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Abstract—The compatibility of global MHD modes and good collisionless 

confinement of fast particles is studied in anquasi-axisymmetric tokamak - 

stellarator hybrid. It is shown that both of these requirements can be satisfied at a 

relative plasma pressure up to   ~ 0.02. 

 

1. INTRODUCTION 

A quasi-axisymmetric tokamak, i.e., a stellarator with a toroidal current, was 

proposed in [1]. In this work, we consider a two-period configuration with an 

aspect ratio A ~ 4, in which the stellarator rotational transform was ι(0) = 0.1 at the 

axis and ι(1) = 0.14 at the plasma boundary (the corresponding values at a single 

period of the magnetic field were of 0.05 and 0.07, respectively). The total 

rotational transform was set as ι = 0.91–0.59s, where s is the normalized toroidal 

flux. This transform was obtained by creating a suitable distribution of the toroidal 

current. In this configuration, the collisionless confinement of α particles at reactor 



parameters (magnetic field B = 5 T and installation volume V = 1000 m
3
) was very 

good (almost all particles launched at one-half of the minor radius were confined 

during 1 second). In [1], the stability of the global MHD modes was not 

considered. 

Since the concept of axial quasi-symmetry is attractive due to the potential 

ability of such machines to operate without disruptions [2], in this work, we 

analyze the MHD stability of the quasi-axisymmetric tokamak and stellarator 

hybrid with a good confinement of fast particles in more detail than in [3]. 

2. OPTIMIZATION TOWARD QUASI-AXISYMMETRY  

The condition of axial quasi-symmetry, which translates into the absence of 

Fourier harmonics Bmn with n ≠ 0 in the module of the magnetic field in the 

magnetic coordinates, can be easily used to optimize our configuration to quasi-

symmetry. It was stated in [4] and shown more strictly in [5, 6] that the quasi-

symmetry condition cannot be strictly satisfied in the entire volume of the plasma 

column. In this case, the use of different penalty functions to achieve quasi-

symmetry can lead to slightly different results. Examples of the corrections 

functions are, e.g., a sum of the absolute values of harmonics Bmn that break the 

symmetry, or the sum of the squares of their values. These sums can be calculated 

over a set of magnetic surface or over the entire volume of the plasma column. We 

note that for optimization, the stellarator rotational transform is to be considered as 

an external parameter; therefore, it has to be determined using additional 

considerations. 

In [7], it was shown that a one-dimensional spectrum of the magnetic field B 

(in addition to its dependence on the flux coordinate) provides the conservation of 

the additional integral of the drift equations of motion, the same as in truly 

symmetricalconfigurations. This means that in the magnetic coordinates, the shape 

of the banana trajectory is independent of the longitudinal coordinate. From the 

viewpoint of particle confinement, the less strict condition of the constancy of the 

second adiabatic invariant J|| at the magnetic surface (the center of the banana 

trajectory of a trapped particle moves along the magnetic surface) can be used for 



optimization together with the condition of pseudo-symmetry [8]. If this condition 

is satisfied, there are no islands on the map of the lines B = const at the magnetic 

surfaces and no locally trapped particles. This condition can also be expressed as 

the module of the magnetic field being two-dimensional in some flux coordinates 

with straight magnetic field lines. In the near-axial approximation, the condition of 

quasi-symmetry and the condition J = J(s) for all trapped particles are the same, 

while further along the radius they begin to differ. For good particle confinement, 

one can use an even softer condition that for all values of Breflect (i.e., for all trapped 

particles), the contours of the second adiabatic invariant for the particles launched 

from a set magnetic surface do not exceed the boundary of the plasma column. 

This condition, together with the pseudo-symmetry and quasi-axisymmetry 

conditions, was used in this work. In a similar manner to [1], we consider a two-

period configuration with an aspect ratio A ~ 4. 

Figure 1 shows the cross sections of the magnetic surfaces in the 

configuration found at   = 0.019 and the radial profiles of the rotational 

transform, the magnetic well, and the plasma pressure, which is flattened near the 

2/3 and 1/2 resonances. The pressure and longitudinal current density profiles were 

assumed to have the shapes p ~ (1 – s)
2
 and j ~ 0.1(1 – s

2
)

3 
+ 0.9(1 – s)

3
, 

respectively. The rotational transform near the magnetic axis is close to unity 

(0.97), the ι = 1/2 resonant surface is located inside the plasma column, and ι(1) = 

0.44. At the determined boundary magnetic surface, the rotational transform of the 

vacuum magnetic field is 0.27 near the magnetic axis and 0.31 near the boundary. 

