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a b s t r a c t 

When we feel connected or engaged during social behavior, are our brains in fact “in sync ” in a formal, quantifi- 

able sense? Most studies addressing this question use highly controlled tasks with homogenous subject pools. In 

an effort to take a more naturalistic approach, we collaborated with art institutions to crowdsource neuroscience 

data: Over the course of 5 years, we collected electroencephalogram (EEG) data from thousands of museum and 

festival visitors who volunteered to engage in a 10-min face-to-face interaction. Pairs of participants with various 

levels of familiarity sat inside the Mutual Wave Machine —an artistic neurofeedback installation that translates 

real-time correlations of each pair’s EEG activity into light patterns. Because such inter-participant EEG correla- 

tions are prone to noise contamination, in subsequent offline analyses we computed inter-brain coupling using 

Imaginary Coherence and Projected Power Correlations , two synchrony metrics that are largely immune to instan- 

taneous, noise-driven correlations. When applying these methods to two subsets of recorded data with the most 

consistent protocols, we found that pairs’ trait empathy, social closeness, engagement, and social behavior (joint 

action and eye contact) consistently predicted the extent to which their brain activity became synchronized, 

most prominently in low alpha (~7–10 Hz) and beta (~20–22 Hz) oscillations. These findings support an ac- 

count where shared engagement and joint action drive coupled neural activity and behavior during dynamic, 

naturalistic social interactions. To our knowledge, this work constitutes a first demonstration that an interdis- 

ciplinary, real-world, crowdsourcing neuroscience approach may provide a promising method to collect large, 

rich datasets pertaining to real-life face-to-face interactions. Additionally, it is a demonstration of how the gen- 

eral public can participate and engage in the scientific process outside of the laboratory. Institutions such as 

museums, galleries, or any other organization where the public actively engages out of self-motivation, can help 

facilitate this type of citizen science research, and support the collection of large datasets under scientifically 

controlled experimental conditions. To further enhance the public interest for the out-of-the-lab experimental 

approach, the data and results of this study are disseminated through a website tailored to the general public 

( wp.nyu.edu/mutualwavemachine ). 
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. Introduction 

Laboratory research is widely assumed to provide foundational
nsights into how our brains process information on an everyday
asis. However, this model has not been systematically tested: we
arely, if ever, conduct our research in real-world, everyday contexts
 Matusz et al., 2019 ; Shamay-Tsoory and Mendelsohn, 2019 ). At the
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ame time, an increasing number of studies emphasizes the importance
f face-to-face social interaction to our physical and mental wellbe-
ng (e.g., Kross et al., 2013 ). For example, eye contact has long been
ecognized as a vital aspect of healthy cognition and cognitive devel-
pment (e.g., Tomasello and Others, 2006 ), by highlighting cues that
llow people to coordinate social behavior ( Sebanz et al., 2006 ). To
rrive at a more comprehensive understanding of the brain basis of
 1 October 2020 
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Fig. 1. Different possible sources of inter-brain 

coupling. 

(A) External non-social stimuli (top) and (E) 

social behavior (bottom) provide exogenous 

sources of shared stimulus entrainment and in- 

terpersonal social coordination, respectively, 

leading to similar brain responses, i.e., inter- 

brain coupling. (B) Both individuals’ social 

closeness and personality traits (e.g., affective 

empathy) are expected to affect their social en- 

gagement during the interaction, and thus the 

extent to which their brain responses become 

synchronized. (C) participants’ mental states 

(e.g., focus) are similarly expected to affect par- 

ticipants’ engagement with each other, intrin- 

sically (endogenously) motivating participants 

to make an effort to connect to each other. 

(D) Such engagement can be “boosted ” via ex- 

trinsic motivation, which should subsequently 

lead to increased inter-brain coupling. 
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ocial interaction, then, measuring communication ‘live’ is vital: real-
stic human interactions are more complex and more richly coupled
cross participants/brains than can be captured in canonical laboratory
xperiments. 

Here, we aimed to identify neural correlates of real-world face-to-
ace social interactions in a large population of participants recruited
utside of the traditional research subject pool (typically university un-
ergraduate students). The homogeneity of scientific study participants
s increasingly considered problematic with respect to the generaliz-
bility of research findings ( Henrich et al., 2010 ; Falk et al., 2013 ;
eWinn et al., 2017) . One option is to make more of an effort to bring
articipants from the general public to the laboratory; another possible
olution is to bring the laboratory to the public. In this work, we provide
 methodological proof of concept for the second model: we show that
t is feasible to conduct large-scale neuroscience research ‘in the wild’
hile maintaining rigor in terms of both analysis and interpretation. 

We capitalized on recent real-world social neuroscience research
 Matusz et al., 2019 ; Dikker et al., 2019 ; Dikker et al., 2017 ;
evilacqua et al., 2019 ; Bhattacharya, 2017 ; Parada and Rossi, 2017 ),
obile electroencephalography (EEG) technology ( Debener et al., 2012 ;
win et al., 2010 ), brain-computer-interfaces ( Brunner et al., 2015 ;
inguillon et al., 2017 ), and the so-called “interactive turn ” in social

euroscience ( De Jaegher et al., 2010 ). In recent years, there has been
 surge of studies that compare brain activity between participants in-
tead of using a stimulus-brain approach (e.g., Dumas et al., 2010 ;
asson et al., 2004 ); for reviews see e.g., Babiloni and Astolfi, 2014 ;
asson et al., 2012 ; Liu et al., 2018 ; Sänger et al., 2011 ). Concretely,
e used a ‘crowdsourcing neuroscience’ approach in which, over the

ourse of five years, museum and festival visitors were invited to par-
icipate in research as part of their audience experience. We identified
 set of characteristics that were deemed socially relevant (social close-
ess, social behavior, mental states, and personality traits) and asked
hether these attributes affected the similarity of brain activity between

wo people during naturalistic face-to-face interaction (often referred to
s brain-to-brain synchrony or inter-brain coupling; operationalized be-
ow). Crucially, we not only sought to identify such factors, but also
hether they can be dissociated at the neural level, specifically with

espect to different characteristics of brain oscillations. Our experimen-
al question was made tangible and enticing to the audience as follows:
When are your brainwaves literally “on the same wavelength ”? ”

Recent research has identified a number of predictors of inter-
rain coupling (e.g., Hasson et al., 2004 ; Nummenmaa et al., 2012 ;
ikker et al., 2017 ; Bevilacqua et al., 2018 ; Pérez et al., 2018 ;
arkinson et al., 2018 ; Dikker et al., 2014 ; Stephens et al., 2010 ;
onvalinka et al., 2014 ; Astolfi et al., 2010 ). Fig. 1 illustrates the factors
nder investigation here. 

It is widely established that brain activity becomes synchronized be-
ween people when they listen to or watch the same stimulus merely
ue to its physical characteristics (contrast, color, volume variations;
ig. 1 a). Another (partially) exogenous driver of inter-brain coupling is
ynchronized movement through joint action (e.g., Dumas et al., 2010 ).
ocially-induced behavioral synchrony ( Fig. 1 e) is prevalent through-
ut our everyday interactions: consider pedestrians navigating side-
alk traffic, conversations, a tango dance, a musical duet. Face-to-

ace interactions require tight spatio-temporal coordination between
heir participants at cognitive ( Pickering and Garrod, 2013 ), percep-
ual ( Kang and Wheatley, 2017 ), and motoric levels ( Richardson, Dale,
nd Tomlinson, 2009 ). Such interpersonal rhythmic coordination oc-
urs spontaneously ( Richardson et al., 2007 ) and is subject to individ-
al differences: people with a prosocial orientation tend to synchro-
ize more ( Lumsden et al., 2012 ), and children with Autism Spectrum
isorder do not engage in spontaneous rhythmic movement synchro-
ization with others ( Marsh et al., 2013 ). Perhaps most importantly,
ynchronized joint action is predictive of how the interaction is expe-
ienced. For example, therapists and patients who exhibit more syn-
hronized motion during a therapy session, report higher therapeu-
ic satisfaction ( Ramseyer and Tschacher, 2011 ; Koole and Tschacher,
016 ; Koole et al., 2020 ). Synchronous biological rhythms have also
een linked to social behavior in a meaningful way, ranging from
eart rate and respiration ( Noy et al., 2015 ; Müller and Lindenberger,
011 ; Thorson et al., 2018 ; Waters et al., 2017) , to brain responses:
or example, synchronous resting state fMRI activity between chil-
ren and their caregivers is predictive of their relationship ( Lee et al.,
017 ), and friends show more similar neural responses to video clips
 Parkinson et al., 2018 ). 

