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SILAC-based quantitative proteomics using mass spectrometry
quantifies endoplasmic reticulum stress in whole HelLa cells
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ABSTRACT

The unfolded protein response (UPR) involves extensive proteome
remodeling in many cellular compartments. To date, a comprehensive
analysis of the UPR has not been possible because of technological
limitations. Here, we employ stable isotope labeling with amino acids in
cell culture (SILAC)-based proteomics to quantify the response of over
6200 proteins to increasing concentrations of tunicamycin in HeLa cells.
We further compare the effects of tunicamycin (5 ug/ml) to those of
thapsigargin (1 uM) and DTT (2 mM), both activating the UPR through
different mechanisms. This systematic quantification of the proteome-
wide expression changes that follow proteostatic stress is a resource for
the scientific community, enabling the discovery of novel players
involved in the pathophysiology of the broad range of disorders linked to
proteostasis. We identified increased expression in 38 proteins not
previously linked to the UPR, of which 15 likely remediate ER stress,
and the remainder may contribute to pathological outcomes.
Unexpectedly, there are few strongly downregulated proteins, despite
expression of the pro-apoptotic transcription factor CHOP, suggesting
that IRE1-dependent mRNA decay (RIDD) has a limited contribution to
ER stress-mediated cell death in our system.

KEY WORDS: Proteomics, SILAC, Unfolded protein response,
Endoplasmic reticulum stress, Tunicamycin

INTRODUCTION

Endoplasmic reticulum (ER) stress is an impairment of cellular
proteostasis, occurring when the cargo capacity of the ER is
oversaturated as an effect of either increased functional demand or
defective protein processing. An unfolded protein response (UPR)
then ensues to restore protein homeostasis (Han and Kaufman,
2017; Walter and Ron, 2011).

The accumulation of misfolded proteins in the ER causes the
activation of three transmembrane ER stress sensors, IRE1 (also
known as ERN1), PERK and ATF6. For PERK and IRE1, activation
is triggered by a reduction in the free concentration of the chaperone
HSPAS (also known as BiP), a negative regulator of ER stress sensor
activation (Bertolotti et al., 2000; Kohno et al., 1993; Kozutsumi
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et al., 1988). Dissociation of HSPA5 enables homodimerization of
both IRE1 and PERK, allowing them to autophosphorylate
(Bertolotti et al., 2000). PERK then phosphorylates the eukaryotic
translation initiation factor 2a (EIF2A), leading to EIF2A inactivation
and repression of global protein synthesis (Harding et al., 1999).
EIF2A phosphorylation also allows a selective increase in translation
of certain mRNAs, including transcription factors ATF4 and CHOP
(also known as DDIT3) (Harding et al., 2000). Autophosphorylation
of IREI activates its endoribonuclease activity, which cleaves the
mRNA of unspliced XBP1 (Itzhak et al., 2014). Ligation of the XBP1
exons by RTCB leads to the production of spliced XBP1, encoding a
transcription factor that drives the expression of a coordinated set of
UPR genes involved in protein folding and degradation (Back et al.,
2005; Lu et al., 2014; Yoshida et al., 2001). The endoribonuclease
has also been proposed to cleave other mRNAs, in a process termed
regulated IRE1-dependent decay (RIDD), but the role of RIDD in
mammalian cells is unclear (Bright et al., 2015; Han et al., 2009).

Upon sensing ER stress, the third ER stress sensor, ATF6,
translocates to the Golgi (Okada et al., 2003; Schindler and
Schekman, 2009), whereupon it is cleaved to release the N-terminal
fragment that enters the nucleus to alter transcription (Haze et al.,
1999; Wu et al., 2007). The combined action of these three branches
of the UPR has been the subject of several studies, with different
interpretations of the cellular output. These studies have focused on
RNA expression levels (Acosta-Alvear et al., 2007, Bommiasamy
et al., 2009; Sriburi et al., 2004), which is certain to be confounded
by the effects of PERK action, whereas looking directly at protein
levels would provide greater clarity on this matter. While initial
proteomic studies were limited by the status of mass spectrometry
(MS) technology (Bull and Thiede, 2012; Mintz et al., 2008), a
more recent proteomic study used a recombinant system to uncover
the direct targets of XBP1 and ATF6, purposefully excluding the
effects of ER stress, IRE1 and PERK activation, as wells as ATF4
and CHOP expression (Shoulders et al., 2013). MS-based
proteomics was also applied to tunicamycin treatment, albeit
combined with chemical proteomics and with a specific focus on
the ER (Fujisawa et al., 2018).

The global cellular reprogramming that accompanies the
imbalance of proteostasis is complex and partially heterogeneous
in different cells (Saito and Imaizumi, 2018a). Several features of
ER stress play a common role in the cell pathology of profoundly
different diseases, such as type 1 and type 2 diabetes, and cancer,
particularly cancers of a secretory cell origin (Harding et al., 2001;
Marre et al., 2018; Yadav et al., 2014). However, despite an
increasing number of proteins and signaling events being implicated
in these connections, many mechanistic links to disease and therapy
are still missing.

We employ MS-based shotgun proteomics to measure changes in
protein abundance at the whole-cell level during ER stress, using
high-accuracy quantitation afforded by stable isotope labeling by
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amino acids in cell culture (SILAC) (Ong et al., 2002). We initially
analyze the effects of treatments that induce proteostatic stress
through entirely different mechanisms, namely the N-glycosylation-
inhibiting drug tunicamycin, the reducing agent dithiothreitol (DTT)
and the sarco/endoplasmic reticulum Ca?*-ATPase (SERCA) pump
inhibitor thapsigargin. We then analyze the proteomic remodeling
induced by treatment with increasing concentrations of tunicamycin
in HeLa, a well-characterized and widely used model where all three
main pathways controlling the UPR are functioning and highly
responsive. Our strategy targets the whole-cell proteome, not selected
organellar fractions, to offer a broad view of the consequences of
stress in different cell compartments. We have quantified over 6200
proteins and 90,000 peptides using SILAC-based proteomics. By
providing a system view of the UPR, we generate a resource to
determine and investigate the role of ER stress in a broad range of
pathophysiological contexts.

RESULTS
Proteomic workflow for the generation of a SILAC-based
resource dataset of the unfolded protein response
To achieve a high-accuracy analysis of proteome remodeling in
response to ER stress, we used a quantitative proteomics approach
based on the SILAC technology (Fig. 1A; Table S1, complete
dataset with all biological and technical replicates). We impaired
protein N-glycosylation in HeLa cells using increasing amounts of
the nucleoside-type antibiotic tunicamycin, which causes the
accumulation of incompletely processed glycoproteins in the ER
and the activation of the UPR (Duksin and Mahoney, 1982;
Kozutsumi et al., 1988). To dissect the features of low- and high-
level UPR activation, we used a broad drug concentration range,
from 0.125 pg/ml to 5 pug/ml. HelLa cells cultured in medium
containing light unlabeled lysine and arginine (represented to the
right in Fig. 1) were left untreated (Ctr), or treated with either
DMSO (the vehicle, Veh, in which tunicamycin is resuspended) or
increasing concentrations of tunicamycin for 18 h (Saito et al.,
2009), followed by lysis in an SDS-containing buffer. We also
compared the effects of tunicamycin to those of other stressors
activating the UPR, namely thapsigargin and DTT. The heavy
SILAC standard (represented in red) serves as a fixed reference to
detect changes occurring in the light HeLa cells in a ratio-based
fashion. Therefore, it should ideally contain all possible cellular
proteins expressed in HeLa cells, in order to provide the heavy-
labeled counterpart of each peptide and thus allowing measurement
of SILAC ratios. To this aim we prepared the SILAC standard by
mixing lysates of heavy HeLa cells treated with tunicamycin and
other stressors that induce different sets of proteins, such as DTT
and thapsigargin, as well as untreated and vehicle-treated cells. For
MS analysis, 100 ug of each lysate of light tunicamycin-treated
HeLa were mixed with the same amount of heavy standard and
processed using the filter-aided sample preparation (FASP) method
(Wisniewski et al., 2009). We verified the effects of tunicamycin by
analyzing the expression of the known ER stress markers calnexin
(CANX), a calcium-binding ER chaperone, EROI1-like protein
alpha (ERO1A), an ER oxidoreductase involved in disulfide bond
formation, the ER chaperone HSPAS (BiP) and the DNA damage-
inducible transcript 3 protein (DDIT3, CHOP) the same lysates by
western blotting (Fig. 1B) (Walter and Ron, 2011). Gel band
densitometry was used to quantify the changes in expression of the
proteins shown in the western blot (Fig. S1).

