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Abstract

We applied two numerical methods both belonging to the class of finite element particle-in-cell methods
to a four-dimensional (one dimension in real space and three dimensions in velocity space) hybrid plasma
model for electrons in a stationary, neutralizing background of ions. Here, the term hybrid means that
(energetic) electrons with velocities close to the phase velocities of the model’s characteristic waves are
treated kinetically, whereas electrons that are much slower than the phase velocity are treated with fluid
equations. The two developed numerical schemes are based on standard finite elements on the one hand
and on structure-preserving geometric finite elements on the other hand. We tested and compared the
schemes in the linear and in the nonlinear stage. We show that the structure-preserving algorithm leads
to better results in both stages. This can be related to the fact that the spatial discretization results in
a large system of ordinary differential equations that exhibits a noncanonical Hamiltonian structure. To
such systems special time integration schemes with good conservation properties can be applied.

1 Introduction

We present two numerical algorithms for a hybrid plasma model in order to demonstrate similarities and
differences between standard finite element particle-in-cell (PIC) methods and structure-preserving finite
element PIC methods. The latter use techniques from finite element exterior calculus (FEEC) (Arnold
et al., 2006) and were applied by Kraus et al. (2017) on the full six-dimensional Vlasov-Maxwell model.
By taking into account the underlying geometric structure of the system of partial differential equations,
spatial discretizations using FEEC exactly preserve certain invariants on the semi-discrete level (discrete in
space and continuous in time). Examples for this are conservation laws like energy or the two divergence
constraints arising in electrodynamics, ∇·E = ρ/ε0 and ∇·B = 0, where E = E(x, t) and B = B(x, t) denote
the electric field and the magnetic flux density (or induction) which we will simply refer to as magnetic field.
Furthermore, ρ = ρ(x, t) and ε0 are the charge density and the vacuum permittivity, respectively. As shown
by Arnold, Falk, and Winther (2010), the preservation of such invariants goes hand in hand with numerical
stability. In this work, we shall apply these methods as well as classical finite element PIC methods on a
hybrid plasma model which makes use of a combined fluid/kinetic description for different particle species to
get a good balance between accuracy (kinetic models) and computational costs (fluid models). By comparing
numerical results to the analytical theory in the linear stage and the conservation of energy in the nonlinear
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stage, the aim of this paper is to investigate whether there is a visible difference in the performances of the
two algorithms.

There are several plasma configurations which involve the interaction of an energetic plasma species with
a lower temperature bulk plasma, e.g. fusion born alpha-particles interacting with the ambient plasma in
nuclear fusion devices (Chen and Zonca, 2016) or the interaction of energetic electrons in the solar wind with
planetary magnetospheres. The model which is used in this work corresponds to the latter case and is thus
applicable to plasma dynamics in the Earth’s magnetosphere, for instance. It has been used intensively for
the simulation (Katoh and Omura, 2007; Tao, 2014) of a special type of electromagnetic waves called Chorus
waves (Tsurutani and Smith, 1974; Burtis and Helliwell, 1976), which are electromagnetic emissions whose
frequency-time-spectrograms show a series of discrete elements with rising frequencies with respect to time.
This phenomenon is also known as frequency chirping (Santoĺık et al., 2004). An important condition for
the excitation of Chorus waves is the injection of energetic electrons with an anisotropic velocity distribution
with respect to the Earth’s magnetic field into the magnetosphere, which then interact with Whistler mode
waves propagating in the background plasma therein (Thorne, 2010).

This article is structured as follows. In Sec. 2, we introduce and discuss the considered electron hybrid
model by starting with nonlinear fluid equations and subsequently performing a model reduction until
we arrive at the simplified model which will be treated numerically. Besides this, we review and study the
dispersion relation for waves with transverse disturbances propagating parallel to the external magnetic field
in order to have a test case for the developed numerical algorithms. In Sec. 3, we successively apply the two
above mentioned finite element PIC methods. For the case of structure-preserving geometric finite element
PIC methods, we show, after having done the spatial discretization, that we end up with a noncanonical
Hamiltonian system in time by proving the anti-symmetry and the Jacobi identity of the resulting Poisson
matrix. In Sec. 4, we compare results obtained with the two developed algorithms before we summarize and
conclude in Sec. 5. For completeness and clarity in the main text, the article contains three appendices. In
A, the Poisson matrix of the noncanonical Hamiltonian system is displayed, while B contains a table which
is helpful for the understanding of the proof of the Jacobi identity. Finally, C lists the time integrators for
the geometric algorithm.

2 Theoretical background

2.1 The full model

The considered model is a high-frequency plasma model which means that wave frequencies ω are of the order
of the electron cyclotron frequency Ωce = qe|B|/me, where qe = −e and me are the electron charge and mass,
respectively (e is the elementary charge). Since we are interested in phenomena solely arising from electron
dynamics, we assume the plasma ions (denoted by the subscript i) to be fixed and hence treat them as a
stationary, neutralizing background. Furthermore, we assume that the electron population consists mainly
of cold electrons (denoted by the subscript c for “cold”). Formally, this means taking the limit Tc → 0 for the
temperature of the cold electrons. Roughly speaking, this approximation is valid if the electrons’ thermal
velocity vthc is well below the phase velocity of the considered waves, i.e. vthc � ω/k (Brambilla, 1998).
Hence the cold electron population is approximated by the distribution function fc = ncδ(v − uc), where
nc = nc(x, t) is the number density of the cold electrons and uc = uc(x, t) denotes the mean velocity of the
ensemble as a whole. This leads to a fluid closure when plugging this in the Vlasov equation and taking
the first two moments in velocity space. Moreover, we assume that there is a small amount of energetic
electrons (denoted by the subscript h for “hot”) for which we shall use a kinetic description with negligible
collisionality, assuming that the average collision times are much larger than the considered time scales ω−1.
Using the mass and momentum balance equation for the cold electrons, the Vlasov equation for the energetic
electrons and Maxwell’s equations for the self-consistent dynamics of the electromagnetic fields, the full set
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of equations in SI-units reads

cold fluid electrons


∂nc

∂t
+∇ · (ncuc) = 0 ,

∂uc

∂t
+ (uc · ∇)uc =

qe

me
(E + uc ×B) ,

jc = qencuc,

(1a)

(1b)

(1c)

hot kinetic electrons



∂fh

∂t
+ v · ∇fh +

qe

me
(E + v ×B) · ∇vfh = 0,

nh =

∫
fh d3v,

jh = qe

∫
vfh d3v = qenhuh,

(1d)

(1e)

(1f)

Maxwell’s equations



∂B

∂t
= −∇×E,

1

c2

∂E

∂t
= ∇×B− µ0(jc + jh),

∇ ·E =
1

ε0
[qini + qe(nc + nh)],

∇ ·B = 0,

(1g)

(1h)

(1i)

(1j)

where, as stated above, the ions shall form a stationary background. This implies a constant number density
ni = ni(x) in time, i.e. ∂ni/∂t = 0, and a vanishing ion current ji = 0 for all times. Furthermore, jc/h denote
the current densities of the cold/hot electrons, respectively, and fh = fh(x,v, t) denotes the distribution
function of the energetic electrons. Moreover, c is the speed of light and µ0 the vacuum permeability with
c2µ0ε0 = 1.

The model (1) possesses a noncanonical Hamiltonian structure which means that the dynamical equations
can be derived from a Poisson bracket and a Hamiltonian representing the total energy of the system (Tronci,
2010). Thus, when we talk about structure-preserving numerical methods, we aim to perform a discretization
that preserves this noncanonical Hamiltonian structure (see Kraus et al. (2017)).

2.2 Model reduction

The model (1) can be reduced to an equivalent set of equations for the time evolution of the unknowns (uc,
fh, E, B) with the constraint that Gauss’ law (1i) and the divergence constraint (1j) must be satisfied at
the initial time t = 0. The reduced model then takes the form

∂uc

∂t
+ (uc · ∇)uc =

qe

me
(E + uc ×B),

∂fh

∂t
+ v · ∇fh +

qe

me
(E + v ×B) · ∇vfh = 0,

∂B

∂t
= −∇×E,

1

c2

∂E

∂t
= ∇×B− µ0qencuc − µ0qe

∫
vfh d3v,

(2a)

(2b)

(2c)

(2d)

combined with the aforementioned constraints at t = 0. The proof that the model (2) is indeed equivalent
to the full model (1) consists of two steps: First, we note that the dynamics given by Faraday’s law (1g)
conserves the divergence constraint for the magnetic field,

0 = ∇ ·
(
∂B

∂t
+∇×E

)
=

∂

∂t
(∇ ·B), (3)

i.e. the divergence constraint remains satisfied at later times t > 0 provided that it was satisfied at the
initial time t = 0. Likewise, the mass continuity equation for the cold fluid electrons (1a) is automatically
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satisfied by Ampére’s law (1h) by assuming that the cold electron number density nc can be reconstructed
from the divergence of the electric field (1i) at any time t ≥ 0:

0 = ∇ ·
(

1

c2

∂E

∂t
−∇×B + µ0qencuc + µ0qe

∫
vfh d3v

)
=
↑

(1i)

µ0qe
∂

∂t
(nc + nh) + µ0qe∇ · (ncuc) + µ0qe

∫
v · ∇fh d3v

=
↑

(1d), (1e)

µ0qe

[
∂nc

∂t
+∇ · (ncuc)

]
︸ ︷︷ ︸

cont. eq. (1a)

−µ0q
2
e

me

∫
(E + v ×B) · ∇vfh d3v︸ ︷︷ ︸

=0

.