While evoked neural activity is observed across cortex, it is typi-
ally most strictly time-locked to the stimulus–and thus also between
articipants–in sensory cortex ( David et al., 2006 ). Inter-brain coupling
rising from internal mental models, in contrast, is arguably rooted
n higher brain areas and involves top-down processes which fuse the
xogenous stimulus information with such endogenous models of the
orld. We pose that socially relevant factors ( Fig. 1 b-e) operate on such
rain endogenous models involving high-level inferences. We thus fo-
used our analysis on non-instantaneous co-variations in pairs’ brains:
hile we recognize that synchrony in higher brain areas can also be in-

tantaneous, we reasoned that non-instantaneous inter-brain coupling is
ess likely to arise from purely stimulus-related factors and thus more
ikely to stem from socially-relevant factors. 
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Fig. 2. The Mutual Wave Machine. 

(A) Hardware specifications of the EMOTIV EPOC EEG headset, an image of the EMOTIV EPOC headset (side view), and a top-view of the electrode locations (note 

that electrode placement may vary considerably between participants, see e.g., Dikker et al., 2017 ); (B) A pair of participants inside the Mutual Wave Machine 

experiencing real-time inter-brain synchrony A/V feedback. (C/D) Inter-brain correlations between two participants wearing wireless EEG headsets were computed 

in real time. Higher inter-brain correlation values correspond to more light projected on each of the surfaces, with the focus point behind each participant’s head. 

(See text for details; for the offline inter-brain coupling computations see Fig. 3 ). 
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Such socially relevant factors include joint action ( Fig. 1 e) as dis-
ussed above, but also social personality traits (e.g., affective empathy)
nd pairs’ social closeness, which we predicted would both affect pairs’
utual social engagement, and thus the extent to which their brain re-

ponses become synchronized. Past research has already demonstrated
hat interpersonal factors affect inter-brain coupling. For example, col-
aborative attitudes lead to higher inter-brain coupling than competitive
ehavior ( Cui et al., 2012 ) as do social closeness and empathic person-
lity (e.g., Kinreich et al., 2017 ; Goldstein et al., 2018 ; Dikker et al.,
017 ; Bevilacqua et al., 2019 ). 

Mental states such as engagement/focus level ( Fig. 1 c) have
lso been shown to affect inter-brain coupling ( Dumas et al., 2012 ;
ikker et al., 2017 ; Goldstein et al., 2018 ; Dalton et al., 2005 ; Scott-
an Zeeland et al., 2010 ; Kylliäinen et al., 2012 ; Petroni et al., 2017 ;
evilacqua et al., 2019 ). Such engagement can arguably be “boosted ”
ia extrinsic motivation ( Fig. 1 d), which should subsequently lead to
ncreased inter-brain coupling. 

To test how socio-behavioral factors during face-to-face interaction
elate to inter-brain coupling, we developed the Mutual Wave Machine
 Dikker et al., 2019 ), a dome-like BCI/neurofeedback environment that
mmerses pairs of participants in a real-time audiovisual (AV) reflection
f the extent to which their EEG signals are instantaneously correlated
n one or more frequency bands ( Fig. 2 ). 

We hypothesized that such an environment would motivate partici-
ants to remain socially engaged with each other for the duration of the
nteraction ( Fig. 1 d). To test this, we asked whether explicitly inform-
ng participants that the audiovisual (A/V) environment reflected their
ngoing correlated EEG signal resulted in a “self-fulfilling prophecy ”
f sorts: If you think you are receiving real-time audiovisual feedback
bout how in sync you are with your partner, will that actually posi-
ively affect your ongoing inter-brain coupling? 

As detailed in the Methods, it is important to note that ‘brain syn-
hrony’ as reflected in the Mutual Wave Machine is likely very prone
o noise contamination, rendering it difficult to draw meaningful con-
lusions about participants’ veridical inter-brain coupling based on their
eal-time A/V environment. Participants were explicitly informed of this
imitation and were told that a subsequent offline scientific analysis
ould be applied to their data. A second limitation is that the real-time
rain synchrony involved the computation of instantaneous correlations
etween narrow-band versions of short portions of the EEG recorded sig-
als. As a result, high correlation values due to chance are more likely
han when broadband signal correlations are used (see Methods for a
ore detailed description). These limitations, together with the fact that

he correlational approach that was implemented here is not commonly
sed in hyperscanning research, decreases the likelihood that the neu-
ofeedback is socially significant. 

To circumvent these issues, we used two different metrics to compute
on-instantaneous inter-brain coupling: Projected Power Correlations and
maginary Coherence . While imaginary coherence provides a quantita-
ive characterization of whether oscillations within specific frequency
anges show consistent phase relationships between pairs of partici-
ants; projected power correlations quantify the extent to which power
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n a specific frequency co-fluctuates between pairs. Second, as explained
n detail in the Methods, projected power correlations and imaginary co-
erence are especially suited for noisy recording environments, such as
useums ( Cruz-Garza et al., 2017 ), because the common signal between

ndividual recordings (or: instantaneous co-fluctuations) is removed be-
ore computing inter-brain coupling. In other words, any electrical noise
r sensory cortex activity driven by strong audiovisual input can only
inimally affect the estimated inter-brain coupling. This is especially

mportant in the current setup because participants were surrounded
y electronic equipment and strong audiovisual stimulation originating
rom the art exhibition. We additionally circumvented spurious effects of
nvironmental noise on inter-brain coupling by adopting a strict brain-
ehavior correlational analysis approach. 

To summarize, in this study pairs of participants interacted semi-
aturally while seated facing each other, allowing us to investigate how
he extent to which brain activity becomes synchronized between dyads
uring face-to-face social interaction relates to participants’ (a) rela-
ionship (relationship duration and social closeness; Aron et al., 1992 ),
b) affective personality traits (Personal Distress and Perspective Taking;
avis et al., 1980 ), (c) mental states (positive affect, negative affect, and

ocus; Watson and Clark, 1994 ), and (d) motivation (real-time audiovi-
ual brainwave synchrony feedback; Dikker et al., 2019 ). To address
hese questions, we used a BCI setup that allowed us to collect neural
ctivity using portable electroencephalography (EEG) from large num-
ers of museum and festival visitors at a wide range of recording sites
see Table S1 for a list of recording sites and the number of participants
or each site). This interactive art/science neurofeedback ‘laboratory’
nabled us explore the limits and opportunities afforded by conducting
uman social neuroscience research outside of the traditional laboratory
ontext. 

. Methods 

.1. Data recording and real-time analysis 

Pairs of participants sat inside the Mutual Wave Machine ( Fig. 2 b)
hile we recorded their brain activity using 14-channel portable
MOTIV EPOC wireless EEG headsets (see Fig. 2 a for specifications,
nd e.g., Debener et al., 2012; Dikker et al., 2017 ), for a valida-
ion). ‘Brainwave synchrony’ (in this case, instantaneous band-limited
orrelations, described below) was translated into light patterns that
ere projected onto the surface of the installation ( Fig. 2 b-d, see
p.nyu.edu/mutualwavemachine for footage of the installation/setup)
sing custom-software developed in the C ++ based OpenFrameworks
ibrary (openframeworks.cc). 

