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Abstract 
The unrestrained use of antibiotics against bacterial infections has accelerated the occurrence of 

resistances in many pathogens. In order to reduce use of antibiotics, sensitive and robust pathogen 

detection is necessary. Bacteriophage tailspike proteins (TSPs) are large, highly stable protein fibers 

with extended binding sites for microbial glycans which makes them a promising design platform for 

bacterial cell surface polysaccharide sensors.  

We analysed TSP from bacteriophage Sf6 in complex with the O-polysaccharide of the pathogen 

Shigella (S.) flexneri. The conformational space populated by the polyrhamnose backbone of the 

S. flexneri O-polysaccharide as studied by an octasaccharide in complex with Sf6TSP could be well 

described with 2D 1H,1H-trNOESY NMR, utilizing a combination of methine-methine and methine-

methyl correlations. The results are in good agreement with the conformations obtained from 

molecular dynamics (MD) simulations. To examine the impact of amino acid exchanges in the glycan 

binding site of Sf6TSP, MD simulations were used to predict increased O-polysaccharide binding 

affinities. We used surface plasmon resonance on S. flexneri O-polysaccharide surfaces to measure 

affinity increases in the obtained mutants. Combining in silico approaches with rapid screening on 

polysaccharide surfaces is thus a promising approach for the design of tailspike protein-based 

pathogen sensors. 
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Introduction 
Improvement of protein properties like stability, enzyme activity or binding affinity can be obtained by 

protein design and engineering techniques.1 Scaffold design is used in de novo approaches to obtain 

proteins with defined geometries2 or with altered binding specificities or enzymatic activities.1 

Experimental techniques rely on randomizing coding DNA sequences by error-prone PCR or directed 

evolution and subsequent selection procedures towards the desired protein property.3 Rational design 

often starts from computational approaches like ROSETTA that utilizes physical energy functions to 

sample the free energy space populated by a given amino acid sequence.4–6 This strategy has been 

further extended by taking into account evolutionary profiles7 or “re-epitoping” of antibodies and 

validation by crystal structure analysis.8 

Proteins binding carbohydrate ligands are an especially important design target. Most cellular 

envelopes are covered with glycan matrices and addressing these surfaces with tailor-made protein-

binders has impact both in diagnostics and therapy.9–12 For engineering of carbohydrate binding 

proteins, phage-display has been employed to modify binding sites for charged carbohydrate 

structures in antibodies.13,14 As another example carbohydrate-binding modules were used as robust 

protein scaffolds with high stability for computational design of high-affinity drug compound binders.15 

The rational design of protein-ligand high-affinity binders depicts a special challenge compared to 

improvement of enzyme specificities or affinities of protein-protein complex formation.15 Moreover, 

the unique amphiphilic and conformational properties of carbohydrate-based ligands impose major 

challenges on modelling protein-glycan complexes.16 Flexible ligands and water network distributions 

impede predictions via docking or Monte-Carlo simulations with rotamer libraries. Algorithms like 

ROSETTALIGAND,17 which are commonly used for other high-affinity design purposes, are in the 

process to be optimized for protein-carbohydrate interactions, i.e. ROSETTADOCK.18 Although 

computationally more expensive, techniques based on molecular dynamics simulations allow for 

higher precision in the description of protein-glycan complexes.19 However, no common strategy exists 

for the automated selection of mutations for design of high-affinity carbohydrate-binding proteins.  

MD simulations were shown to be well suited for sampling elongated carbohydrate ligands in the 

extended glycan binding sites found in bacteriophage cell surface receptor adhesion systems.20–23 

Tailspike proteins (TSP) act as recognition organelles for binding and orientation of bacteriophages 

during infection of the bacterial host.24–26 TSPs have been also used as model systems to 

computationally link solvent network structures to experimental thermodynamic signatures of 

oligosaccharide ligand binding.27 Sf6TSP from bacteriophage Sf6 is a specific receptor of the Shigella 

(S.) flexneri Y O-antigen with the repeat unit (RU) structure [→3)-α-L-Rhap-(1→3)-β-D-GlcpNAc-

(1→2)-α-L-Rhap-(1→2)-α-L-Rhap-(1→].20,28 It is a highly stable trimeric protein with 
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endorhamnosidase activity, producing 

oligosaccharides of mainly 2 RU, i.e. 

octasaccharides, from the S. flexneri O-antigen 

polysaccharide.20,28–30 Sf6TSP has an elongated 

glycan binding site with low affinity towards 

oligosaccharide O-antigen fragments produced 

by hydrolysis. Nevertheless, combination of MD 

simulations, X-ray crystallography and NMR 

spectroscopy showed an octasaccharide binding 

state with a highly flexible reducing end pointing 

towards the enzyme’s active site residues 

(Figure 1).20 These suggested the protein as 

suitable for application of numerical tools for 

affinity prediction.  

The goal of the present study was to characterize 

engineered Sf6TSP variants with increased glycan 

affinity. An enzymatically inactive Sf6TSP variant 

was used as a sensor to detect S. flexneri.9 This pathogen causes dysentery in infants and is an 

important diagnostic target.31–33A high-affinity Sf6TSP would be valuable in improving detection limits 

for lipopolysaccharide (LPS) or O-polysaccharide (PS), the major glycan targets in TSP-based pathogen 

sensors and provide an important addition to antibody-based applications. TSP-based pathogen 

detection has been achieved on microtiter plates with an ELISA-like read-out.9,34 In solution, 

fluorescence amplitude changes upon glycan ligand binding were used to detect O-polysaccharide via 

a cysteine coupled, environment-sensitive fluorescent label in the Sf6TSP binding site.9 A diverse set 

of Sf6TSP mutants with single amino acid exchanges in the binding site was thus available for affinity 

studies in the present work (Figure 1).9 Our study combines MD simulations with NMR data to confirm 

the conformational space sampled by a protein-bound oligosaccharide. Our test set shows that MD 

simulations can link mutations in the Sf6TSP binding site to glycan affinity as experimentally confirmed 

with surface plasmon resonance.  

