septentrionale forests, potentially because of chemical substances released by C.
septentrionale (Paul et al., 2010). The leaves of the plant have a camphor fragrance, and distillation of its leaves yields a mix of
terpenoids, alkanes, esters, phenols, alcohols, ketones and steroids (Fan et al., 2009; Huang et al., 2013; Yang et al., 2016).
Vitamin E, camphor, phytol, (�)-alpha-terpineol, 16-Hentriacontanone, 1,8-Cineole and bicyclogermacrene are the major
components (Huang et al., 2013). In recent years, the number of plantations of Eucalyptus grandis Hill ex Maid have increased
rapidly, with a number of them being established near C. septentrionale forests or on cutover land formerly covered by C.
septentrionale. Our previous studies have reported that leaf litter of C. septentrionale can release many allelochemicals into the
soil during the decomposing process and may significantly inhibit the resistance physiology, biomass and morphology of
Brassica rapa L., the growth of Zea mays L., and the growth and photosynthesis of E. grandis saplings (Huang et al., 2012, 2013,
2015; Yang et al., 2016). However, the potential allelopathic effects of C. septentrionale leaf litter on resistance physiology of E.
grandis saplings was not examined. Further, themethods of leaf litter addition and aqueous extract watering have beenwidely
applied to investigate the allelophathic effects. But there is a lack of knowledge onwhether these twomethods have different
intensity of influence on target plants.

In the present experiment, we transplanted E. grandis into pots in which the soil either (1) contained C. septentrionale leaf
litter or (2) was watered with a leachate water solution of C. septentrionale to examine (i) the potential allelopathic effects of
decomposing leaf litter (A) of C. septentrionale and its leaf litter aqueous extracts (B) on resistance physiology and photo-
synthesis characteristics of E. grandis saplings, and (ii) whether the influence of the plant’s allelopathy on E. grandis’ physi-
ological characteristics differed between A and B.

2. Methods

2.1. Leaf materials and receptors

Leaf litter of C. septentrionale was collected from a 27-year-old C. septentrionale plantation in the Teaching and Research
Base of Sichuan Agricultural University, Ya’an, China, during the peak time of litter drop (from the end of April to mid May
2011). The collected dead leaves were air dried and stored. Then the dried leaves were cut into fragments of approximately
1 cm2 prior to the experiment. E. grandis saplings (produced via tissue culture) were obtained from a nursery in Mingshan
County, Sichuan Province, China. The average height and basal diameter of the saplings were 17.1 ± 2.79 cm and
1.74 ± 0.17 mm, respectively (see Fig. 1).

2.2. Soil and containers

Local common sandy soil was used, with basic physical and chemical properties as follows: pH 7.85, organic matter
24.382 g kg�1, total nitrogen 0.662 g kg�1, total phosphorus 0.665 g kg�1, total potassium 5.571 g kg�1, rapidly available
phosphorus 14.726 mg kg�1, and rapidly available potassium 15.146 mg kg�1. White plastic planting containers, 25 cm in
diameter and 25 cm in tall, were used.

2.3. Preparation of aqueous leaf extracts

A fine brush was used to clear the soil from the blade surface of C. septentrionale leaves. After air-drying, the leaves were
cut into small pieces approximately 1 cm2 and then ground into fine powder using a plant grinding machine (Model FW-100
Multi-function grinder, Beijing, China). The powdered leaves were thenweighed andmixed with distilled water at one of four



Fig. 1. Experimental design and set-up.
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concentrations and held at room temperature for 48 h, with agitation every 4 h. Solution concentrations produced in this way
were 0, 26.7, 53.3, and 80.0 g of leaves per L of water.

2.4. Experimental design

The potted seedling experiment was run in a greenhouse at the Research Base of Sichuan Agricultural University, Ya’an,
China. Two treatments were used: (A) C. septentrionale leaf litter fragments were mixed with soil and placed into pots (at 6 kg
of soil per pot and the pot size is 25 cm in diameter and 25 cm in tall), intowhich E. grandis saplings were then transplanted or
(B) E. grandis saplings were transplanted into the same pots with same amount of soil, and then 500 mL of C. septentrionale
leaf litter leachate solutionwas used to water the soil in the pots, applied on three dates (i.e., April 24, 2011; May 9, 2011; and
May 24, 2011).