The exact data processing pipeline that was used to compute the
nter-EEG correlations that fed into the visualizations varied between
he locations listed in Table S1. For the BENAKI and LOWLANDS
atasets described here, the following protocol was used. A moving
indow of 6 second of data (6 ∗ 128 samples) was selected for real-

ime analysis approximately 30 times per second (the exact window-step
ize varied slightly as a function of the buffer size of incoming samples,
hich typically ranged between 4 and 8 samples per buffer). EEG data

treams from the two participants’ headsets were synchronized using a
-second window, based on the time that samples were received by the
nalysis computer, and then filtered into typical frequency bands us-
ng FFTW ( www.fftw.org ; delta: 1–4 Hz; theta: 4–7 Hz; alpha: 7–12 Hz;
eta: 12 − 30 Hz). Within each frequency range, a sub-window was used
o calculate Pearson correlation coefficients for each pair of sensors be-
ween headsets (n x n sensors; delta: 3 ∗ 128 window, 0.7 ∗ 128 offset;
heta: 2 ∗ 128, 0.6 ∗ 128 offset; alpha: 1.1 ∗ 128 window, 0.5 ∗ 128 off-
et; beta: 0.6 ∗ 128 window, 0.4 ∗ 128 offset). Both the average across
ll r-values for all sensor pairs and the highest r-value among all sen-
or pairs contributed to the correlation value for each frequency band
50/50). The four scores were then fed into a visualization algorithm in
hich four separate moiré patterns were created, growing in a circular
otion from the center of each sphere as a function of the synchrony
alue in each frequency band, ranging between 0 and 1: a score of 1 was
creen filling ( Fig. 2 d-ii) and no visuals were projected if the value was
 ( Fig. 2 d-iii). 

Although this setup makes “brainwave synchrony ” intuitive to the
eneral public, it is highly unlikely that these instantaneous band-
imited correlations map onto inter-brain coupling between the partic-
pants in a meaningful way. The main reason is that in a noisy envi-
onment, such as a museum, instantaneous band-limited correlations
etween the 2 EEG devices are likely to be dominated by shared noise
ather than shared social events. Additionally, when correlating 2 short
arrow-band signals, correlation values can be artificially inflated be-
ause of pure chance. This inter-brain synchrony analysis was used for
ase of computation and to our knowledge has not been employed to
ssess meaningful EEG inter-brain analysis. 

As described in the Procedure, participants were made aware of the
aveats and limitations of the visualization and were discouraged to
raw any meaningful conclusions based on their experience. Instead,
hey were told that for analysis, their inter-brain coupling would be re-
omputed later, offline, after removing motion artifacts and bad chan-
els. They were told that once the analysis is done, findings would be
ade available on a public website. 

.2. Participants & locations 

EEG and questionnaire data were collected from a total of 4800
eople across 14 different sites (see Table S1). For the purposes of
his paper, data were analyzed only from two sites. The Benaki Art
useum (BENAKI; Athens, Greece), where the Mutual Wave Machine
as set up as part of the Marina Abramovic Institute exhibition AS
NE ( mai.art/as-one-content/2016/2/29/presenting-as-one ), provided
ur most comprehensive and consistent dataset (1568 participants) and
rovided the best recording conditions: the Mutual Wave Machine was
xhibited for 2 months in the same location, the data were collected
y a well-trained and dedicated group of facilitators (see Acknowledg-
ents), and there was minimal environmental distraction (at some of

he other sites, the installation was placed in a crowded space with a lot
f environmental noise and distractions for both participants and exper-
menters). The second recording site included here is Lowlands Science
LOWLANDS), where 230 participants took part in the Mutual Wave
achine. 

.3. Experimental procedure 

Participants signed up for timeslots in advance, either individually
r in pairs. EEG headsets were applied while participants completed a
onsent form (following Utrecht University Institute of Linguistics study
rotocol) and pre-experiment questionnaire (see below for details). After
etup, participants were led to the Mutual Wave Machine, where they
eceived further instructions. 

In the BENAKI dataset, a subset of participants ( n = 534) was ex-
licitly told that the light patterns reflected brain-to-brain synchrony
explicit synchrony A/V), while another group ( n = 498) was not (non-
xplicit synchrony A/V). In the LOWLANDS dataset, all pairs were told
he purpose of the work was to investigate the relationship between
nter-brain synchrony and “feeling in sync ”, but half of the participants
ere assigned to a sham A/V condition. For the latter group, the visu-
lizations were randomly generated instead of reflecting the true corre-
ated EEG signal. An additional difference in the LOWLANDS dataset
as that, after the experience, participants were asked to list which

strategies ” they used to try to connect to each other and increase brain
ynchrony. 

Participants were encouraged to be mindful of their movements and
ere told that too much movement would create motion artifacts that

ould distort the signal and make it impossible to detect actual brain-
aves in the EEG signal. To illustrate this, participants were shown the

http://wp.nyu.edu/mutualwavemachine
http://www.fftw.org
http://www.mai.art/as-one-content/2016/2/29/presenting-as-one
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ffects of jaw clenching, laughing, and blinking in their own raw EEG
race during setup. 

After the experience, participants were led back to the setup
tation to fill out an additional set of questions. They were told
hat their data would be scientifically analyzed offline and that re-
ults would be made available on a publicly accessible web page
 wp.nyu.edu/mutualwavemachine ). The experiment took approxi-
ately 20 min including setup and debriefing. 

.4. Materials 

To investigate which factors drive inter-brain coupling during spon-
aneous face-to-face interaction, participants were asked to fill out a se-
ies of questions designed to address their (a) relationship to each other,
b) affective personality traits, and (c) affective mental states. 

a) Relationship metrics were administered before the experience
only, and included four variables. (i) As an index of Relationship

Duration (a trait measure), participants were given 6 choices to in-
dicate how long they knew each other (varying from 1 = Strangers
to 6 = 10 + years). (ii) Social Closeness (a state measure) between
pairs was measured using the Inclusion of the Other in the Self Scale
(Aron et al., 1992) , in which participants are presented with 6 Venn
diagrams where circles ‘Self’ and ‘Other’ overlap to varying degrees,
and are asked which best applies to his/her relationship to the other.

b) To quantify socially relevant affective personality traits , partic-
ipants completed a revised version of the Interpersonal Reactivity
Index during setup (IRI; Davis et al., 1980 ), including the subscales
Perspective Taking (e.g., “When I’m upset at someone, I usually try
to “put myself in his shoes ” for a while. ”), and Personal Distress

(e.g., “When I see someone who badly needs help in an emergency, I
go to pieces ”). The questionnaire consisted of 14-items answered on
a five-point Likert scale ranging from “Does not describe me well ”
to “Describes me very well ”. 

c) Mental state metrics were measured both before and after the expe-
rience (Pre and Post) using a shortened version of the Positive and
Negative Affect Schedule (PANAS-X; Watson and Clark, 1994) . The
questionnaire consisted of 20 items, with 10 items measuring Pos-
itive Affect, of which three items measured Focus (e.g., attentive,
alert). The items were rated on a five-point Likert Scale, ranging
from 1 = Very Slightly or Not at all to 5 = Extremely. 

.5. Offline analyses 

.5.1. Preprocessing pipeline 

The initial pool of data consisted of EEG recordings of 1568 partic-
pants in the BENAKI dataset, and 230 participants in the LOWLANDS
ataset (see above and Table S1). 

First, raw datasets with problems due to headset or recording
oftware malfunction were identified and discarded. For the BENAKI
ataset, 28 pairs were rejected because for one or both participants,
ess than 5 min of raw data were available, likely due to false starts
r other recording issues (out of 10 min total; mean duration of all
airs = 551.6 s). An additional 117 pairs were rejected because of inter-
ittent data loss (93 pairs), data repetition (34 pairs), or drift between

he two headsets (3 pairs), factors that would render inter-brain cou-
ling analyses unreliable. 

Next, we identified physiological artifacts or channel specific hard-
are artifacts. The EEG headset provides binary variables, sampled at

he same rate as the data, which mark blinks or vertical/horizontal
ye movements. All the instances for which these three flag variables
ere true were marked as artifacts, as well as 50 ms before and
50 ms after such instances. Subsequently, four different types of ar-
ifacts were identified using the Fieldtrip toolbox ( Oostenveld et al.,
011 ). Signal Jumps are sudden (step-like) increases or decreases in
he recorded electric field, usually attributed to the amplifier elec-
ronics. EOG-like Artifacts (electrooculography) were identified based
n their typical band–limited characteristics (no EOG was recorded
uring the experiment). For the purpose of removing EOG-like arti-
acts, the EEG channels were band-passed by a Butterworth filter in
he frequency range [1–15 Hz], then envelope time-series were derived
hrough the Hilbert transform, and times when this envelope exceeded
 standard deviations from its mean were marked as potential EOG ar-
ifacts. Clipping Artifacts are periods when data in one or more channels
emain constant at a given value and is usually caused by short-term
roblems in the electronics. Head Movements were identified through
 2-axis gyroscope built into the EEG headset, providing information
bout the orientation of the head at each data sample. The accelerome-
er signal in each axis takes negative and positive values depending on
he direction of movement. Significant head movements are manifested
s large changes on the accelerometer signal. In each of the 2 accelerom-
ter axes the derivative of the accelerometer signal was computed first
nd subsequently the mean and standard deviation of this derivative
ere calculated. All data points for which the derivative was 5 standard
eviations above and below its mean were marked as head movement
rtifacts. Data instances with any of the above artifacts characteristics
ere marked as “bad ” segments. 

