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Abstract

We investigate estimation of fluctuating channels and its effect on security of continuous-variable
quantum key distribution. We propose a novel estimation scheme which is based on the clusterization
of the estimated transmittance data. We show that uncertainty about whether the transmittance is
fixed or not results in a lower key rate. However, if the total number of measurements is large, one can
obtain using our method a key rate similar to the non-fluctuating channel even for highly fluctuating
channels. We also verify our theoretical assumptions using experimental data from an atmospheric
quantum channel. Our method is therefore promising for secure quantum communication over
strongly fluctuating turbulent atmospheric channels.

1. Introduction

Quantum cryptography is well known to be the method for secure communication based on mathematically
secure cryptosystems (such as the one-time pad [1]). Quantum key distribution (QKD) protocols [2—5] are
aimed at distributing secret keys between two trusted parties. Recent developments in the field of QKD are
concerned with continuous-variable (CV) protocols [6] based on Gaussian encoding [7] of continuous
observables, such as the field quadratures. The security of Gaussian CV QKD with coherent [8] and squeezed [9]
states of light was shown against collective attacks [10—12] using the optimality of Gaussian attacks, and later
extended to general attacks in the asymptotic regime [13] as well as in the finite-size regime for certain protocols
(see [14] for review of CV QKD security proofs). Gaussian CV QKD protocols based on coherent [15] and
squeezed states [ 16] were successfully tested in the channels with fixed transmittance and were also studied for
free-space atmospheric channels with transmittance fluctuations [17].

One of the major elements of CV QKD protocols is the channel estimation because it allows the trusted
parties to assess the upper bound of the information leakage based on the parameters of the channel. The
estimation, however, is never perfect in practice since the number of signals is limited. The issue was addressed
for conventional coherent [18, 19] and squeezed-state [20] protocols, as well as measurement-device-
independent [21] CV-QKD protocols in fixed-type channels, i.e. channels in which the transmittance is typically
stable (e.g. fiber-optical links). It was shown that for a set of fixed parameters, the channel estimation procedure
can be optimized and that a double modulation can be used to approach the best performance of the protocols
[20, 22]. The problem, however, becomes more complex when the transmittance of the channel fluctuates
because in this case the statistics of the fluctuations must be estimated as well [17]. The fluctuating (fading)
channels on the other hand are important for CV QKD because channel fading is typically observed in the
atmosphere, where it is caused by air turbulence. Therefore any implementation of free-space CV QKD which
does not rely on fiber-optical infrastructure has to deal with the estimation of fading channels, especially QKD
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Figure 1. Prepare and measure Gaussian CV-QKD using a source (S) and a quadrature modulator (M) at Alice’s side and a homodyne
detector (H) at Bob’s side.

implementations aiming for long-distance extraterrestrial QKD through a satellite [23, 24]. Importantly, the
channel has to be estimated using the same quantum states as used for transmitting the key because otherwise (if
bright probe pulses are used) an adversary could manipulate the signal and the bright pulses in different ways
and therefore mimic the eavesdropping attacks [25]. On the other hand the estimation using quantum states
with relatively low energy is far from being precise. Thus, additional methods have to be developed to improve
such estimation procedures. Atmospheric channels are actively studied in recent years [26—30], typically for
well-defined transmittance distributions (not a general transmittance distribution) and not including all finite-
size effects.

In the present paper we study the possibility of estimating fluctuating channels using quantum signals and
Gaussian modulation. We analyze the estimation of fading channels theoretically and show that the imperfect
estimation influences CV QKD negatively. To solve this issue, we propose the clusterization of the transmitted
data, which can practically compensate for the negative impact of channel fading on CV QKD for sufficiently
large data sets. We verify the results using experimental data from Gaussian modulated coherent states and their
homodyne detection after passing through a fluctuating atmospheric channel. An important note is that
although we used experimental data from atmospheric channels only, the given model does not rely on the
specific transmittance pattern of an atmospheric channel. Our proposed estimation method works for any kind
of transmittance distribution, so the results can be applied to a wide range of fading channels (including fiber
channels, where clusterization, however, would not likely be needed due to already low transmittance
fluctuations).