As background, note that the annual amount of C. septentrionale leaf litters produced in the field is approximately
7.2 t ha�1, which primarily falls in May. This equates to 40 g per pot for the size pots used in this experiment. However,
because field litter concentrations vary due to stand densities and site conditions, as well as some disturbances, such as use of
land for wind power or other human activities, litters varied among sites in the plantation or among stands. Therefore, we
tested four levels of leaf litter fragments (CK: 0 g pot�1, A1: 40 g pot�1, A2: 80 g pot�1 and A3: 120 g pot�1), with five replicates
for each litter level. And the same levels and number of replicates were also tested for leaf litter leachate solution and these
four levels equate to 500mL leaf litter leachate solutionwatering the soil three times (CK: 0 g L�1, B1: 26.7 g L�1, B2: 53.3 g L�1

and B3: 80.0 g L�1). The E. grandis saplings were watered every 2e3 days with HH2 soil moisture meter (ML2x, GBR) to
monitor the soil moisture and maintain the soil volumetric moisture content at 18%.

2.5. Index measurement and methods

On April 23, 2011 (T0), E. grandis tissue culture saplings of nearly identical size were transplanted into pots (1 plant per
pot), and the initial height and basal diameter wasmeasured. The height, basal diameter, chlorophyll content (of fresh leaves),
and physiological characteristic parameters were determined on June 30, 2011 (T1), at which time the morphology of E.
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grandis saplings among treatments appeared differently. For this process, we measured four growth parameters: (1) stem
diameter: measured near the soil surface; (2) plant height: measured from soil surface to the top; (3) relative basal diameter
growth (RBDG): determined by subtracting the basal diameter measured at T0 from the basal diameter measured on T1; and
(4) relative height growth (RHG): measured by subtracting the height on T0 from the height on T1.
2.6. Determination of chlorophyll content

Mature leaves were collected for pigment extraction, and 1 g of fresh leaf (0.1 g) of each E. grandis plant was cut into pieces
and soaked in 30 mL of 80% acetone for 24 h (with three replications for each plant). The acetone-chlorophyll solution of each
plant was decanted in a container and kept at room temperature under dark conditions. The Chl content (Chl a and Chl b) of
the filtered solution was measured at 663 nm and 645 nm simultaneously using a Mapada UV-3200PC spectrophotometer
(Shanghai, China). Total chlorophyll (Chl aþb) was calculated by the method of Porra et al. (1989). The fresh mature leaves
were oven dried for 24 h at 105 �C and used to express the Chl aþb as mg g�1 of dry weight (DW).
2.7. Photosynthesis measurement

The photosynthetic parameters of E. grandisweremeasured on a sunny day between 09:00 and 13:00 h. The blade angle of
natural growth was maintained during the measurement process.

The net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci)
were measured using a Li-6400 portable photosynthesis system (Li-Cor Inc., USA). The CO2 concentration, temperature, and
PPFDwere maintained at 400 mmol CO2mol�1, 25 �C and 1500 mmolm�2 s�1, respectively. Measurements were repeated until
we obtained at least fifteen stable readings for each of the marked fresh mature leaves.
2.8. Enzymes extraction and assays

Approximately 0.10 g fresh weight (FW) of ground leaves were mixed with 8.0 mL of 50 mmol L�1 Na2HPO4eNaH2PO4
buffer (pH 7.8) including 1.0 mM EDTA and 2% (w/v) polyvinylpyrrolidone with a chilled mortar and pestle. The mixture was
centrifuged at 15, 000�g for 15min at 4 �C and the supernatant was used for the determination of enzymatic activities (Wang
et al., 2013).

Total superoxide dismutase (SOD) activity was determined by measuring a solution’s ability to inhibit the photochemical
reduction of nitroblue tetrazolium (NBT), following the method of Hu et al. (2013). The reaction mixture (3 mL) contained
50 mM of phosphate buffer (pH 7.8), 0.1 mM of EDTA, 13 mM of methionine, 75 mM of NBT, 2 mM of riboflavin, and 0.05 mL of
enzyme extract. Two blank test tubes were set with phosphate buffer instead of enzyme extract. Riboflavin was added to the
reaction mixture. Tubes were shaken and illuminated with two 20-W fluorescent tubes (as controls, one blank test tube was
illuminated, and another one was kept in dark). After the reaction proceeding for 15 min, the lights were switched off and the
tubes covered with a black cloth. Absorbance of the reaction mixtures was recorded at 560 nm. SOD activity was expressed as
SOD units per mg of protein by the method of Hu et al. (2013).