  

Figure 1. Sf6TSP glycan binding site in complex with 
octasaccharide and set of mutations 
Three subunits of Sf6TSP E366A D366A (pdbID: 4URR, 
gray/brown/silver backbone, cartoon) are illustrated with 
octasaccharide ligand (sticks in green for Rhamnose and light 
blue for GlcNAc) as RU1 and RU2. All residues chosen for a 
cysteine mutation are shown as yellow sticks with the 
corresponding label in red. The catalytic active residue 
positions are depicted in black spheres of D399A (gray chain) 
and E366A (brown chain). 
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Results 

MD simulations show varying glycan ligand flexibilities in different Sf6TSP mutants 

Sf6TSP is a well-studied, weak-affinity carbohydrate binding protein as analysed with NMR, X-ray 

crystallography and MD simulations.20 We used molecular dynamics simulations to analyze the 

conformational space occupied by the protein-bound oligosaccharide ligand in order to make 

assumptions on the affinity to Sf6TSP in different mutational backgrounds. The available Sf6TSP 

cysteine mutant set was based on the O-antigen hydrolysis deficient variant Sf6TSP E366A D399A 

(Sf6TSPEADA). Sf6TSPEADA was crystallized with an octasaccharide ligand previously and is used as the 

reference binding system.20 Moreover, for construction of an S. flexneri O-polysaccharide sensor, single 

cysteine exchanges were introduced into Sf6TSPEADA.9 Five of these mutations (V204C, S246C, T315C, 

N340C and Y400C) lie in close proximity to the octasaccharide binding site, whereas the mutation 

T433C is situated below the reducing end of the octasaccharide binding groove (Figure 1). MD 

simulations had previously shown that oligosaccharide fragments longer than octasaccharides could 

occupy this part of the protein surface, i.e. a modelled dodecasaccharide formed H-bond contacts with 

binding site residues at this proximal position.20 Mutations V204C, T315C and T443C replace 

hydrophobic residues with cysteine as a potential hydrogen bond donor or acceptor whereas S246C, 

N340C and Y400C can potentially influence hydrogen-bonding patterns compared to the reference. All 

Sf6TSP cysteine variants were run in 100 ns MD simulations in TIP3P water in the presence of an 

octasaccharide ligand in the binding site.  

To predict differences in binding affinity, octasaccharide conformations that occurred during the 

simulation were clustered to describe ligand flexibility in the different mutational backgrounds. For the 

Sf6TSPEADA reference octasaccharide complex containing no other mutations, five major ligand 

conformer clusters were defined (Figure 2). In contrast, simulations of V204C, S246C and T315C only 

yielded two major clusters, and these overlaid well with the crystal structure ligand conformer 

(Figure 2a-c). N340C, Y400C and T443C had a larger set of clusters than the reference structure, with 

tilted conformations at the oligosaccharide reducing end that bent away from the central binding 

groove (Figure 2d-f). In addition, the root mean square displacement (RMSD) of the ligand over the 

simulation time reflected different ligand behaviours (Supplementary Figure S1). For Y400C the mean 

RMSD and its standard deviation were notably increased compared to the Sf6TSPEADA reference 

(Table 1). During the 100 ns simulation, the octasaccharide gradually detached from the Y400C mutant 

binding site, suggesting a loss in oligosaccharide affinity. In contrast, ligand fluctuations were reduced 

with mutants V204C and S246C, indicating a less flexibly bound ligand, which may result in increased 

binding affinity. Although simulations with mutants T315C and N340C also showed a decreased mean 

ligand RMSD, here a higher standard deviation was found that might indicate changes in the H-bond 

donor-acceptor equilibrium with no clear indications for an effect on affinity. The T443C mutant 
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showed approximately the same mean RMSD and standard deviation as the Sf6TSPEADA reference. 

Thus, ligand flexibility analysis by MD simulations suggested that Sf6TSP mutations V204C and S246C 

create stronger octasaccharide binders, whereas the Y400C mutation results in loss of glycan affinity. 

Simulations with Sf6TSP N340C, T315C and T443C in contrast did not show ligand conformer deviations 

that were indicative for binding affinity changes in these mutants. 

 

 
Figure 2. Octasaccharide ligands in the Sf6TSP binding site with flexibility analysis from 100 ns MD simulations. 
Typical conformational clusters obtained for oligosaccharide ligands are superimposed onto the ligand pose from crystal 
structure analysis (yellow) from (a) V204C, (b) S246C, (c) T315C, (d) N340C, (e) T443C, (f) Y400C and (g) as the reference 
(E366A D399A). Most prevalent conformers are shown in blue, the full conformational space sampled is illustrated by 
conformers deviating from average (green). Black sticks indicate positions of the residue exchanged in each mutant. 
 

Table 1. Oligosaccharide ligand properties in the Sf6TSP binding site during 100 ns MD simulation 
 Reference V204C S246C T315C N340C Y400C T443C 
RMSD / Åa 1.68±0.37 1.54±0.25 1.21±0.31 1.56±0.43 1.55±0.81 2.61±1.13 1.48±0.38 
# clustersb 5 2 2 2 4(bended) 3(bended) 7(bended) 
Relative H-bond 
occupancyc 

1.00 1.34 1.56 1.03 1.08 1.42 1.01 

# H-bondsd 14 10 11 13 12 14 13 
aRMSD were calculated based on all atoms of the ligand. bNumber of clusters were defined with a cut-off of 1.1 Å. 
cH-bond occupancies calculated by VMD1.9.1. with 3.5 Å distance and angles of 40°. dOnly occupancies above 10 % were 
taken into account.  
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All Sf6TSP cysteine mutants had been probed earlier for thiol-based covalent attachment of 

fluorescent dyes to obtain environment-sensitive glycan-binding sensors for detection of Shigella 

flexneri pathogens.9 Especially the N340C variant had shown high labelling efficiency with N-methyl-N-

[2-[methyl(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]ethyl] (NBD). Moreover, Sf6TSP N340C-NBD 

(Sf6TSPNBD) had the most notable fluorescence amplitude increase when exposed to S. flexneri 

O-polysaccharide Y, making it a promising candidate for a S. flexneri sensor. We therefore included 

Sf6TSPNBD in our MD simulations to study the glycan ligand pose in presence of the covalently attached 

fluorescent dye. For this, we created a parameter set for the NBD-modified cysteine at position 340, 

using either the AMBER or GAFF force field or a mixture of both. The three force field sets resulted in 

the same flexibility behaviour of label and ligand during the simulations (Supplementary Figure S2). In 

simulations with the ligand-free Sf6TSPNBD, most of the time, the label was buried in the cleft between 

the two subunits forming the glycan binding site (Figure 3a). In presence of the octasaccharide, the 

label shows increased flexibility (Figure 3b) and is moved out of the cleft and the aromatic ring of the 

label is situated in parallel to NAG2 of the octasaccharide ligand. This results in a new CH,π-interaction, 

distorting the ligand from its original binding site position towards the label (Figure 3c). Additionally, 

the octasaccharide ligand had a notably increased RMSD in the binding site compared to the complex 

with the unlabelled protein (Figure 3d). 