The paper is organized as follows: section 2 describes the model applied in the article and the experiment
which was used to validate it; in section 3 we introduce the theory of the channel parameter estimation, mainly
focusing on the fluctuating transmittance and furthermore examine how well the predicted results of the model
coincide with the experimental data; in section 4 we explore the limitations and basic properties of the
clusterization method and in section 5 we discuss the results and give our conclusions.

2. Preliminaries

2.1. The model

We consider the generic CV QKD protocol, in which Alice sends CV quantum states of light to Bob through a
channel that is under control of an eavesdropper, Eve. The source states are Gaussian squeezed or coherent
states, Alice applies a Gaussian displacement to them using a phase and (or, in case of a squeezed-state protocol)
amplitude quadrature modulator, and Bob performs homodyne detection on the output of the channel

(figure 1).

The preparation and detection of quantum signals is relatively fast (the channel fluctuations are on the order
of several kHz, while the signal repetition rate is in the MHz-range), so for each signal sent through a fluctuating
channel the transmittance can be considered stable. In this case the transfer of the quadrature variable through a
lossy and noisy channel can be described in the Heisenberg picture by the following evolution (the same holds
for the p-quadrature):

xg=~NT - (xs+x) + VI =T - xo+ xs, (D

where all variables are normally distributed with zero mean, except the transmittance parameter 7. We suppose
that the signal passes through a fluctuating channel (e.g. an atmospheric channel), that is, the value of the
transmittance T'is an unknown, non-deterministic function of time. xp is the quadrature of the state Bob is
measuring; xsis the quadrature of the signal state with a variance of Vi (if the signal is a coherent state, then
Vs = 1); xpr1s the value of the Gaussian displacement of the signal with modulation V; x, is the vacuum noise
with variance one (also referred to as shot-noise unit). Finally, x. is the excess noise of the channel with
variance €.

Note that in practice xs, Xy and x. are all noises (they are unknown quantities), so we can rewrite (1)ina
simpler form:
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szﬁ-xM-i-xN, (2)

where x is the aggregated noise with zero mean and variance Vy :== 1 + ¢ — T(1 — V). We could have also
used a different parametrization (e.g. by scaling x. by /T, or by not separating Alice’s state into signal and
modulation), we used this approach to simplify the obtained formulas.

Itis furthermore worth noting that even though the local oscillator plays an important role in homodyne
measurements, we did not include it in our analysis as this is rather a technical issue and can even be
circumvented. Similarly to the signal, the local oscillator is subject to fluctuations and it also has to be estimated
[31], but its estimation is considerably easier due to its high power and the fact that we only need to know its
intensity. So the normalization of the local oscillator can be performed with high precision. Moreover, the issue
can be omitted entirely by using a local oscillator generated locally [32], which is not affected by the atmospheric
channel.

2.2. The experiment used for verification

In section 3 to test and verify our theoretical results, we used the data obtained in the free-space experiment
performed in Erlangen on the free-space link between the building of the Max Planck Institute for the Science of
Light and the computer science building of the Friedrich—Alexander-University Erlangen—Niirnberg (see [33]
for technical details, the same set-up was also used to share effective entanglement over the free-space link as
reported in [34, 35]). Two electro-optical modulators were used to achieve a two-dimensional modulation in the
quadrature phase space mimicked by 192 different displaced coherent states following a pseudo-random two-
dimensional Gaussian distribution. The states were repeatedly sent over the free-space channel with an effective
sending rate of 2.48 x 10° states per second. At the remote side the channel transmittance was monitored using a
tap-off followed by an intensity measurement, while the remaining signal was split on a symmetric beamsplitter
and the x- and p-quadratures were simultaneously measured using homodyne detectors. The results of the
intensity measurements of the channel transmittance (assumed to be unbiased and having standard deviation
mainly as low as 10~ *) were used as a benchmark to verify the estimation using Gaussian modulation of coherent
states to study the possibility of improving the fading channel estimation using quantum signals.

3. Estimation of channel parameters
In the following we discuss the estimation of the channel transmittance, when it is changing over time.