Peroxidase (POD) activity was determined as the method described by Zhang et al. (2013). First, 500 mL of 10 mM of
phosphate buffer (pH 6.0), 0.28 mL of guaiacol and 0.19 mL of 30% H2O2 were mixed. Three mL of this mixture was added to
0.2 mL of enzyme extract to initiate the reaction. The change in absorbance was recorded at 470 nm, at 1 min intervals, for
5 min. One unit of POD activity was expressed as POD units per min and mg of protein (Hu et al., 2013; Zhang et al., 2013).
2.9. Extraction and determination of non-enzymatic antioxidants

Proline content was determined according to Bates (1973) and Jim�enez et al. (2013) with a few modifications. Approxi-
mately 0.25 g FWof ground leaves were mixed with 5 mL of 3% aqueous sulfosalicylic acid at 100 �C for 10 min. After cooling,
samples were centrifuged at 3, 000�g for 10 min at 4 �C. The mixture reagent was prepared with 2 mL of glacial acetic acid
and 2 mL of 2.5% acid ninhydrin solution. Two mL of supernatant were added to 4 mL mixture reagent and boiled for 30 min.
After cooling, 4 mL of toluenewere added with subsequent separation of the toluene phase. The absorbance was recorded for
each sample at 520 nm with a Mapada UV-3200PC spectrophotometer using toluene as a blank for background correction.
The proline concentration was calculated according to Liu et al. (2013). Proline content was expressed as mg g�1 of DW.

The soluble sugar content in leaves was determined as described by Jim�enez et al. (2013) and Liu et al. (2013), with a few
modifications. Approximately 0.20 g FW of ground leaves were placed in a test tube containing 8 mL distilled water, and
incubated in a water bath at 100 �C for 30 min. After extraction, the mixture and its repeated rinse liquid were filtered into a
volumetric flask, and diluted to 50 mL with distilled water. The anthrone colorimetric method was used to quantify the total
soluble sugar according to Dubois et al. (1956) using a Mapada UV-3200PC spectrophotometer at 630 nm. The amount of
soluble sugars was expressed as mg mg�1 DW.
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2.10. Determination of lipid peroxidation

The level of lipid peroxidation was expressed in terms of malondialdehyde (MDA) concentration by thiobarbituric acid
(TBA) reaction as described in Bhaskaran and Panneerselvam (2013), with minor modification. Approximately 0.10 g FW of
ground leaves was mixed in 8 mL of 5.0% (w:v) trichloroacetic acid (TCA) at 4 �C, and the mixture was centrifuged at 4000�g
for 10min. Then, 2mL of 10% TCA containing 0.6% (w:v) TBAwas added to 2mL of the supernatant. Themixturewas heated at
95 �C for 30min and then quickly cooled on ice. The contents were centrifuged at 4, 000�g for 10min and the absorbancewas
measured at 450, 532 and 600 nm using a Mapada UV-3200PC spectrophotometer. The MDA concentration was determined
by its molar extinction coefficient (155 mM�1 cm�1) and the results were expressed as mmol MDA g�1 FW.

2.11. Statistical analysis

Using the rate of inhibition (RI) according toWilliamson and Richardson (1998), the synthesis of the allelopathic effects of
C. septentrionale leaf litter on E. grandis saplings was measured as follows:

RI ¼ 1� C=TðT � CÞ or RT ¼ T=C � 1 ðT <CÞ

where T is the value of the treatment group, and C is the value of the contrast group. RI > 0 indicates facilitation, and RI < 0
indicates inhibition. The absolute value of RI represents the intensity of the effect. Finally, the Synthesis Effect (SE) of one
treatment was calculated as the arithmetic mean value of all indices (RBDG, RHG, chlorophyll content, physiological and
photosynthetic parameters).

An analysis of variance (ANOVA) of the data was performed using a one-way ANOVA and an LSD test for multiple mean
comparisons. All data were examined for normality using the one-sample Kolmogorov-Smirnov test and the homogeneity of
variances and were log-transformed to correct deviations from these assumptions when necessary. Statistical analysis was
performed using the SPSS version 16.0 software (SPSS Inc, USA). The results were considered statistically significant at
P < 0.05 (see Fig. 1).

3. Results

3.1. Morphology

The relative basal diameter growth (RBDG) of both A and B (A, E. grandis saplings under effects of decomposing leaf litters
of C. Septentrionale; B, E. grandis saplings under effects of C. septentrionale leaf litter aqueous extracts) were significantly
reduced (P < 0.05), and under treatments levels A3 and B3 (120 g pot�1 C. septentrionale leaf litter by litter or 80 g L�1 leachate
applicationmethods) growth decreased by 57.2 and 47.4%, respectively, compared with the control (CK), (Fig. 2a). The relative
height growth (RHG) of both A and B was also dramatically reduced, and in treatment levels A3 and B3 height growth
decreased by 33.6 and 49.1%, respectively, compared with the control; however, there was no difference in height growth
between A1 (40 g pot�1), B1 (26.7 g L�1) and the control (Fig. 2b).