Figure 3. Sf6TSP N340C labelled with NBD simulated with octasaccharide ligand for 100 ns.  
(a) Most abundant NBD label position (purple sticks) in a ligand free simulation. The label is buried between two protein 
subunits (white surface, grey cartoon) underneath the ligand binding site. An octasaccharide shown in grey thin sticks marks 
the ligand position in the crystal structure pdbID 4URR. (b) RMSD of the fluorescent label NBD covalently attached to Cys340 
of Sf6TSP with (red) or without ligand (black). (Solid: average RMSD, Dashed: standard deviation). (c) Most abundant NBD 
label position (dark red sticks) in the presence of an octasaccharide (Rhamnoses: green, GlcNAc: blue). (d) Octasaccharide 
ligand RMSD in the Sf6TSP N340C binding site without label (black) or with label (red) depicted as in B. The figure shows the 
results with the AMBER force field parameters. 
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2D 1H,1H transfer NOESY NMR confirms torsion angles at oligosaccharide methyl and 

methine groups 

The S. flexneri Y octasaccharide contains α-L-rhamnosyl residues to a large extent. Their methyl groups 

at C6 enable increased flexibility of glycans compared to contributions of other, fully hydroxylated 

monosaccharide building blocks.21,35 In the 2D 1H,1H-trNOESY NMR analysis, the methyl groups at C6 

facilitate a unique conformational landscape to be revealed, where correlation times between fast-

spinning methyl groups and methine protons are significantly shorter than for the methine-methine 

interactions in the oligosaccharide;36 this is the basis for using different correlation times in the analysis 

of the experimental NMR data. We analysed the Sf6TSP-octasaccharide complex and were able to 

confirm the observed ligand conformations obtained from MD simulations (Figure 4). Evaluation of the 

2D 1H,1H-trNOESY derived proton-proton distances (Supplementary Table S1) resulted in two radial 

ϕ,ψ-distributions with two intersection points. An overlay with glycosidic linkage conformations 

previously determined for the S. flexneri O-serotype Y octaccharide with MD simulations and X-ray 

crystallography then could define the main populated φ,ψ torsional angle conformational space in the 

Sf6TSP-bound octasaccharide. Only linkage 7 had a less defined glycan geometry, which is in 

agreement with the increased flexibility of the reducing end as observed in simulation and 

crystallographic B-factors.20 Additionally, effective proton-proton distances agree in each data set 

between simulation and NMR cross-relaxations (Supplementary Table S1).  

We could hence extend the NMR methodological repertoire with this 2D 1H,1H-trNOESY technique and 

analyse conformational behaviour of an octasaccharide ligand in the Sf6TSP binding site. Methine-

methyl correlations of rhamnose can be used to describe different glycan geometries in the φ,ψ-space. 

MD simulations further revealed the possible oligosaccharide conformers and thus reliably defined the 

glycan conformational space occupied when fixed in a defined protein environment. 
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Figure 4. Distance curves for the octasaccharide describing the loci in terms of the glycosidic torsional angles φ and ψ 
obtained by 2D 1H,1H transfer NOESY NMR 
Two-dimensional φ,ψ distance-plots are shown for all glycosidic linkages, denoted by superscripts in the S. flexneri 
O-serogroup Y octasaccharide with the structure α-L-Rhap-(1→3)(1)-β-D-GlcpNAc-(1→2)(2)-α-L-Rhap-(1→2)(3)-α-L-Rhap-
(1→3)(4)-α-L-Rhap-(1→3)(5)-β-D-GlcpNAc-(1→2)(6)-α-L-Rhap-(1→2)(7)-α-L-Rhap. Conformational range calculated from 
methine trNOEs (blue lines) and methyl trNOEs (red lines) is shown, as determined from the effective proton-proton 
distances rij presented in Supplementary Table S1. Overlaid are conformations obtained from six non-redundant X-ray 
models (green circles) or MD simulations with AMBER (+, black pluses) or CHARMM (□, black squares) force fields. In 
addition, conformers calculated from MD simulations with the Sf6TSP D399N are shown (x, black crosses, AMBER). These 
data points were obtained from Kang et al., 2016.20 For the panels of linkages (2) and (6) the red color gradient corresponds 
to the sum of the overlapped NOE cross-peak volumes of the NAG2-acetyl to RAM3-H4 and NAG6-acetyl to RAM7-H4. Red 
depicts the total volume of the overlapped signals and white corresponds to NOE being absent or stronger than the sum 
of the overlapped cross-peak volumes (cf. Supplementary Table S1). 
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Multivalent Sf6TSP binding on surface-conjugated O-antigen polysaccharides assessed 

with surface plasmon resonance 

To construct a platform for rapid screening of the different Sf6TSP binding site mutants, we set up a 

multivalent S. flexneri O-polysaccharide Y (SfY) surface plasmon resonance analysis platform. We 

validated binding properties to these surfaces with the polysaccharide hydrolysis deficient reference 

Sf6TSP double mutant E366A D399A prior to screening of the mutants. 

The SfY O-polysaccharide was prepared from lipopolysaccharide by acidic hydrolysis of the lipid A part. 

This results in a polysaccharide with an inner core Kdo residue as the new reducing end.37 However, 

trials to directly couple this O-polysaccharide via a hydrazide-modified carboxymethyl dextran surface 

were unsuccessful. To obtain sufficient amounts of surface immobilized SfY O-polysaccharide, mild 

oxidation with sodium periodate was thus required prior to coupling.38 To rule out that the oxidation 

step had altered the SfY O-polysaccharide, we tested periodate-oxidized SfY O-polysaccharide as an 

enzyme substrate for the Sf6TSP wild type enzyme. We found comparable amounts of oligosaccharide 

products produced both from oxidized and non-oxidized SfY polysaccharide samples, in agreement 

with an unaltered carbohydrate substrate structure (Supplementary Figure S3).  

We then assessed protein binding to the SfY 

O-polysaccharide modified surface with surface 

plasmon resonance (SPR) and found specific 

binding of the Sf6TSP reference protein 

(Figure 5). As Sf6TSP is a homotrimeric protein 

with three independent glycan binding sites 

between the subunits, we assume a multivalent 

interaction. A heterogeneous ligand parallel-

binding model (1:2 model) provided the best 

description of the data (χ2~380), whereas simple 

1:1 binding could be excluded (Supplementary 

Figure S4a). Fitting the association and 

dissociation isotherms to the 1:2 model thus 

resulted in two equilibrium dissociation 

constants of KD1=19.7±1.8 nM and 

KD2=5.4±1.9 µM (Figure 5). Reasonable similar 

values were obtained when evaluating the 

equilibrium signals at 178 s of injection, i.e. KD1=37.0±23.0 nM and KD2=6.2±1.3 μM (Supplementary 

Figure S4a). Multivalent binding was additionally confirmed by concentration dependent data analysis, 

resulting in a curved, triphasic distribution in the Scatchard plot (Supplementary Figure S4b). 

Figure 5. Surface plasmon resonance analysis of Sf6TSP 
binding to S. flexneri O-polysaccharide Y. 
SPR response curves obtained by injections of serial 
dilutions of Sf6TSPEADA (0.08-18 μM subunit concentration, 
grey, average of triplicate measurements with standard 
deviations shown for every 10th data point). Curves were 
fitted with a 1:2 heterogeneous binding model (red).  