3.1. Estimation of the transmittance for individual packages
Let us divide the transmitted states during the observed time window into m packages each containing the same
number (1) of Gaussian states (that is, altogether we have N = n - mi states). The time of transmission for a
package should be so small that one can assume that the transmittance T'is constant for a particular package.
We suppose that the variance of the modulation (V') is known, that is, the channel at the ith package
(i € {1, 2,...,m}) can be parametrized using only two unknown parameters: T;and ;. From each package Alice
or Bob reveal some fraction () of their measured data to obtain an estimation of the current transmittance ;.
Therefore, for every package the estimation is based on r - n Gaussian states.
We verify the security of CV QKD by valuating the lower bound on the key rate (further simply referred to as
the key rate) incorporating the finite size effects, which for fixed channel transmittance [18] is

K= (1 —r) - [Ko(TW, VI — A1 — rIN)], 3)

LOW
T , VUP

€

where are estimates of channel parameters to evaluate the pessimistic (worst case) secure key rate, A
is related to the errors during privacy amplification, and K, is the lower bound on the asymptotic key rate given
by

Koo(T, V.) = BI(A: B) — S(B: E),

where 3 € [0, 1]is the reconciliation efficiency, I(A : B) is the mutual information of Alice and Bob, while S(B :
E) is the maximal information Eve can retain about Bob’s state (see more details on the Gaussian CV QKD
security analysis in [25]). We consider reverse reconciliation, which is more robust against channel attenuation
[36]. Itis also worth mentioning that the key rate is a monotonous function of the channel parameters, so (3) is
valid as we can obtain a confidence interval for the key rate based on the confidence intervals of the channel
parameters.

Let us denote for the ith package the realizations of x,; and xg with Mjand B; (j € {1, 2,...,r - n}),
respectively. We know that the covariance of xj;and xg is Cov (xp, x) = \/f - V =t Cyp. Thatis, we can
estimate the value of |/T; (see figure 2) by
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Figure 2. Fluctuations of the transmittance over the observed time (solid line). To obtain an estimation the measurement data is
divided into packages such a way that the time of transmission for one package is so small that one can assume that the transmittance is
constant within. From each package Alice or Bob reveal some fraction of their data to obtain an estimation of the current transmittance
(blue points).

\
\

Vi

350
300
250
200
150
100

Figure 3. The histogram (with relative frequencies v;) of the estimated square root of the transmittance values o/T; (blue bars) if the
real transmittance is close t0 0.8 (0.78 < T; < 0.82, thatis 0.883 < /T, < 0.906) using the experimental data. The real transmittance
distribution (yellow bars) is truncated to ensure a better view of the estimated transmittance distribution. The red solid line shows the
corresponding theoretical Gaussian distribution.

= 1 —
JT = v Cwms> 4
where we use the maximum likelihood estimator
o 1 I
Cup = > M;B;. 5)
ren’io

It follows from the central limit theorem that Cy is approximately normally distributed, so (4) is an
unbiased estimator of \/f , moreover its variance can be calculated from the parameters of the channel [20]:

Var (JT;) = . :n(z + &) (6)
r-n .V
Experimental data provide a very similar, approximately normal distribution (see figure 3) with a variance close
to the theoretical value (0.0091 versus 0.0096) suggested by (6). Let us note as a reminder that in the given
experiment the channel intensity was measured directly beside the quantum states to be able to compare the
estimated transmittance values T; from homodyne measurement (blue boxes) to their directly measured
counterparts T; (yellow boxes).

Similarly, we can estimate the value of T; from

. | —
T = v (Cup)*. @)
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Figure 4. The histogram of transmittance values T;in our experiment. The vertical lines define a possible clusterization of the data to 3
clusters: [0.6, 0.7],[0.7,0.8], [0.8, 0.9]. The key rate is evaluated for every cluster independently.

It can be shown that T; is an asymptotically unbiased estimation of T; with standard deviation

A 4 W
Var (T)) ~ CTH 2 + = = o X(T). 8
(1) - ( T-V) (T) (8

Since the number of states in a package () is limited, T; will be justarough estimate of T; with a high
uncertainty, which may result in a security break. A straightforward solution to overcome this problem is that
instead of performing key distribution for each package independently, we merge the packages.