3.2. Photosynthesis and Chl content

The net photosynthetic rates (Pn) of E. grandis trees under treatments A and B were also significantly reduced (P < 0.05),
with the degree of reduction increasing with the level of decomposing C. septentrionale leaf litter (A) and with increasing
concentration of C. septentrionale leaf litter aqueous extract (B). Specifically treatment levels A3 and B3 reduced net photo-
synthesis by 12.2 and 37.9%, respectively, compared with the control (Table 1). The stomatal conductance (Gs) of E. grandis
under treatments A and B was strongly increased (RI: A1 ¼ 0.356 < A2 ¼ 0.503 < A3 ¼ 0.609;
B2 ¼ 0.112 < B1 ¼ 0.169 < B3 ¼ 0.489), whereas intercellular CO2 concentration (Ci) was significantly reduced (RI:
A1 ¼�0.014 > A2 ¼�0.032 > A3 ¼�0.074; B1¼�0.002 > B2 ¼�0.029 > B3 ¼�0.083). The transpiration rate (Tr) value for the
A (decomposing leaf litter) treatment gradually increased, and for treatment levels A2 and A3 Tr increased by 21.8 and 44.5%,
respectively, compared with the control, but the Tr of the B (leaf litter aqueous extracts) treatment was significantly reduced;
in treatment level B3, the transpiration rate was reduced by 44.1% compared with the control.

The chlorophyll content of E. grandis showed a significant decline with increasing concentration of the leaf litter aqueous
extracts of C. septentrionale (RI: B1 ¼ �0.423 > B3 ¼ �0.477 > B2 ¼ �0.540), and the Chl content of A3 was also reduced (RI:
A3 ¼ �0.135), whereas there was no significant difference between levels A1, A2 of the decomposing leaf litter treatment and
the control (Fig. 2c). These results suggest that both the decomposing C. septentrionale leaf litter and its aqueous extracts
significantly affected the chlorophyllous composition, thereby inhibiting photosynthesis.

3.3. Antioxidant enzymes

To investigate the action of the A and B treatments on allelopathic stress effects on E. grandis, levels of antioxidant enzyme
activity were determined (Fig. 2d and e). The activity of peroxidase (POD) was reduced both with increasing leaf litter levels



Fig. 2. Effects of different leaf litter treatments (A: decomposing leaf litters of C. septentrionale; B: C. septentrionale leaf litter aqueous extracts) on the (a) relative
basal diameter (RBDG), (b) relative height growth (RHG), (c) chlorophyll content, (d) Peroxidas (POD) activity, (e) superoxide dismutase (SOD) activity, (f) proline
content, (g) soluble sugar content and (h) malondialdehyde (MDA) content of E. grandis saplings. Different letters indicate significant differences between
treatments (P < 0.05; a>b > c).
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(A) and increasing litter leachate concentrations (B); however, B showed the stronger effect on the level of POD activity (RI:
A1 ¼ �0.316 > A2 ¼ �0.401 > A3 ¼ �0.407 > B3 ¼ �0.680 > B2 ¼ �0.688 > B1 ¼ �0.766).

The activity of superoxide dismutase (SOD) was significantly inhibited by decomposing leaf litter (A) (RI:
A3 ¼�0.124 > A2 ¼�0.234 > A1 ¼�0.302), whereas there was no significant difference in SOD activity for litter leachates (B),
among B1, B2, B3 or CK (Fig. 2e).



Table 1
Effects of Cinnamomum septentrionale leaf litter (A: decomposing leaf litters of C. septentrionale; B: C. septentrionale leaf litter aqueous extracts) on the net
photosynthetic rate (Pn), stomatal conductance (GS), intercellular CO2 concentration (Ci) and transpiration rate (Tr) of Eucalyptus grandis saplings. The means
with the same letter are not significantly different (one-way ANOVA, N ¼ 15, P < 0.05, a>b > c).