The EEG headset provides, at the same sampling frequency as the
ata, a quality flag for each of the data channels. This data quality flag
s a measure of contact quality of a given electrode on the scalp during
 recording, ranging from 0 to 4. Any channel with an average quality
ower than 1 was identified as a noisy, “bad ” channel and discarded
rom further analysis (still preserving some useful information). 

After the bad channels were discarded from a dataset, the raw data
ere segmented into pseudo-trials of 1 s duration each, and all the
seudo-trials that coincided with “bad ” segments, as described above,
ere completely removed from the data. This pseudo-trial representa-

ion was used so that in subsequent time-frequency and band-limited
onnectivity analysis data segments surrounded by discarded artifacts
ould have a duration of an integer number of seconds. 

Once bad channels and bad segments were removed, one last auto-
ated preprocessing procedure was applied to further reduce the po-

ential data contamination by artifacts. Given the nature of the electric
ignals emanating from the brain and measured on the scalp, the vari-
nce of the recorded data should be similar across the different chan-
els. Channels with consistently higher variance compared to the other
hannels across the whole recording are most likely to contain higher
oise, likely due to electrical noise and not due to environmental noise
the latter would affect all channels similarly). In order to investigate
uch cases, each dataset was divided into 10 equally sized segments and
he variance of each channel was computed for each segment. If, across
ost of the 10 segments, a channel was found to consistently have a

ariance higher than 2 standard deviations from the average variance
ver all channels, it was flagged as a “bad ” channel. We also examined
f specific trials showed much higher variance than the average variance
cross all trials. As the paradigm employed here did not include any spe-
ific stimulus presentation, the variance was expected to not have big
uctuations across time but stay within relatively stable boundaries. Pe-
iods of higher variance are indicative of muscle or movement artifacts.
o as a first step, all trials with a variance of larger than 3 standard de-
iations above the average variance across the recording in a channel
ere marked as artifacts. In addition to this channel-specific “bad ” seg-
ent identification, a final similar analysis was performed, but this time

he variance for each trial was averaged across channels. This reflected
rials that have high variance consistently across all channels, probably
ue to higher environmental noise. Again, pseudo-trials with a variance
arger than 3 standard deviations from the mean variance across the
ecording were marked as “bad ” segments. 

These “bad-channel ” and “bad-segment ” procedures were applied to
he recordings of each of the participants in a given pair. This resulted
n a cleaned dataset for each participant, comprising a set of 1 ‑second
ong pseudo-trials with gaps in the places where potential artifacts were
dentified. Only trials for which data were available for both participants

http://wp.nyu.edu/mutualwavemachine
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aligned trials) were kept for further synchrony analysis. 331 pairs had
issing or incomplete questionnaire data (due to internet connectivity

ssues at the museum; the questionnaires were administered using an
nternet-based platform), leaving 307 pairs for further analysis. 

The same preprocessing procedure was applied to the LOWLANDS
ataset and resulted in a total of 53 pairs (out of 115) to be included for
urther analysis. 

.5.2. Time-frequency analysis 

The raw continuous data was first demeaned and high-pass filtered
t 0.5 Hz in order to remove slow fluctuations. Then all the “bad ” chan-
els and “bad ” segments, defined through the methodology described
bove, were removed. Time-frequency analysis was performed using a
anning-taper transformation based on multiplication in the frequency
omain ( Maris and Oostenveld, 2007 ). The investigated frequencies
ere between 1 and 40 Hz, in steps of 1 Hz. The time-frequency analysis
as performed for all time points of the data. For each time point and
iven frequency, the spectral complex coefficient was computed from a
ata window centered at that timepoint. The length of the window was
elected to be 5 periods of the frequency in question unless this exceeded
00 ms, in which case the window length was set to this maximum
alue. The different window lengths with regard to frequency created a
requency resolution different from the desired 1 Hz. In order to achieve
his resolution, zero-padding was employed. This analysis resulted in a
eries of complex coefficients for each channel and frequency, with gaps
here artifacts had been removed and when not enough data samples
here available to fill the time-frequency window. These results were

tored and used in the following connectivity analysis. 

.5.3. Inter-brain functional connectivity analysis 

Inter-brain coupling can be measured in various ways. Here, it was
uantified using two metrics: Imaginary Coherence and Projected Power

orrelations . This choice was motivated not only because of the pro-
osed mechanisms they are argued to capture, but also because of the
ecording conditions. Specifically, synchrony can be manifested in the
uctuations of the recorded electrical signals themselves or in the fluc-
uations of the power envelopes of these signals. Coherence is the most
ypical functional connectivity metric employed to study the former type
f synchrony, and power correlations are most often used for the latter.
owever, both metrics, especially when applied to EEG and MEG mea-

urements, are highly contaminated by environmental noise, which is
anifested as common signals with 0 phase difference across sensors

nd headsets. In the current study, such noise-induced zero-lag signals
re even more pronounced, since the museum environment has higher
oise than a typical EEG lab (e.g., via light installations on the ceiling
s well as audio and video electronic equipment in the vicinity of the
easurements). 

To avoid such instantaneously synchronized EEG signals within
airs, which have no relevant neurocognitive interpretation, Imaginary

oherence (IC; synchrony in EEG signal fluctuations; ( Nolte et al., 2004 )
nd Projected Power Correlations (PPC; synchrony in the signal envelopes
fter the projection of one signal on the other has been removed;
 Hipp et al., 2012 ) were employed instead (schematic in Fig. 2 e). 

Assume there are two EEG channel recordings x ( t ), y ( t ) whose time-
requency spectral coefficients series are X ( t, f ) and Y ( t, f ). Imaginary
oherence takes two series of complex spectral coefficients and com-
utes the cross spectral density S yy ( f ) between them ( eq. (1.3) ) and the
uto spectral density (power) of each of them, S xx ( f ), S yy ( f ) ( eq. (1.1)
nd 1.2 ). From these, it computes the Coherency C xy ( f ) ( eq. (1.4) ), a
omplex number whose phase describes the average phase difference
etween the two series and whose magnitude describes how consistent
his phase difference is. This complex number is decomposed in a real
nd an imaginary part. The real part represents how much of the mag-
itude is driven by instantaneous interactions and the imaginary part
epresents how much by lagged interactions. Imaginary Coherence IC ( f )
s the absolute value of the imaginary part, thus represents only lagged
nteractions (Nolte et al., 2004) . Imaginary coherence in the frequency
ange investigated here (1 to 40 Hz) captures phase differences between
ignal fluctuations in the range of tens of milliseconds. 

 xx ( 𝑓 ) = 

𝑁 ∑
𝑡 =1 

𝑋 ( 𝑡, 𝑓 ) ⋅𝑋 

∗ ( 𝑡, 𝑓 ) (1.1)

 yy ( 𝑓 ) = 

𝑁 ∑
𝑡 =1 

𝑌 ( 𝑡, 𝑓 ) ⋅ 𝑌 ∗ ( 𝑡, 𝑓 ) (1.2)

 xy ( 𝑓 ) = 

𝑁 ∑
𝑡 =1 

𝑋 ( 𝑡, 𝑓 ) ⋅ 𝑌 ∗ ( 𝑡, 𝑓 ) (1.3)

 xy ( 𝑓 ) = 

𝑆 xy ( 𝑓 ) √ 

𝑆 xx ( 𝑓 ) 𝑆 yy ( 𝑓 ) 
(1.4)

𝐶( 𝑓 ) = 

|||𝑖𝑚𝑎𝑔( 𝐶 𝑥𝑦 ( 𝑓 )) 
||| (1.5)

The Projected Power Correlation PPC ( f ), as it is called in this pa-
er for convenience, takes two series of complex spectral coefficients
nd computes the correlation between their magnitudes (envelopes) af-
er first removing the projection of one series on the other, so that all
nstantaneous signal fluctuations are removed before the envelope is ex-
racted ( Hipp et al., 2012 ). So first the projection of Y ( t, f ) on X ( t, f ) is
emoved, leaving only the signal orthogonal to it Y ⊥X ( t, f ) ( eq. (1.6) ;
ipp et al., 2012 ). Then the correlation between | Y ⊥X ( t, f )| and | X ( t, f )|

s computed across time. The same is done also between | X ⊥Y ( t, f )| and
 Y ( t, f )| ( eq. (1.7) ). Note that 𝑒 ⊥𝑌 and 𝑒 ⊥𝑋 are unit vectors representing
he phases of the complex numbers and do not influence the magnitudes.
ere is must be clarified that although instantaneous fluctuations of the

ignals are removed, the fluctuations of the envelopes of the remaining
ignals can still have zero phase difference, but this will not be due to a
ommon signal present in both signals. Projected Power Correlation in
he frequency range investigated here captures envelope fluctuations in
he range of hundreds of milliseconds. So this analysis captures much
lower processes than Imaginary Coherence. 