11 
 

Furthermore, the kinetic constants obtained revealed a good agreement of the second dissociation 

rate, koff,2≈0.024-0.027 s-1, with the koff of 0.0335 s-1 that was obtained previously from binding 

equilibrium relaxation analysis with fluorescence spectroscopy in the same system.20 In all kinetic 

curve-fitting analyses, a systematic deviation of the fit from the data was observed, mainly due to a 

slight, but constant signal increase over the whole incubation time. However, this binding curve shape 

did not change with different incubation times and protein flow rates over the surface, excluding mass 

transport effects or unspecific binding (Supplementary Figure S4c).39,40 The polysaccharide surface was 

highly stable and more than 300 experiments were performed on one single surface (Supplementary 

Figure S4d). All measurements were repeated on two chip surfaces (1 and 2) resulting in comparable 

kinetic constants (Table 2, Supplementary Table S2). However, equilibrium dissociation constants 

calculated from the SPR signals at the end of injection deviated from those calculated from kinetic 

data. This illustrates that batch-to-batch surface variations between the two chips apparently led to 

varying amounts of unspecific binding. This seemingly influenced the absolute signals evaluated in the 

equilibrium binding isotherm, whereas the kinetic constants remained unaffected. Nevertheless, all 

equilibrium dissociation constants from equilibrium and kinetic experiments were in the same order 

of magnitude. We conclude that the O-polysaccharide surfaces provided a robust and rapid SPR 

platform to screen for protein binding both with kinetic or equilibrium methods.  

Table 2. Dissociation constants for Sf6TSPEADA derived from 1:2 heterogeneous ligand binding kinetics and equilibrium 
Exp. 

# 
kon,1 

103M-1 s-1 

kon,2 

103M-1 s-1 
koff,1 

10-3s-1 
koff,2 

10-3s-1 
KD1, eq. 

nM 
KD1, kin. 

nM 
KD2, eq. 

µM 
KD2, kin. 

µM 
1 154 ± 73.8 5.1 ± 5.8 1.50 ± 0.02 24.7 ± 0.018 85 ± 37 9.7 ± 6.2 47.1±100 4.88±18 
2 157 ± 13.6 5.07 ± 1.59 3.09 ± 0.01 27.3 ± 0.004 37 ± 23 19.7 ± 1.8 6.15±1.33 5.38±1.87 

 

Sf6TSP mutant binding screened on SfY polysaccharide surfaces with SPR 

Different ligand flexibilities in the protein complexes were computer-generated from MD simulations. 

To experimentally access affinities of complex formation, we screened the Sf6TSP mutant set on the 

SfY polysaccharide surface described above. The automated set-up allowed to collect all SPR signals in 

triplicate at three different protein concentrations, i.e. nine individual measurements were carried out 

for each mutant to obtain a comparison of maximum response signals (Figure 6a and Supplementary 

Figure S5a). As described above, binding of the Sf6TSP reference to SfY O-polysaccharide surfaces 

showed multivalent binding with two equilibrium dissociation constants of ~10-8 M and ~10-6 M. For 

rapid and simple evaluation of the mutant binding strength, we thus chose to compare variations in 

the maximal response signals of each injection, assuming that all mutants exhibit the same non-specific 

signal of around 4 % on the reference channel on an individual chip surface (Supplementary 

Figure S5b).41 The maximal responses for Sf6TSP binding scaled with the concentration in all mutants. 

Five out of six mutants showed similar or slightly increased binding signals compared to the reference. 

Only Y400C bound to the polysaccharide surface with evidently reduced response. We therefore 
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related the distribution of maximum SPR signals between the different mutants to ligand flexibilities 

calculated from MD simulations. Mean values of positional RMSD were similar for all mutants that 

showed similar or higher SPR responses compared to the reference (Figure 6b). However, individual 

ligand fluctuations were decreased for V204C and S246C that showed the highest SPR surface binding 

responses. In contrast, Y400C had a notably increased mean ligand RMSD with pronounced 

fluctuations, in agreement with this it showed a low SPR response, indicating weak binding to the SfY 

polysaccharide surface (Figure 6c).  

To obtain a stronger differentiation between the mutants, we analysed hydrogen bond patterns from 

simulation in addition to ligand flexibility. These could only in part corroborate the estimate of binding 

strength (cf. Table 1 and Supplementary Table S3). For example, Y400C showed high hydrogen bond 

occupancies, although this mutant was a poor binder on the SfY polysaccharide surface. In contrast, 

mutants T315C, N340C and T443C, with a maximum SPR response similar to the reference, displayed 

a similar hydrogen bond occupancy. In addition, V204C and S246C had higher occupancies in 

agreement with higher SPR signals. This illustrates that analysis of the hydrogen bonding pattern alone 

was not sufficient to predict the affinity of complex formation. Rather, our simulations showed that 

single mutations on a protein surface can change completely or partly the observed hydrogen bonding 

patterns in number and occupancies, leading to individual energetic signatures of glycan complex 

formation in a given mutational background. 

 
Figure 6. Interaction data derived by SPR of cysteine mutants in comparison with ligand flexibilities from MD simulations 
(a) Maximal responses of injection with Sf6TSPEADA cysteine mutants measured as triplicates for protein concentrations of 
0.08 (blue), 0.8 (grey) and 8 μM (red). Horizontal lines mark the maximal response of Sf6TSPEADA in the respective 
concentration. (b) Time dependent fluctuations of RMSD of the octasaccharide in the binding site of the corresponding 
cysteine mutant depicted as box plots. Red solid lines show the mean RMSD. Upper, middle and lower black lines indicate 
75 %, median and 25 % of the fluctuation, respectively. Error bars represent one standard deviation and black circles (thick 
lines) all outliers of the fluctuation. (c) Correlation plot of the maximal responses of the mutants V204C (red), S246C (green), 
T315C (yellow), N340C (blue), Y400C (purple), T443C (cyan) and EADA (black) with 8 µM concentrations against the mean 
ligand RMSD.   
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Discussion 
In this work, affinity enhancements in an elongated protein binding site for a complex bacterial cell 

surface oligosaccharide were probed with experimental and computational methods. The 

computational prediction was based on evaluation of ligand flexibilities during 100 ns simulations. MD 

results were further validated by the analysis of trNOE at methine and methyl signals. They are 

particularly useful for the conformational analysis of the deoxysugar rhamnose. Rhamnose is a main 

constituent in many microbial polysaccharides, for example rhamnose containing biofilms were shown 

to effectively block antimicrobial peptides from entering biofilms.42 

Bacteriophage tailspike proteins recognize bacterial cell surface glycans with high specificity, which 

predestines them as sensor proteins for pathogens. Typical optical signal read outs might rely on 

peptide or fluorescent tags, the latter were coupled to the TSP of choice via genetically engineered 

cysteine residues.9 Cysteine mutants of the bacteriophage Sf6TSP addressing S. flexneri serogroup Y 

therefore provided the test set for affinity screens of the Sf6TSP glycan binding groove. Typically, 

cysteines do not occur with high frequency in carbohydrate binding sites.43,44 In our mutant set, all 

single amino acid exchanges were located in loops adjacent to the elongated binding site. Combining 

experimental and computational methods, we could identify the mutant Sf6TSP S246C as binder with 

an increased affinity due to decreased ligand flexibility. Serine 246 participates in the hydrogen bond 

contacts to the carbohydrate ligand via its backbone oxygen, consequently, exchange for a cysteine 

increased this hydrogen bond occupancy due to the reduced electronegativity of sulphur.45 