The purified peptides were analyzed by reverse-phase liquid
chromatography (LC) coupled through a nano-electrospray source to
a quadrupole-Orbitrap mass spectrometer. We performed the

experiment in three independent biological replicates; in the case of
tunicamycin treatment, each sample was further analyzed in technical
triplicates. We used the MaxQuant software environment for the
quantification of SILAC pairs corresponding to the light (experiment)
and heavy (SILAC standard) tryptic peptides (Tyanova et al., 2014,
2016). Using the ‘Match between runs’ feature, based on retention
time alignment, we transferred feature identifications among samples,
thus increasing the number of identified peptides per sample. This led
to the identification of 10,016 proteins and to the accurate
quantification of 6210 of them through the SILAC ratios (as both
the light and heavy version of each protein needs to be quantified at
high confidence in order to yield a valid ratio), encompassing
categories of highly abundant ribosomal proteins and proteasome
subunits and low copy secreted proteins (Fig. 1C). Transmembrane
proteins accounted for 15% of all quantified proteins on average
(UniProt Keyword annotations) independent of treatment. In vehicle-
treated cells we quantified 736 transmembrane proteins (median
SILAC ratio 1.02+0.24, median+s.d.). At the highest tunicamycin
dose, we quantified 749 transmembrane proteins (median SILAC
ratio

1.03+0.26). Modifications occurring on residues other than lysine
and arginine (trypsin cleavage sites), such as glycosylation, are not
known to directly affect trypsin digestion. It should also be noted that
that only a small fraction of the proteome is estimated to be
N-glycosylated and glycoprotein-targeting proteomics is based on
specific enrichment methods (Zielinska et al., 2010). To verify the
effects of UPR activation at the whole proteome level, we employed
2D annotation enrichment, an algorithm that calculates enrichments
in two datasets compared to a background proteome, in this case the
human proteome (Cox and Mann, 2012). This approach enabled the
identification of Gene Ontology (GO) terms, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and Keywords significantly
enriched in a comparison between control and stressed cells. Protein
annotations such as N-linked glycosylation and protein processing
in ER were over-represented in the proteome of stressed cells.
Conversely, vehicle-treated cells were specifically enriched in
proteins annotated to the cell cycle, confirming that control cells,
unlike stressed cells, were actively proliferating (Fig. 1D; Table S2,
significantly enriched terms from the 2D annotation enrichment). The
protein list of all three biological replicates, showing the median of
three technical replicates per data point, is available as a resource in
Table S3 (complete dataset averaged by biological replicate). This
dataset format can be easily imported into the Perseus environment of
MaxQuant (Tyanova et al., 2016) and browsed using the profile plot
option.

Proteomic comparison of the effects of different agents
causing ER stress

Perturbations of homeostatic conditions in the ER activate the stress
sensors IRE1, PERK and ATF6, which trigger the UPR. Different
chemical stressors and defective protein folding in the lumen of the
ER, due to mutation or overload, elicit ER stress with distinct
features. Drugs with different mode of action also activate parallel
pathways unrelated to the UPR (Bergmann et al., 2018). We thus
initially set out to analyze the effects of three chemically unrelated
stressors, namely tunicamycin, DTT and thapsigargin, that activate
the UPR through different mechanisms. Tunicamycin inhibits
N-linked glycosylation and DTT reduces disulfide bonds in the
whole cell, thereby also preventing proper folding of newly
synthesized proteins and causing ER stress. Thapsigargin inhibits
the SERCA ATPase, thus emptying the ER calcium stores and
causing a profound imbalance in calcium homeostasis with major
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Fig. 1. SILAC-based quantitative proteomics workflow. (A) Experimental design for the analyses of untreated (Ctr), DMSO-treated (Vehicle, Veh) and
stressor-treated samples. Hela cells grown in medium containing natural (light) amino acids (represented to the right) were treated with increasing concentrations
of tunicamycin (in representative shades of blue). To compare the effects of different stressors, cells were also treated with thapsigargin (represented in green)
and DTT (orange). A mixture of tunicamycin-treated and untreated HelLa cells labeled via SILAC with heavy lysine and arginine served as an internal
standard (represented in red, see text and Materials and Methods section). The light lysates and heavy standards were mixed in a 1:1 ratio, processed by FASP
and digested with trypsin. The resulting peptides were analyzed by high-resolution MS and raw files processed using the MaxQuant environment. (B) Western blot
analysis with antibodies specific for known ER stress markers of the lysates used for MS analysis. Biological replicate 1, probed with antibodies specific for
calnexin (CANX), ERO1-like protein alpha (ERO1A) and DNA damage-inducible transcript 3 protein (DDIT3, CHOP) and biological replicate 2, probed with
anti-HSPAS5 (BiP), are shown. Two different blots are shown with respective loading controls. (C) Dynamic range of the quantified proteome. The light
intensity (L, see Table S1) of all proteins quantified by SILAC ratio is shown. The enriched categories with highest score (determined by Fisher’s exact test using
false discovery rate, FDR, at 0.04) and their respective P-value are shown for proteins of high (quartile 1, red), medium (quartiles 2 and 3, orange and light green)
and low intensity (quartile 4, dark green). (D) Scatter plot of 2D annotation enrichment showing differences between the proteomes of DMSO- and
tunicamycin (5 ug/ml)-treated cells. The experiments were performed in three independent biological replicates and each data point was analyzed in technical
triplicates. The calculation of significance is described in the Materials and Methods section. Gene Ontology Biological Process (GOBP), Gene Ontology Cellular
Component (GOCC), UniProt Keywords and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were analyzed (see legend).

effects on protein trafficking. We tested different doses of these trigger a full-blown UPR, we used the expression of the key ER
stressors and analyzed their effect on the induction of the UPR. As  stress sensor HSPAS5 and of the transcription factor CHOP. Based on
these compounds have different modes of action and cause ER stress  normalized HSPAS5 expression, maximal UPR activation was
with different kinetics, we tested two time points after initiation of reached after 18 h of treatment for all three stressors. CHOP
treatment, 5 h and 18 h. As readout for the ability of the drugs to  expression was only evident at 18 h for thapsigargin, whereas it was
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evident only at 5 h for DTT and maximal at 5 h for tunicamycin, drugs (Fig. 2A). These observations are in line with previous reports
though still present at 18 h of treatment. These observations confirm  describing the UPR in HeLa cells, with minor differences (i.e. the
that DTT has a faster mode of action compared to the other two  late effect of thapsigargin on CHOP expression in our dataset) that
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Fig. 2. Effects of different stressors on UPR activation at the proteome level. (A) Time course and dose-dependence of different stressors. HelLa cells were
treated for 5 and 18 h as indicated with low (DTT 0.2 uM, thapsigargin 0.1 um, tunicamycin 0.625 pg/ml) and high dose (DTT 2 mM, thapsigargin 1 pm,
tunicamycin 5 pg/ml) of stressors. Western blot analysis shows the expression of CHOP (DDIT3) and HSPA5. Tubulin and Ponceau S are shown as loading
controls. The experiment was carried out in three replicates. The HSPAS5:tubulin ratio (N=3, meanzs.d.), quantified using ImageJ, is shown as a bar graph.
Controls at 18 h are shown. (B) Principal component analysis (PCA) comparing the proteome remodeling induced by tunicamycin (5 ug/ml), DTT (2 mM) and
thapsigargin (1 uM). Vehicle-treated cells were used as controls. Each treatment was performed in biological triplicates. Data were filtered for 100% valid values in
ANOVA-significant proteins (543 proteins). (C) Loadings of B, showing the major separators into components one and two (x- and y-axis, respectively). TIMP1,
metalloproteinase inhibitor 1; HSPAS5, endoplasmic reticulum chaperone BiP; IFRD1, interferon-related developmental regulator 1; GPRC5A, retinoic acid-
induced protein 3; SCD, stearoyl-CoA desaturase 5; PON2, serum paraoxonase/arylesterase 2; KIAA0101, PCNA-associated factor (also known as PCLAF);
TK1, thymidine kinase. (D) Unsupervised clustering of ANOVA-significant proteins showing three main clusters, with profiles and corresponding relative
enrichments, indicated to the right. Enrichment is based on Fisher’s exact test of keyword annotations at 0.04 FDR.
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might be due to the clonal heterogeneity of this cell line. At the
concentration range we used, all three stressors have been previously
shown to consistently activate HSPAS, as well as the HSP90B1
(also known as GRP94) chaperone, without causing detectable cell
death at 24 h of treatment (Shinjo et al., 2013). We thus set out to
analyze the proteome of HelL a cells treated for 18 h with 2 mM DTT,
1 uM thapsigargin and 5 pg/ml tunicamycin. Under these conditions,
HeLa cell samples treated with the different drugs were clearly
separated by principal component analysis (PCA) and diverged from
untreated controls along component one (x-axis, Fig. 2B).
Furthermore, cells treated with each stressor grouped together and,
in particular, those treated with thapsigargin were separated from
those treated with tunicamycin and DTT along component two (-
axis, Fig. 2B). The proteins driving most of the separation among the
proteomes of cells with different treatments in the PCA can be
visualized as loadings. Among the main loadings of component one
was the ER chaperone HSPAS, confirming that the UPR had been
activated, as well as cell cycle and growth regulators. The expression
of the acyl-CoA desaturase SCD and of the metalloproteinase
inhibitor TIMP1, by contrast, was a main driver of the separation
between thapsigargin- and tunicamycin-treated cells, respectively
(Fig. 20C).

To further investigate the proteome remodeling caused by
different stressors, we performed ANOVA using a permutation-
based false discovery rate of 0.05, comparing the SILAC ratios
obtained upon treatment with different stressors. Unsupervised
hierarchical clustering of all ANOVA significant proteins showed
that vehicle-treated cells had the highest expression of the enriched
DNA replication protein cluster (P<107%), indicating that the
stressors inhibit DNA replication (Fig. 2D, specific enrichments and
cluster shapes on the right). This analysis highlights different effects
of each stressor. Tunicamycin shows the strongest increase in
proteins annotated to ER stress (annotation ‘Response to ER stress’
and ‘Protein processing in ER’) compared to the other stressors.
Based on the large number of proteins showing this behavior in the
cluster analysis, as well as on the results in Fig. 2A, we conclude that
tunicamycin is a stronger inducer of the UPR than the other stressors
under our experimental conditions. All treatments, DTT with a
comparatively milder effect, cause a downregulation of proteins
annotated to DNA replication. Interestingly, only thapsigargin
causes a significant increase in the expression of proteins involved
in lipid metabolism, which appears unrelated to UPR activation, as
tunicamycin and DTT are indistinguishable from control cells in this
case. The complete list of enriched annotations in all clusters of
Fig. 2D is shown in Table S4.