 ⟂𝑋 ( 𝑡, 𝑓 ) = imag 

( 

𝑌 ( 𝑡, 𝑓 ) ⋅ 𝑋
 

∗ ( 𝑡, 𝑓 ) |𝑋 ( 𝑡, 𝑓 ) |
) 

𝑒 ⟂𝑋 (1.6)

 ⟂𝑌 ( 𝑡, 𝑓 ) = imag 

( 

𝑋 ( 𝑡, 𝑓 ) ⋅
𝑌 ∗ ( 𝑡, 𝑓 ) |𝑌 ( 𝑡, 𝑓 ) |

) 

𝑒 ⟂𝑌 (1.7)

The computation of the above metrics was performed as follows. A
oving window of 2 ‑second duration was employed to move along the

eries of complex spectral coefficients that were computed in the time-
requency analysis ( Fig. 3 a). The time step this window moved at every
teration was 10 data samples (10 ∗ 1/128 Hz = 70.81 ms; Fig. 3 b). At
ach iteration, all the spectral coefficients that fell within the window
ere selected from each matched electrode of the two headsets used in a
iven pair. These two timeseries of spectral coefficients were then used
n the computations of the connectivity metrics, and each connectivity
etric was averaged across channels ( Fig. 3 c). This was repeated for

ach step iteration of the moving window, so that at the end of all itera-
ions a series of connectivity metric values across time were computed.
hen the average connectivity across time was computed. This process
esulted in a single value for each connectivity metric per frequency per
air ( Fig. 3 d). 

The same process was also performed in the early and late halves of
he data in order to investigate if engagement of the participants in the
xperiment increased or decreased inter-brain connectivity and if such
radients correlated with behavior. 

.5.4. Correlation of inter-brain connectivity with self-report data 

Once the two connectivity metrics were computed for each pair and
requency, the next step was their correlation with self-report metrics
erived from the questionnaires (see Materials). This was quantified by
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Fig. 3. Inter-brain functional connectivity measures. 

(A) A 2-second moving window was used along each of the time-series ( x ( t ) and 

y ( t ) correspond to the 2 different participants of a pair) of EEG recordings in 

order to compute the time-series of spectral coefficients X ( t i , f ), Y ( t i , f )(one spec- 

tral coefficient per time-window i , per frequency f and participant). (B) These 

spectral coefficients for the 2 different participants can be visualized as pairs of 

vectors X ( t i , f ), Y ( t i , f ) at each time instance i (and frequency f ). These vector 

pairs are then used to compute the complex coherency C xy ( f ), which reflects 

how consistent is the phase difference (angle) between the 2 participants, i.e. 

across all spectral coefficient pairs X, Y (across time). Imaginary coherence con- 

stitutes only the imaginary part of coherency, reflecting only non-instantaneous 

phase relations (other than 0). (C) Projected Power Correlation: the vector of 

a spectral coefficient from one participant X ( t i , f ) can be decomposed into 2 or- 

thogonal projections. One projection parallel to the vector Y ( t i , f ) of spectral co- 

efficient of the other participant, X ∥Y ( t i , f ) and one projections perpendicular to 

it, X ⊥Y ( t i , f ). The parallel projection represents the part of the signal that is com- 

mon between the 2 participants; as this reflects instantaneous co-fluctuations, 

it is removed before computing power correlations between the 2 participants. 

(D) Projected Power Correlation: The perpendicular projection X ⊥Y ( t i , f ) is the 

part of X ( t i , f ) that is used to compute power correlations with Y ( t i , f ). (E) Con- 

ceptual depiction of the features that are captured by imaginary coherence and 

projected power correlation, computed between the EEG signals of 2 different 

brains X and Y. Imaginary coherence describes how consistent the phase differ- 

ence is between the 2 EEG signals (EEG signals are depicted with blue). Projected 

power correlation describes how correlated the fluctuations are of the Envelopes 

of the 2 EEG signals (signal envelopes are depicted by red). (F) Imaginary Co- 

herence and Projected power correlations between participants were computed 

at each frequency from 1 – 40 Hz and were subsequently correlated with one 

of the self-report variables of interest (here termed Z); a cluster analysis was 

used to determine significant clusters of at least 2 consecutive frequencies (dark 

red/blue). See text for detailed description. 
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omputing Pearson correlation coefficients between a given connectiv-
ty metric and a given self-report variable for a given frequency across
ll pairs, accompanied by the p-value of the Pearson’s coefficient. This
as repeated for all 40 frequencies for which the connectivity metric
as computed. Correction for multiple comparisons was implemented
s follows. With the typical significance p-value threshold of 0.05 and
0 frequencies, traditional correction approaches such as Bonferroni and
alse Discovery Rate are very conservative, highly insensitive, and fail
o incorporate the fact that significant effects tend to occur in clusters
long the frequency axis. Cluster-based nonparametric statistical tests
ased on random permutations ( Maris and Oostenveld, 2007 ) solve the
ultiple comparison problem while preserving sensitivity. These non-
arametric tests were used as follows. The Pearson correlation coeffi-
ient was initially computed between connectivity metric M ( f ) at fre-
uency f and self-report variable B . This was repeated across all fre-
uencies. Then correlation significance thresholds Th upper and Th lower 

ere selected at the 5% and 95% percentiles of the correlation dis-
ribution for all frequencies, respectively. Then the random permuta-
ion procedure took place. The order of the self-report variable values
as randomly shuffled and the correlation with the connectivity met-

ic was repeated. All correlation values exceeding thresholds Th upper and
h lower were marked as significant and it was investigated if they formed
lusters in adjacent frequencies. For each of these randomly significant
lusters, a cluster statistic was computed. Different options were avail-
ble for this average cluster statistic, such as the maximum correlation
alue, the average correlation value, or the size of the cluster. The ex-
ent of the cluster was chosen here because typical intrinsic oscillatory
henomena in the brain span a range of frequencies rather than single
requencies, and this should be a prominent feature in this correlational
nalysis too. So the randomly significant cluster with the maximum size
as found and its size was stored. This random permutation procedure
as repeated 500 times. At the end of this procedure, a distribution of

he 500 largest random cluster sizes was formed against which all the
lusters from the actual data correlation, performed at the very begin-
ing, were compared. If an actual data cluster had a size larger than the
5% threshold of the random distribution, it was marked as significant
 Fig. 3 f). This procedure was applied to each connectivity metric and
ach self-report metric. 

. Results 

The results below quantify correlations between self-report variables
nd inter-brain coupling in the BENAKI dataset, unless indicated other-
ise. All reported p-values survived correction for multiple comparisons
sing a False Discovery Rate approach (FDR; Benjamini and Hochberg,
995 ). 