Cysteines may form intermolecular disulphide bridges and are thus often excluded from rational design 

approaches.46 Consequently, we cannot exclude that a cysteine at position 246 favours intermolecular 

disulphide bond formation. Sf6TSP is a native trimer with three glycan binding sites, oligomerisation 

would further increase this multivalence and have an avidity effect, even if single glycan binding sites 

might be buried in the higher protein oligomer assembly.47,48 Nevertheless, the computational analysis 

of the Sf6TSP S246C binding site clearly shows that already on the level of a single oligosaccharide 

binding site the increased affinity is most probably linked to the reduced ligand flexibility. 

In the case where a fluorescent label is present in the binding site, MD simulations moreover revealed 

the binding conformations that lead to fluorescence amplitude gain upon glycan binding in the Sf6TSP 

fluorescent sensor. Here, an additional CH,π-interaction between the fluorescent label and a GlcNAc 

residue in the octasaccharide occurred. Consequently, for the environment sensitive label NBD, an 

increased fluorescent signal can be observed, because glycan binding creates a more hydrophobic 

environment when shielding the aromatic ring from the solvent.49,50 

MD simulations in this work stressed that the experimentally accessible affinity changes of Sf6TSP 

mutants can be well reproduced by a ligand flexibility analysis in the complex. This approach is 

successful because it implicitly contains all changes in binding site water distribution and hydrogen 
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bond formation without the need of their explicit analysis. A mobile water positional network on the 

protein surface is accessible with MobyWat analysis that is based on evaluation of short solvent MD 

simulations.27,51,52 In Sf6TSP, however, this method could not distinguish water networks between the 

different mutants analysed, stressing that more sophisticated network analysis algorithms are needed 

in the future (Supplementary Figure S6).53 

No general rule exists that assigns favourable or unfavourable contributions of water molecules to the 

driving forces for ligand binding.54 In Sf6TSP, the glycan interaction site is formed by flexible protein 

loops that form the binding groove between two protein subunits.28 The tailspike protein from 

bacteriophage HK620 has a very similar overall fold compared to Sf6TSP.30 However, in HK620TSP the 

binding site lies not between subunits, but in a shallow surface depression formed by a rather 

hydrophobic ß-sheet, accommodating a ligand glucose branch in an occluded surface cavity.28,55 As a 

consequence, in HK620TSP the redistribution of water molecules has a major impact on the enthalpy-

entropy compensation during the ligand binding event.27 In Sf6TSP, the binding site is less dominated 

by water molecules than in HK620TSP,20 and the flexible loop regions can easily adjust to the ligand 

during complex formation without major solvent rearrangements being necessary. Oligosaccharide 

binding to Sf6TSP thus occurs as the most populated solution conformer,21 and already subtle ligand 

conformational changes may favour dissociation, resulting in an overall low affinity.56  

The mutant design approach in this work was rationally based on structural examination and 

computational analysis by conventional MD simulations and the RMSD measure to characterize ligand 

affinity in a “rule of thumb” manner. The use of accurate free energy methods for quantitative 

comparison across all mutants would imply a considerable and non-trivial extension of the 

computational part. Alchemical methods can be reliable in predicting the stability of polypeptides up 

to 20 amino acids.57 In our case however, the frequent detachment of the glycan ligand to be expected 

during alchemical amino acid morphing may lead to significant undersampling. Either the increase in 

computational power is improved,58 or the alchemical transformation are treated in a way that avoids 

undersampling from the beginning, by imposing suitable restraints on the ligand, which is clearly 

beyond the scope of the present work but will be reconsidered in a subsequent publication. Here, 

improved docking algorithms might be compared which described complex formation with long 

oligosaccharides, for example docking of a SfY pentasaccharide on a FAB fragment.59 Also ROSETTA-

based techniques have been extended to include carbohydrate moieties on glycoproteins and glycan 

ligand docking.60 However, for all techniques applied it is important to emphasize that a reliable 

computational description of carbohydrate-protein complexes must be linked to the appropriate water 

scoring functions or include water explicitly.61  

For the rapid comparison of proteins, differing in their affinity to a certain ligand a measurement set-

up with options for screening is needed, in this work we probed mutants on surfaces functionalized 



15 
 

with bacterial polysaccharides. In their functional context, bacteriophage TSPs are indispensable tail 

parts make the mature phage an efficient, multivalent particle for adsorption to a bacterial surface to 

start infection.23,62 Surface immobilized polysaccharides as in the SPR set-up in this work resemble this 

situation during phage infection. Similarly, with eukaryotic viruses, attachment studies were 

performed on glycosaminoglycan surfaces.63 Compared to dissociation constants obtained at single 

ligand binding sites in a solution set-up, avidity effects occur upon multivalent protein binding to 

multivalent ligand surfaces. This results in notable decrease of dissociation constants, more than two 

orders of magnitude have been reported in surface plasmon resonance set-ups.64 Hence, this 

prominent binding signal amplification is suitable for detecting small affinity changes at single sites 

within a multivalent system as analysed in this work.  

For Sf6TSP, SPR signals obtained upon interactions with surface-immobilized O-antigen polysaccharide 

were best described by a bivalent heterogeneous binding model with two dissociation constants of 

~20 nM and ~6 μM. Furthermore, a curved Scatchard plot was obtained as it has been typically 

described for multivalent binding interactions.65,66 However, the rather simple, solution-based binding 

model we employed to fit our SPR data in this work neglects additional effects that occur during surface 

association, like geometrical and ligand surface density parameters. Models that are more 

sophisticated therefore should be used that take into account the reaction volume and a probability 

factor for the multivalent binding event.67 Considering these parameters results in a set of differential 

equations, in which also heterogeneous ligands can be included.68 For example, this model 

adjustments well described binding of the trivalent S-layer protein SbsB to the surface-immobilized 

Geobacillus stearothermophilus secondary cell wall polymer.69  

In conclusion, we employed an interdisciplinary approach of NMR, MD simulations and SPR interaction 

measurements for the assessment of subtle affinity differences in an elongated carbohydrate-binding 

site. Importantly, multivalent binding observed for Sf6TSP on the activated SfY polysaccharide surface 

resembles the interactions of Sf6 bacteriophage with LPS covered S. flexneri surfaces. Here, the typical 

bimodal O-polysaccharide chain length distribution found in S. flexneri LPS results in a heterogeneous 

glycan ligand surface.70 Similar SPR-based studies with carbohydrate-binding proteins have been 

described.65,71–73 This emphasizes that multivalence effects are often necessary to provide the 

necessary amplification of specific protein-carbohydrate interactions in their functional context. Our 

work stresses that in a similar manner, these effects can be exploited to explore affinity fine tuning for 

protein-carbohydrate complexes. 
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Methods 