Leaf
litter
content
(g
pot�1)

Pn GS Ci Tr

(mmol CO2 m�2

s�1)
RI
Rate of
Inhibition

(mol H2O m�2

s�1)
RI
Rate of
Inhibition

(mmol CO2 mol�1) RI
Rate of
Inhibition

(mmol H2O m�2

s�1)
RI
Rate of
Inhibition

A 0(CK) 10.198 ± 1.778 a e 0.334 ± 0.068 c e 310.100 ± 26.450 a e 6.547 ± 2.147 c e

40 9.475 ± 0.732 ab �0.071 0.519 ± 0.376 b 0.356 305.867 ± 6.906 a �0.014 6.437 ± 2.252 c �0.017
80 8.959 ± 1.584 b �0.121 0.672 ± 0.329 ab 0.503 300.067 ± 10.010 ab �0.032 7.969 ± 1.754 b 0.178
120 8.954 ± 2.181 b �0.122 0.854 ± 0.265 a 0.609 287.133 ± 15.324 b �0.074 9.460 ± 1.188 a 0.308

B 0(CK) 10.198 ± 1.778 a e 0.334 ± 0.068 c e 310.100 ± 26.450 a e 6.547 ± 2.147 a e

40 9.398 ± 0.508 a �0.078 0.402 ± 0.027 b 0.169 309.400 ± 4.718 a �0.002 6.736 ± 1.107 a 0.028
80 8.803 ± 0.631b �0.137 0.376 ± 0.025 b 0.112 301.000 ± 2.236 a �0.029 6.374 ± 0.445 a �0.026
120 6.330 ± 1.646 c �0.379 0.654 ± 0.052 a 0.489 284.467 ± 11.032 b �0.083 3.662 ± 1.899 b �0.441
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3.4. Soluble sugar and proline content

Proline content was significantly reduced in both of treatments A and B due to allelopathic stress (Fig. 2f). However, the
allelopathic inhibition of proline levels was much stronger in leachate (B) than decomposing leaf litter (A). Proline levels in
treatment levels A3 and B3 were reduced by 40.8 and 73.9%, respectively, compared with the control. The RI values of for the
various levels of treatments A and B were A1 ¼ �0.072 > A2 ¼ �0.350 > A3 ¼ �0.408;
B1 ¼ �0.591 > B2 ¼ �0.635 > B3 ¼ �0.739.

Soluble sugar levels in treatments A and B were significantly reduced (P < 0.05) with increasing concentration of leachate
(B) or levels of decomposing litter (A), and sugar levels in treatment levels A3 and B3 decreased by 47.4 and 42.7%, respectively,
compared with the control (Fig. 2g).

3.5. Membrane lipid peroxidation

The C. septentrionale leaf litter aqueous extracts affected the malondialdehyde (MDA) content of E. grandis (Fig. 2h). A
significant increase in MDA concentration was observed in treatment B, under increasing leachate concentrations
(B2¼ 0.103 < B3¼ 0.161 < B1¼0.212), whereas therewas only a slight decrease but no significant change inMDA in treatment
A (decomposing leaf litter) (A1 ¼ �0.154 < A2 ¼ �0.077 ¼ A3 ¼ �0.077).

3.6. Synthesis effect

The negative synthesis effect of the C. septentrionale leaf litter on E. grandis saplings, from strongest to weakest was
B3 > B2 > B1 > A3 > A2 > A1. These results indicate that both A and B of C. septentrionale can influence the growth and
physiology of E. grandis saplings. In addition, the strength of effect was related to the leaf litter content, and under the same
leaf litter content, C. septentrionale leaf litter aqueous extracts (B) had a significantly stronger allelopathic effect than
decomposing C. septentrionale leaf litter (A) (Table 2).

4. Discussion

Allelopathic compounds have been effective inhibitors of plant growth, and the relative height and basal diameter growth
of E. grandis saplings in this study were significantly reduced with the increasing amounts of decomposing C. septentrionale
leaf litter (A) and concentration of C. septentrionale leaf litter aqueous extracts (B) (Fig. 2a and b). Previous studies have re-
ported that decomposing leaf litter (Huang et al., 2013; Chen et al., 2014) and aqueous extracts of leaves (Natalia et al., 2008;
Scrivanti, 2010; Zhang et al., 2012; Kato-Noguchi et al., 2013), flowerheads (Hosni et al., 2013), roots and stems (Scrivanti,
Table 2
The synthesis effect of C. septentrionale leaf litter (A: decomposing leaf litters of C. septentrionale; B: C. septentrionale leaf litter
aqueous extracts) on E. grandis saplings.