The effective ripple (ε
3/2

) varies from 6 × 10
–5

 near the magnetic axis to 2 × 10
–4

 

near the boundary. The fast particle confinement is very good. At the reactor 

parameters mentioned above, out of 1000 α particles launched from one-half of the 

minor radius, 280 particles are reflected and only a few (~5) particles escape the 

plasma during 1 s. The fast-particle confinement and effective ripple depend 

weakly on plasma pressure, but they are sensitive to the longitudinal current: at a 

fixed current profile, decreasing the longitudinal current at first (at ι(0) ~ 0.77) 

weakly affects the fast-particle confinement (0–10 particles escape), but at ι(0) < 



0.72 the losses grow rapidly and at ι(0) = 0.58 they reach up to one-third of the 

number of reflected particles.  

3. THE STABILITY OF THE GLOBAL MHD MODES  

The stability of the ideal global MHD modes was studied using the CAS3D 

computer code [9]. We considered modes with a free boundary [10], there was no 

conducting case, and the normalization was made with respect to the component of 

the perturbed magnetic field transverse to the magnetic surface. In the two-period 

configuration, two independent mode families can be separated, modes with 

toroidal indices n = –1 + 2k (first family) and n = 2k (second family), where k is an 

integer. The number of points along the minor radius was 576, the maximum 

poloidal index m was 15, and the total number of Fourier modes was 

approximately 100. These parameters allowed us to consider three types of modes, 

the internal kink modes with small m numbers, the ballooning modes, and the 

peeling modes [11]. The latter two mode types have larger m numbers. In allmode 

analyses, the equilibrium boundary magnetic surface, the equilibrium current 

density profile, and total longitudinal current were constant. We considered several 

values of the equilibrium plasma pressure. 

 

a) Internal kink modes 

At the value of the total longitudinal current under study here, there are two 

resonant magnetic surfaces with low m numbers inside the plasma column: ι = 2/3 

and ι = 1/2. The corresponding resonant modes belong to different families and 

should be considered separately. For the first family, Fig. 2 shows the radial profile 

of the ten largest Fourier harmonics of the radial displacement at a relative pressure 

  = 0.019. Although the contribution from the plasma region to the perturbation 

energy is negative, Wp = –0.135, the positive contribution of the vacuum region, 

acWv  = 0.138, makes the mode stable: λ = Wp + acWv  = 0.003. It is seen that in the 

global mode considered, besides the connection between the modes with equal n 

numbers, characteristic of a tokamak, the connection between the modes with 

different n numbers that are characteristic of a stellarator is also present. Since the 



number of periods is small (N = 2), the rational surfaces with ι = n/m with different 

n numbers and close m numbers are inside the plasma column. For harmonics with 

resonant surface inside the plasma column, the maximum amplitudes of the radial 

component of the displacement are reached near the corresponding resonant 

surfaces. Figure 3 shows the radial distributions of the different depositions into 

2 2 2
| | ( ) ( )pW d A s p          C ξ ξ  (in detail, see [9]). 

It is seen in Fig. 2 that the free boundary condition is substantial for the 

studied global mode, since many of its harmonics are finite at the boundary. At the 

same time, each of the terms that constitute Wp and Wp itself are small outside the 

magnetic surface with ι = 1/2. 

The corresponding mode from the second family with the maximum 

amplitudes of the Fourier harmonics with m = 3, n = –2 and m = 4, n = –2 is even 

more stable at   = 0.019 (see Fig. 4). Here, the contribution of energy from the 

plasma region is positive Wp = 0.103, similar to the contribution of the vacuum 

region acWv  = 0.045, and λ = 0.148. The contributions to Wp decrease strongly 

outside of the resonant surface ι = 2/3 (see Fig. 5). Comparison of the two global 

modes shows that the mode from the first family is marginally stable, while the 

mode from the second family is profoundly stable. 

When the plasma <β> is increased, the mode from the first family becomes 

unstable. Figure 6 shows a spectrum of the unstable mode with the main harmonic 

m = 2, n = –1 at   = 0.024. Here, Wp = –0.189 and acWv  = 0.158, so that λ = –

0.031. At this plasma pressure, the mode from the second family continues to be 

stable. Figure 7 shows a weakly unstable mode from the second family at   = 

0.029. For this mode, Wp = –0.087 and acWv  = 0.073, so that λ = –0.014. 

Comparison of these results shows that the limit of the plasma pressure for 

internal kink modes is   = 0.02. 

b) Ballooning modes 

The studied modes allow us to consider modes with higher m and n numbers 

(ballooning modes). These are also considered as modes with a free boundary. 