3.2. The effect of fluctuations
The covariance matrix of measurement outcomes of x,,and xz is

1% NT)V ]

Cov (xy, xg) =

(NTYV (T)V' + ¢+ 1 ©

where (T)and (~/T) are the mean values of T;and +/T; for the given time interval,and V/ = V + Vs — 1(for
coherent states V/ = V).

The given covariance matrix after a fading channel can be equivalently parametrized as originating from a
channel with a fixed effective transmittance and effective excess noise [17]:

14 NIV

Cov (XM, XB) = . (10)
NV TV + eer + 1
Using Var (J/T) = (T) — (ﬁ )* and the equivalence of (9) and (10), one can obtain the effective
transmittance as
T = (NT)?, (11)
while the effective excess noise is
et = € + Var NT) V" (12)

It is known that the key rate is very sensitive to the excess noise. Therefore, if the channel is heavily fluctuating,
then Var (+/T) and the respective effective excess noise will be large, which results in alow key rate or could even
lead to a security break [17]. This can be partially compensated by the use of squeezed states [37] or by stabilizing
the channel [38].

3.3. Data clusterization and empirical distribution
To avoid the negative effect of a heavily fluctuating channel we do not merge every data package into a single
covariance matrix. Instead we can clusterize (split into C clusters) the packages (see figure 4). The main idea is
that if the fluctuation of the channel within each cluster becomes significantly lower, then according to (12), the
effective excess noise decreases, which results in an increased key rate. Since each data point is generated
independently of the others, if we take a data point from a specific cluster, it will not contain any information
about the data points from other clusters. So we perform security analysis for each cluster independently, and the
total key rate will be the sum of the key rates determined for the individual clusters.

Note that the number of clusters is a quantity to optimize since there is an obvious trade-off:

+ If we use too many clusters, then the clusters will contain a small number of states, so the finite size effects will
be strong (the effect of A in (3) will be dominant for fewer data points in a cluster),
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Figure 5. The histogram of estimated transmittance values T; between 0.78 and 0.82 (blue bars) and the histogram of their actual
values T; (yellow bars) using the experimental data.

+ Ifwe do not use enough clusters, then the fluctuation within a single cluster will be very large resulting in a too
large effective excess noise (see the improvement using more clusters in figure 11).

To evaluate the key rate for a given cluster we have to estimate the transmittance statistics. This task is,
however, far from trivial, since by simply averaging the estimated transmittance values belonging to this cluster
we would obtain a biased estimate. The reason for this is simple: we are interested in the mean of the actual values
of transmittance (T;), while we can perform the clustering only based on the estimated transmittance values @).

To highlight this effect let us look at the example of taking the estimates T; falling into the cluster of [0.78,
0.82] (figure 5, blue bars). If we check how the real transmittance values of these packages are distributed (yellow
bars), we can see that the actual transmittance values are quite irregular and can reach well over the boundaries of
the given cluster. Note that this is in some sense the opposite of figure 3, where we define the same cluster by real
transmittance and investigate the estimated transmittance distribution for these states (which is much more
regular).

In this particular example the average of the estimated transmittance values ( T;) belonging to this cluster is
about 0.8, while the average of their actual values (T;) is about 0.769 (which is actually outside of the investigated
interval). So if we evaluate the key rate simply from the average of the estimated value <T,>, we get a biased
estimation, which may result in over- or underestimated key rate.

3.4. Confidence intervals of channel parameters

For the evaluation of the key rate one should use the covariance matrix defined in (9). But since we do not know
the exact values of the parameters of the channel, we should use the worst case scenario from the appropriate
confidence intervals (similarly as it was discussed for the fixed channel case after (3)). It is easy to see that in the
worst case we should use the lower bound (v/T )*OW for (+/T'), while the upper bounds (T)VP and £V* for (T)
and &, respectively.

However, we can see a strong correlation between the values of (/T )> and (T) (see figure 6). That means that
if we use rectangular confidence zones, then (~/T)LOW, (T)UP will result in alarge Var (+/T) and so we will have
hugely increased excess noise.

To exploit the correlation we introduce the following transformed variables

X, = (T) — (JT)? = Var (JT)

and
X, = (T) + (NT)?,

and we calculate rectangular confidence intervals for these variables (see figure 7) similarly to the approach used
in [20]. This will result in the original variables in a much tighter, diagonal rectangular confidence interval (see
figure 6 inset, black rectangle).