(4)

From the second to the third line we first used the Vlasov equation (1d) to replace the v · ∇fh term in the
integral and subsequently used the definition of the hot electron number density (1e). The disappearance
of the integral in the third line can easily be verified by partial integration in v and noting that fh → 0 for
v →∞. Consequently, the divergence of Ampére’s law reduces to the mass continuity equation for the fluid
electrons (1a) which is therefore satisfied automatically. In summary, we showed that solutions (uc, fh, E,
B) of the reduced model (2) with compatible initial conditions are indeed solutions (nc, uc, fh, E, B) of the
full model (1).

The model can further be simplified by considering waves as small-amplitude perturbations (denoted by
tildes) about a given time-independent equilibrium state (denoted by the subscript “0”). In this case, we
can write

nc(x, t) = nc0(x) + ñc(x, t),

uc(x, t) = ũc(x, t),

B(x, t) = B0(x) + B̃(x, t),

E(x, t) = Ẽ(x, t),

fh(x,v, t) = f0
h(x,v) + f̃h(x,v, t),

(5a)

(5b)

(5c)

(5d)

(5e)

where we assumed that there is no background electric field and no equilibrium plasma flow (which also means
that there is no cold equilibrium current jc0 and thus ∇×B0 = −µ0jh0 must be satisfied). In what follows,
we neglect nonlinear terms for the fluid quantities, e.g. the perturbed cold current density j̃c = qenc0ũc. This
leads to a modified momentum balance equation by first linearizing (2a) and subsequently expressing ũc in
terms of j̃c according to ũc = j̃c/qenc0. However, we keep all nonlinearities in the Vlasov equation for the full
distribution function fh in order to apply classical particle-in-cell methods which exploit the fact that the
distribution function is constant along its characteristics in a Lagrangian frame, i.e. d/dtfh(x(t),v(t), t) = 0.
Finally, this leads to the model

∂ j̃c

∂t
= ε0Ω2

peẼ + j̃c ×Ωce,

∂fh

∂t
+ v · ∇fh +

qe

me
(E + v ×B) · ∇vfh = 0,

∂B̃

∂t
= −∇× Ẽ,

1

c2

∂Ẽ

∂t
= ∇× B̃− µ0j̃c − µ0qe

∫
vf̃h d3v,

(6a)

(6b)

(6c)

(6d)

where we introduced the spatially dependent cold electron plasma frequency Ω2
pe(x) = e2nc0(x)/ε0me, the

oriented electron cyclotron frequency Ωce(x) = qeB0(x)/me corresponding to the background magnetic field
B0. An important property of the linearized model (6) is that its dynamics conserves the total energy

ε :=
ε0
2

∫
Ω

Ẽ2 d3x︸ ︷︷ ︸
=:εE

+
1

2µ0

∫
Ω

B̃2 d3x︸ ︷︷ ︸
=:εB

+
1

2ε0

∫
Ω

1

Ω2
pe

j̃2
c d3x︸ ︷︷ ︸

:=εc

+
me

2

∫
Ω

∫
|v|2fh d3vd3x︸ ︷︷ ︸
εh

(7)
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Figure 1: (a) Real part ωr = Re(ω) of numerical solutions of the dispersion relation (12) for parameters
Ωpe = 2|Ωce|, νh = 0.005, vth‖ = 0.2c and vth⊥ = 0.6c. (b) Corresponding imaginary parts γ = Im(ω). Here,
only the solution corresponding to the R-wave below the electron cyclotron frequency |Ωce| is shown since
the imaginary parts of the other two branches are close to zero.

in the domain Ω = R3, which is the sum of the electric field energy εE , the magnetic field energy εB, the
kinetic energy of the cold electrons εc and the kinetic energy of the hot electrons εh, respectively. It is
relatively straightforward to prove this property by computing dε/dt, using the dynamical equations (6)
to replace the occurring partial time derivatives, noting that all quantities vanish at infinity (or assuming
a periodic domain) and then summing everything up to show that dε/dt = 0. We will use this energy
conservation property later as a criterion for the performances of the developed numerical schemes.

2.3 Linear dispersion relation

We study the linear dispersion relation of the model (6) for the case of wave propagation parallel to a
uniform magnetic field B0 = B0ez (⇒ Ωce(x) = Ωce = const.), i.e. the wave vector k = kez, and a spatially
uniform plasma in the equilibrium state. The latter implies a constant cold electron plasma frequency
Ωpe(x) = Ωpe = const. and a uniform hot electron equilibrium distribution function f0

h = f0
h(v). In order to

obtain a linear dispersion relation, we now linearize the Vlasov equation as well to get the fully linearized
model

∂jc

∂t
= ε0Ω2

peE + Ωcejc × ez,

∂fh

∂t
+ v · ∇fh + Ωce(v × ez) · ∇vfh = − qe

me
(E + v ×B) · ∇vf

0
h ,

∂B

∂t
= −∇×E,

1

c2

∂E

∂t
= ∇×B− µ0jc − µ0qe

∫
vfh d3v,

(8a)

(8b)

(8c)

(8d)

where we performed a relabeling (B̃ → B, f̃h → fh, . . .) for reasons of clarity. Note that Ωce < 0 for
electrons. In the above stated case of parallel wave propagation, the problem becomes effectively one-
dimensional in space, which is why we can set ∇ = ez∂/∂z in (8). By looking for plane wave solutions ∼
exp[i(kz−ωt)] for all quantities and solving the linearized Vlasov equation in velocity space with the method
of characteristics (see Brambilla, 1998, pp. 93ff.), one ends up with three linear independent solutions:
One of these solutions corresponds to electrostatic waves (longitudinal waves with perturbations parallel
to the background magnetic field) which we do not consider further. The other two solutions correspond
to right-handed (R) and left-handed (L) circularly polarized waves (transversal waves with perturbations
perpendicular to the background magnetic field only), respectively. The dispersion relation for these types of
waves for an arbitrary hot electron equilibrium distribution function f0

h reads (Brambilla, 1998; Xiao et al.,
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1998)

0 = DR/L(k, ω) = 1− c2k2

ω2
−

Ω2
pe

ω(ω ± Ωce)
+ νh

Ω2
pe

ω

∫
v⊥
2

ĜF 0
h

ω ± Ωce − kv‖
d3v, (9)

where νh = nh0/nc0 is the ratio between the hot and cold electron number density, d3v = 2πv⊥dv‖v⊥, F 0
h the

velocity part of the equilibrium distribution function, i.e. f0
h(v⊥, v‖) = nh0F

0
h (v⊥, v‖) and Ĝ is a differential

operator measuring the anisotropy of the distribution function in velocity space:

Ĝ =
∂

∂v⊥
+
k

ω

(
v⊥

∂

∂v‖
− v‖

∂

∂v⊥

)
. (10)

In order to satisfy the steady-state Vlasov equation with the background magnetic field B0, it is straight-
forward to show that the equilibrium distribution function must be rotationally symmetric around the mag-
netic field and therefore only depends on v2

⊥ = v2
x + v2

y and v‖ = vz. For the special case of an anisotropic
Maxwellian with generally different thermal velocities in parallel and perpendicular direction,

F 0
h (v⊥, v‖) =

1

(2π)3/2vth‖v
2
th⊥

exp

(
−

v2
⊥

2v2
th⊥
−

v2
‖

2v2
th‖

)
, (11)

the dispersion relation (9) transfers to

0 = DR/L(k, ω) = 1− c2k2

ω2
−

Ω2
pe

ω(ω ± Ωce)
+ νh

Ω2
pe

ω2

[
ω

k
√

2vth‖
Z(ξ±)−

(
1−

v2
th⊥
v2

th‖

)
(1 + ξ±Z(ξ±))

]
, (12)

where ξ± = (ω ± Ωce)/k
√

2vth‖ and Z is the plasma dispersion function (Fried and Conte, 1961) given by

Z(ξ) =
√
πe−ξ

2

(
i− 2√

π

∫ ξ

0
et

2
dt

)
=
√
πe−ξ

2
(i− erfi(ξ)). (13)

In the absence of energetic electrons (νh → 0), the dispersion relation (12) transfers to the well-known cold
plasma dispersion relation for electron waves, which only provides solutions with real oscillation frequencies
ωr := Re(ω) for all wavenumbers k. This means that there is no wave growth or damping due to an imaginary
part γ := Im(ω). However, depending on the temperature anisotropy of F 0

h , the dispersion relation (12)
provides solutions with γ 6= 0 which is shown in Fig. 1, where we plot the real frequency ωr on the left-hand
side and the growth rate γ on the right-hand side. One can see that there are two solutions for R-waves
and one solution for L-waves, which is known from the cold plasma theory (Brambilla, 1998). However,
due to interaction of waves with fast electrons that meet the resonance condition ω = kv‖ ∓ Ωce, the lower
branch below the electron cyclotron frequency becomes unstable for a certain range of wave numbers if the
temperature anisotropy is sufficiently large.

We shall use these results for the verification of the developed numerical algorithms.