Effects of increasing doses of tunicamycin in HeLa cells

After validating tunicamycin as having the strongest effect of the
three chemical stressors tested on UPR activation under our
experimental conditions, we focused on the effects of this stressor
in HeLa cells. We used increasing doses of the drug ranging from
0.125 pg/ml to the maximal dose of 5 pg/ml, corresponding to that
used in Fig. 2. PCA of all three biological and technical replicates
showed a net separation of tunicamycin-treated samples from
controls (Fig. 3A). Samples treated with tunicamycin distributed
along component one, showing a dose-dependent separation of
samples treated with up to 1.25 ug/ml. Samples treated with higher
doses occupied a partially overlapping area, separated from those at
low dose. Different replicates distributed along component 2, which
accounts for less than 8% of the observed difference (Fig. 3B). The
loadings of component one, which capture the differences between
controls and tunicamycin-treated cells, include known cell-cycle

proteins and UPR players, respectively. The strongest differentiator
of tunicamycin-treated cells was HSPAS, confirming the ability of
SILAC-based proteomics to recapitulate known properties of the
UPR while extending the analysis to the global proteome level. In
our dataset, we could quantify only two peptides of the known UPR
effector XBP1 (VVVAAAPNPADGTP and GASPEAASGGLPQ-
ARK), both located in the N-terminal region. Thus, we could not
specifically measure the stress-responsive spliced form (Yoshida,
2007). This might be due to low recovery and/or concentration in the
lysate, and rapid degradation in our workflow. In addition, low
“flyability’ of XBP1 peptides in the mass spectrometer, due to
insufficient ionization, may contribute to the poor quantification of
this specific protein. MKI67, a broadly used proliferation marker,
was a major driver of the control and vehicle samples, a feature
which is expected in actively cycling HeLa cells in the absence of
stressors (see also Fig. 2D). We confirmed by western blotting the
effect of tunicamycin on MKI67 expression (Fig. 3C). We then
asked which proteins have a similar behavior to HSPA5 and MKI67
in response to various degrees of ER stress. We used the expression
profile of these two drivers to search, via a correlation analysis, the
proteins with the most similar expression profiles. Fig. 3D shows the
most closely correlated expression profiles to HSPAS and MKI67 in
three biological replicates. The full list is shown in Table S5 (100
profiles most similar to HSPAS by correlation) and Table S6 (100
profiles most similar to MKI67 by correlation).

The analysis of the UPR using SILAC-based proteomics provides
a reliable and robust quantification of protein expression at high
accuracy. In our dataset, 975 proteins out of 6220 undergo an increase
in expression higher than 10% at tunicamycin doses >1.25 pg/ml.
The expression of 1304 proteins decreases more than 10% under
those conditions. Some of these proteins are expressed at very low
level and could not be quantified in all replicates. We validated the
expression changes of selected proteins using western blotting
(Fig. 3E). We focused on MAFF, a basic region leucine zipper
(bZIP)-type transcription factor not previously linked to the UPR, for
which we measured an increase of SILAC ratio upon tunicamycin
treatment. This finding was confirmed using western blotting. The
translation initiation factor elF4G showed a small but significant
decrease in expression upon tunicamycin treatment, which had not
been reported before. As predicted, HSPAS showed a >fivefold
upregulation of SILAC ratio under these conditions (Fig. 3E).

Novel features of the UPR highlighted by SILAC-based
proteomics

We subsequently used our resource dataset for the large-scale
identification of proteins that have a significantly different
expression in tunicamycin-treated and untreated cells. To this end,
we performed a Student’s #-test using permutation-based false
discovery rate (FDR) at 0.05, using the respective SILAC ratios.
Fig. 4A shows the volcano plot comparing vehicle-treated cells with
those treated with 5 pg/ml tunicamycin, the highest dose showing
the strongest effects on UPR activation. We performed the same
analysis comparing cells treated with 0.625 pg/ml tunicamycin with
vehicle-treated cells (Fig. S2A). ER chaperones and foldases, such
as HSPAS and various disulfide isomerase (PDI) family members
were among the most significantly upregulated proteins at both
concentrations, together with a subset of N-glycosylated membrane
and secreted proteins (e.g. DDR2). We set the stringency of our cut-
off values using previous knowledge of the UPR in addition to
statistical criteria (Delom et al., 2007). We first confirmed that the
ER chaperone calnexin undergoes a small but significant
upregulation under our test conditions using immunoblot analysis
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Fig. 3. Global proteomic view of the UPR upon treatment with increasing doses of tunicamycin. (A) Principal component analysis (PCA) showing graded
features of HeLa cell response to tunicamycin. The proteomes of tunicamycin-treated samples segregate in a concentration-dependent fashion from those of
controls and vehicle-treated cells along component 1. Data were filtered for 100% valid values (600 proteins). Three independent biological replicates
segregate along component 2. (B) Loadings of A showing proteins that strongly drive the segregation into PCA component 1. HSP90B1, endoplasmin; PDIA4,
protein disulfide-isomerase A4; HSPA5; DSP, desmoplakin; SDHA, succinate dehydrogenase; MKI67, proliferation marker protein Ki-67. (C) Western blot
showing the mirror-like expression of the two of the main driver proteins in panel B, HSPA5 and MKI67, in response to increasing concentration of tunicamycin.
Tubulin expression is shown as loading control. (D) Most similar expression profiles to HSPA5 and MKI67 (thick red and green lines, respectively) among the
proteins in the dataset. Profiles derived from the median of triplicates of three biological replicates are shown. The x axis shows the different treatments as
indicated. (E) Comparison of the expression of selected proteins quantified by western blotting and corresponding densitometry (top) and by MS-based
proteomics (bottom, N=3 biological replicates, meants.d. with Student’s t-test; *P<0.05; **P<0.01). The MAFF blot was subjected to automatic contrast
enhancement due to low signal.

(Fig. S2B,C). We then chose parameters to ensure that this known confidence. The resulting dataset greatly enlarges our view on the
UPR target was close to the cutoff but retained within the effects of tunicamycin in comparison to previous biological
significantly upregulated proteins. Therefore our significance cut- knowledge and proteomics datasets present in the literature
off allows us to discover potential novel UPR targets with high (Fig. S2D) (Bull and Thiede, 2012; Mintz et al., 2008).
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Altogether, we derived a list of 238 proteins that are significantly
modulated by treatment with 5 pg/ml tunicamycin, shown as a heat
map of the SILAC ratios after clustering (Fig. 4B). This procedure
separates two clusters, showing that proteins significantly
upregulated upon tunicamycin treatment are specifically enriched
in ER and protein processing annotation, whereas nuclear and cell
cycle annotations prevail among downregulated proteins. The
corresponding clusters for cells treated with a concentration of
0.625 pg/ml tunicamycin are shown in Fig. S2E. The complete list
of enriched terms is provided in Table S7 (annotation enrichments
resulting from the cluster analysis in Fig. 3) and the proteins
significantly up- and downregulated by tunicamycin in Table S8
(significantly upregulated proteins with complete annotations) and

3.7E-16

P value

ded protein response 1.6E-04

3.0E-03

; Veh Ctr 4

Table S9 (significantly downregulated proteins with complete
annotations). In both tables, proteins that do not undergo statistically
significant changes in expression at the concentration of 0.625 pg/
ml tunicamycin are indicated. The profile plot graphs of proteins
significantly up- and downregulated at 5 pg/ml tunicamycin are
shown in Fig. S2F.

To categorize the list of upregulated proteins (listed and annotated
in Table S8), the proteins were labeled as previously being identified
as a UPR target gene, defined as any gene whose expression changes
upon ER stress, or having been identified in a proteomic study of
tunicamycin-treated cells. This definition likely includes proteins
whose expression is induced by secondary effects, as no comparison is
made to cells without a functional UPR. Nonetheless, 70 of 133
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proteins were known UPR targets (Table S8). Therefore, genes with
related functions, as listed in the UniProt database, were assigned as
novel UPR target genes if they also fit into one of these groups: ER
import, folding (HSP40, HSP70 and HSP90, also known as DNAJB1,
HSPA1A/B and HSP90ABI, respectively), glycosylation and lectin-
assisted folding, disulfide redox, quality control and degradation,
anterograde trafficking/Golgi (Shoulders et al., 2013; Sriburi et al.,
2007). This identified 15 novel UPR targets, which include membrane
transporters, transcription factors and signal transducers. Of the
remaining proteins, four are involved in autophagy, a process known
to be activated by treatment with tunicamycin, and proposed to be by
direct activation by IRE1 (Ogata et al., 2006; Pattingre et al., 2009).
Three upregulated proteins are annotated as pro-apoptotic, consistent
with the observation that prolonged exposure to tunicamycin causes
programmed cell death (Zinszner et al., 1998).

For the remaining genes, no obvious functional similarity to
known UPR targets was apparent. However, the presence of a
transmembrane domain, signal peptide, disulfide bonds or
glycosylation would suggest passage through the secretory pathway
and hence potential cargo proteins affected by tunicamycin treatment.
23 proteins met these criteria, of which 9 were annotated as plasma
membrane proteins, 11 secreted, while one had secreted and plasma
membrane isoforms. Two of these proteins had no subcellular
location annotation beyond membrane. We were unable to categorize
18 proteins that were significantly upregulated (Table S8).