Materials and Chemicals 

All chemicals were of analytical grade, and ultrapure water was used throughout. Lipopolysaccharide 

of S. flexneri Y was a gift from Nils Carlin (Scandinavian Biopharma, Solna, Sweden). O-polysaccharide 

was obtained from LPS by acid hydrolysis as described.74 Cloning and purification of Sf6TSP mutants 

have been described.9,29  

Molecular dynamics simulations 

Structures were parameterized with the AMBER03 force field for proteins75 and the GLYCAM06 force 

field (v06j-1) for glycans.76 Simulations were based on two subunits with one binding site cleft of the 

inactive mutant Sf6TSPΔN E366A D399A (residues 109-622, pdbID: 4URR) and on six cysteine mutants 

thereof in complex with octasaccharides of Shigella flexneri O-polysaccharide serogroup Y 

(Supplementary Table S4).20 Parameters for N340C-NBD conjugates were generated with the 

ANTECHAMBER package using the AMBER and GAFF force field (v1.7) and a mixture for side chain 

residue (amber) and fluorescent label (gaff) (chimeric).77,78 The simulation complex was placed in an 

orthogonal box with the dimensions ~140x100x120 Å3. Simulations were run with the TIP3P water 

model79 and charges were equalized with 18 sodium ions.  

MD simulations were carried out using the GROMACS4.5.5 program package.80–82 After energy 

minimization to a maximum force smaller than 1000 kJ/mol/nm (steep descent) the system was 

equilibrated in two simulations with 100 ps each. All simulations were run for 1 ns under isothermal-

isobaric (NPT) ensemble conditions with Parrinello-Rahman barostat coupling (reference pressure of 

1.0 bar and coupling time constant of 0.5 ps)83 and a Langevin thermostat (reference temperature 

298 K and coupling time constant 1.0 ps). Simulation time steps were 2 fs. Hydrogen bonds and protein 

backbone were constrained except for loops and turns using the LINCS algorithm in GROMACS with 

1000 kJ mol-1 Å-2.84 All systems were simulated for 100 ns.  

Binding site residues were defined as all amino acids in a 5 Å distance of octasaccharide ligand in Sf6TSP 

E366A D399A (pdbID: 4URR). The tool g_rmsf was used to calculate fluctuations of the carbohydrate 

ligand. The tool for clustering structures g_cluster by GROMACS4.6.4 was used to derive ligand 

clusters. Water positional analysis was performed using MobyWat51,52 as described previously.27 

Hydrogen bond occupancies were scaled between individual complexes by summing up all hydrogen 

bond occupancies above a threshold of 10 % and by normalizing this sum to 1.0 for the Sf6TSP 

reference. 

NMR spectroscopy 

NMR experiments were performed at 56 °C on a 500 MHz Bruker Avance NMR spectrometer equipped 

with a TCI Z-Gradient cryoprobe using a sample containing Sf6TSP D399N (0.12 mM) and the 
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octasaccharide ligand (1.87 mM) in D2O sodium phosphate buffer (100 mM, pD=7) as described 

earlier.20 Besides the previously recorded 2D 1H,1H transfer NOESY spectrum with a mixing time of 

120 ms, additional experiments were carried out with mixing times of 40, 60 and 100 ms. The cross-

peak volumes were integrated and normalized by the average of calculated auto-peak volumes at t=0 

of resonances RAM1-H1, RAM3-H4, NAG2-H3, RAM5-H1, NAG6-H1, NAG6-H3 and RAM7-H4.20 The 

data were used to construct NOE build-up curves, from which proton-proton cross-relaxation rates 

were extracted as the slope of a second order polynomial fit at t=0.85 Due to differences in effective 

correlation times of protons in the protein-bound oligosaccharide, namely, between the ones in fast 

spinning methyl groups36 and those from methine protons, two different reference distances were 

used in the analysis relying on the isolated spin-pair approximation:86 2.59 Å of Me6-H5 of residue 

RAM1 and 2.49 Å H1-H2 of residue RAM1. Like this, the experimentally derived proton-proton 

distances in the bound oligosaccharide were obtained. 

For construction of trNOE-derived distance maps, an octasaccharide molecular model retrieved from 

the Sf6TSP wild type MD simulations with AMBER force field was used as a template for calculating 

atom-atom distances.20 Molecular models covering the full glycosidic conformational space were 

generated in Vega ZZ (release 2.3.1.2)87 by scanning the torsional angles φ and ψ in 10° intervals. 

Additional models were generated for relevant methyl groups for which, in addition to φ and ψ, also 

the torsion angle related to the methyl group, centred at the C5-C6 bond in RAM or the CO-CH3 bond 

in NAG, was rotated for a total of 120° in 10° increments. Relevant atom-atom distances for each 

conformation in the trajectories were extracted using VMD 1.9.1. The trNOE-derived maps were then 

generated in MATLAB (R2012a, Mathworks) using the atom-atom distances as input. For methyl 

groups, the internuclear distances of the three methyl protons were averaged according to r−6 with 

respect to each other and to the methyl bond rotation, thus giving a single effective distance at a given 

φ and ψ torsion angle. The atom-atom matrices were used to calculate theoretical trNOE, by assuming 

ISPA86 and using a RAM1-H1 − RAM1-H2 distance of 2.49 Å and a RAM1-H5 − RAM1-Me distance of 

2.59 Å, for methine-methine and methyl-methine atom pairs, respectively. The distance maps were 

generated by plotting the contours for which calculated trNOE±10% is equal to its experimental 

counterpart on a 2D grid. 

Surface plasmon resonance 

Prior to surface immobilization, O-polysaccharide preparations were oxidized with sodium periodate. 

Shigella flexneri Y polysaccharide was prepared as stock solutions of 10 mg ml-1 in water and diluted in 

1:10 10 mM sodium phosphate pH 6.2 and 10 mM sodium periodate for oxidation for 30 min at 

25 °C.38,88 Ethylene glycol was added to 20 % (v/v) final concentration to stop the oxidation process and 
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oxidized polysaccharide was purified by a desalting column (PD10, GE Healthcare, Freiburg, Germany), 

concentrated by ultrafiltration (Amicon 4k, Millipore, Darmstadt, Germany) and stored at -20 °C. 

All SPR experiments were run in a Reichert SPR 7500 DC (Reichert, Buffalo, NY, USA) at 25 °C with all 

solutions filtered (0.45 μm) and degassed. Hydrazide activation of carboxymethyl dextran surfaces 

(CMD200D, Xantec, Düsseldorf, Germany) was performed as described previously.38 Oxidized 

polysaccharide (10 mg ml-1 in water) was injected on the hydrazide surface for 20 min at 4 μl min-1, 

washed with 10 mM sodium phosphate pH 6.0 for 7 min and reduced with 50 mM sodium 

cyanoborhydride (0.1 M in acetate buffer pH 4.0) for 20 min.  