3 Numerical methods

In this section, we apply two kinds of numerical methods on the electron hybrid model which we have just
discussed on the continuous level and for which the linear dispersion relation (12) is available. Since the
latter corresponds to transverse electromagnetic waves, which, in the linear phase, are completely decoupled
from longitudinal electrostatic waves, we neglect the z-components of the fields Ẽ, B̃ and j̃c in the model (6)
and only solve for x- and y-components while retaining all velocity components in the kinetic equation. We
start with an intuitive application of a combination of classical finite elements for solving field equations and
the classical PIC method for solving the Vlasov equation followed by applying structure-preserving finite
element PIC methods. We would like to point out that neglecting the z-components means that we only
satisfy Gauss’s law (1i) up to the noise in the energetic electron charge density which is induced by the
random particle loading and that the schemes are consequently not applicable to electrostatic phenomena
like electron Landau damping.
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3.1 Standard finite element particle-in-cell

As a first step, we write the momentum balance equation (6a), Faraday’s law (6c) and Ampére’s law (6d)
in the compact form

∂U

∂t
+A1

∂U

∂z
+A2U = S,

U(0, t) = U(L, t), U(z, t = 0) = U0(z)

(14a)

for the vector of unknowns U = (Ẽx, Ẽy, B̃x, B̃y, j̃cx, j̃cy) with initial condition U0 and impose periodic
boundary conditions on the domain Ω = (0, L), where L is the length of the computational domain. The
constant matrices A1, A2 ∈ R6×6 and the source term S are

A1 =



0 0 0 c2 0 0
0 0 −c2 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (15a)

A2 =



0 0 0 0 µ0c
2 0

0 0 0 0 0 µ0c
2

0 0 0 0 0 0
0 0 0 0 0 0

−ε0Ω2
pe 0 0 0 0 −Ωce

0 −ε0Ω2
pe 0 0 Ωce 0

 , (15b)

S =



−µ0c
2jhx

−µ0c
2jhy

0
0
0
0

 . (15c)

Semi-discretization in space. Following classical finite element methods (see Donea and Huerta
(2003), for instance), one assumes U ∈ (H1(Ω))6, which means that all the unknown functions contained
in U are elements of the same space H1(Ω) = {u ∈ L2(Ω), ∂u/∂z ∈ L2(Ω)} with L2(Ω) being the space of
square integrable functions in the domain Ω. Furthermore, the problem given in strong form is transformed
into an equivalent weak formulation by multiplying the equations with a test function V ∈ H1 (we shall use
the allocations H1(Ω) → H1 and L2(Ω) → L2 for a shorter notation) and integrating over the domain Ω.
In our case (14), the weak formulation reads: Find U ∈ (H1(Ω))6 such that∫ L

0

∂U

∂t
V dz +A1

∫ L

0

∂U

∂z
V dz +A2

∫ L

0
UV dz =

∫ L

0
SV dz ∀V ∈ H1. (16)

As a next step, we replace the function space H1 by a finite-dimensional subspace Sh ⊂ H1 in which we
look for the approximate solution Uh of the problem (14). In addition to that, we use the same subspace
for the trial function Uh and the test function Vh (Bubnov-Galerkin-method). This leads to the following
discrete version of the above problem: Find Uh ∈ (Sh)6 such that∫ L

0

∂Uh

∂t
Vhdz +A1

∫ L

0

∂Uh

∂z
Vhdz +A2

∫ L

0
UhVhdz =

∫ L

0
SVhdz ∀Vh ∈ Sh. (17)

Expanding trial and test function in a basis of Sh denoted by (ϕj)j=0,...,N−1, where N is the dimension of
Sh,

Uh(z, t) =

N−1∑
j=0

uj(t)ϕj(z), Vh(z) =

N−1∑
j=0

vjϕj(z), (18)
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and substituting these expressions in the discrete weak formulation (17) yields

N−1∑
i,j=0

vi
duj
dt

∫ L

0
ϕiϕjdz︸ ︷︷ ︸

=:mij

+A1

N−1∑
i,j=0

viuj

∫ L

0
ϕiϕ

′
jdz︸ ︷︷ ︸

=:cij

+A2

N−1∑
i,j=0

viuj

∫ L

0
ϕiϕjdz︸ ︷︷ ︸

=:mij

=
N−1∑
i=0

vi

∫ L

0
Sϕidz, (19)

where we have defined the entries of the mass matrix M := (mij)i,j=0,...,N−1 ∈ RN×N and the advection
matrix C := (cij)i,j=0,...,N−1 ∈ RN×N . With this, (19) can be expressed equivalently in the following semi-
discrete block matrix form:

VMb
du

dt
+ VC̃u + VM̃u = VS. (20)

In this matrix formulation, the vector u contains all the unknown finite element coefficients of the expansion
(18), u = (u0,u1, . . . ,uN−1)>, and every uj = (exj , eyj , bxj , byj , jcxj , jcyj) contains the respective coefficients
of all six physical quantities which makes u ∈ R6N . The block matrix V for the coefficients of the test
function Vh is

V :=


v0I6 0 · · · 0

0 v1I6 · · · 0
...

...
. . .

...
0 0 · · · vN−1I6

 ∈ R6N×6N , (21)

where I6 denotes the 6× 6 identity matrix. Furthermore, we introduced the block matrices Mb := M⊗ I6 ∈
R6N×6N , C̃ := C⊗A1 ∈ R6N×6N and M̃ := M⊗A2 ∈ R6N×6N . The vector S is given by

S :=


∫ L

0 Sϕ0(z)dz
...∫ L

0 SϕN−1(z)dz

 ∈ R6N . (22)

Since we want (20) to be true for all V of the form (21), we finally end up with the semi-discrete system

Mb
du

dt
= −C̃u− M̃u + S (23)

for the time evolution of all finite element coefficients u ∈ R6N .
Discretization in time. Having done the spatial discretization, the next step is to apply a time stepping

scheme on system (23). Here, we use a second-order Crank-Nicolson scheme (Crank and Nicolson, 1947)
which consists of applying a mid-point rule on the quantities on the right-hand side. Denoting the time step
by n, i.e. tn = n∆t, the fully discrete matrix formulation for advancing un → un+1 then reads(

Mb +
1

2
∆tC̃ +

1

2
∆tM̃

)
un+1 =

(
Mb −

1

2
∆tC̃− 1

2
∆tM̃

)
un +

1

2
∆t
(
Sn+1 + Sn

)
. (24)

We see that this method is implicit and thus involves the inversion of the global matrix on the left hand side.
In practice, we perform a LU decomposition of the matrix at the beginning of a simulation. This allows us to
solve for the new coefficients un+1 quite efficiently by forward and backward substitution. All this happens
on a computational time scale well below the one needed for assembling the source term ∆t/2(Sn+1 + Sn)
in (24) which means that the overall efficiency is not affected by using an implicit scheme.

Basis functions. Let us now construct a basis of the finite-dimensional subspace Sh with dimSh = N .
We do this with a family of B-splines (Ratnani and Sonnendrücker, 2012), which are piecewise polynomials
of degree p. The set of basis functions is fully determined by a sequence of m + 1 points (or knots)
0 = z0 ≤ z1 ≤ . . . ≤ zm = L which defines a knot vector T = (z0, z1, . . . , zm). For degree p = 0 the basis
functions (ϕp=0

j )j=0,...,m−1 are defined by

ϕ0
j (z) =

{
1 z ∈ [zj , zj+1)

0 else.
(25)
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Figure 2: (a) Example for a periodic B-spline basis of degree p = 1 on a domain of length L = 1 discretized
by Nel = 5 elements and the corresponding Gauss-Legendre quadrature points. In this special case a B-spline
basis is equivalent to the basis of linear Lagrange finite elements. (b) Same as (a) for degree p = 2.

Higher degrees are defined by the following recursion formula:

ϕpj (z) = wpj (z)ϕ
p−1
j (z) + (1− wpj+1)ϕp−1

j+1(z), wpj (z) =
z − zj

zj+p − zj
. (26)

If the knot vector T contains r repeated knots one says that this knot has multiplicity r. Using multiple
knots at the boundaries enables the application of Dirichlet boundary conditions by enforcing all the interior
splines to vanish at the boundaries and setting the first and last spline there to one. This can be achieved
by using r = p + 1 equal knots for the left and right boundary, respectively. In this case dimSh = m − p.
However, since we are using periodic boundary conditions, we need a periodic basis. This can be achieved
by extending the knot vector over the boundaries by p additional points. The result is shown in Fig. 2 for
generic degrees p = 1 and p = 2. In this case dimSh = m− 2p. Note in Fig. 2, that B-splines which leave
the domain at one boundary come back at the other boundary which can be seen by the respective color
codings. The elements of the discretized domain are naturally related to the knot sequence by simply using
all interior knots together with the boundaries of the domain as the element boundaries which we denote by
(ck)k=0,...,Nel

, where Nel is the total number of elements and c0 = 0 and cNel
= L. Let us summarize some

important properties of a B-spline basis (Ratnani and Sonnendrücker, 2012):

• B-splines are piecewise polynomials of degree p,

• B-splines are non-negative,

• Compact support: there are exactly p+ 1 non-vanishing B-splines in each element and the support of
the B-spline ϕpj is contained in [zj , . . . , zj+p+1],

• B-splines form a partition of unity:
∑N−1

j=0 ϕpj (z) = 1, ∀z ∈ R,

• If a knot zm has multiplicity r then the B-spline is C(p−r) at zm.

Since B-splines are piecewise polynomials, all matrices (mass and advection matrix) can be computed exactly
by using a quadrature rule of sufficient order. Here, we use the Gauss-Legendre quadrature rule with p+ 1
quadrature points per element which allows us to integrate exactly polynomials up to an order of 2p+ 1.