Itis easy to see that for the worst case scenario we should use the upper bound for X,"* and the lower bound
for Xr°W, so using these new variables we can obtain the following lower bound for the effective transmittance
an

LOW _ P

X
T = =——— (13)
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Figure 6. The value of (~/T )2 as a function of (T') using experimental data. The two-dimensional confidence interval (using the mean
plus-minus two times standard deviation) is plotted with a red rectangle, the worst case scenario (that is, which parameters provide the
minimal key rate within the given confidence interval) is plotted with the big red dot. (inset) Inside the gray dashed rectangle is the
magnification of the left bottom corner of the red rectangle.
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Figure 7. The value of X, as a function of X; using experimental data. The two-dimensional confidence interval (using the mean plus-
minus two times standard deviation) is plotted with a black rectangle, the worst case scenario is plotted with the black dot.

and the upper bound for the effective excess noise (12)
gffP _ ~Up + XIUP v (14)

Note that we detailed here only how to obtain confidence intervals for the transmittance parameters as the same
for excess noise (V") is already discussed in the literature (see for example [20]).

The main advantage of using this parametrization is that in this case we explicitly obtain an upper bound on
the channel fluctuation Var (+/T). The simpler method yields (T)UF — ((~/T)L°W)? instead, which typically
results in a 20-30 times worse estimation of Var (/T (for comparison see figure 6, red and black big dots).
From (12) we know that a much higher value of Var (~/T) results in a significantly higher effective excess noise,
thus, in alower key rate. The significance of this comes from the fact that the value of € in practical scenarios is
usually not large, so actually, the biggest restriction on the key rate comes not from actual noise, but from the
estimation of the noise. Therefore, if we can substantially improve the estimation of the transmittance
parameters, that will also improve the estimation of effective excess noise, thus resulting in a higher key rate.

Note that the above described method works for any given cluster. This also includes the case when there is
no clusterization (C = 0), i.e. when all data are included into the calculation.

4. Semi-analytical investigation of the scheme

In the previous section we described how to estimate the channel parameters, and showed that the theory behind
the estimation fits the experiment very well.

In the following we evaluate the key rate in several theoretical settings to investigate the dependence on the
package size and on the clusterization of the packages.

4.1. The package size
First we assume that the transmittance of the fluctuating channel is normally distributed with mean 0.5 and
standard deviation 0.1 (thatis, T; ~ N(0.5, 0.1)). Besides the transmittance distribution, we have to define seven

7
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Figure 8. The key rate without clusterization as a function of the total number of states (N = #n - m) using
T; ~ N(0.5, 0.1), 3 = 0.95, ¢ = 0.01, V5 = 0.1 and optimal Vand r. As a reference, the thick black line shows the asymptotically

n=10°%
0.30¢
n=10%
0.20f
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0.10f
0.05}
- - - -~ N
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Figure 9. The optimal ratio of states used for channel estimation (r) without clusterization as a function of the total number of states
(N)using T; ~ M(0.5, 0.1), 8 = 0.95, ¢ = 0.01, V5 = 0.1.

further parameters for the numerical evaluation of specific examples. The values of the reconciliation efficiency
(0), the channel excess noise (¢), and the squeezing parameter of Alice’s state (V) are defined in the captions.
The ratio of states used for estimation (r) and the variance of Alice’s modulation (V') are always optimized. The
total number of states (IN) and the number of states in each package (1) are in some graphs shown as variables, or
denoted in the legends, or defined in the caption.

If we plot the key rate as a function of the total number of used states (see figure 8), we can see that for finite
package sizes the key rate will not converge to the asymptotic value. This is due to the uncertainty of the
estimators T; which estimates the mean value of the transmittance for each package. The achievable key rate
increases with the number of states in each package (n): with n = 10 it will be close to the asymptotic case,
however, even with n = 10 it will produce a reasonable key rate. But this is true only if the total number of states
(N)is high enough because it is also important to have a reasonable number of packages (11).

So itis important to fix # as high as possible to still have a (nearly) fixed value of transmittance for each
package. For a fast state preparation and detection system, the value of # will be higher and so we can get a better
key rate, and then N basically corresponds to the elapsed time. If we wait longer then the key rate will be higher,
but this process saturates relatively quickly (see figure 8).