Interaction experiments were performed at 20 μl min-1 in 50 mM sodium phosphate pH 7.0. Protein 

samples were injected for 3 min and dissociation was monitored for 5 min. The surface was 

regenerated by a 4 min injection of 100 mM sodium acetate pH 4.0. Data were processed with the 

program TraceDrawer1.7 (Reichert) and association and dissociation rate constants were fitted based 

on models for bivalent equilibrium and heterogeneous binding models (Supplementary Figure S7). 
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Figure S1: RMSD fluctuations over 100 ns MD simulations with 

octasaccharide ligand 

 
Root mean square deviation of the octasaccharide ligand for cysteine mutants of Sf6TSPEADA with V204C (a), S246C (b), T315C 
(c), N340C (d), T443C (e), Y400C (f) and EADA as reference (g). The red solid line depicts the mean RMSD with the red dashed 
lines corresponding to one standard deviation. Numbers depict the mean of the RMSD with one standard deviation.   
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Figure S2: MD simulation fluctuations of NBD labels in different force 

fields 

 
Root mean square displacement of the NBD label connected to Sf6TSP N340C were calculated from 100 ns simulation without 
ligand (black) and with ligand (red) with solid lines depicting the averaged RMSD and dashed lines as standard deviations with 
GAFF parameters (a) and with a chimeric version of AMBER and GAFF (b). Root mean square displacement of the 
octasaccharide ligand in the Sf6TSP N340C binding site without label (black) or with label (red) calculated from 100 ns 
simulation with GAFF parameters (c) and with a chimeric version of AMBER and GAFF (d). 
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Table S1: NMR cross-relaxation rates σ and effective proton-proton 

distances rij (Å) of TSP-octasaccharide complex Sf6TSP D399N. 
Proton pair σ rij MD Sf6TSPwt 

AMBER 
MD Sf6TSP D399N 

AMBER 
MD Sf6TSPwt 

CHARMM 
RAM1-H1 - NAG2-H3  0.583 2.36 2.27 2.44 2.20 
RAM1-H1 - RAM1-H2a 0.418 2.49 2.54 2.49 2.53 
RAM1-H2 - NAG2-Ac 0.110 3.27 3.92 3.85 3.48 
RAM1-H4 - RAM1-Me 0.359 2.69 2.93 2.70 2.92 
RAM1-H5 - RAM1-Mea 0.451 2.59 2.58 2.59 2.63 
NAG2-H1 - NAG2-H2 0.315 2.62 3.05 3.08 2.96 
NAG2-H1 - NAG2-H3 0.313 2.62 2.93 2.83 2.52 
NAG2-H1 - RAM3-H2 0.552 2.38 2.63 2.49 2.56 
RAM3-H1 - RAM4-H2 0.375 2.54 2.35 2.41 2.26 
RAM3-Me - RAM4-H1 0.159 3.08 3.87 3.66 3.24 
RAM4-H1 - RAM4-Me 0.346 2.70 2.59 2.71 2.60 
RAM4-H1 - RAM5-H3 0.864 2.21 2.38 2.21 2.56 
RAM4-Me - RAM5-H2 0.302 2.77 3.20 3.41 4.08 
RAM5-H1 - NAG6-Ac 0.097 3.34 3.78 3.44 3.78 
RAM5-H1 - NAG6-H3 0.459 2.46 2.39 2.68 2.41 
RAM5-H1 - RAM5-H2 0.450 2.46 2.69 2.66 2.46 
RAM5-H4 - RAM5-Me 0.315 2.75 2.88 2.94 2.98 
RAM5-H5 - RAM5-Me 0.412 2.63 2.54 2.60 2.65 
NAG6-H1 - RAM7-H2 0.645 2.32 2.41 2.20 2.29 
RAM7-H1 - RAM8-H2 0.287b 2.58 2.66 2.32 2.36 
RAM7-Me - RAM8-H1 0.090b 3.28 4.37 3.70 4.19 

aReference distances; bMeasured from resonances of the α-anomeric form of RAM8 present to 83% in solution. 
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Figure S3: Analysis of oxidized polysaccharide cleavage products by 

reverse phase HPLC 

 
In the reaction vial 1 mg PS was solved in 50 mM sodium phosphate buffer, pH 7 and 20 μg ml-1 Sf6TSPwt were added. The 
reaction was incubated overnight at room temperature. The samples were precipitated with 80 % ice-cold ethanol for 2 h at 
-40 °C and the supernatant was dried in a Speed Vac at 40 °C. Obtained oligosaccharides were labelled in 96 % methanol and 
4 % acetic acid with a final concentration of 6 mM AMC (7-Amino-4-methylcumarin) for 1 h at 37 °C. For reduction 10 mM 
NaCNBH3 in methanol was added and the reaction was incubated overnight. The samples were dried in a Speed Vac and 
oligosaccharides were extracted two times with 50 µL water and injected on the reverse phase column as 1:1000 dilutions.  
Chromatographies were run on a Ultrasphere 5ODS (250 mm x 4.6 mm, Hi-Chrom) analytical column with a Ultrasphere 5ODS 
(45 mm x 4.6 mm, Hi-Chrom) guard column with a flow rate of 1 ml min-1. Buffer A consisted of 0.1 % TFA (v/v) and buffer B 
of 0.1 % TFA (v/v) with 70 % acetonitrile (v/v). A total program of 35 min was run with a gradient from 10-40 % B over 20 min 
followed by a 5 min gradient from 40-100 % B and a reconditioning for 10 min from 100-10 % B.  
Chromatograms were monitored with a RF-10A XL fluorescence detector with an excitation wavelength at 360 nm and 
emission wavelength at 450 nm (Response: 0.5 sec; Gain: x4; Sensitivity: Medium-High; Recorder Range: 1).  
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Figure S4: Surface plasmon resonance data and controls 

 

(a) Maximal response (RUmax) of the curves at different protein concentrations (grey dots) shown as mean of three 
measurements with error bars as one standard deviation. The maxima are fitted with 1:1 (dashed line) and 1:2 Langmuir 
binding isotherms (solid line). (b) Scatchard plot analysis of the data resulted in a curved, triphasic distribution. (c) Sensograms 
of 0.8 μM Sf6TSPEADA injected on immobilized SfY PS on carboxymethyldextran at different interaction times and flow rates: 
1 min50 μl/min; 2 min35 μl/min; 3 min20 μl/min; 4 min17 μl/min; 5 min15 μl/min; 6 min11 μl/min; 
7 min10 μl/min and 10 min7 μl/min. (d) Maximal responses as mean of triplicate measurements with standard 
deviations as error bars against the protein concentration from the first measurements (black circles, upper) and the last 
measurements (grey circles, lower) of Sf6TSPEADA on Chip1. 