PIC. Finally, we use a classical PIC solver (Birdsall and Langdon, 2004) to treat the source term and
thus approximate the distribution function fh by a sum of Dirac masses in the four-dimensional phase space

fh(z,v, t) ≈
Np∑
k=1

wkδ(z − zk(t))δ(v − vk(t)), (27)

9



where Np is the number of particles, wk is the weight of the k-th particle and vk = vk(t) and zk = zk(t) are
the particles’ velocities and positions, respectively, satisfying the equations of motion

dvk
dt

=
qe

me
[E(zk(t), t) + vk(t)×B(zk(t), t)] , vk(0) = v0

k,

dzk
dt

= vkz, zk(0) = z0
k.

(28a)

(28b)

We solve this set of ordinary differential equations in time with the classical Boris method (Birdsall and
Langdon, 2004; Boris, 1970; Qin et al., 2013) which uses a staggered grid for positions and velocities, i.e.
positions are computed at integer time steps (znk → zn+1

k ), whereas velocities are computed at interleaved

time steps (v
n−1/2
k → v

n+1/2
k ). The meaning of the particles’ weights wk in (27) becomes clear if one uses a

Monte Carlo interpretation (Aydemir, 1994) for the evaluation of the integrals over the current contribution
from the energetic electrons appearing in (22):

∫ L

0
jhx/yϕjdz =

↑
see def. (1f)

qe

∫ L

0

∫
vx/y

fh

gh
ϕj︸ ︷︷ ︸

=:R

ghd3vdz ≈ qe
1

Np

Np∑
k=1

vkx/y(t)
f0

h(z0
k,v

0
k)

g0
h(z0

k,v
0
k)
ϕj(zk(t)) (29)

The last expression is an estimator of the expectation value of the random variable R := vx/yϕjfh/gh

distributed under the probability density function (PDF) gh in phase space. Since gh is a PDF it must be
normalized to one. Note that we used that the distribution function fh and the PDF gh are constant along a
particle trajectory according to the Vlasov equation, i.e. fh(zk(t),vk(t), t) = f0

h(z0
k,v

0
k). This means that the

weights are fully determined from the initial distribution function f0
h and the sampling distribution g0

h from
which the initial particles are drawn. Throughout this work we shall entirely use the sampling distribution

g0
h(z, vx, vy, vz) =

1

L

1

(2π)3/2vth‖v
2
th⊥

exp

(
−
v2
x + v2

y

2v2
th⊥

− v2
z

2v2
th‖

)
. (30)

Consequently, we sample uniformly in real space and normally in every velocity direction using standard
random number generators. With this particular choice wk = 1/Np ·f0

h(z0
k,v

0
k)/g

0
h(z0

k,v
0
k) = nh0L/Np for the

anisotropic Maxwellian f0
h = nh0F

0
h with F 0

h given in (11). Finally, since the Boris method computes positions
at integer time steps and velocities at interleaved time steps, we approximate the entries of the average vector
∆t/2

(
Sn+1 + Sn

)
appearing on the right-hand side of (24) due to the Crank-Nicolson discretization in the

following manner:

−µ0c
2qe∆t

2

Np∑
k=1

wk

[
vn+1
kx/yϕj(z

n+1
k ) + vnkx/yϕj(z

n
k )
]
≈ −µ0c

2qe∆t

Np∑
k=1

wkv
n+1/2
kx/y ϕj

(
1

2
(zn+1
k + znk )

)
. (31)

Algorithm. Let us summarize the algorithm for numerically solving the model (6) for transverse
electromagnetic waves only:

1. Create a periodic B-spline basis of degree p on a domain of length L discretized by Nel elements (see
(25) and (26)). This results in N = Nel.

2. Assemble the mass matrix M and advection matrix C and from this, assemble the block matrices
Mb = M⊗ I6 ∈ R6N×6N , C̃ = C⊗A1 ∈ R6N×6N and M̃ = M⊗A2 ∈ R6N×6N .

3. Load the initial fields U(z, t = 0) and perform a L2-projection to get the initial coefficients u0 ∈ R6N .

4. Sample the initial positions (z0
k)k=1,...,Np and velocities (v0

kx, v
0
ky, v

0
kz)k=1,...,Np according to the sampling

distribution (30) by using a random number generator and compute the weights wk = nh0L/Np.
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5. Compute the electric and magnetic field at the particle positions by noting that

Bx/y(z
n
k , t

n) = B̃hx/y(z
n
k , t

n) =
N−1∑
j=0

bnx/yϕj(z
n
k ),

Bz(z
n
k , t

n) = B0,

Ex/y(z
n
k , t

n) = Ẽhx/y(z
n
k , t

n) =
N−1∑
j=0

enx/yϕj(z
n
k ),

Ez(z
n
k , t

n) = 0.

(32a)

(32b)

(32c)

(32d)

6. In order to initialize the Boris algorithm with interleaved particle position and velocities, compute the

velocities (v
−1/2
kx , v

−1/2
ky , v

−1/2
kz )k=1,...,Np by applying the Boris algorithm with the time step −∆t/2.

7. Start the time loop:

(a) Update the particle positions (znk → zn+1
k ) and velocities (v

n−1/2
k → v

n+1/2
k ) by applying the

Boris algorithm with the time step ∆t.

(b) Assemble the source term ∆t/2
(
Sn+1 + Sn

)
in the scheme (24) according to formula (31).

(c) Update the finite element coefficients (un → un+1) according to the scheme (24) with the time
step ∆t.

(d) Compute the new fields at the particle positions according to formulas (32).

(e) Go to 7a

3.2 Geometric finite element particle-in-cell

  

Figure 3: Commuting diagram for involved func-
tion spaces in one spatial dimension with contin-
uous spaces in the upper line and discrete sub-
spaces in the lower line. The connection between
the two sequences is made by the projectors Π0

and Π1.

In this section, we apply a structure-preserving finite el-
ement PIC method on the same model (6), once more
with transverse electromagnetic field components (x- and
y-components) only. The main difference compared to
standard finite element approach is that we now look for
the fields (Ẽx, Ẽy, B̃x, B̃y, j̃cx, j̃cy) in different function
spaces H1, respectively L2. These spaces and the respec-
tive finite-dimensional subspaces V0 ⊂ H1 and V1 ⊂ L2

are related according to the commuting diagram depicted
in Fig. 3, where the upper line represents the sequence
of spaces involved in Maxwell’s equations and the lower
line the finite-dimensional counterparts. The projectors
Π0 : H1 → V0 and Π1 : L2 → V1 must be constructed
carefully in order to assure the diagram to be commuting,
i.e. Π1∂ψ/∂z = ∂/∂zΠ0ψ (Kraus et al., 2017).

Weak formulation. In analogy to the previous sec-
tion, we assume the domain to be Ω = (0, L) and impose periodic boundary conditions on all quantities.
Obviously, we should look for Ẽ = (Ẽx, Ẽy) and j̃c = (j̃cx, j̃cy) in the same space since they are never
connected via spatial derivatives in the same equation. The opposite is true for the magnetic field because
in Maxwell’s equations B̃ = (B̃x, B̃y) is connected with the other two quantities via a spatial derivative and
therefore B̃ must be an element of a different space if we want to satisfy the diagram in Fig. 3. Consequently,
there are two options: Either we choose B̃ ∈ (L2)2 and Ẽ, j̃c ∈ (H1)2 or vice versa. We follow Kraus et al.
(2017) and choose the former option. In order to obtain a weak formulation, we multiply by test functions
Dx, Dy ∈ H1, Cx, Cy ∈ L2 and Ox, Oy ∈ H1 and integrate over the domain Ω. This results in the following
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formulation: find (Ẽx, Ẽy, B̃x, B̃y, j̃cx, j̃cy) ∈ H1 ×H1 × L2 × L2 ×H1 ×H1 such that∫ L

0

∂Ẽx
∂t

Dxdz − c2

∫ L

0
B̃y

∂Dx

∂z
dz + µ0c

2

∫ L

0
j̃cxDxdz = −µ0c

2

∫ L

0
jhxDxdz ∀Dx ∈ H1,∫ L

0

∂Ẽy
∂t

Dydz + c2

∫ L

0
B̃x

∂Dy

∂z
dz + µ0c

2

∫ L

0
j̃cyDydz = −µ0c

2

∫ L

0
jhyDydz ∀Dy ∈ H1,∫ L

0

∂B̃x
∂t

Cxdz −
∫ L

0

∂Ẽy
∂z

Cxdz = 0 ∀Cx ∈ L2,∫ L

0

∂B̃y
∂t

Cydz +

∫ L

0

∂Ẽx
∂z

Cydz = 0 ∀Cy ∈ L2,∫ L

0

∂j̃cx
∂t

Oxdz − ε0Ω2
pe

∫ L

0
ẼxOxdz − Ωce

∫ L

0
j̃cyOxdz = 0 ∀Ox ∈ H1,∫ L

0

∂j̃cy
∂t

Oydz − ε0Ω2
pe

∫ L

0
ẼyOydz + Ωce

∫ L

0
j̃cxOydz = 0 ∀Oy ∈ H1.

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)

Due to this particular choice for the function spaces, we have integrated by parts the terms involving the
magnetic field in Ampére’s law in order for the weak formulation to be well-defined (this changes the sign).
This has the consequence that these equations will be solved in a weak sense, whereas the other equations
will be solved in a strong sense. Note that this procedure is actually not necessary for the last two equations
since they do not involve spatial derivatives and are thus ordinary differential equations in time. However,
for reasons of clarity, we continue with the above formulation. We will see later that all matrices due to the
spatial discretization cancel out.