As areference, the fluctuation of an atmospheric channel is typically of the order of several kHz, while the
lasers and homodyne detectors operate typically at hundreds of MHz (recently CV systems working in the GHz
regime were also reported for QKD [39]). The ratio between the speed of fluctuation and that of the state
preparation and measurement defines the maximal size of the packages, which is of the order of the investigated
values (rounding down to remain on the safe side), and then m = 10 corresponds to a run which is about
1slong.

If we plot the optimal ratio used for estimation (r) (figure 9) we can see that if we have more states then a
lower percentage is sufficient for estimation. The values saturate at a non-zero level due to the uncertain
estimation for fixed size packages. Note that these values are quite low, even in the case when a package contains
only 10 states, 200-300 states are enough to use for channel parameter estimation, still leaving the majority of
states for the key distribution itself (instead of the previously proposed 1 out of 1000 ratio [17]). This is due to the
fact that even though these estimators would give a quite poor approximation of the actual value of the channel

8



I0OP Publishing NewJ. Phys. 21 (2019) 123036 L Ruppert et al

f’p f!p
1 .0 a 4 L
4
0.8}
/ 3t
0.6}
‘ 2! /
0.4; / - /
L / 1r .f'i
s " .4/ 5 A T o . .\.-/‘ 5 T
0.24 0.47 0.73 1 0.22 039 055 0.72
f.p i,p
8
3
6
2f
4t
2 11
0 e T ° — T
0.23 0.37 0.49 0.6 0.25 0.4 0.52
Figure 10. The optimal clusterization (C = 3) for transmittance distribution of (top left) uniform[0, 1], (top right) Weibull[1.25, 0.8],
(bottom left) Weibull[1.47, 0.6] and (bottom right) normal[0.5, 0.1]. The ends of cluster intervals are noted with ticks, the conditional
likelihood functions p of each cluster are plotted with colored areas (blue, yellow and green), the probability density function of the
original distribution is plotted with black thick line. The other parameters are 3 = 0.95, € = 0.01, Vs = 0.1, n = m = 10*.

parameters, if we have many packages, the errors will cancel out. That is, even if the individual estimators are
inaccurate, the effective parameters can be estimated quite well. We can also see a similar effect as in the case of
the key rate: asymptotically larger package sizes result in a smaller ratio of discarded states for the channel
estimation, but if the total number of states (IN) is not so large, this can be even the opposite (i.e. smaller package
size could result in a smaller optimal ratio of r).

4.2. The effect of clusterization
Now that we know how the key rate behaves without clusterization, we will investigate how much improvement
can come from using clusters.

In the following numerical simulations we use 1 = m = 10% so altogether a relatively large, but still
experimentally feasible number of N = 10® Gaussian states. We always optimize the values of rand V (the latter
being in the order of few shot-noise units, corresponding to the vacuum quadrature fluctuations), and optimize
the boundaries of the intervals defining the clusters. This optimization is easy to perform if we know the exact
transmittance distribution (like in this section when using numerically generated examples), but in realistic
scenarios, this process is problematic as we need to know the transmittance in advance to optimize the
parameters. What has to be done in this case is using a rough estimate of the expected transmittance distribution,
calculate the optimal modulation V and optimal ratio r based on this rough estimate, send through the channel
the states with the corresponding modulation, reveal states from each package randomly with the calculated
ratio, and then perform the proper estimation based on these revealed states (and use clusterization if needed).
In this case, the used Vand r for all packages will not coincide with the real optimal values, but as the key rate is
not overly sensitive to these parameters, we can get very close to the optimal key rate even if the transmittance
distribution used as a rough estimate is not too close to the actual distribution (that is, if there is some difference
in T}, there will be a smaller difference in the optimal Vand r and an even smaller difference in the related key
rates).

To investigate how the key rate depends on different types of channel fluctuations, we use four different
theoretical distributions for the transmittance. For better comparison their means are very close or equal to 0.5
(T;) = 0.5), but their variances and profiles are very different (see figure 10, black thick lines).