 

Table S2: Fitted maximal responses of surface plasmon resonance 

measurements 

Exp. # RUmax,1 kin RUmax,2 kin χ2kin RUmax,1 eq. RUmax,2 eq. R2eq 
1 303 ± 1 713 ± 2 2155 603±79 1252±2491 0.9782 
2 176 ± 1 630 ± 0 382 211±28 632±30 0.9981 
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Figure S5: Surface Plasmon Resonance data from cysteine mutants 

 

(a) Sensograms of 8 μM protein injections over the surface with immobilized SfY polysaccharide (Chip1) of Sf6TSPEADA (black) 
and each of the cysteine mutants: V204C (red), S246C (green), T315C (yellow), N340C (blue), Y400C (purple) and T443C (cyan). 
(b) The maximal responses measured at the end of 3 min. injections on the second chip are depicted for all Sf6TSPEADA cysteine 
mutants on the measurement channel (black) and the reference channel (grey). The unspecific signal on the reference 
channel ranges around 4 % for all protein variants except for Y400C, where the reference is increased to 20 %. However, the 
total signal on the measurement channel is lower for Y400C compared to most of the other cysteine mutants.   
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Table S3: Occupancies of hydrogens bonds between Sf6TSPEADA cysteine 

mutants and octasaccharide ligand  
Protein Ligand EADA-

octa 
V204C-
octa 

S246C-
octaa 

T315C-
octa 

N340C-
octa 

Y400C-
octa 

T443C-
octa 

ALA203-O RAM1-O2  15.27 % 
     

15.87 % 
ARG230-NH1 RAM1-O2  25.65 % 56.49 % 56.89 % 38.32 % 23.15 % 43.01 % 33.03 % 
ARG230-NH2 RAM1-O2  16.67 % 10.18 % 16.37 % 22.46 % 35.13 % 17.56 % 13.97 % 
ARG257-NH1 RAM1-O2  12.87 % 

  
12.48 % 

   

GLU293-OE1  RAM1-O2  
 

28.44 % 31.24 % 
  

22.85 % 10.58 % 
GLU293-OE2 RAM1-O2  28.04 % 67.56 % 23.25 % 

  
67.07 % 

 

ARG230-NH1  RAM1-O3  
    

20.26 % 
  

ARG230-NH2 RAM1-O3  14.07 % 
      

ARG257-NH2 RAM1-O3  13.27 % 
     

11.48 % 
ARG230-NH2  RAM1-O5  10.08 % 26.05 % 

 
10.98 % 

 
18.16 % 11.88 % 

SER246-O  NAG2-O6  
   

10.48 % 
 

18.36 % 30.44 % 
ASP247-OD1 RAM3-O3  29.74 % 89.32 % 39.42 % 31.04 % 42.61 % 

 
22.36 % 

ASP247-OD2 RAM3-O3  31.64 % 
 

32.73 % 58.58 % 37.03 % 91.72 % 50.20 % 
THR248-OG1 RAM3-O4  11.48 % 11.28 % 31.94 % 21.66 % 11.48 % 

  

SER246-O RAM4-O3  73.65 % 69.06 % 71.46 % 45.71 % 49.00 % 46.21 % 65.47 % 
ASP245-O  RAM4-O4  

     
29.44 % 

 

GLN280-NE2  RAM4-O4  
    

16.57 % 
  

GLN280-NE2 NAG6-O7  17.07 % 61.58 % 68.76 % 44.61 % 32.44 % 18.46 % 32.34 % 
TYR282-OH  NAG6-O7        10.48 %       
SER337-OG  RAM7-O4            13.07 %   
GLY339-N  RAM7-O4            18.66 %   
GLN325-OE1 RAM7-O4  26.35 %           19.06 % 
TRP421-NE1  RAM8-O4        19.06 %     13.57 % 
ASP397-OD2  RAM8-O4      75.95 %   41.52 %     
ASP397-OD1  RAM8-O3      61.58 %   32.83 %     
TYR400-OH  RAM8-O3        11.38 %       
TYR400-OH  RAM8-O2    18.16 %           
ASP425-OD1  RAM8-O1            25.75 %   
ASP425-OD2  RAM8-O1          10.68 % 32.24 %   
Relative Occupancy 1.00 1.34 1.56 1.03 1.08 1.42 1.01 
Total number of H-bonds 14 10 11 13 12 14 13 

a Hydrogen bonds in this mutant which are listed as Ser246 are formed by Cys246. 
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Figure S6: Water networks of Sf6TSPEADA cysteine mutants  

 
Water networks were derived from 100 ns simulation with MobyWat and the IDa list selection restricted to the top 20 % in 
the prediction mode. Resulting structures were superimposed with the crystal structure of Sf6TSPEADA and all water within 
5 Å distance to the octasaccharide were selected. Networks are presented as dashed lines showing hydrogen bonds with 
maximal 3.5 Å distance.  

Table S4: Molecular dynamics simulations of Sf6TSP-oligossaccharide 

complexes described in this study 
 

EADA V204C S246C T315C N340C Y400C T443C 
Ligand Octa Octa Octa Octa Octa Octa Octa 
No. atoms system 176007 176015 176004 176001 176004 175999 176001 
No. atoms protein 15102 15092 15102 15096 15096 15082 15096 
No. atoms ligand 177 177 177 177 177 177 177 
No. water 53570 53576 53569 53570 53571 53574 53570 

Octa: [→3)-α-L-Rhap-(1→3)-β-D-GlcpNAc-(1→2)-α-L-Rhap-(1→2)-α-L-Rhap(1→]2 
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Figure S7: Binding models for SPR data evaluation 
Heterogeneous binding: 

𝑑𝑑[𝐴𝐴𝐴𝐴]
𝑑𝑑𝑑𝑑

= �𝑘𝑘𝑜𝑜𝑜𝑜,1[𝐴𝐴]− 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜,1�[𝐴𝐴𝐴𝐴] 

𝑑𝑑[𝐴𝐴𝐴𝐴]
𝑑𝑑𝑑𝑑

= �𝑘𝑘𝑜𝑜𝑜𝑜,2[𝐴𝐴]− 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜,2�[𝐴𝐴𝐴𝐴] 

𝑌𝑌 = [𝐴𝐴𝐴𝐴] + [𝐴𝐴𝐴𝐴] (Recorded signal) 

 

Formulas are reproduced from TraceDrawer Handbook Vers1_6 (Reichert Technologies Life Sciences 

Buffalo, NY, USA). 

Equilibrium binding:  

 

𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,1[𝐿𝐿]
𝐾𝐾𝐷𝐷1 + [𝐿𝐿]

+
𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,2[𝐿𝐿]
𝐾𝐾𝐷𝐷2 + [𝐿𝐿]
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