As a next step, we replace the spaces H1 and L2 by their finite-dimensional counterparts V0 ⊂ H1 and
V1 ⊂ L2 and denote the dimensions by dimV0 = N0 and dimV1 = N1 and the set of basis functions that
span the spaces by (ϕ0

j )j=0,...,N0−1 and (ϕ1
j+1/2)j=0,...,N1−1, respectively. The discrete version of (33) then

simply reads: find (Ẽhx, Ẽhy, B̃hx, B̃hy, j̃
h
cx, j̃

h
cy) ∈ V0 × V0 × V1 × V1 × V0 × V0 such that∫ L

0

∂Ẽhx
∂t

Dhxdz − c2

∫ L

0
B̃hy

∂Dhx

∂z
dz + µ0c

2

∫ L

0
j̃hcxDhxdz = −µ0c

2

∫ L

0
jhxDhxdz ∀Dhx ∈ V0,∫ L

0

∂Ẽhy
∂t

Dhydz + c2

∫ L

0
B̃hx

∂Dhy

∂z
dz + µ0c

2

∫ L

0
j̃hcyDhydz = −µ0c

2

∫ L

0
jhyDhydz ∀Dhy ∈ V0,∫ L

0

∂B̃hx
∂t

Chxdz −
∫ L

0

∂Ẽhy
∂z

Chxdz = 0 ∀Chx ∈ V1,∫ L

0

∂B̃hy
∂t

Chydz +

∫ L

0

∂Ẽhx
∂z

Chydz = 0 ∀Chy ∈ V1,∫ L

0

∂j̃hcx
∂t

Ohxdz − ε0Ω2
pe

∫ L

0
ẼhxOhxdz − Ωce

∫ L

0
j̃hcyOhxdz = 0 ∀Ohx ∈ V0,∫ L

0

∂j̃hcy
∂t

Ohydz − ε0Ω2
pe

∫ L

0
ẼhyOhydz + Ωce

∫ L

0
j̃hcxOhydz = 0 ∀Ohy ∈ V0.

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

Commuting diagram. There are multiple possibilities to construct the commuting diagram shown in
Fig. 3. The general procedure is to define a basis for the first subspace V0, then to look for an appropriate
basis for the next space V1 in order to satisfy the sequence for differential operators in the lower line, and
finally to find the projectors such that the diagram is commuting. For the space V0, we choose standard
Lagrange finite elements1 of degree p which are most easily defined on a reference element I = [−1, 1]
together with a mapping Fk : I → Ωk, s 7→ z on elements Ωk = [ck, ck+1] on the physical domain Ω, where
(ck)k=0,...,Nel

denote the boundaries of Nel elements (and the elements are simply labeled by 0, . . . , Nel − 1).

1In doing FEEC, one is not restricted to Lagrange FEM. One can take any kind of basis for V0, in particular splines.
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Figure 4: (a) Lagrange shape functions of degree p = 2 in the reference element I = [−1, 1] and the
corresponding periodic basis functions on a physical domain of length L = 1 which has been discretized by
Nel = 3 elements of equal length. (b) Corresponding local histopolation shape and basis functions.

(See Fig. 4.) The mapping Fk and its inverse F−1
k are given by

z = Fk(s) := ck +
s+ 1

2
(ck+1 − ck),

s = F−1
k (z) :=

2(z − ck)
ck+1 − ck

− 1.

(35a)

(35b)

The Lagrange shape functions (ηn(s))n=0,...,p of degree p in the reference element I are created from a
sequence of knots s0 = −1 < . . . < sm < . . . < 1 = sp and are defined by ηn(sm) = δnm, which leads to the
well-known formula

ηn(s) =
∏
m 6=n

s− sm
sn − sm

. (36)

The construction of the basis functions on the physical domain is then done by noting that we need continuity
at the shared degrees of freedom at the element boundaries in order for V0 to be a subspace of H1. This
leads to a total number of N0 = pNel basis functions in case of periodic boundary conditions and we get
the formula j = mod(pk + n,N0)n=0,...,p;k=0...Nel−1 to go from shape to basis functions. The corresponding
projector Π0 on this basis acting on some continuous function E ∈ H1 we define by

Π0 : H1 → V0, (Π0E)(zi) = E(zi), (37)

where (zi)i=0,...,N0−1 is the global knot sequence on the physical domain which satisfies ϕ0
j (zi) = δij . Denoting

the projected function by Eh := Π0E we thus have

E(zi) = Eh(zi) =

N0−1∑
j=0

ejϕ
0
j (zi) = ei, (38)

which means that the finite element coefficients are the values of the function at the knot sequence (zi)i=0,...,N0−1.
As a next step, we consider the space V1 and define the shape functions (χn+1/2)n=0,...,p−1 in the reference
element I by∫ sm+1

sm

χn+1/2(s)ds = δnm, (39)

where s0 = −1 < . . . < sm < . . . < 1 = sp is the same local knots sequence as for the usual Lagrange shape
functions. The polynomials (χn+1/2)n=0,...,p−1 are called Lagrange histopolation polynomials (LHPs). Some
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simple considerations yield that the solution of these equations is given by linear combinations of first order
derivatives of the Lagrange shape functions (ηn(s))n=0,...,p,

χn+1/2(s) =

p∑
m=n+1

d

ds
ηm(s), (40)

which can be verified by plugging this in the definition (39) and using the property ηn(sm) = δnm. In order
to get a basis on the physical domain, these shape functions are just put next to each other since there are
no shared degrees of freedom at the element boundaries at which continuity must be enforced. This also
has the consequence that the total number of basis function is again N1 = pNel, however, in contrast to the
previous case, there are now p non-vanishing basis function per element (and not p + 1) which means that
we get the conversion formula j = (pk + n)n=0,...,p−1;k=0,...,Nel−1 to go from shape to basis functions. We
define the corresponding projector Π1 acting on some square integrable function B ∈ L2 by

Π1 : L2 → V1,

∫ zi+1

zi

(Π1B)(z)dz =

∫ zi+1

zi

B(z)dz. (41)

Note that i = 0, . . . , N0 − 1 and thus zN0 = L is just the right end of the domain. Again, denoting the
projected function by Bh := Π1B we have∫ zi+1

zi

B(z)dz =

∫ zi+1

zi

Bh(z)dz

=

N1−1∑
j=0

bj+1/2

∫ zi+1

zi

ϕ1
j+1/2(z)dz =

ck+1 − ck
2

bi+1/2 ∀ zi ∈ [ck, ck+1),

(42)

where (ck+1− ck)/2 is the Jacobian originating from evaluating the integral in (42) on the reference element
I. This choice for the bases of the space V0 and V1 together with the projectors Π0 in (37) and Π1 in (41)
leads to the following consideration: take ψ ∈ H1 and note that∫ zi+1

zi

(Π1
∂ψ

∂z
)(z)dz =

↑
(41)

∫ zi+1

zi

∂ψ

∂z
(z)dz = ψ(zi+1)− ψ(zi) =

↑
(37)

(Π0ψ)(zi+1)− (Π0ψ)(zi)

=

∫ zi+1

zi

∂

∂z
(Π0ψ)(z)dz.

(43)

Since the integrations from zi to zi+1 for i = 0, . . . , N0 − 1 uniquely define an element of V1, we get
Π1∂ψ/∂z = ∂/∂z(Π0ψ) and hence the diagram is commuting.

Semi-discretization in space. In order to obtain a matrix formulation out of the (discrete) weak
formulation (34), we express all quantities in their respective basis by

Ẽhx/y(z, t) =

N0−1∑
j=0

ex/yj(t)ϕ
0
j (z), B̃hx/y(z, t) =

N1−1∑
j=0

bx/yj+1/2(t)ϕ1
j+1/2(z),

j̃hcx/y(z, t) =

N0−1∑
j=0

yx/yj(t)ϕ
0
j (z),

(44)

and substitute this in the weak formulation (34). The same is done for the test functions Dhx/y ∈ V0,
Chx/y ∈ V1 and Ohx/y ∈ V0. Let us do this in an exemplary way for the x-component of Ampére’s law
(34a) by noting that the spatial derivative in the second term is acting on the test function Dhx ∈ V0 with
coefficients (dxj)j=0,...,N0−1. According to the diagram in Fig. 3, this has the consequence that the function
∂Dhx/∂z must now be an element of the space V1 with new coefficients (dxj+1/2)j=0,...,N1−1, which are given
by formula (42):

ck+1 − ck
2

dxj+1/2 =

∫ zj+1

zj

∂Dhx

∂z
dz =

N0−1∑
i=0

dxi

∫ zj+1

zj

∂

∂z
ϕ0
i (z)dz

=

N0−1∑
i=0

dxi
[
ϕ0
i (zj+1)− ϕ0

i (zj)
]

= dxj+1 − dxj .

(45)
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For a uniform mesh ck+1 − ck = h we hence get from (34a)

N0−1∑
i,j

dexj
dt

dxi

∫ L

0
ϕ0
iϕ

0
jdz︸ ︷︷ ︸

=:m0ij

−2c2

h

N1−1∑
i,j=0

byj+1/2(dxi+1 − dxi)
∫ L

0
ϕ1
i+1/2ϕ

1
j+1/2dz︸ ︷︷ ︸

=:m1ij

+µ0c
2
N0−1∑
i,j=0

yxjdxi

∫ L

0
ϕ0
iϕ

0
jdz︸ ︷︷ ︸

=:m0ij

= −µ0c
2
N0−1∑
i=0

dxi

∫ L

0
jhxϕ

0
i dz︸ ︷︷ ︸

=:j̄hxi

.