Next we need to obtain the real distribution after we select a given cluster of experimental data. This can be
performed easily if we know the distribution of the transmittance. Let us assume that the aggregated likelihood
function of the transmittance during the given time interval is f(x). Then the probability that the actual value of
the transmittance is s and the estimated value is t is
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Figure 11. The optimal key rate as a function of the number of clusters (C), with 8 = 0.95, ¢ = 0.01, Vs = 0.1, n = m = 10*for
different distributions of the transmittance. In C = 0 case we do not use any clusters, that is, we include all points into the calculation.
For comparison we plotted the optimal key rate for a channel with fixed transmittance of T = 0.5 (black thick line).

Prob(T ~ s, T = t) ~ f(s) - ¢.(t),

where ¢(x) is the probability density function of a normal distribution with mean s and standard deviation o(s),
which is defined in (8). So the conditional distribution of the actual values supposing that the estimated value is
in the interval [ Tinin, Timax] is given by:

A Tmax
P(S) = PI’Ob(T ~ SlT S [Tmin) Tmax]) ~ j; f(S) : ¢g(t)dt = f(S) : (q)s(Tmax) - (I)S(Tmin)):

where heuristically the first factor describes the number of points at disposal and the second factor describes the
probability of remaining in the investigated interval after adding the proper Gaussian noise coming from
estimation uncertainty. Using this conditional likelihood function p(s) (see for example figure 10, colored areas)
we can obtain the mean value and the standard deviation (hence the confidence interval) of the transmittance for
agiven cluster (as it is discussed in section 3.4) and for this worst case scenario we obtain the appropriate key rate.
The optimized results can be seen in figure 11.

If the transmittance is completely random, that is, it is uniformly distributed between 0 and 1 (blue circles),
then its fluctuation will be very high (Var (\/T;) = 0.055). This case has been recently studied as a model for fast-
fading channels in [40]. In the asymptotic case this results in a very large effective excess noise (even up to
Eeff = 20%), therefore it is no wonder that without clustering we obtain the lowest key rate here.

We also investigated the log-negative Weibull distribution, which emerges naturally in the case of
atmospheric channels as a result of beam wandering [41], the main mechanism for channel fluctuations in the
regime of weak atmospheric turbulence [42]. If we have parameters W /a = 1.25, 0, = 0.8 (yellow squares)
then there is a medium fluctuation (Var (\/f ) = 0.018), if we use parameters W /a = 1.47, o, = 0.6 (green
diamonds) we have a small fluctuation (Var (\/f ) = 0.0047). Note that the given parameters are related to the
beam spot to aperture size ratio, and the variance of the fluctuations of the beam around the aperture,
respectively.

Finally, we plotted a normally distributed transmittance with mean 0.5 and standard deviation 0.1 (red
triangles). The fluctuation of the transmittance in this case is also small (Var (\/f- ) = 0.0052), it is a bit higher
than in the second Weibull case, and the related key rate is also a bit smaller.

The result is clear and not surprising, smaller fluctuations result in a higher key rate. However, if we
introduce a single cluster (as it is proposed in [17]) this difference becomes smaller and we can get reasonable key
rate even if the fluctuation of the transmittance is high. If we add more clusters we see the same effect: we have a
higher and higher key rate, so the effect of the original fluctuation vanishes. If the fluctuation of the
transmittance is small, the increment in the key rate will be small, but for large fluctuations the improvement can
be substantial (we can even double the key rate by using only two clusters).

An important observation is that in the three-cluster case (figure 10), all three clusters contain a similar
number of states (which is related to the sizes of colored areas). The smallest cluster is the [0.23, 0.37] for the
Weibull[1.47, 0.6] distribution (blue area in the bottom left subfigure), but even that contains about 10% of all
points, meaning a block size of 107 points. This is important as one has to have large block sizes to achieve high
reconciliation efficiency (we used in our numerical calculations a conservative value of 0.95, but in practice, it
depends on many factors, which are hard to predict). Therefore in our model we observe a trade-off:

+ Ifacluster contained a very low number of points, then the term A in (3) concerning privacy amplification
would be very large, potentially resulting in security break (turning key rate to zero).
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« Ifacluster contained a very large number of points, then the fluctuation of the channel within (Var (~/T))
would be large too, resulting in a large effective excess noise and so in a decreased key rate.