Figure 8 shows the radial profiles of the harmonics of the normal displacement at 

  = 0.019. This is a mode from the first family, which is profoundly stable: Wp = 

0.011 and acWv  = 0.014, so that λ = 0.025. This mode can be considered as transient 

between the internal kink mode and the ballooning mode. Modes whose structures 

are even closer to ballooning are even more stable. When the plasma pressure is 

increased sufficiently, the ballooning modes become unstable. Figure 9 shows an 

example of unstable ballooning modes at   = 0.024. Here, Wp = –0.093 and acWv  = 

0.006, λ = –0.087, and the deposition of the vacuum region is one order of 

magnitude smaller than the contribution of the plasma region. It can be said that 

the pressure limit for the stability of ballooning modes is higher than the pressure 

limit of the internal kink modes. 

 

c) Peeling modes 

For the profiles studied, the plasma pressure and the longitudinal current 

density become zero near the plasma column boundary. At the initial plasma 

pressure (   = 0.019), no unstable peeling modes are observed. They appear when 

the pressure is increased: at   = 0.024, λ = –0.079 (Wp = –0.108 and acWv  = 0.029, 

see Fig. 10). When the pressure is increased further,   = 0.029, the mode gets 

more unstable: λ = –0.162 (Wp = –0.196 and acWv  = 0.034, see Fig. 11). In both 

cases, the mode whose resonant magnetic surface is close to the plasma boundary 

is the mode with m = 7, n = –3, and ιres = 0.43, whose resonant magnetic surface is 

outside the plasma column boundary (at   = 0.024, ι(1) = 0.442 and at   = 

0.029, ι(1) = 0.444). An interpolation of these results allows us to conclude that the 

initial configuration with   = 0.019 is marginally stable with respect to the 

peeling modes. 

 

4. DISCUSSION OF RESULTS 

It follows from previous works (see, e.g., [1, 3, 12, 13]) that achieving a low 

effective ripple in a quasi-axisymmetric configuration is not problematic. In this 



work, similar to [3], it is shown that in quasi-axisymmetric configurations, low 

effective ripple and good collisionless confinement of fast particles at reactor 

parameters can be achieved simultaneously. In this work, at fixed plasma pressure 

and longitudinal current density profiles, a good particle confinement is realized in 

both the initial configuration with ι(0) = 0.96 and at a lower longitudinal current, 

down to ι(0) = 0.77. However, further decrease of the longitudinal current leads to 

an increase in the loss of trapped particles, and at ι(0) = 0.58, approximately one-

third of the trapped particles are lost during 1 s. Accordingly, in this work, the 

stability of the global modes is studied in a quasi-axisymmetric configuration with 

a strong longitudinal current. It is shown above that in this N = 2 quasi-

axisymmetric configuration with ι(0) close to unity, the maximum stable plasma 

pressure is   = 0.02 for the studied pressure and current density profiles. At larger

 , the peeling modes and internal kink modes, followed by ballooning modes, 

become unstable. As shown in this work, a good confinement of fast particles can 

be achieved at somewhat lower values of the longitudinal current. The stability of 

the global modes in these configurations should be studied further forequilibria 

with different boundaries.  

 

FUNDING 

This work was carried out for the Eurofusion consortium. It was supported by the 

Euratom research and training Work Program for 2014–2018 and 2019–2020 

under Agreement no. 633053. The reasoning and opinions presented in this work 

do not necessarily reflect the position of the European commission. 

 

ACKNOWLEDGMENTS 

We are grateful to Professors S. Günter and P. Helander for their support. We 

thank Carolin Nührenberg for technical help with using the CAS3D code. 

 

 

 



REFERENCES 

1. J. Nührenberg, W. Lotz, and S. Gori, in Proceedings of the Joint VarennaLausanne 

International Workshop on Theory of Fusion Plasmas, Varenna, 1994, Ed. by E. Sindoni and J. 

Vaclavik (Compositori, Bologna, 1994), p. 3. 