(46)

Here, we defined the entries of the two mass matrices M0 := (m0ij)i,j=0,...,N0−1 ∈ RN0×N0 and M1 :=
(m1ij)i,j=0,...,N1−1 ∈ RN1×N1 , respectively, as well as the vector j̄hx := (j̄hxi)i=0,...,N0−1 ∈ RN0 for the right-
hand side, which is coupled to the PIC part of the algorithm in the exact same way as it was done in (29).
All together, this leads to the equivalent matrix formulation

d>xM0
dex
dt
− c2(Gdx)>M1by + µ0c

2d>xM0yx = −µ0c
2qed

>
xQ0WVx, ∀dx ∈ RN0 ,

⇔ M0
dex
dt
− c2G>M1by + µ0c

2M0yx = −µ0c
2qeQ0WVx,

(47a)

(47b)

were we introduced the vector Vx = (v1x . . . , vNpx)> ∈ RNp holding the particles’ velocities in x-direction.
The matrices Q0 ∈ RN0×Np and W ∈ RNp×Np defined by

Q0 = Q0(Z) := (ϕ0
i (zk))i=0,...,N0−1;k=1...,Np ,

W := diag(w1, . . . , wNp),

(48a)

(48b)

with Z = (z1 . . . , zNp)> ∈ RNp being the particle positions, simply result from writing (29) in terms of
matrix-vector multiplications. Finally, we introduced the discrete gradient matrix

G :=
2

h


−1 1

−1 1
. . .

. . .

−1 1
1 −1

 ∈ RN1×N0 , (49)

where the last row is due to periodic boundary conditions and thus dN0 = d0, for instance.
Doing the same for the other equations in (34) as well as for the equations of motion for the particles (28),

leads to the following semi-discrete system for the ten variables u = (ex, ey,bx,by,yx,yy,Z,Vx,Vy,Vz) ∈
R4N0+2N1+4Np :

M0
dex
dt

= c2G>M1by − µ0c
2M0yx − µ0c

2qeQ0WVx,

M0
dey
dt

= −c2G>M1bx − µ0c
2M0yy − µ0c

2qeQ0WVy,

dbx
dt

= Gey,

dby
dt

= −Gex,

dyx
dt

= ε0Ω2
peex + Ωceyy,

dyy
dt

= ε0Ω2
peey − Ωceyx,

(50a)

(50b)

(50c)

(50d)

(50e)

(50f)
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Table 1: Block index triples for which the terms in (56) are not equal to zero.

Term Block indices (i,j,k)

I (9,10,2) (10,9,2)
II (2,9,10) (2,10,9)
III (9,2,10) (10,2,9)
IV (8,10,1) (10,8,1)
V (1,8,10) (1,10,8)
VI (8,1,10) (10,1,8)
VII (1,8,10) (8,1,10) (2,9,10) (9,2,10) (8,10,10) (10,8,10) (9,10,10) (10,9,10)
VIII (10,1,8) (10,8,1) (10,2,9) (10,9,2) (10,8,10) (10,10,8) (10,9,10) (10,10,9)
IX (1,10,8) (8,10,1) (2,10,9) (9,10,2) (8,10,10) (10,10,8) (9,10,10) (10,10,9)

dZ

dt
= Vz,

dVx

dt
=

qe

me
[(Q0)>ex − ByVz +B0Vy],

dVy

dt
=

qe

me
[(Q0)>ey + BxVz −B0Vx],

dVz

dt
=

qe

me
[ByVx − BxVy], ,

(50g)

(50h)

(50i)

(50j)

where the matrices Q1 ∈ RN1×Np and Bx/y ∈ RNp×Np defined by

Q1 = Q1(Z) := (ϕ1
i+1/2(zk))i=0,...,N1−1;k=1...,Np ,

Bx/y = Bx/y(Z,bx/y) := diag
[
(Q1)>(Z)bx/y

]
,

(51)

(52)

arise naturally after writing the particles’ equations of motion (28) in matrix-vector form and noting that
the discrete electric and magnetic fields can be expressed in their respective bases (see (32)).

In order to analyze the semi-discrete system of equations (50), we define the system’s discrete Hamiltonian
Hh : Rn → R, u 7→ Hh(u) (n = 4N0 + 2N1 + 4Np) by replacing the continuous functions in the energy (7)
by their discrete counterparts. This results in

Hh(u) :=
ε0
2

(e>xM0ex + e>y M0ey)︸ ︷︷ ︸
HE

+
1

2µ0
(b>xM1bx + b>y M1by)︸ ︷︷ ︸

HB

+
1

2ε0Ω2
pe

(y>xM0yx + y>y M0yy)︸ ︷︷ ︸
HY

+
me

2
V>xWVx︸ ︷︷ ︸
Hx

+
me

2
V>y WVy︸ ︷︷ ︸
Hy

+
me

2
V>z WVz︸ ︷︷ ︸
Hz

.

(53)

Using this discrete Hamiltonian, it is straightforward to show that the semi-discrete system (50) can be
equivalently written in a noncanonical Hamiltonian structure for the dynamics of the variable u:

du

dt
= J(u)∇uHh(u). (54)

Lemma. The matrix J in (54) is skew-symmetric and satisfies the Jacobi identity,

∑
l

(
∂Jab
∂ul

Jlc +
∂Jbc
∂ul

Jla +
∂Jca
∂ul

Jlb
)

= 0, ∀ a, b, c. (55)

Proof. The matrix J is written explicitly in A in a 10× 10 block structure. From this, the skew-symmetry
J> = −J is obvious. To prove the Jacobi identity we again take advantage of the 10 × 10 block structure
of J and denote the (i, j)-th block by Ĵi,j(1 ≤ i ≤ 10, 1 ≤ j ≤ 10). Due to the fact that only very few
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blocks depend on the unknown u, namely Ĵ1,8, Ĵ8,1, Ĵ2,9, Ĵ9,2, Ĵ8,10, Ĵ10,8, Ĵ9,10 and Ĵ10,9 via Bx = Bx(Z,bx),
By = By(Z,by) and Q0 = Q0(Z), the Jacobi identity (55) reduces to

0 =
∂Ĵi,j
∂bx

Ĵ3,k=2︸ ︷︷ ︸
I

+
∂Ĵj,k
∂bx

Ĵ3,i=2︸ ︷︷ ︸
II

+
∂Ĵk,i
∂bx

Ĵ3,j=2︸ ︷︷ ︸
III

+
∂Ĵi,j
∂by

Ĵ4,k=1︸ ︷︷ ︸
IV

+
∂Ĵj,k
∂by

Ĵ4,i=1︸ ︷︷ ︸
V

+
∂Ĵk,i
∂by

Ĵ4,j=1︸ ︷︷ ︸
VI

+
∂Ĵi,j
∂Z

Ĵ7,k=10︸ ︷︷ ︸
VII

+
∂Ĵj,k
∂Z

Ĵ7,i=10︸ ︷︷ ︸
VIII

+
∂Ĵk,i
∂Z

Ĵ7,j=10︸ ︷︷ ︸
IX

, ∀ i, j, k.

(56)

Here, we could already identify one block index in each term (e.g. k = 2 for term I or k = 1 for term IV).
The other indices can be determined from the aforementioned dependencies of the matrices Bx, By and Q0

on bx/y and Z, respectively. In Tab. 1, we list the resulting block index combinations giving a non-zero
contribution for each term I, . . . ,IX. Summing up terms corresponding to identical index triples leads to 18
different index triples listed in Tab. 3 for which the Jacobi identity in the form (56) needs to proven. Since
the Jacobi identity gives the same expression for cyclic permutations of (i, j, k), there are always three index
triples which are equivalent. Consequently, there are only six distinct expressions that need to be checked.
It is immediately clear that the last two expressions in Tab. 3 are equal to zero and that the first and
second and the third and fourth expression, respectively, are the same up to the sign. The remaining two
expressions only differ with respect to ∂Bx/∂bx and ∂By/∂by. Because of the definitions (52) of Bx and
By, respectively, these terms are again equivalent which means that we only have to prove one combination
explicitly, for example∑

l

∂(By(Z,by)W−1)ab
∂byl+1/2

(GM−1
0 )lc =

∑
l

∂(M−1
0 Q0(Z))ca
∂zl

(W−1)lb, ∀ a, b, c. (57)

Writing all matrix products explicitly yields∑
l,m,n,r

(Q1)>amδan
∂bym+1/2

∂byl+1/2︸ ︷︷ ︸
=δlm

δnb
1

wn
Glr(M−1

0 )rc =
∑
l,m

(M−1
0 )cm

∂ϕ0
m(za)

∂zl︸ ︷︷ ︸
=δal(dϕ0

m/dz)(za)

δlb
1

wl
. (58)

As a next step, we eliminate all sums involving a Kronecker delta. This results in

δab
1

wa

∑
m,r

ϕ1
m+1/2(za)Gmr(M−1

0 )rc = δab
1

wa

∑
m

(M−1
0 )cm

dϕ0
m

dz
(za). (59)

Using that the discrete gradient matrix (49) can be written as Gmr = 2(δmr−1− δmr)/h and performing the
sum over m yields

δab
1

wa

2

h

∑
r

(M−1
0 )rc(ϕ

1
r−1/2(za)− ϕ1

r+1/2(za)) = δab
1

wa

∑
r

(M−1
0 )rc

dϕ0
r

dz
(za), (60)

where we have used the symmetry of the inverse of the mass matrix (M−1
0 )rc = (M−1

0 )cr. Furthermore, we
renamed the summation index on the right-hand-side from m to r. Since the basis function on both sides
are evaluated at the same particle position za it remains to show that

ϕ1
r−1/2 − ϕ

1
r+1/2 =

h

2

dϕ0
r

dz
, (61)

which is true due to our particular choice of basis functions satisfying the commuting diagram in Fig. 3. By
using the mappings Fk and F−1

k in (35) from real space to the reference element I = [−1, 1] and by using
the definition (39) of the LHPs (χn+1/2)n=0,...,p−1, we get

ϕ1
r−1/2(Fk(s))− ϕ1

r+1/2(Fk(s)) = χn−1/2(s)− χn+1/2(s)

=

p∑
m=n

d

ds
ηm(s)−

p∑
m=n+1

d

ds
ηm(s) =

d

ds
ηn(s)

=
d

ds
ηn(F−1

k (Fk(s))) =
d

ds
ϕ0
r(Fk(s)) =

dFk
ds

dϕ0
r

dz
=
h

2

dϕ0
r

dz
,

(62)
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which completes the proof of the Jacobi identity (55).