It has been shown that IRE1 can cleave mRNAs other than XBP1
during the UPR, which is suggested to reduce protein load on the ER
(Hollien et al., 2009; Hollien and Weissman, 2006) and may
contribute to apoptosis under irremediable ER stress (Han et al.,
2009). These studies have focused on the mRNA levels of these genes,
leaving the question open as to how effective RIDD is at reducing the
protein load. Here, we looked at RIDD targets identified previously by
microarray experiments, to assess if their protein levels were also
reduced (Table S9). We annotated our dataset using previously
identified RIDD targets (Bright et al., 2015). Of 186 RIDD targets that
mapped to our dataset, 17 were in our list of 105 significantly
downregulated genes, representing a statistically significant 2.3-fold
enrichment in RIDD targets amongst downregulated genes
(P=0.0006). Another 16 RIDD targets were in our list of 133
significantly upregulated genes, a 1.7-fold enrichment (P=0.0128).
Overall, RIDD targets appear evenly distributed among the dataset
(Fig. S3A). Taken together, these data highlight a poor correlation
between protein and mRNA levels of previously identified RIDD
targets. Our results thus suggest that degradation of RIDD targets at
the mRNA level does not necessarily lead to a concomitant decrease at
the protein level that persists 18 h after induction of ER stress. This is
further supported by the low overall correlation of protein and mRNA
levels of cells treated with tunicamycin (Fig. S3B). RIDD has been
postulated to degrade mRNAs that make up the secretory pathway
following commitment to cell death (Maurel et al., 2014). Hence,
these mRNAs must encode proteins that pass through the secretory
pathway or that are residents thereof. It is therefore possible that RIDD
targets are cell type-specific, and would depend on the proteins
passing through the secretory pathway. To assess this possibility we
annotated the dataset with Gene Ontology terms and performed 1D
annotation enrichment on the downregulated genes (Cox and Mann,
2012). However, the only enrichment among downregulated proteins
was for the keyword glycoprotein (2.7-fold, P=0.027) and no
secretion-related term was significant. Recent studies have suggested
that RIDD is sequence-specific in mammalian cells (Bright et al.,
2015; Moore and Hollien, 2015) and we therefore looked for XBP1-
like stem loops in the significantly downregulated genes. We found

186 genes in our dataset containing a sequence that could be
recognized by IREl. Ten of these were downregulated but this
enrichment was not statistically significant. Were IRE1 to exhibit non-
specific cleavage of mRNAs to cause downregulation of a large
number of proteins, this effect would not appear to be substantial,
given there are only 105 significantly downregulated genes whose
downregulation is minimal in comparison to the upregulation of
canonical UPR genes (Fig. 4A). In summary, these data do not support
a major role for RIDD in downregulation of proteins that might
contribute to ER stress-mediated cell death. However, reduction of
mRNAs encoding components of the secretory pathway to alleviate
ER stress earlier in the UPR is unlikely to be seen in this data,
especially if this effect is only short-lived.

Interaction network of tunicamycin-regulated proteins

We next performed a physical interaction network analysis of
tunicamycin-regulated proteins in the STRING database
(Szklarczyk et al, 2015) (Fig. 5A; ‘known interactions
experimentally determined’, see Materials and Methods). Our
analysis highlights a large group of proteins with increasing
expression upon tunicamycin treatment that are highly
interconnected, consisting of ER chaperones and foldases involved
in protein processing in the ER (Fig. SA, red area). Interestingly, this
cluster shows a number of interactions with another group of proteins
that are upregulated during ER stress, namely those involved in
aminoacyl tRNA biosynthesis (Fig. SA, gray area). An increase in the
expression of some aminoacyl-tRNA ligases has been previously
reported at the mRNA level in response to stress, and this effect has
been causally linked to the UPR transcriptional effector ATF4
(Harding et al., 2003). This has been suggested to favor transcriptional
recovery through increased tRNA charging (Krokowski et al., 2013).
Our data support these observations and enlarge the pool of evidence
available at the protein level (Bull and Thiede, 2012) by quantifying all
cytosolic tRNA ligases and demonstrating that the vast majority of
them show a large increase in expression in response to ER stress
(Fig. 5B). Our dataset thus provides a direct measurement of the
coordinate changes in expression of large complexes of interacting
proteins during the UPR.

Although UPR activation is classically linked to translational
attenuation through PERK-mediated phosphorylation of EIF2A,
more recent data indicate that protein misfolding also causes
transcriptional induction and an increase in protein synthesis (Han
et al., 2013). We measured the rate of protein synthesis by means of
the incorporation of puromycin into nascent polypeptides upon 18 h
of tunicamycin treatment (Fig. S4A) (Schmidt et al., 2009). Under
the conditions that we used to generate our resource database,
protein synthesis is inhibited compared to control, thus making this
an unlikely explanation for the increase in tRNA ligases in our
model. Lower doses of tunicamycin did cause an increase in
puromycin labelling, confirming the results described in other
cellular models (Krokowski et al., 2013).

Our data show that key proteins involved in cell cycle regulation
are clearly downregulated (Fig. 5A, green; see also Fig. 2). Among
proteins significantly decreasing in expression we also find RNA
polymerase I and a group of basic transcription factors and
transcriptional regulators (light blue area). Among them are elongin
B and C (TCEB2 and TCEBI, also known as ELOB and ELOC),
two proteins forming the SIII complex, which interacts with RNA
polymerase II (Pol IT) and enhances its activity (Vos et al., 2018a).
One exception in this group of interactors of Pol II, TCEA1 (also
known as TFIIS) showed a large and significant dose-dependent
increase (Fig. S4B, Table S8). We profiled the expression of general
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Fig. 5. Physical interaction network of proteins significantly regulated upon tunicamycin treatment. (A) Upregulated proteins are represented in red,

downregulated proteins in green according to the indicated color scale. Lines represent physical interaction. Functional subgroups are marked as colored areas.
(B) Profile plots showing the coordinated expression changes of tRNA ligases upon tunicamycin-mediated UPR activation. The five tRNA ligases with the highest
expression changes are indicated by red lines and font, other tRNA ligases showing increases in expression are shown in blue. tRNA ligases for which no increase

in expression upon tunicamycin treatment was detected are indicated in black.

transcription factors and subunits of pre-initiation complexes that
could be quantified in our dataset. Indeed, they were all
downregulated upon tunicamycin treatment, with the exception of
TCEAI, indicating that major rearrangements occur in the
regulatory interactions of Pol II during ER stress (Vos et al., 2018b).

DISCUSSION
We have generated a proteomic resource providing an accurate
quantification of the UPR in HeLa cells comparing the effects of

tunicamycin to those of other stressors inducing the UPR through
different mechanisms, such as DTT and thapsigargin (Bergmann
et al,, 2018). While an activation of the UPR occurred upon
treatment with all stressors used, only the SERCA inhibitor
thapsigargin specifically perturbed cellular lipid metabolism.
Interestingly, lipid biosynthesis is one of the specialized functions
of the ER controlled by the UPR, which induces ER biogenesis.
Thapsigargin could thus be used to selectively pinpoint the effects
of the UPR on ER expansion, as well as on the recently described
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control of mitochondria-associated ER membranes (MAMs) and
thus mitochondrial function (Saito and Imaizumi, 2018b).

Tunicamycin had the strongest effect of all stressors on the
induction of UPR protein expression (Fig. 2). We show 133 proteins
significantly upregulated by treatment with tunicamycin (5 pg/ml),
including 15 with functional features similar to many known UPR
targets (i.e. involved in ER import, folding, quality control and
degradation, trafficking/Golgi), which had not been directly
associated to the UPR to date. Together with the upregulation of
proteins annotated as pro-apoptotic, consistent with the observation
that prolonged exposure to tunicamycin causes programmed cell
death (Zinszner et al., 1998), we measure the upregulation of several
proteins of the secretory pathway and of the plasma membrane.
These proteins may represent stalled cargo proteins, whose apparent
expression increases as a result of inadequate secretion. Indeed, a
number of membrane receptors with important roles in cell-cell and
cell-matrix communication are also upregulated, possibly as
consequence of defective sorting. Among them is discoidin
domain receptor 1 (DDRI1), a transmembrane tyrosine kinase
acting as a receptor for collagen, and the EPHA receptor, which
plays a key role in cell-cell communication. We anticipate that
defective expression and localization of a number of these proteins
might be causally linked to cell pathology in different contexts.

We have also detected a significant downregulation of many
proteins in response to tunicamycin treatment and analyzed a
potential role of RIDD in regulating this phenomenon. IRE1 can
cleave mRNAs other than XBP1 during the UPR, which is suggested
to reduce protein load on the ER (Hollien et al., 2009; Hollien and
Weissman, 2006) and may contribute to apoptosis under
irremediable ER stress (Han et al., 2009). Here, we were able to
look at RIDD targets identified previously only in microarray
experiments, and to assess whether their protein levels were also
reduced. Taken together, our data confirm a poor correlation between
protein and mRNA levels of previously identified RIDD targets.

Another novel aspect of the UPR highlighted in this dataset is the
coordinated upregulation of many tRNA ligases. The molecular
mechanisms underlying this increase might be linked to the finding
that protein misfolding also causes transcriptional induction and an
increase in protein synthesis. (Han and Kaufman, 2017). Using the
incorporation of puromycin as a proxy to detect protein synthesis,
we have not observed an increase in protein synthesis at the
tunicamycin concentrations used to generate our proteomic database
(Fig. S4A). We thus hypothesize that, in our system, the activation
of autophagy, which is apparent in our data [Fig. 5, increase in
SQSTM (SQSTM1, p62) and LAMP1; Table S8], generates an
increase in the pool of free amino acids, which is matched by an
increase in their loading process. It remains to be determined to what
extent an inadequate supply of charged tRNA, e.g. due to a genetic
defect, could be toxic under proteostatic stress.

In line with our data on protein synthesis, we have also observed that
RNA Pol 1I and a group of basic transcription factors and
transcriptional regulators significantly decrease in expression upon
tunicamycin treatment. Among them are elongin B and C, two
enhancers of RNA Pol II. Conversely, we observe that another
interactor of RNA Pol I, TCEA has a large and significant increase in
expression in response to tunicamycin. TCEA1 causes stalled RNA Pol
II to overcome transcriptional blocks on template DNA by stimulating
its endonuclease activity. This task is performed in cooperation with
the Ccr4—Not complex, a global regulator of RNA Pol II transcription
(Dutta et al., 2015). It could be envisaged that TCEAL1 is selectively
enriched at transcription sites during ER stress, possibly engaging in
regulatory protein complexes with a different stoichiometry.