Socially relevant trait measures, including pairs’ relationship (Aron
t al., 1992) and affective personality traits ( Davis et al., 1980 ), were
orrelated with inter-brain coupling averaged across the entire 10-
in experience. For pairs’ focus and motivation, we instead examined

hanges in inter-brain coupling: the difference between the average
nter-brain coupling during the second half of the experience and the
rst half of the experience was correlated with these state measures.

nter-brain coupling was quantified in two different ways. First, Pro-
ected Power Correlations capture band-limited power fluctuations at
ifferent oscillatory frequencies. These power fluctuations represent rel-
tively slow processes (on the order of seconds) and represent the overall
trength of neural activation. With “overall strength of neural activa-
ion ” at a particular frequency, we refer to a greater number of neurons
ring synchronously at a particular frequency. The larger the number of
eurons firing synchronously at that frequency, the larger the magnitude
f the measured electric field at this frequency and the higher the power.
ote, however, that projected power correlation quantifies the level of
o-fluctuation of this magnitude across time between two signals and not
f the phase of firing. In addition to power fluctuation synchrony, we
lso examined the consistency of phase alignment between oscillations
n the brains of the two participants in each pair (Imaginary Coherence).
his metric represents much faster processes, on the order of tens of mil-

iseconds, and is independent of the strength of neural activity. Mindful
f the data quality disadvantage when conducting neuroscience research
n a non-laboratory context, we took advantage of the large size of our
ataset to adopt strict inclusion criteria. First, we decided to focus our
nalysis on only one recording site (1568 people) for consistency pur-
oses, which was further reduced to a group of 614 datasets that met a
igh data quality threshold. Furthermore, as discussed in the Introduc-
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Fig. 4. Inter-brain coupling is correlated with pairs’ relationship and with their affective personalities. 

Inter-brain coupling ( “synchrony ”) was significantly correlated with (A) relationship duration (projected power correlations at 7–8 Hz; r(302) = 0.1776; p = 0.0019) 

and (B) social closeness (imaginary coherence at 21–22 Hz; r(307) = 0.1552, p = 0.005). (C) A significant negative correlation was found between Personal Distress 

and inter-brain synchrony (projected power correlations at 14–15 Hz; r(300) = 0.1757; p = 0.0023) . No significant correlation between Perspective Taking and 

inter-brain coupling was found. Values are max-min normalized for presentation purposes and correlation plots show the average for each significant cluster. 
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ion and described in the Methods, our synchrony metrics were chosen
o that the effect of instantaneous brain signal co-fluctuations is mini-
ized, circumventing contamination by environmental electrical noise
resent in the museum environment. 

.1. Intrinsic motivation: relationship and personality traits predict 

nter-brain coupling 

We first explored whether properties of pairs’ relationship pre-
icted the average inter-brain coupling across the 10-min experience (cf.
ig. 1 b). Cluster statistics revealed significant effects of both relationship
uration (a trait measure) and social closeness (a state measure; (Aron
t al., 1992) . People who knew each other longer showed stronger inter-
rain coupling in the lower frequency ranges ( Fig. 4 a, projected power
orrelations at 8 Hz; r(302) = 0.1776; p = 0.0019). Pairs who on average
elt closer to each other also showed more inter-brain coupling with each
ther during the experience, in the beta-frequency range ( Fig. 4 b; imag-
nary coherence at 21–22 Hz; r(307) = 0.1552, p = 0.005). Note that
here was no difference in synchrony between strangers and pairs who
lready knew each other, in contrast to previous findings ( Kinreich et al.,
017 ). 

Fig. 4 c shows the correlation plots for affective personality traits
 Davis et al., 1980 ) and inter-brain coupling. Perspective Taking did
ot affect the average inter-brain coupling across the experience (dashed
ine), but Personal Distress did (solid line): At ~15–16 Hz, there was a
egative correlation between pairs’ average Personal Distress and their
rojected power correlations ( r (300) = − 0.1757, p = 0.0023), indicat-
ng that less emotionally self-oriented pairs (as measured through less
ersonal Distress), showed more synchrony overall. 

.2. Pairs’ changes in focus predict inter-brain coupling 

Next, we asked whether changes in pairs’ mental state, in particu-
ar focus level (Watson and Clark, 1994) was associated with changes
n inter-brain coupling (cf. Fig. 1 c). When comparing participants’ self-
eported focus before and after the experience, we saw that 182 pairs
howed a decrease in self-reported focus over time, while 84 pairs re-
orted an increase in focus (all participant pairs Focus Pre vs. Focus Post:
(1, 452) = 6.8747, p < 0.0001; Focus Pre: M = 3.3392, SD = 0.6272;
ocus Post: M = 3.1428, SD = 0.7224). For the group of pairs whose fo-
us decreased, a smaller decrease was associated with a higher increase
n projected power correlations at 6–7 Hz for the second compared to
he first half of the experience (r(182) = 0.189, p = 0.0106). For the
roup who reported to be more focused after than before the experi-
nce, a higher increase in focus was associated with a higher increase
n imaginary coherence (r(84) = 0.2975, p = 0.006). In other words:
aintaining focus led to an increase in inter-brain coupling over time. 

.3. Changes in low frequency synchrony are paired with changes in high 

requency synchrony 

Interestingly, both pairs’ self-reported focus and the nature of their
elationship were correlated with projected power correlations at 7–
 Hz and imaginary coherence at 20–21 Hz respectively. We thus ex-
lored the relationship between the two inter-brain synchrony measures
t these two frequency ranges and found them to be coupled: changes in
ower frequency projected power correlations at 7–8 Hz were positively
orrelated with changes in imaginary coherence at 20–21 Hz ( Fig. 5 B:
r(73) = 0.2776, p = 0.0174). 

.4. Extrinsic motivation: inter-brain coupling is enhanced by explicit 

ynchrony A/V 

So far, we have shown that affective traits as well as mental states
redict (changes in) inter-brain coupling during face-to-face interaction.
e next asked whether pairs that were more motivated to connect also

ynchronized more (cf. Fig. 1 d). As described in the Methods, pairs from
he BENAKI dataset were divided into two groups: one group was ex-
licitly told that the visuals were derived from their correlated EEG
ignal (explicit synchrony A/V), while the other group did not (non-
xplicit synchrony A/V). We hypothesized that the feedback instruc-
ions would function as a motivational factor to remain focused on the
ther. Indeed, pairs in the explicit feedback group showed an increase
n inter-brain coupling for the second vs. the first half of the experi-
nce ( Fig. 6 ; Half 1 vs. Half 2 projected power correlations at 18–21 Hz:
(1, 138) = 2.7049, p = 0.0077, M = 0.037, SD = 0.1619). One plausible
xplanation for this discrepancy is that the “explicit feedback ” group
as more motivated to maintain focused, or engaged with the other
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Fig. 5. Inter-brain coupling is correlated with pairs’ focus level, and low frequency inter-brain coupling predicts high frequency inter-brain coupling. 

(A-left) Pairs with a smaller decrease in focus and (A-right) pairs with a relatively higher increase in focus exhibited a relatively higher increase in inter-brain 

coupling ( “synchrony ”) in the second than the first half of the experience, in projected power correlations at 6–7 Hz (r(182) = 0.1889, p = 0.0106) and imaginary 

coherence at 20–21 Hz (r(84) = 0.2975, p = 0.006) respectively. (B) Changes in 7–8 Hz projected power correlations were positively associated with changes in 

imaginary coherence when comparing inter-brain coupling during the first half and the second half of the experience (r(73) = 0.2776, p = 0.0174). Pairs with negative 

projected power correlations are excluded. Values are max-min normalized for presentation purposes and correlation plots show the average for each significant 

cluster. 

Fig. 6. Extrinsic motivation to connect leads to an increase in 

inter-brain coupling. 

Pairs who received no explicit explanation of the relationship be- 

tween the A/V environment and inter-brain correlations showed 

no significant changes in inter-brain coupling ( “synchrony ”) over 

time; Pairs in the explicit feedback group exhibited higher inter- 

brain synchrony for the second vs. the first half of the experience 

(projected power correlations at 18–21 Hz: t(1, 138) = 2.7049, 

p = 0.0077, M = 0.037, SD = 0.1619). Values are max-min nor- 

malized for presentation purposes. Error bars reflect standard er- 

rors of the mean. 
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erson throughout the 10-min experience: the visual environment func-
ioned as a constant reminder of the task, namely to connect to the per-
on directly opposite. 

Indirect support for such a shared engagement account of inter-brain
oupling comes from the following set of observations in our data. First,
hile the “no explicit feedback ” group exhibited a decrease in focus

t(1, 209) = 3.1647, p = 0.0018, SD = 0.1499) for the post vs. pre ques-
ionnaire, the “explicit feedback ” group showed no significant changes
n focus. A second, related, observation is that self-reported focus did not
redict changes in inter-brain coupling when restricting the analyses re-
orted in Fig. 5 a to the “explicit feedback ” group alone. Importantly, the
elationship between inter-brain coupling and pairs’ relationship or per-
onality traits was unaffected by the instructions pairs’ received about
he task and A/V environment (See supplemental Fig. S1 for details).
hus, manipulating pairs’ extrinsic motivation to socially engage ap-
eared to exclusively override the effect of self-reported focus on inter-
rain coupling. 