Leaf litter content (g pot�1) A B

Synthesis effect (SE) Synthesis effect (SE)

40 �0.115 �0.170
80 �0.132 �0.244
120 �0.151 �0.292



W. Huang et al. / Global Ecology and Conservation 21 (2020) e008728
2010) all can suppress the growth of other plants. In the present study, net photosynthetic rate (Pn), intercellular CO2 con-
centration (Ci) and chlorophyll content were significantly inhibited by both A and B, and this inhibition strengthened with
increasing quantity of A and concentration of B, whereas Gs dramatically increasedwith increasing A or B (Table 1 and Fig. 2c).
These results suggest that allelochemicals from C. septentrionale leaf litter can strongly inhibit photosynthesis of E. grandis
saplings through non-stomatal limitations, such as reduced chlorophyll content (Farquhar and Sharkey, 1982; Singh et al.,
2002; Yu et al., 2003; Varone et al., 2012). Furthermore, reductions in photosynthesis may have led to decreased concen-
trations of soluble sugars (Fig. 2g), causing substrate limitation for growth. The allelopathic effect of B on chlorophyll content
and Pn was much stronger than that of the effect of A, which might suggest that water extraction (B) released more alle-
lochemicals thanmicrobes decomposing leaf litter. Huang et al. (2013) reported that the C. septentrionale leaf litter, which was
mixed with soil and used for planting E. grandis, released allechemicals (e.g., terpenoids and phenols) into the soil during
decomposition. The content of 1,8-Cineole was reduced by 96.9% in decomposed C. septentrionale leaf litters compared with
fresh litter. Different concentration of cineole reduced both the germination and growth of Cassia occidentalis L. (Singh et al.,
2002), and in particular 1,8-Cineole severely inhibits mitosis (Romagni et al., 2000). Phenolic allelochemicals have been
shown toweaken the oxygen absorption capacity and photosynthesis rate including leaf transpiration, stomatal conductance,
and intercellular CO2 concentration (Yu et al., 2003; Li et al., 2010).

One of the effects of allelochemicals on a target plant is uncontrolled production and accumulation of reactive oxygen
species (ROS), which causes peroxidation of membrane lipids and membrane damage (Yu et al., 2003; Gniazdowska and
Bogatek, 2005). A reduction of peroxidase (POD) and superoxide dismutase (SOD) activity causes a mass accumulation of
active O2 in plant leaves, which leads to membrane lipid peroxidation and results in destruction of membrane systems
(Hajiboland et al., 2010; Miao et al., 2017; Salah et al., 2019). Furthermore, accumulation of malondialdehyde (MDA) is an
indicator of lipid peroxidation level (Ahmed et al., 2013). After treatment with A, there was no change in MDA with reduced
POD and SOD activity, while there was an increase in MDA with reduced POD and non-changed SOD activity after treatment
with B. This finding suggests that Bmay have a stronger allelopathic effect onmembrane systems than A. The aerial parts of N.
meyeri contain two volatile oils, Germacrene-d and Caryophyllene oxide, which have been reported to reduce the SOD activity
of six weed species and itself (Mutlu et al., 2011). These two allelochemicals also have been identified in leaf litter of C.
septentrionale (Huang et al., 2013). More than 50% of the components of volatile oils extracted from C. septentrionale leaf litter
were terpenes (Huang et al., 2013). Terpenes could affect target plants by inhibiting cellular respiration (Kohli et al., 1998) and
have a phytotoxic effect on germination and growth (Macías et al., 2010). Phenol was occupied 14% of the components of
volatile oils extracted from C. septentrionale leaf litter (Huang et al., 2013). Phenolic allelochemicals have been reported to
inhibit the growth, reduce the photosynthetic products and chlorophyll content (Patterson, 1981), and cause oxidative
damage and the destruction of membrane systems of target plants (Weir et al., 2004), Proline, as an osmolyte, is awell-known
compatible solute that plays a pivotal role in osmotic adjustment in plants (Hoque et al., 2007). Proline and sugar content
decreased significantly with increasing content of A and concentration of B in the present study, which suggests that C.
septentrionale leaf litter did not induce changes in osmotic pressure.

5. Conclusions

In conclusion, both the decomposing leaf litter of C. septentrionale (A) and aqueous extracts of this leaf litter (B) signifi-
cantly inhibited the growth (height and basal diameter), chlorophyll synthesis and photosynthesis of E. grandis saplings, and
caused oxidative damage in E. grandis. Furthermore, B destroyed the membrane systems, whereas A had no effect on MDA
content. The Synthesis Effect (SE) indicates that B has a stronger allelopathic effect than A under the same treatment, and the
inhibition strengthened with increasing concentration of A and B.
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