Taken together, measuring the expression of over 6200 proteins
we (i) show common and specific proteomic features of UPR
activation by tunicamycin, thapsigargin and DTT; (ii) define a
subset of proteins that are upregulated with high significance in
response to different doses of tunicamycin, some of which had not
previously been linked to ER stress and (iii) highlight a coordinated
upregulation of many tRNA ligases and stress-dependent changes in
the regulatory complexes of RNA Pol II. These features could be
both cause and effects of the cell pathology. As HeLa cells are
extensively used as a model in cell biology and signaling, in-depth
knowledge of the proteomic features of ER stress will provide
support for the evaluation of results and experimental conditions, as
well as to elucidate as-yet-unidentified outcomes of cell stress.

MATERIALS AND METHODS

Cell culture and SILAC labeling

HeLa cells from the American Tissue Culture Collection, recently
authenticated and tested for contamination, were cultured in Dulbecco’s
modified Eagle’s medium, supplemented with 4500 mg/I glucose, 110 mg/1
sodium pyruvate, 600 mg/l L-glutamine and 10% FBS (Life Technologies-
GIBCO). For SILAC labeling, cells were cultured in DMEM with the same
formula but lacking the two amino acids lysine and arginine (SILAC
medium, GE Healthcare) and with dialysed FBS in order to avoid amino
acid carry-over. The medium was supplemented with either ‘light’
unlabeled or ‘heavy’ isotope-labeled '3C§N,-lysine (Lys8) and !*Cg
15N,—arginine (Argl0) (Cambridge Isotope Laboratories). Cells were
cultured for more than 10 passages in heavy medium and almost
complete incorporation of heavy amino acids in the cells was confirmed
by MS analysis. Labeled cells were aliquoted and frozen. The experiments
for the three biological replicates were performed using different cell
aliquots at different passages over a time period of months. Tunicamycin
and DTT were purchased from Sigma-Aldrich, thapsigargin from SERVA
Electrophoresis. Tunicamycin concentrations were as follows: 0.125, 0.25,
0.625, 1.25, 2.5 or 5pg/ml. The highest concentration used, 5 pg/ml
corresponds to ~6.12 uM, considering that tunicamycin contains four main
homologous antibiotics of varying molecular weight (817-859 Da).

Cell lysis and spike-in SILAC mix

HeLa cells were lysed in a buffer consisting of 0.1 M Tris-HCI pH 8.0,
0.1 M DTT and 4% SDS at 95°C for 5 min. After chilling to room
temperature, the lysates were sonicated using a Branson-type sonicator and
then clarified by centrifugation at 16,000 g for 10 min. Protein content was
determined by comparison to a tryptophan protein standard using a
spectrophotometric method, with excitation wavelength 280 nm and
emission wavelength 350 nm. A heavy SILAC standard was prepared by
mixing heavy HeLa cells under a variety of conditions in order to cover the
proteome of stressed and unstressed cells. Specifically, we mixed equal
amounts of lysates from untreated and stressor-treated heavy HeLa cells to
obtain a master mix. For each sample, 100 pg of light cell lysate was mixed
with 100 pg of heavy master mix and further processed.

Protein digestion

Proteins were digested using the filter aided sample prep (FASP) method
(Wisniewski et al., 2009). Briefly, cell monolayers were lysed in 4% (w/v)
SDS, 100 mM Tris-HCI pH 7.6, 0.1 M DTT. 200 ug of protein was loaded
onto Microcon YM-30 cartridges (Millipore). SDS was replaced by washing
2-3 times with buffer containing 8 M urea (Sigma-Aldrich) in 0.1 M Tris-
HCI pH 8.5. The proteins were subsequently alkylated by adding 0.05 M
iodoacetamide to the urea buffer, and the excess reagent was removed by
filtration. The reduced and alkylated proteins were digested using trypsin
(Promega) with an enzyme-to-protein ratio of 1:100. Trypsin generates
peptides of average length 7-20 amino acids with a strong C-terminal
charge, ideally suited for MS analysis. Peptides obtained by FASP were
eluted from the filter with 0.05 M NH4HCOj; in water and desalted using a
C18 membrane (Thermo Fisher Scientific) and stop and go extraction
(stage) tips (home made).
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MS data acquisition and analysis

Eluted peptides (3 pg/sample) were separated on a reverse phase 50-cm
column with 75 um inner diameter, packed in-house with 1.8 um C18
particles (Dr Maisch GmbH) kept at 50°C by a column oven (Sonation).
Liquid chromatography was performed on an EASY-nLC 1000 ultra-high
pressure system was coupled through a nanoelectrospray source to a Q
Exactive mass spectrometer, applying a nonlinear 270 min gradient of
2-60% buffer B [0.1% (v/v) formic acid, 80% (v/v) acetonitrile] at a flow
rate of 250 nl/min (all Thermo Fisher Scientific). Data were acquired in data-
dependent mode. The survey scans were acquired at a resolution of 70,000 at
m/z=200 in the Orbitrap analyzer. The top 10 most abundant isotope
patterns with charge >2 from the survey scan were selected with an isolation
window of 1.6 Thomson and fragmented by higher energy collisional
dissociation (Top 10). The maximum ion injection times for the survey scan
and the MS/MS scans were 20 and 60 ms, respectively, and the ion target
value for both scan modes were set to 3E6 and 1E6, respectively. Repeated
sequencing of peptides was kept to a minimum by dynamic exclusion of the
sequenced peptides for 45 s. The dataset comparing different stressors was
obtained using a Q Exactive HF instrument after separation by means of a
linear gradient of buffer B over 120 min, using a Top 15 method with an
injection time of 20 ms for survey scans and 25 ms for MS/MS scans.

Computational proteomics and data analysis

MaxQuant software (version 1.5.3.2) was used for the analysis of raw files
(Cox and Mann, 2008). Peak lists were searched against the human UniProt
FASTA database version of 2012 (88,976 entries) and a common
contaminants database (247 entries) using the Andromeda search engine
(Cox etal.,2011). False discovery rate was set to 1% for peptides (minimum
length of 7 amino acids) and proteins, and was determined by searching a
reverse database. A maximum of two missed cleavages were allowed in the
database search. Peptide identification was performed with an allowed
initial precursor mass deviation up to 7 ppm and an allowed fragment mass
deviation of 20 ppm. The ‘Match between runs’ option in MaxQuant was
activated. The shotgun proteomics approach is based on the measurement of
the spectra of individual peptides, which are then assembled into proteins.
MaxQuant employs a ‘target-decoy search strategy’ to control for false-
positive peptide identifications and the concept of ‘posterior error
probability” (PEP) to control the quality of a peptide spectrum. The PEP
score integrates individual peptide properties, such as length and charge,
with the score provided by the Andromeda search engine. Further in silico
verification of the proteomic data included several parameters of quality
control for all data points in the dataset: (i) number of valid SILAC ratios in
each sample (33944791, mean#s.d.); verification of consistency and
reproducibility for all samples by calculating (ii) the median SILAC ratio
of each sample (1.006+0.002) and (iii) the sum of SILAC ratios of each
sample (3526+823). The number of quantified peptides was 48744+1768
for the light lysates and 486001761 for the heavy lysates.

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD013496 (http://www.ebi.ac.uk/pride/archive/projects/
PXDO013496).

Statistical analysis

Data analysis was performed with the Perseus software (version 1.5.1.2)
embedded in the MaxQuant environment (Tyanova et al., 2016). SILAC
ratios were used without further normalization. Where indicated, the data were
logarithmized (Log, SILAC ratio). Categorical annotations were supplied in
the form of UniProt Keywords, KEGG and Gene Ontology. SILAC ratios
(light:heavy) were used for data analysis. The list of proteins significantly
changing upon tunicamycin treatment was obtained using a paired -test
between vehicle treated and tunicamycin (5 pg/ml)-treated samples, using
permutation-based FDR at 0.05, performing 250 randomizations; grouping of
technical replicates was preserved in randomization; the s, parameter was set
to 0.1, a condition ensuring that the UPR protein calnexin is among the
significant hits. Data were filtered for 75% valid values before test. Technical
replicate two of biological replicate two was excluded from the statistical
analysis due to overall lower signal intensity (see Fig. S2F). Hierarchical
clustering was performed on significant proteins, using Fisher’s exact test to

calculate enrichments in categorical terms. Enrichments in the network were
calculated by Fisher’s exact test using Benjamini-Hochberg false discovery
rate for truncation, setting a value of 0.02 as threshold.

Interaction network analysis

Interaction network analysis of the tunicamycin significantly regulated
proteins was performed by taking advantage of the protein—protein
interaction database STRING (version 10.0). We have used medium to
high confidence (0.5-0.7) and filtered interactions keeping only the ones
derived from experiments (known interactions experimentally determined).
The resulting network was visualized by using Cytoscape 3.2.1 where we
then overlaid the tunicamycin-induced changes of protein expression.

Western blotting

HeLa cell lysates, 20 pg/sample, were run on a 4-12% Bis-Tris
polyacrylamide gels using MES as a trailing ion in the buffer (Invitrogen).
Proteins were transferred to a nitrocellulose membrane (Whatman) using
Towbin buffer with 20% (v/v) methanol in a semi-dry transfer apparatus
(Hoefer) and reversibly stained with Ponceau S for loading control.
Membranes were incubated in TBS buffer containing 0.01% Tween-20 and
5% (w/v) skim milk powder (Fluka), containing the primary antibodies. The
following antibodies were used: ER stress antibody sampler kit (all 1:1000;
#9956, Cell Signaling Technology; including secondary antibodies used
here), anti-MAFF (1:500; AV38984, Sigma-Aldrich), anti-e[F4G1 (1:1000;
2858S, Cell Signaling Technology), anti-tubulin (1:1000; sc-9104, Santa
Cruz Biotechnology). Puromycin incorporation was detected using the 12D5
mouse monoclonal antibody (MABE343, Millipore) at a 1:5000 final
concentration. The quantification of gel bands was performed using the image
processing program ImageJ (http:/imagej.nih.gov/ij) (Schneider et al., 2012).