2. D. A. Maurer, S. F. Knowlton, J. D. Hanson, G. J. Hartwell, M. C. Miller, B. A. Stevenson, X. 

Ma, J. Herfindal, and M. Pandya, in Proceedings of the 39th EPS Conference on Plasma 

Physics, Stockholm, 2012, ECA 36F, P-2.065 (2012). 

http://ocs.ciemat.es/epsicpp2012pap/pdf/P2.065.pdf. 

3. S. A. Henneberg, M. Drevlak, C. Nührenberg, C. D. Beidler, Y. Turkin, J. Loizu, and P. 

Helander, Nucl. Fusion 59, 026014 (2019). 

4. D. A. Garren and A. H. Boozer, Phys. Fluids B 3, 2822 (1999). 

5. G.G. Plunk and P. Helander, J. Plasma Phys. 84, 905840205 (2018). 

6. M. Landreman, W. Sengupta, and G.G. Plunk, J. Plasma Phys. 85, 905850103 (2019). 

7. A. H. Boozer, Phys. Fluids 26, 496 (1983). 

8. M. I. Mikhailov, V. D. Shafranov, and D. Sunder, Plasma Phys. Rep. 24, 653 (1998). 

9. C. Schwab, Phys. Fluids B 5, 3195 (1993). 

10. P. Merkel, C. Nührenberg, and W. A. Cooper, in Proceedings of the ISPP-17 Joint Varenna-

Lausanne International Workshop on Theory of Fusion Plasmas, Varenna, 1996, Ed. by. J. W. 

Connor, E. Sindoni, and J. Vaclavik (Societa Italiana de Fisica, Bolonga, 1996), p. 233. 

11. D. Lortz, Nuclear Fusion 15, 49 (1975). 

12 J. Nührenberg, R Zille, S Okamura, K. Matsuoka, and S Murakami, Plasma Phys. Contr. 

Fusion 43, 137 (2001). 

13. B.E. Nelson, L.A. Berry, A.B. Brooks, M. J. Cole, J. C. Chrzanowski, H.-M. Fan, P. J. 

Fogarty, P. L. Goranson, P. J. Heitzenroeder, S. P. Hirshman, G. H. Jones, J. F. Lyon, G. H. 

Neilson, W. T. Reiersen, D. J. Strickler, et al, Fusion Eng. Des. 66, 169 (2003). 

 

FIGURE CAPTIONS 

 

 Fig. 1. Transverse cross sections (start, quarter- and half-period) in an N = 2 

configuration with longitudinal current optimized to quasi-axisymmetry at   = 

0.019 (top) and radial profiles of the rotational transform, magnetic well, and 

plasma pressure (bottom).  



Fig. 2. The profiles of the ten largest Fourier harmonics of the radial component of 

the displacement in the initial configuration with   = 0.019, the first family. 

Fig. 3. Contributions to the integral energy perturbation averaged over magnetic 

surfaces as functions of the normalized toroidal flux for the initial configuration; 

(1) С
1
 is caused by the curvature of the magnetic field lines, (2) C

2
 is expressed 

through the local shear and the parallel current density, (3) C
3
 is mainly caused by 

the variation of the longitudinal field, (4) C
4
 is the potentially destabilizing term 

2
( )A s ξ , C

5
 is the term caused by plasma compression, and (6) C

6
 is Wp. 

Depositions 3 and 4 are small and not shown in this figure. 

Fig. 4. The same as in Fig. 2 for the second family.  

Fig. 5. The same as in Fig. 2 for the second family.  

Fig. 6. The profiles of the ten largest Fourier harmonics of the radial component of 

the displacement at   = 0.024, the first family. This mode is unstable. 

Fig. 7. The profiles of the ten largest Fourier harmonics of the radial component of 

the displacement at   = 0.029, the second family. This mode is unstable. 

Fig. 8. The Fourier harmonics of the radial component of the displacement for a 

ballooning-type perturbation, the first family, at   = 0.019. This mode is stable.  

Fig. 9. The same as in Fig. 8 at   = 0.024, the first family. This mode is unstable. 

Fig. 10. The Fourier harmonics of the radial component of the displacement for the 

peeling mode, the first family at   = 0.024. This mode is unstable. 

Fig. 11. The same as in Fig. 10 at   = 0.029. This mode is unstable. 

 



 

Fig.1 

 

 



 

Fig.2 



 

Fig.3 



 

Fig.4 



 

Fig.5 



 

Fig.6 



 

Fig.7 



 

Fig.8 



 

Fig.9 



 

Fig.10 



 

Fig.11 