With the stated properties of J, we can define the following Poisson bracket, a bilinear, anti-symmetric
bracket, that satisfies Leibniz’ rule and the Jacobi identity:

{R,S} = ∇uR
>J(u)∇uS, (63)

where R,S : Rn → R,u 7→ R,S(u) are functions of the dynamical variables u. This means that the time
evolution of an arbitrary function R can be written as

d

dt
R(u(t)) = ∇uR

>du

dt
=
↑

(54)

∇uR
>J(u)∇uHh = {R,Hh}, (64)

and taking R = Hh and using the anti-symmetry of the bracket yields

d

dt
Hh(u(t)) = {Hh, Hh} = −{Hh, Hh} = 0, (65)

which means that the semi-discrete system (54) exactly conserves the discrete Hamiltonian (53).
Discretization in time. We once more follow Kraus et al. (2017) and choose a splitting scheme for

the integration of the Hamiltonian system (54) in time. For Hamiltonian systems there are in principle
two options: The first one is to split the Poisson matrix J and to keep the full Hamiltonian. If each of
the subsystems can then be solved analytically, this yields exact energy conservation. Or one splits the
Hamiltonian while keeping the full Poisson matrix. This yields so-called Poisson integrators which have
the advantage that some invariants, the so-called Casimir invariants of Hamiltonian systems, are preserved
exactly even on the fully discretized level. We choose the latter option and consequently split the Hamiltonian
(53) into the six parts

Hh = HE +HB +HY +Hx +Hy +Hz, (66)

in order to obtain six subsystems which still have the form (54), however, with a simpler Hamiltonian,
respectively. We find that each of the subsystems can be solved analytically in the way listed in C, which
means that we get a set of six Poisson integrators denoted by ΦE

∆t, ΦB
∆t, ΦY

∆t, Φx
∆t, Φy

∆t and Φz
∆t, which can

be applied successively in some specific order to advance u by a time step ∆t. It is worth mentioning that
qualitatively, the computation of the line integrals along the particle trajectories in the last integrator leads
to a slight increase of computational costs compared to the standard scheme. The easiest composition is the
first-order Lie-Trotter splitting (Trotter, 1959), which consists of simply applying each integrator one after
the other:

ΦL
∆t := Φz

∆t ◦ Φy
∆t ◦ Φx

∆t ◦ ΦY
∆t ◦ ΦB

∆t ◦ ΦE
∆t. (67)

It is important to note that the input to each integrator must be the output of the previous integrator which
has the consequence that if the magnetic field coefficients bx and by change, for instance, the matrices
Bx/y = Bx/y(Z,bx/y) need to be updated. Furthermore, we use the second order, symmetric Strang splitting
(Strang, 1968)

ΦS
∆t := Φz

∆t/2 ◦ Φy
∆t/2 ◦ Φx

∆t/2 ◦ ΦY
∆t/2 ◦ ΦB

∆t/2 ◦ ΦE
∆t/2 ◦ ΦE

∆t ◦ ΦB
∆t ◦ ΦY

∆t ◦ Φx
∆t ◦ Φy

∆t ◦ Φz
∆t. (68)

Higher order splitting schemes can e.g. be found in McLachlan and Quispel (2002).
Algorithm. Finally, like it was done in the previous section, we want to summarize the algorithm for

numerically solving the model (6) for transverse electromagnetic waves only:

1. Create a periodic basis of Lagrange polynomials (ϕ0
j (z))j=0,...,N0−1 of degree p on a domain L discretized

by Nel elements using the definition of the shape functions (36) on the reference element I = [−1, 1]
and the formulas (35) for transformations on the physical domain. This results in N0 = pNel.
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2. Create the corresponding basis of Lagrange histopolation polynomials (ϕ1
j+1/2(z)) j=0,...,N1−1 using the

definition of the shape functions (40) on the reference element I = [−1, 1] and the formulas (35) for
transformations on the physical domain. This results in N1 = pNel.

3. Assemble the global mass matrices M0 and M1.

4. Load the initial fields Ẽx(z, t = 0), Ẽy(z, t = 0), B̃x(z, t = 0), B̃y(z, t = 0), j̃cx(z, t = 0), j̃cy(z, t = 0)
and use the projectors Π0 (37) and Π1 (41) in order to get the initial finite element coefficients e0

x, e0
y,

b0
x, b0

y, y0
x, y0

y.

5. Sample the initial positions (z0
k)k=1,...,Np and velocities (v0

kx, v
0
ky, v

0
kz)k=1,...,Np according to the sampling

distribution (30) by using a random number generator and compute the weights wk = nh0L/Np.

6. Assemble the matrices G (49), Q0(Z0) (48a), Q1(Z0) (51), Bx(Z0,b0
x) (52), By(Z0,b0

y) (52) and W
(48b).

7. Start the time loop:

(a) Apply one of the time integrators (67) (Lie-Trotter) or (68) (Strang) for a time step ∆t in order
to update enx, eny , bnx, bny , ynx, yny , Zn, Vn

x, Vn
y , Vn

z → en+1
x , en+1

y , bn+1
x , bn+1

y , yn+1
x , yn+1

y , Zn+1,

Vn+1
x , Vn+1

y , Vn+1
z . The single integrators are listed in C.

(b) Go to 7a

4 Numerical experiments

In this section, we present results of two runs performed with each algorithm developed in the previous two
sections (Sec. 3.1 and Sec. 3.2). In the first run, we excite the instability stated in section 2.3 for a single
wavenumber k, while in the second run we excite multiple modes without expecting an instability.

4.1 Run 1: Single k-mode

Table 2: Parameters for Run 1. In case of
the structure-preserving code, the polynomial degree
refers to the Lagrange polynomials that span the space
V0.

Parameter Value

Parallel thermal velocity vth‖ 0.2c

Perpendicular thermal velocity vth⊥ 0.53c

Density ratio νh = nh0/nc0 0.06

Cold plasma frequency Ωpe 2|Ωce|
Wavenumber of perturbation k 2|Ωce|/c
Amplitude of perturbation a 10−4B0

Length of computational domain L 2π/k

Number of elements Nel 32

Polynomial degree p 1

Number of particles Np 105

Time step 0.0125|Ωce|

For the first run, we initialize the codes as follows:
We choose an anisotropic Maxwellian for the ener-
getic electrons and perturb the x-component of the
magnetic wave field by B̃x(z, t = 0) = a sin(kz) in
order to seed the instability for one particular k-
mode. The amplitude a is chosen with respect to
the background magnetic field such that it is small
enough to start in the linear phase, but large enough
to reach the nonlinear phase within a reasonable
simulation time. All other field quantities are ini-
tially zero, which means that there is no electric field
and cold plasma current at t = 0. All physical and
numerical parameters of the run are listed in Tab.
2. Note that we have chosen a polynomial degree of
p = 1 in order to get basis functions which are as
similar as possible for the two codes since B-splines
and Lagrange polynomials are the same only for this
degree (see Fig. 2a). In this case, the main differ-
ence between the two codes is that the magnetic field
is still expressed with piecewise linear functions for
standard finite elements, but with piecewise constant functions for structure-preserving geometric finite el-
ements. However, we would like to emphasize that there are no additional difficulties in using higher order
shape functions for both schemes.
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Figure 5: Run 1 with parameters listed in Tab. 2: (a) Time evolution of the magnetic field energy EB,
electric field energy EE and cold plasma energy Ec obtained with standard finite element PIC methods from
section 3.1 together with the expected growth rate from the analytical dispersion relation (12). (b) Same as
(a) for structure-preserving finite element PIC methods from section 3.2 with the Strang splitting scheme
(68).