Acknowledgements

We thank Korbinian Mayr and Igor Paron for their help with MS, Katharina Zettl and
Bianca Splettstoesser (all at MPI) for their technical assistance and Gabriele Sowa,
in loving memory, for her support with HPLC. We thank Sebastian Schuck (ZMBH
Heidelberg, Germany) for critical reading of the manuscript. We acknowledge the
PRIDE Team for the data deposition.

Competing interests
The authors declare no competing or financial interests.

Author contributions

Conceptualization: M. Murgia; Methodology: N.N., M. Murgia; Software: S.T.;
Validation: M. Murgia; Formal analysis: D.N.I., F.S., N.N., S.T., M. Murgia;
Investigation: D.N.I., F.S., M. Murgia; Resources: M. Mann; Data curation: D.N.1.,
F.S.; Writing - original draft: D.N.I., M. Murgia; Writing - review & editing: M. Mann,
M. Murgia; Visualization: F.S.; Funding acquisition: M. Mann.

Funding

This work was supported by the Max-Planck Society for the Advancement of
Science (Max-Planck-Gesellschaft), The Novo Nordisk Foundation Center for Basic
Metabolic Research, Copenhagen, Denmark, The Louis-Jeantet Foundation and
EC Seventh Framework Programme (grant agreement HEALTH-F4-2008-201648/
PROSPECTS).

Data availability

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset
identifier PXD013496.

Supplementary information
Supplementary information available online at
http:/dmm.biologists.org/lookup/doi/10.1242/dmm.040741.supplemental

References

Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N. H., Arias, C.,
Lennon, C. J., Kluger, Y. and Dynlacht, B. D. (2007). XBP1 controls diverse cell
type- and condition-specific transcriptional regulatory networks. Mol. Cell 27,
53-66. doi:10.1016/j.molcel.2007.06.011

Back, S. H., Schréder, M., Lee, K., Zhang, K. and Kaufman, R. J. (2005). ER
stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35, 395-416.
doi:10.1016/j.ymeth.2005.03.001

11

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%)
©
Q
oA
(@]


http://www.ebi.ac.uk/pride/archive/projects/PXD013496
http://www.ebi.ac.uk/pride/archive/projects/PXD013496
http://www.ebi.ac.uk/pride/archive/projects/PXD013496
http://dmm.biologists.org/lookup/doi/10.1242/dmm.040741.supplemental
http://imagej.nih.gov/ij
http://imagej.nih.gov/ij
http://www.ebi.ac.uk/pride/archive/projects/PXD013496
http://dmm.biologists.org/lookup/doi/10.1242/dmm.040741.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.040741.supplemental
https://doi.org/10.1016/j.molcel.2007.06.011
https://doi.org/10.1016/j.molcel.2007.06.011
https://doi.org/10.1016/j.molcel.2007.06.011
https://doi.org/10.1016/j.molcel.2007.06.011
https://doi.org/10.1016/j.ymeth.2005.03.001
https://doi.org/10.1016/j.ymeth.2005.03.001
https://doi.org/10.1016/j.ymeth.2005.03.001

RESOURCE ARTICLE

Disease Models & Mechanisms (2019) 12, dmm040741. doi:10.1242/dmm.040741

Bergmann, T. J., Fregno, |., Fumagalli, F., Rinaldi, A., Bertoni, F., Boersema,
P. J., Picotti, P. and Molinari, M. (2018). Chemical stresses fail to mimic the
unfolded protein response resulting from luminal load with unfolded polypeptides.
J. Biol. Chem. 293, 5600-5612. doi:10.1074/jbc.RA117.001484

Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. and Ron, D. (2000).
Dynamic interaction of BiP and ER stress transducers in the unfolded-protein
response. Nat. Cell Biol. 2, 326-332. doi:10.1038/35014014

Bommiasamy, H., Back, S. H., Fagone, P., Lee, K., Meshinchi, S., Vink, E.,
Sriburi, R., Frank, M., Jackowski, S., Kaufman, R. J. et al. (2009). ATF6alpha
induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci.
122, 1626-1636. doi:10.1242/jcs.045625

Bright, M. D., Itzhak, D. N., Wardell, C. P., Morgan, G. J. and Davies, F. E. (2015).
Cleavage of BLOC1S1 mRNA by IRE1 is sequence specific, temporally separate
from XBP1 splicing, and dispensable for cell viability under acute endoplasmic
reticulum stress. Mol. Cell. Biol. 35, 2186-2202. doi:10.1128/MCB.00013-15

Bull, V. H. and Thiede, B. (2012). Proteome analysis of tunicamycin-induced ER
stress. Electrophoresis 33, 1814-1823. doi:10.1002/elps.201100565

Cox, J. and Mann, M. (2008). MaxQuant enables high peptide identification rates,
individualized p.p.b.-range mass accuracies and proteome-wide protein
quantification. Nat. Biotechnol. 26, 1367-1372. doi:10.1038/nbt.1511

Cox, J. and Mann, M. (2012). 1D and 2D annotation enrichment: a statistical
method integrating quantitative proteomics with complementary high-throughput
data. BMC Bioinformatics 13 Suppl. 16, S12. doi:10.1186/1471-2105-13-S16-
S12

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V. and Mann,
M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant
environment. J. Proteome Res. 10, 1794-1805. doi:10.1021/pr101065j

Delom, F., Emadali, A., Cocolakis, E., Lebrun, J.-J., Nantel, A. and Chevet, E.
(2007). Calnexin-dependent regulation of tunicamycin-induced apoptosis in
breast carcinoma MCF-7 cells. Cell Death Differ. 14, 586-596. doi:10.1038/sj.
cdd.4402012

Duksin, D. and Mahoney, W. C. (1982). Relationship of the structure and biological
activity of the natural homologues of tunicamycin. J. Biol. Chem. 257, 3105-3109.

Dutta, A., Babbarwal, V., Fu, J., Brunke-Reese, D., Libert, D. M., Willis, J. and
Reese, J. C. (2015). Ccr4-Not and TFIIS function cooperatively to rescue arrested
RNA Polymerase Il. Mol. Cell. Biol. 35, 1915-1925. doi:10.1128/MCB.00044-15

Fujisawa, A., Tamura, T., Yasueda, Y., Kuwata, K. and Hamachi, I. (2018).
Chemical profiling of the endoplasmic reticulum proteome using designer labeling
reagents. J. Am. Chem. Soc. 140, 17060-17070. doi:10.1021/jacs.8b08606

Han, J. and Kaufman, R. J. (2017). Physiological/pathological ramifications of
transcription factors in the unfolded protein response. Genes Dev. 31, 1417-1438.
doi:10.1101/gad.297374.117

Han, D, Lerner, A. G., Vande Walle, L., Upton, J.-P., Xu, W., Hagen, A., Backes,
B. J., Oakes, S. A. and Papa, F. R. (2009). IRE1alpha kinase activation modes
control alternate endoribonuclease outputs to determine divergent cell fates. Cell
138, 562-575. doi:10.1016/j.cell.2009.07.017

Han, J., Back, S. H., Hur, J., Lin, Y.-H., Gildersleeve, R., Shan, J., Yuan, C. L.,
Krokowski, D., Wang, S., Hatzoglou, M. et al. (2013). ER-stress-induced
transcriptional regulation increases protein synthesis leading to cell death. Nat.
Cell Biol. 15, 481-490. doi:10.1038/ncb2738

Harding, H. P., Zhang, Y. and Ron, D. (1999). Protein translation and folding are
coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-274.
doi:10.1038/16729

Harding, H. P., Novoa, |., Zhang, Y., Zeng, H., Wek, R., Schapira, M. and Ron, D.
(2000). Regulated translation initiation controls stress-induced gene expression in
mammalian cells. Mol. Cell 6, 1099-1108. doi:10.1016/S1097-2765(00)00108-8

Harding, H. P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H.,
Sabatini, D. D. and Ron, D. (2001). Diabetes mellitus and exocrine pancreatic
dysfunction in perk~'~ mice reveals a role for translational control in secretory cell
survival. Mol. Cell 7, 1153-1163. doi:10.1016/S1097-2765(01)00264-7

Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., Sadri, N., Yun,
C., Popko, B., Paules, R. et al. (2003). An integrated stress response regulates
amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619-633.
doi:10.1016/S1097-2765(03)00105-9

Haze, K., Yoshida, H., Yanagi, H., Yura, T. and Mori, K. (1999). Mammalian
transcription factor ATF6 is synthesized as a transmembrane protein and
activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol.
Cell 10, 3787-3799. doi:10.1091/mbc.10.11.3787

Hollien, J. and Weissman, J. S. (2006). Decay of endoplasmic reticulum-localized
mRNAs during the unfolded protein response. Science 313, 104-107. doi:10.
1126/science.1129631

Hollien, J., Lin, J. H., Li, H., Stevens, N., Walter, P. and Weissman, J. S. (2009).
Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell
Biol. 186, 323-331. doi:10.1083/jcb.200903014

Itzhak, D., Bright, M., McAndrew, P., Mirza, A., Newbatt, Y., Strover, J., Widya,
M., Thompson, A., Morgan, G., Collins, I. et al. (2014). Multiple
autophosphorylations significantly enhance the endoribonuclease activity of
human inositol requiring enzyme 1a. BMC Biochem. 15, 3. doi:10.1186/1471-
2091-15-3

Kohno, K., Normington, K., Sambrook, J., Gething, M. J. and Mori, K. (1993).
The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain
that responds to the presence of unfolded proteins in the endoplasmic reticulum.
Mol. Cell. Biol. 13, 877-890. doi:10.1128/MCB.13.2.877

Kozutsumi, Y., Segal, M., Normington, K., Gething, M.-J. and Sambrook, J. (1988).
The presence of malfolded proteins in the endoplasmic reticulum signals the induction
of glucose-regulated proteins. Nature 332, 462-464. doi:10.1038/332462a0