A final piece of evidence in support of the proposed role of shared
ngagement in inter-brain coupling comes from the finding that partic-
pants’ inter-brain coupling changes were not affected if they were pre-
ented with a sham A/V environment. Recall that half the pairs in the
OWLANDS dataset saw visuals that were randomly generated rather
han being controlled by true inter-brain coupling values. Importantly,
ll pairs in the LOWLANDS dataset were explicit told that the A/V en-
ironment was related to their ongoing inter-brain coupling. As shown
n Fig. S2, in contrast to the BENAKI pairs, where only the “explicit
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Fig. 7. Synchronizing “strategies ” predict inter-brain coupling in the Lowlands dataset. 

Using (A) “eye contact ” or ( B) “joint action ” as strategies to connect was positively associated with inter-brain coupling ( “synchrony ” eye contact: projected power 

correlations at 9–11 Hz (r(56) = 0.3786, p = 0.0040) and 26–30 Hz (r (56) = 0.3509, p = 0.008); joint action: imaginary coherence at 18–21 Hz (r(56) = 0.3651, 

p = 0.0057), but ( C ) “joint thought ” strategies were not. See main text for a description of the categories. Values are max-min normalized for presentation purposes. 
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eedback ” group showed an increase in inter-brain coupling for the sec-
nd compared to the first half of the experience, in the LOWLANDS
ataset inter-brain coupling increased over time for all pairs irrespec-
ive of whether the inter-brain synchrony environment was true or sham
projected power correlations at 16–18 Hz: t(1,55) = 3.2379, p = 0.002,
D = 0.0193; i.e., in the same frequency range as for the BENAKI data
hown in Fig. 6 ). This suggests that believing that the visuals were di-
ectly related to the success of the interaction motivated participants to
emain socially engaged, irrespective of the actual relationship between
nter-brain coupling and the visual environment. 

Importantly, no other differences were observed between the two
atasets: with the exception of social closeness, all findings reported in
igs. 4 and 5 for the BENAKI dataset were replicated in the LOWLANDS
ataset (See Fig. S2 for details). A further minor difference was that the
requency ranges of the projected power correlations were a bit higher
or the LOWLANDS dataset (~10 Hz as opposed to 8 Hz). This could be
ue to age differences between the two groups: Alpha peak frequency is
ypically lower for older than for younger adults (e.g., Duffy et al., 1993 )
nd while no age information available for the BENAKI participants, the
usic festival Lowlands is known to attract a younger demographic than

he Benaki art museum. 

.5. Social behavior as an exogenous synchronizer 

Finally, we asked whether the type of social behavior that pairs en-
aged in during the social interaction was predictive of their inter-brain
oupling (cf. Fig. 1 e; LOWLANDS dataset only). Participants listed a
umber of different strategies they used to try to synchronize with one
nother, which included “no strategy ” (10.7% of pairs), and “stimulus
ntrainment ” (focusing on the visuals: 37.5% of pairs), in addition to
hree main categories of social behavior: “eye contact ” (71.4% of pairs),
joint action ” (performing the same physical action such as smiling or
aving a conversation, playing hand games: 25% of pairs), and “joint
hought ” (thinking about the same object, event, or each other: 32% of
airs). As can be seen in Fig. 7 a-b, “eye contact ” and “joint action ” were
ositively associated with inter-brain coupling (eye contact: projected
ower correlations at 9–11 Hz (r(56) = 0.3786, p = 0.0040) and 26–
0 Hz (r (56) = 0.3509, p = 0.008); joint action: imaginary coherence
t 18–21 Hz (r(56) = 0.3651, p = 0.0057), but “joint thought ” was not
redictive of inter-brain coupling ( Fig. 7 c). 

. Data and results dissemination 

All data is made publicly available at https://osf.io/hpgkt/ and
he results are disseminated to participants and the general public via
p.nyu.edu/mutualwavemachine . 
. Discussion 

In an effort to explore the neural correlates of real-world social be-
avior, we present data acquired in a novel context departing from
aboratory-constrained cognitive neuroscience. Building on recent tech-
ical and analytic advances in recording neural data from groups in
atural settings, we extended such data acquisition approaches in a
ew direction, recording EEG from a very large number of people, re-
ruited from the general public, as they engaged in naturalistic face-to-
ace interaction. Specifically, we created an interactive neurofeedback
rt experience, the Mutual Wave Machine, which allowed us to ask how
airs’ relationship, personality traits, mental states, and social behav-
or predicted inter-brain coupling during face-to-face interactions, ex-
ending ongoing laboratory research on neuronal oscillations and their
ole in perception and cognition, as well as previous EEG hyperscan-
ing studies ( Babiloni et al., 2007 ; Dumas et al., 2010 ; Pérez et al.,
018 ; Kinreich et al., 2017 ; Sänger et al., 2012 ; and many others). We
mployed a ‘crowdsourcing’ neuroscience approach, recruiting museum
isitors and festival goers to help us explore our research questions. For
xample, we asked participants to indicate what kind of behavior they

hought had helped them synchronize their brain activity. 
In a subgroup of 726 participants whose data survived rigorous cri-

eria licensing further analyses, we found that inter-brain coupling was
ositively related to pairs’ social closeness, personality traits, focus level,
nd motivation to connect ( Fig. 4 A/B, Fig. 4 C, Fig. 5 A, and Fig. 6 re-
pectively). Further, modulations in alpha synchrony (projected power
orrelations) co-varied with changes in beta coherence (at 21–22 Hz),
uggestive of a relationship between lower and higher frequency inter-
rain coupling ( Fig. 5 B). 

.1. Social closeness, personality traits, and focus as predictors of 

ynchrony 

As reviewed in the Introduction, our findings corroborate EEG hy-
erscanning studies that have reported relationships between inter-
rain coupling on the one hand, and social closeness, personality
raits, and individual focus on the other (for a recent review see e.g.,
zeszumski et al., 2020 ), and extend these to more naturalistic social

nteractions than typically employed. However, it is worth noting that
tudies vary in the metrics used, in terms of both the computation of
nter-brain coupling ( Ayrolles et al., 2020 ) and the assessment of e.g.,
ersonality traits. This may lead to a false impression of consistency
etween findings. To illustrate, we find that Personal Distress but not
erspective Taking predicts inter-brain coupling, corroborating our own
rior findings in classroom interactions (e.g., Dikker et al., 2017) . How-
ver, other research ( Goldstein et al., 2018 ) has instead found that Per-
pective Taking but not Personal Distress predicts inter-brain coupling,
uantified in their case using “cCorr ” (circular correlation coefficient;
urgess, 2013 ). This is just one illustration of how “empathy ” and “syn-

https://osf.io/hpgkt/
http://wp.nyu.edu/mutualwavemachine
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Fig. 8. Shared engagement facilitates the formation of shared internal models. 

A schematic model showing how two people who have more instances in shared 

attention (‘moments of meeting’) can be measured as similar low frequency 

power changes, which in turn enables the tuning of shared internal models. 

c  

p  

c  

c

5

 

b  

K
 

p  

t  

r  

t  

n  

r  

w  

c  

a  

m  

2  

i  

s
 

a  

p  

r  

H  

2  

S  

e  

f  

(  

c  

a  

a  

Y  

i  

t  

2  

b  

2  

b  

o  

f  

s  

c  

w  

G
 

W  

i  

p  

a  

n  

a  

w  

a  

t  

a  

a

5

 

b  

i  

s  

p  

n  

t  

c  

t  

(  

r  

o  

w  

(  

u  

(

5

 

l  

F  

s  

e  

v  

s  

a  

u  

a  

w  

t  

w
 

t  

B  

t  

c  

p  

i  

r  
hrony ” may actually be referring to completely different constructs de-
ending on the study, and that the hyperscanning field has yet to reach
onsensus on the extent to which these differences between studies are
ognitively meaningful. 