With the choice of parameters in Tab. 2, the numerical solution of the dispersion relation (12) yields
an expected growth rate of γ ≈ 0.0447|Ωce|. In Fig. 5, we plot the resulting time evolution of the magnetic
field energy EB, the electric field energy EE and the cold plasma energy Ec (see (53)) normalized to the
total energy E = EB + EE + Ec + Eh together with the expected growth rate (which is 2γ in the case of
energies). Note that most of the energy is carried by the energetic electrons which is why Eh would be orders
of magnitude above the other curves in Fig. 5. Therefore, we do not show its evolution. Qualitatively,
we observe a similar behavior for the two codes: First, as expected, all quantities grow exponentially, i.e.
energy is transfered from the fast electrons to the electromagnetic field and the cold plasma. After this, the
wave fields saturate, when nonlinear terms start to play a role and the linear theory thus breaks down. In
both cases, the numerical growth matches the analytical one very well and the curves end up at the same
saturation level. However, the standard PIC code seems to be more sensitive to the noise induced by the
random particle initialization, since it takes some time in the beginning until the exponential growth phase
is reached (obvious for the electric field energy).

In addition to the time evolution of the energies, we plot in Fig. 6 the distribution functions fh‖ =
2π
∫
fhv⊥ dv⊥ for the parallel velocity at the beginning (t = t0 = 0) and at the end (t = tf = 200 |Ωce|) of

the simulations. In both cases, we observe a flattening of the distribution functions around the resonant
velocities, which are expected to be at vR = (ωr + |Ωce|)/k ≈ ±0.26 c for the wavenumber k = 2|Ωce|/c. This
means that energetic electrons initially close to the resonant velocities gain energy in parallel direction which
can more clearly be seen in the plots below where we show the difference in the initial and final distributions.
In contrast to that, energetic electrons lose energy in perpendicular direction (not shown). A quantitative
analysis yields that the energetic electrons lose more energy in perpendicular direction than what they gain
in parallel direction, which is of course expected because the wave energies grow due to energy transfer from
the energetic electrons to the wave. Qualitatively, the two algorithms do not result in visible differences
regarding the distribution functions.

Finally, we check the conservation of the total energy E in the system and show in Fig. 7 the evolution
of its relative error |E(t)−E(0)|/E(0) with respect to time for three cases: For the first case (purple), which
is standard PIC, we find an oscillation of the error on a nearly bounded level until t ≈ 40 |Ωce|. This is
followed by a sudden increase of the error of about three orders of magnitude until a saturation phase is
reached. Second, we plot the evolution of the relative error for geometric PIC with the first-order Lie-Trotter
splitting (67) (brown) and we observe that the error is again oscillating, however, uniformly bounded during
the whole simulation. This is expected for a symplectic integrator (Hairer et al., 2006). Third, we observe
for geometric PIC with the Strang-splitting (68) (orange), which is second order in time, that the error is
reduced by about three orders of magnitude and that it shows the same behavior as the Lie-Trotter splitting
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Figure 6: Run 1 with parameters listed in Tab. 2: (a) Initial (t = t0 = 0) and final (t = tf = 200 |Ωce|)
distribution function in parallel direction obtained with standard finite element PIC methods from section
3.1 . (b) Same as (a) for structure-preserving finite element PIC methods from section 3.2 with the Strang
splitting scheme (68). (c) Difference between the initial and final distribution corresponding to (a). (d)
Difference between the initial and final distribution corresponding to (b).
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Figure 7: Run 1 with parameters listed in Tab. 2: Time evolution of the relative error in the conservation of
energy for three cases: Standard finite element PIC (purple), structure-preserving finite element PIC with
Lie-Trotter splitting (brown) and Strang splitting (orange).

up to t ≈ 110|Ωce|, i.e. the error is oscillating and uniformly bounded. However, this is followed by a slow,
linear increase of the error, where the oscillation vanishes.

4.2 Run 2: Multiple k-modes

So far we have initialized the code with a small perturbation of the x-component of the magnetic field for a
single wavenumber k. Next, we want to excite multiple k-modes of the system at the same time. This can
be achieved by directly using the fact that the random initialization of the particles in phase space induces
a low-level noise in the system. In Fig. 7, one can see the normalized two-dimensional Discrete Fourier
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Figure 8: Run 2 with parameters vth‖ = vth⊥ = 0.1 c, νh = 0.002, Ωpe = 2|Ωce|, L = 80c/|Ωce|, Nel = 512,
p = 1, Np = 1 · 105 and ∆t = 0.05|Ωce|−1. The simulation was run until tf = 300|Ωce|: (a) Normalized 2d
Discrete Fourier Transform of the x-component of the magnetic field for standard finite element PIC. (b)
Same as (a) for structure preserving finite element PIC. (c) Comparison of the spectrum (a) with the real
part of the analytical dispersion relation (12). (d) Same as (c) for the spectrum (b).

transform (DFT) of a run that has been initialized with a low density (νh = 0.002), isotropic Maxwellian
(vth‖ = vth⊥ = 0.1 c) for the energetic electrons and no electromagnetic fields and cold current density. With
this choice of parameters, there is no wave growth expected, however, by taking a look at the spectrum in
the k-ω-plane in Fig. 7, we see that the particle noise leads to an excitation of all three characteristic waves
(see Sec. 2.3) with a continuous spectrum in each quadrant. For both numerical methods, we obtain similar
results for small wavenumbers and frequencies which we can compare to the real part of the dispersion
relation (12) and for which we find a very good agreement. However, there is an obvious different behavior
when it comes to higher wavenumbers. In case of standard PIC, the two branches corresponding to vacuum
light waves ”bend down” which is not the case for structure-preserving PIC. Although it also differs from the
expected straight line representing the speed of light, there are no unphysical modes as for standard PIC.
This is also true for the Whistler branch below the electron cyclotron frequency Ωce. Whereas there are
unphysical modes with a rather large intensity (red) for the highest wavenumbers k ≈ 20|Ωce|/c for standard
PIC, this is not the case for structure-preserving PIC. The reason for this qualitative behavior is not obvious
and needs to be analyzed further.

5 Summary

In this article, we have developed two different finite element particle-in-cell algorithms for a four-dimensional
hybrid plasma model and compared the results for two test runs. The considered hybrid plasma model is
a combined kinetic/fluid description for a magnetized plasma, which consists of cold (fluid) electrons and
energetic (kinetic) electrons that move in a stationary, neutralizing background of ions. The model’s key
physics content for wave propagation parallel to a uniform background magnetic field is that it predicts
the existence of growing/damped modes due to energy exchange between the energetic electrons and waves
which propagate in the cold plasma.

For this case, first, a combination of one-dimensional B-spline finite elements for Maxwell’s equations and
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the momentum balance equation for the cold electrons and the standard particle-in-cell method with a Boris
particle pusher for the Vlasov equation (one dimension in real space and three dimensions in velocity space)
has been applied in an intuitive way without taking into account the geometric structure of the equations.
Second, geometric finite element particle-in-cell methods (Kraus et al., 2017) which use tools from finite
element exterior calculus have been applied on the same model. By choosing finite elements spaces and
projectors on these spaces satisfying a commuting diagram with the continuous spaces, a semi-discrete system
(discrete in space and continuous in time) for the time evolution of all finite element coefficients and particle
configurations has been derived. By proofing the skew-symmetry and the Jacobi identity of the Poisson
matrix, it has been shown that the semi-discrete system exhibits a noncanonical Hamiltonian structure. The
subsequent construction of Poisson time integrators by splitting the Hamiltonian and analytically solving
the resulting subsystems has led to a uniformly bounded error in the conservation of energy for the first
presented numerical experiment in the linear and nonlinear stage which was not the case for standard PIC.
Finally, the second numerical experiment revealed that standard PIC leads to spurious modes for large
wavenumbers (compared to the inverse of the element size) which is not the case for structure-preserving
geometric PIC.
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Appendix A Poisson matrix

The matrix J in (54) reads
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(A.1)
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Appendix B Jacobi identity

Table 3: Block index triples for which the Jacobi identity needs to be proven.

(i,j,k) terms block matrix term explicit expression
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Ĵ3,2 +
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Ĵ7,10 − qe
me

∂(ByW−1)

∂Z
W−1 + qe

me

∂(ByW−1)

∂Z
W−1 = 0

(10,8,10) VII+VIII

(9,10,10) VII+IX

(10,10,9) VIII+IX
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Appendix C Time integrators for Hamiltonian splitting

Problem 1. For t ∈ [0,∆t] and u(t = 0) = u0 we have

du

dt
= J(u)∇uHE(u) = J(u)∇u

[ε0
2

(e>xM0ex + e>y M0ey)
]
. (C.1)

This can be solved analytically as
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The corresponding integrator is denoted by u(∆t) = ΦE∆t(u
0).
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The corresponding integrator is denoted by u(∆t) = ΦB∆t(u
0).
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Problem 3. For t ∈ [0,∆t] and u(t = 0) = u0, we have

du

dt
= J(u)∇uHY (u) = J(u)∇u

[
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This can be solved analytically as
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(C.6i)
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The corresponding integrator is denoted by u(∆t) = ΦY∆t(u
0).

Problem 4. For t ∈ [0,∆t] and u(t = 0) = u0, we have

du

dt
= J(u)∇uHx(u) = J(u)∇u

(me

2
V>xWVx

)
. (C.7)

This can be solved analytically as
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The corresponding integrator is denoted by u(∆t) = Φy∆t(u
0).

Problem 5. For t ∈ [0,∆t] and u(t = 0) = u0, we have
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This can be solved analytically as
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The corresponding integrator is denoted by u(∆t) = Φy∆t(u
0).

Problem 6. For t ∈ [0,∆t] and u(t = 0) = u0, we have
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This can be solved analytically as
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(C.12a)
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The corresponding integrator is denoted by u(∆t) = Φz∆t(u
0). Note that the integrals can be computed exactly along

each particle trajectories as the basis functions are piecewise polynomials.
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