Krokowski, D., Han, J., Saikia, M., Majumder, M., Yuan, C. L., Guan, B.-J.,
Bevilacqua, E., Bussolati, O., Broer, S., Arvan, P. et al. (2013). A self-defeating
anabolic program leads to beta-cell apoptosis in endoplasmic reticulum stress-
induced diabetes via regulation of amino acid flux. J. Biol. Chem. 288,
17202-17213. doi:10.1074/jbc.M113.466920

Lu, Y., Liang, F.-X. and Wang, X. (2014). A synthetic biology approach identifies the
mammalian UPR RNA ligase RtcB. Mol. Cell 55, 758-770. doi:10.1016/j.molcel.
2014.06.032

Marre, M. L., McGinty, J. W., Chow, |.-T., DeNicola, M. E., Beck, N. W., Kent, S. C.,
Powers, A. C., Bottino, R., Harlan, D. M., Greenbaum, C. J. et al. (2018).
Modifying enzymes are elicited by ER stress, generating epitopes that are
selectively recognized by CD4* T cells in patients with type 1 diabetes. Diabetes
67, 1356-1368. doi:10.2337/db17-1166

Maurel, M., Chevet, E., Tavernier, J. and Gerlo, S. (2014). Getting RIDD of RNA:
IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245-254. doi:10.1016/j.tibs.
2014.02.008

Mintz, M., Vanderver, A., Brown, K. J., Lin, J., Wang, Z., Kaneski, C.,
Schiffmann, R., Nagaraju, K., Hoffman, E. P. and Hathout, Y. (2008). Time
series proteome profiling to study endoplasmic reticulum stress response.
J. Proteome Res. 7, 2435-2444. doi:10.1021/pr700842m

Moore, K. and Hollien, J. (2015). Ire1-mediated decay in mammalian cells relies on
mRNA sequence, structure, and translational status. Mol. Biol. Cell 26,
2873-2884. doi:10.1091/mbc.E15-02-0074

Ogata, M., Hino, S.-l., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S.,
Murakami, T., Taniguchi, M., Tanii, |., Yoshinaga, K. et al. (2006). Autophagy is
activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26,
9220-9231. doi:10.1128/MCB.01453-06

Okada, T., Haze, K., Nadanaka, S., Yoshida, H., Seidah, N. G., Hirano, Y., Sato,
R., Negishi, M. and Mori, K. (2003). A serine protease inhibitor prevents
endoplasmic reticulum stress-induced cleavage but not transport of the
membrane-bound transcription factor ATF6. J. Biol. Chem. 278, 31024-31032.
doi:10.1074/jbc.M300923200

Ong, S.-E., Blagoev, B., Kratchmarova, |., Kristensen, D. B., Steen, H., Pandey,
A. and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture,
SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell.
Proteomics 1, 376-386. doi:10.1074/mcp.M200025-MCP200

Pattingre, S., Bauvy, C., Carpentier, S., Levade, T., Levine, B. and Codogno, P.
(2009). Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced
macroautophagy. J. Biol. Chem. 284, 2719-2728. doi:10.1074/jbc.M805920200

Saito, A. and Imaizumi, K. (2018a). The broad spectrum of signaling pathways
regulated by unfolded protein response in neuronal homeostasis. Neurochem. Int.
119, 26-34. doi:10.1016/j.neuint.2017.06.012

Saito, A. and Imaizumi, K. (2018b). Unfolded protein response-dependent
communication and contact among endoplasmic reticulum, mitochondria, and
plasma membrane. Int. J. Mol. Sci. 19, 3215. doi:10.20944/preprints201809.
0521.v1

Saito, S., Furuno, A., Sakurai, J., Sakamoto, A., Park, H.-R., Shin-Ya, K.,
Tsuruo, T. and Tomida, A. (2009). Chemical genomics identifies the unfolded
protein response as a target for selective cancer cell killing during glucose
deprivation. Cancer Res. 69, 4225-4234. doi:10.1158/0008-5472.CAN-08-2689

Schindler, A. J. and Schekman, R. (2009). In vitro reconstitution of ER-stress
induced ATF6 transport in COPII vesicles. Proc. Natl. Acad. Sci. USA 106,
17775-17780. doi:10.1073/pnas.0910342106

Schmidt, E. K., Clavarino, G., Ceppi, M. and Pierre, P. (2009). SUnSET, a
nonradioactive method to monitor protein synthesis. Nat. Methods 6, 275-277.
doi:10.1038/nmeth.1314

Schneider, C. A, Rasband, W. S. and Eliceiri, K. W. (2012). NIH Image to ImageJ:
25 years of image analysis. Nat. Methods 9, 671-675. doi:10.1038/nmeth.2089

Shinjo, S., Mizotani, Y., Tashiro, E. and Imoto, M. (2013). Comparative analysis of
the expression patterns of UPR-target genes caused by UPR-inducing
compounds. Biosci. Biotechnol. Biochem. 77, 729-735. doi:10.1271/bbb.120812

Shoulders, M. D., Ryno, L. M., Genereux, J. C., Moresco, J. J., Tu, P. G., Wu, C,,
Yates, J. R, lll, Su, A. I, Kelly, J. W. and Wiseman, R. L. (2013). Stress-independent
activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis
environments. Cell Rep. 3, 1279-1292. doi:10.1016/j.celrep.2013.03.024

Sriburi, R., Jackowski, S., Mori, K. and Brewer, J. W. (2004). XBP1: a link
between the unfolded protein response, lipid biosynthesis, and biogenesis of the
endoplasmic reticulum. J. Cell Biol. 167, 35-41. doi:10.1083/jcb.200406136

Sriburi, R., Bommiasamy, H., Buldak, G. L., Robbins, G. R., Frank, M.,
Jackowski, S. and Brewer, J. W. (2007). Coordinate regulation of phospholipid
biosynthesis and secretory pathway gene expression in XBP-1(S)-induced
endoplasmic reticulum biogenesis. J. Biol. Chem. 282, 7024-7034. doi:10.1074/
jbc.M609490200

12

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%]
©
Q
oA
(@]