.2. Shared attention and engagement 

In line with previous work, our findings invite an interpretation
ased on shared attention, or shared engagement ( Dikker et al., 2017 ;
i et al., 2016 ; Cohen et al., 2017 ), illustrated in Fig. 8 . 

Projected power correlations, by hypothesis, would capture whether
airs show concurrent changes in attentive states, with positive correla-
ions indicating that they are (in)attentive at the same time and low cor-
elations or negative correlations indicating that they do not often share
he same attentional state during the experience. ‘Synchrony’, thus, does
ot imply that pairs maintain a high focus level throughout the expe-
ience, just that their in-and-out of attention states co-fluctuate. Pairs
ho are more often in an attentive state together (similar alpha power

hanges) are more likely to simultaneously pay attention to each other’s
ctions or other cues from the surrounding environment, resulting in
ore similar neural representations or predictions ( Arnal and Giraud,
012 ). In other words, we hypothesize that the findings shown in Fig. 5 B
nvite an interpretation where shared attention states facilitate interper-
onal neural synchrony at the oscillatory phase level (beta synchrony). 

Inter-brain coupling in the beta band as a function of (social)
ttention converges with research showing that joint action is sup-
orted by oscillatory activity in the beta frequency range. Beta/mu
hythms, typically measured over sensorimotor areas ( Pineda, 2005 ;
ari, 2006 ), have been associated with attention ( Anderson and Ding,
011 ), motor control and motor simulation ( Pfurtscheller and Lopes da
ilva, 1999 ), as well as prediction of another person’s actions (Sebanz
t al., 2006) . Changes in beta/mu are observed both when people per-
orm an action and when they watch someone perform a similar action
 Nishitani and Hari, 2000 ). Crucially, beta activity during action per-
eption varies as a function of social evaluation ( Koelewijn et al., 2008 )
s well as social traits such as empathic concern ( Perry et al., 2010 )
nd, in line with our findings, Personal Distress ( Saarela et al., 2007 ;
ang et al., 2009 ). Our work also links to previous EEG studies compar-

ng neural oscillations between people during interpersonal coordina-
ion tasks ( Babiloni and Astolfi, 2014 ; Dumas et al., 2010 ; Sänger et al.,
012 ; Szymanski et al., 2017 ). For example, recent work by Novem-
re and colleagues ( Novembre et al., 2017 ) showed that dual in-phase
0 Hz brain stimulation enhanced interpersonal movement synchrony
etween two participants performing a finger-tapping task. We expand
n these findings by showing that brain-to-brain synchrony in the beta
requency range is sensitive to interpersonal factors such as affective per-
onality traits during real-world face-to-face social interaction, which
an further be linked to research that has associated beta oscillations
ith endogenous content representations and expectations ( Arnal and
iraud, 2012 ; Spitzer and Haegens, 2017 ). 

In sum, we propose an account wherein shared attention ( Kang and
heatley, 2017 ; Leong et al., 2017 ; Dikker et al., 2017 ; Ki et al., 2016 )

s measured via an increase in projected power correlations in the al-
ha frequency range. Concretely: only when both members of the dyad
re paying close attention to the interaction, which has been shown in
umerous studies to be correlated with low alpha power, will they be
ble to establish shared (motor, perceptual, cognitive) representations,
hich we hypothesize is reflected in an increase in imaginary coherence
t 20 Hz. It is important to emphasize that our results do not directly
est this dissociation, so this interpretation remains hypothetical here
nd should be tested in future studies where attention and joint action
re manipulated independently. 

.3. Neurofeedback validity 

Typically, neurofeedback modules used in BCI setups are validated
y comparing online output to offline analyses. In our case, a different
nter-brain connectivity metric was used for the online neurofeedback
etup than for subsequent offline analysis, deviating from this common
ractice. This is in part due to limitations mentioned above: We did
ot implement online artifact rejection (e.g., Mullen et al., 2015 ) and
he narrow-band analysis approach increased the likelihood of inflating
orrelation values. In addition, and perhaps most importantly, in con-
rast to other EEG signatures that are commonly implemented in BCIs
such as the P3 ERP component; e.g., Fazel-Rezai et al., 2012 ), the cor-
elational approach used here has not been extensively validated in lab-
ratory experiments (e.g., Czeszumski et al., 2020 ). In ongoing work,
e are evaluating and benchmarking inter-subject connectivity metrics
 Ayrolles et al., 2020 ) which are then implemented into a graphical
ser interface and systematically validated for inter-brain BCI purposes
 https://github.com/rhythmsofrelating ). 

.4. On conducting “neuroscience in the wild ”

Carrying out “crowdsourcing ” neuroscience research outside of the
aboratory comes with many benefits, but also a number of challenges.
irst, it is near-impossible to obtain full experimental control in public
paces, and this project was especially challenging in this regard. For
xample, the LOWLANDS dataset was collected during a music festi-
al, which required extra care with respect to noise contamination from
urrounding events. Further, due to the sheer number of participants
s well as other logistical and privacy-related considerations, we were
nable to keep a close record of participant behavior during the inter-
ction. As a result, we had to rely on participant self-report (see Fig. 7 ),
hich provided us with information to assess the brain-behavior rela-

ionship during the social interactions, but of course this information
as incomplete. 

Another challenge was the hybrid art/science/tech nature of the Mu-
ual Wave Machine. While participants took their roles seriously in both
ENAKI and LOWLANDS, for a few other sites listed in Table S1, visi-
ors did not treat the experience as a scientific experiment but rather as a
uriosity (e.g., taking selfies instead of interacting with each other). Peo-
le were also often waiting in line to participate, sometimes even getting
mpatient, jeopardizing the setup and reliability of their questionnaire
esponses. At these sites, the experience was shortened to 6 min or less.

https://github.com/rhythmsofrelating
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or these and other reasons, we only analyzed datasets that were col-
ected during multiple days and where 20-min timeslots were assigned
ith 5- to 10-min buffers on each side. At BENAKI, participants further

elf-selected by signing up in advance via an online portal. 
Another challenge relates to equipment. The EEG devices used here

EMOTIV) were very suitable for our purposes because they are sturdy,
ast to apply, easy to handle, and affordable. However, data quality
ay be lower compared to laboratory-grade equipment ( Krigolson et al.,
017 ). As discussed in the Methods, we took various steps to ensure that
ur data met rigorous standards despite these limitations. 

On the flipside, the benefits of conducting neuroscience research out-
ide of traditional laboratory environments are clear. First, using a citi-
en science approach affords researchers the opportunity to collect data
rom large numbers of people with a more varied demographic profile
han the typical participant population of laboratory neuroscience re-
earch. Further, actively involving the general public in research has
 number of benefits beyond constituting a rich opportunity for neuro-
cience outreach and education: While it is common to view interactions
etween scientists and the general public as merely unilateral (scien-
ists educate the public about their work), we would like to argue that
nteractions with artists, educators, and the general public can inform
cientific inquiry in a fruitful way: non-specialists may force scientists to
emain aware of any translational value of their work to everyday prac-
ice, challenge methodological approaches that are taken for granted,
nd inspire research questions that may inform laboratory research. To
lose with an emphasis on the latter point: while the field may be ‘ready’
or real-world neuroscience ( Matusz et al., 2019 ), in our opinion it will
ourish only if paired with rigorous laboratory-based work and solid,
areful methodology. 

. Conclusion 

A large group of museum and festival visitors engaged in dynamic
ace-to-face interactions while their brain activity was recorded using
EG. This setup made it possible to explore the limits and opportuni-
ies afforded by conducting human social neuroscience research outside
f the traditional laboratory context. Drawing on our two most com-
rehensive datasets to date, we were able to evaluate how intra- and
nterpersonal factors predict the extent to which brain activity becomes
ynchronized between people during face-to-face interaction. Pairwise
ynchronized brain activity was related to people’s relationship, affec-
ive personality traits, mental states, as well as their motivation and
trategy to connect to the other person. We propose an account for brain-
o-brain synchrony in which shared engagement provides a vehicle for
ynchronous brain activity (measured in the alpha and beta frequen-
ies, respectively), and joint action is used to mutually adapt neural and
ehavioral representations. Taken together, we demonstrate that an un-
onventional, ‘crowdsourcing neuroscience’ approach can provide valu-
ble insights into the brain basis of dynamic real-world social behavior.
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