https://doi.org/10.1074/jbc.RA117.001484
https://doi.org/10.1074/jbc.RA117.001484
https://doi.org/10.1074/jbc.RA117.001484
https://doi.org/10.1074/jbc.RA117.001484
https://doi.org/10.1038/35014014
https://doi.org/10.1038/35014014
https://doi.org/10.1038/35014014
https://doi.org/10.1242/jcs.045625
https://doi.org/10.1242/jcs.045625
https://doi.org/10.1242/jcs.045625
https://doi.org/10.1242/jcs.045625
https://doi.org/10.1128/MCB.00013-15
https://doi.org/10.1128/MCB.00013-15
https://doi.org/10.1128/MCB.00013-15
https://doi.org/10.1128/MCB.00013-15
https://doi.org/10.1002/elps.201100565
https://doi.org/10.1002/elps.201100565
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1186/1471-2105-13-S16-S12
https://doi.org/10.1186/1471-2105-13-S16-S12
https://doi.org/10.1186/1471-2105-13-S16-S12
https://doi.org/10.1186/1471-2105-13-S16-S12
https://doi.org/10.1021/pr101065j
https://doi.org/10.1021/pr101065j
https://doi.org/10.1021/pr101065j
https://doi.org/10.1038/sj.cdd.4402012
https://doi.org/10.1038/sj.cdd.4402012
https://doi.org/10.1038/sj.cdd.4402012
https://doi.org/10.1038/sj.cdd.4402012
https://doi.org/10.1128/MCB.00044-15
https://doi.org/10.1128/MCB.00044-15
https://doi.org/10.1128/MCB.00044-15
https://doi.org/10.1021/jacs.8b08606
https://doi.org/10.1021/jacs.8b08606
https://doi.org/10.1021/jacs.8b08606
https://doi.org/10.1101/gad.297374.117
https://doi.org/10.1101/gad.297374.117
https://doi.org/10.1101/gad.297374.117
https://doi.org/10.1016/j.cell.2009.07.017
https://doi.org/10.1016/j.cell.2009.07.017
https://doi.org/10.1016/j.cell.2009.07.017
https://doi.org/10.1016/j.cell.2009.07.017
https://doi.org/10.1038/ncb2738
https://doi.org/10.1038/ncb2738
https://doi.org/10.1038/ncb2738
https://doi.org/10.1038/ncb2738
https://doi.org/10.1038/16729
https://doi.org/10.1038/16729
https://doi.org/10.1038/16729
https://doi.org/10.1016/S1097-2765(00)00108-8
https://doi.org/10.1016/S1097-2765(00)00108-8
https://doi.org/10.1016/S1097-2765(00)00108-8
https://doi.org/10.1016/S1097-2765(01)00264-7
https://doi.org/10.1016/S1097-2765(01)00264-7
https://doi.org/10.1016/S1097-2765(01)00264-7
https://doi.org/10.1016/S1097-2765(01)00264-7
https://doi.org/10.1016/S1097-2765(01)00264-7
https://doi.org/10.1016/S1097-2765(03)00105-9
https://doi.org/10.1016/S1097-2765(03)00105-9
https://doi.org/10.1016/S1097-2765(03)00105-9
https://doi.org/10.1016/S1097-2765(03)00105-9
https://doi.org/10.1091/mbc.10.11.3787
https://doi.org/10.1091/mbc.10.11.3787
https://doi.org/10.1091/mbc.10.11.3787
https://doi.org/10.1091/mbc.10.11.3787
https://doi.org/10.1126/science.1129631
https://doi.org/10.1126/science.1129631
https://doi.org/10.1126/science.1129631
https://doi.org/10.1083/jcb.200903014
https://doi.org/10.1083/jcb.200903014
https://doi.org/10.1083/jcb.200903014
https://doi.org/10.1186/1471-2091-15-3
https://doi.org/10.1186/1471-2091-15-3
https://doi.org/10.1186/1471-2091-15-3
https://doi.org/10.1186/1471-2091-15-3
https://doi.org/10.1186/1471-2091-15-3
https://doi.org/10.1128/MCB.13.2.877
https://doi.org/10.1128/MCB.13.2.877
https://doi.org/10.1128/MCB.13.2.877
https://doi.org/10.1128/MCB.13.2.877
https://doi.org/10.1038/332462a0
https://doi.org/10.1038/332462a0
https://doi.org/10.1038/332462a0
https://doi.org/10.1074/jbc.M113.466920
https://doi.org/10.1074/jbc.M113.466920
https://doi.org/10.1074/jbc.M113.466920
https://doi.org/10.1074/jbc.M113.466920
https://doi.org/10.1074/jbc.M113.466920
https://doi.org/10.1016/j.molcel.2014.06.032
https://doi.org/10.1016/j.molcel.2014.06.032
https://doi.org/10.1016/j.molcel.2014.06.032
https://doi.org/10.2337/db17-1166
https://doi.org/10.2337/db17-1166
https://doi.org/10.2337/db17-1166
https://doi.org/10.2337/db17-1166
https://doi.org/10.2337/db17-1166
https://doi.org/10.2337/db17-1166
https://doi.org/10.1016/j.tibs.2014.02.008
https://doi.org/10.1016/j.tibs.2014.02.008
https://doi.org/10.1016/j.tibs.2014.02.008
https://doi.org/10.1021/pr700842m
https://doi.org/10.1021/pr700842m
https://doi.org/10.1021/pr700842m
https://doi.org/10.1021/pr700842m
https://doi.org/10.1091/mbc.E15-02-0074
https://doi.org/10.1091/mbc.E15-02-0074
https://doi.org/10.1091/mbc.E15-02-0074
https://doi.org/10.1128/MCB.01453-06
https://doi.org/10.1128/MCB.01453-06
https://doi.org/10.1128/MCB.01453-06
https://doi.org/10.1128/MCB.01453-06
https://doi.org/10.1074/jbc.M300923200
https://doi.org/10.1074/jbc.M300923200
https://doi.org/10.1074/jbc.M300923200
https://doi.org/10.1074/jbc.M300923200
https://doi.org/10.1074/jbc.M300923200
https://doi.org/10.1074/mcp.M200025-MCP200
https://doi.org/10.1074/mcp.M200025-MCP200
https://doi.org/10.1074/mcp.M200025-MCP200
https://doi.org/10.1074/mcp.M200025-MCP200
https://doi.org/10.1074/jbc.M805920200
https://doi.org/10.1074/jbc.M805920200
https://doi.org/10.1074/jbc.M805920200
https://doi.org/10.1016/j.neuint.2017.06.012
https://doi.org/10.1016/j.neuint.2017.06.012
https://doi.org/10.1016/j.neuint.2017.06.012
https://doi.org/10.20944/preprints201809.0521.v1
https://doi.org/10.20944/preprints201809.0521.v1
https://doi.org/10.20944/preprints201809.0521.v1
https://doi.org/10.20944/preprints201809.0521.v1
https://doi.org/10.1158/0008-5472.CAN-08-2689
https://doi.org/10.1158/0008-5472.CAN-08-2689
https://doi.org/10.1158/0008-5472.CAN-08-2689
https://doi.org/10.1158/0008-5472.CAN-08-2689
https://doi.org/10.1073/pnas.0910342106
https://doi.org/10.1073/pnas.0910342106
https://doi.org/10.1073/pnas.0910342106
https://doi.org/10.1038/nmeth.1314
https://doi.org/10.1038/nmeth.1314
https://doi.org/10.1038/nmeth.1314
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1271/bbb.120812
https://doi.org/10.1271/bbb.120812
https://doi.org/10.1271/bbb.120812
https://doi.org/10.1016/j.celrep.2013.03.024
https://doi.org/10.1016/j.celrep.2013.03.024
https://doi.org/10.1016/j.celrep.2013.03.024
https://doi.org/10.1016/j.celrep.2013.03.024
https://doi.org/10.1083/jcb.200406136
https://doi.org/10.1083/jcb.200406136
https://doi.org/10.1083/jcb.200406136
https://doi.org/10.1074/jbc.M609490200
https://doi.org/10.1074/jbc.M609490200
https://doi.org/10.1074/jbc.M609490200
https://doi.org/10.1074/jbc.M609490200
https://doi.org/10.1074/jbc.M609490200

RESOURCE ARTICLE

Disease Models & Mechanisms (2019) 12, dmm040741. doi:10.1242/dmm.040741

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-
Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P. et al. (2015).
STRING v10: protein-protein interaction networks, integrated over the tree of life.
Nucleic Acids Res. 43, D447-D452. doi:10.1093/nar/gku1003

Tyanova, S., Mann, M. and Cox, J. (2014). MaxQuant for in-depth analysis of large
SILAC datasets. Methods Mol. Biol. 1188, 351-364. doi:10.1007/978-1-4939-
1142-4_24

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M.
and Cox, J. (2016). The Perseus computational platform for comprehensive
analysis of (prote)omics data. Nat. Methods 13, 731-740. doi:10.1038/nmeth.3901

Vos, S. M., Farnung, L., Boehning, M., Wigge, C., Linden, A., Urlaub, H. and
Cramer, P. (2018a). Structure of activated transcription complex Pol [I-DSIF-PAF-
SPT6. Nature 560, 607-612. doi:10.1038/s41586-018-0440-4

Vos, S. M., Farnung, L., Urlaub, H. and Cramer, P. (2018b). Structure of paused
transcription complex Pol II-DSIF-NELF. Nature 560, 601-606. doi:10.1038/
s$41586-018-0442-2

Walter, P. and Ron, D. (2011). The unfolded protein response: from stress pathway to
homeostatic regulation. Science 334, 1081-1086. doi:10.1126/science.1209038

Wisniewski, J. R., Zougman, A., Nagaraj, N. and Mann, M. (2009). Universal
sample preparation method for proteome analysis. Nat. Methods 6, 359-362.
doi:10.1038/nmeth.1322

Wu, J., Rutkowski, D. T., Dubois, M., Swathirajan, J., Saunders, T., Wang, J.,
Song, B., Yau, G. D.-Y. and Kaufman, R. J. (2007). ATF6c. optimizes long-term
endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell 13,
351-364. doi:10.1016/j.devcel.2007.07.005

Yadav, R. K., Chae, S.-W., Kim, H.-R. and Chae, H. J. (2014). Endoplasmic
reticulum stress and cancer. J. Cancer Prev. 19, 75-88. doi:10.15430/JCP.2014.
19.2.75

Yoshida, H. (2007). Unconventional splicing of XBP-1 mRNA in the unfolded
protein response. Antioxid Redox Signal. 9, 2323-2333. doi:10.1089/ars.2007.
1800

Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. and Mori, K. (2001). XBP1
mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to
produce a highly active transcription factor. Cell 107, 881-891. doi:10.1016/
S0092-8674(01)00611-0

Zielinska, D. F., Gnad, F., Wisniewski, J. R. and Mann, M. (2010). Precision
mapping of an in vivo N-glycoproteome reveals rigid topological and sequence
constraints. Cell 141, 897-907. doi:10.1016/j.cell.2010.04.012

Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti,
H., Stevens, J. L. and Ron, D. (1998). CHOP is implicated in programmed cell
death in response to impaired function of the endoplasmic reticulum. Genes Dev.
12, 982-995. doi:10.1101/gad.12.7.982

13

(%]
S
gD
c
©
<
|9
o)
=
o
g
0}
)
o
=
o)
(%)
©
Q
4
(@]



https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1007/978-1-4939-1142-4_24
https://doi.org/10.1007/978-1-4939-1142-4_24
https://doi.org/10.1007/978-1-4939-1142-4_24
https://doi.org/10.1038/nmeth.3901
https://doi.org/10.1038/nmeth.3901
https://doi.org/10.1038/nmeth.3901
https://doi.org/10.1038/s41586-018-0440-4
https://doi.org/10.1038/s41586-018-0440-4
https://doi.org/10.1038/s41586-018-0440-4
https://doi.org/10.1038/s41586-018-0442-2
https://doi.org/10.1038/s41586-018-0442-2
https://doi.org/10.1038/s41586-018-0442-2
https://doi.org/10.1126/science.1209038
https://doi.org/10.1126/science.1209038
https://doi.org/10.1038/nmeth.1322
https://doi.org/10.1038/nmeth.1322
https://doi.org/10.1038/nmeth.1322
https://doi.org/10.1016/j.devcel.2007.07.005
https://doi.org/10.1016/j.devcel.2007.07.005
https://doi.org/10.1016/j.devcel.2007.07.005
https://doi.org/10.1016/j.devcel.2007.07.005
https://doi.org/10.15430/JCP.2014.19.2.75
https://doi.org/10.15430/JCP.2014.19.2.75
https://doi.org/10.15430/JCP.2014.19.2.75
https://doi.org/10.1089/ars.2007.1800
https://doi.org/10.1089/ars.2007.1800
https://doi.org/10.1089/ars.2007.1800
https://doi.org/10.1016/S0092-8674(01)00611-0
https://doi.org/10.1016/S0092-8674(01)00611-0
https://doi.org/10.1016/S0092-8674(01)00611-0
https://doi.org/10.1016/S0092-8674(01)00611-0
https://doi.org/10.1016/j.cell.2010.04.012
https://doi.org/10.1016/j.cell.2010.04.012
https://doi.org/10.1016/j.cell.2010.04.012
https://doi.org/10.1101/gad.12.7.982
https://doi.org/10.1101/gad.12.7.982
https://doi.org/10.1101/gad.12.7.982
https://doi.org/10.1101/gad.12.7.982