In general, we can assume that the optimal clusters do not necessarily have equal sizes, but their sizes are at least
of similar magnitudes and there will not be any very small clusters.

Note that for the discussed experimental distribution we have Var (\/f ) ~ 0.0015, meaning thatits
fluctuation is even smaller than the given examples, so using clusterization there would not be necessary.
However, our results show that even if there was a very strong fluctuation in the channel, we could still obtain a
similar key rate. And this improvement is achieved only by better data processing, with no need to change the
experimental setup.

5. Summary and conclusion

In the current work we developed a framework to evaluate the lower bound on the key rate for CV QKD over
fluctuating channels, e.g. for atmospheric channels. We divided the states into smaller packages containing the
same number of states (1) for which the transmittance can be considered constant. We estimated the
transmittance for each package independently. This only gave us a very rough estimation of the actual value of
the transmittance for a single package since n is small (typically n < 10*). However, if we combine the data from
all these estimators we can estimate the effective transmittance and fluctuation quite accurately, which results in
ahigh key rate. We also demonstrated that the properties of our estimation theory fit experimental data obtained
from an atmospheric QKD setup very well.

In general we can obtain a higher key rate by having a source with a higher frequency, more packages (more
time) and a lower fluctuation of the transmittance. But as we showed, if we clusterize the estimated
transmittance values we can almost entirely eliminate the negative effect caused by the fluctuations of the
transmittance even for very strong fluctuations. For a sufficient total number of states, even using only 2—3
clusters, the original difference between the key rates vanishes and we can obtain in all cases a key rate close to the
one corresponding to the non-fluctuating channel.

Acknowledgments

VCU acknowledges project LTC17086 of the INTER-EXCELLENCE program of the Czech Ministry of
Education and acknowledges the support of project 19-23739S of the Czech Science Foundation. LR
acknowledges the support of project 19-22950Y of the Czech Science Foundation and also acknowledges the
support by the Development Project of the Faculty of Science, Palacky University. RF acknowledges support of
project CZ.02.1.01/0.0/0.0/16_026/0008460 of the Czech Ministry of Education. The research leading to these
results has received funding from the H2020 European Programme under Grant Agreement 820466 CIVIQ. The
authors also acknowledge support from COST Action CA 15220 QTSpace.

ORCID iDs

Laszl6 Ruppert @ https://orcid.org/0000-0002-7786-9228
Vladyslav C Usenko @ https://orcid.org/0000-0002-8765-8758
Gerd Leuchs ® https:/orcid.org/0000-0003-1967-2766

Radim Filip ® https: //orcid.org/0000-0003-4114-6068

References

[1] Shannon CE 1949 Bell Syst. Tech. J. 28 656715
[2] GisinN, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] ScaraniV, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Liitkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[4] DiamantiE, Lo HK, Qi B and Yuan Z 2016 npj Quantum Inf. 2 16025
[5] PirandolaSetal2019 arXiv:1906.01645
[6] Braunstein S Land Van Loock P 2005 Rev. Mod. Phys. 77 513
[7] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro ] Hand Lloyd S 2012 Rev. Mod. Phys. 84 621
[8] Grosshans Fand Grangier P 2002 Phys. Rev. Lett. 88 057902
[9] CerfN],Levy M and Van Assche G 2001 Phys. Rev. A63 052311
[10] Navascués M, Grosshans Fand Acin A 2006 Phys. Rev. Lett. 97 190502
[11] Garcia-Patron Rand Cerf N J 2006 Phys. Rev. Lett. 97 190503
[12] Pirandola S, Braunstein S Land Lloyd S 2008 Phys. Rev. Lett. 101 200504
[13] Leverrier A, Garcia-Patrén R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502

11


https://orcid.org/0000-0002-7786-9228
https://orcid.org/0000-0002-7786-9228
https://orcid.org/0000-0002-7786-9228
https://orcid.org/0000-0002-7786-9228
https://orcid.org/0000-0002-8765-8758
https://orcid.org/0000-0002-8765-8758
https://orcid.org/0000-0002-8765-8758
https://orcid.org/0000-0002-8765-8758
https://orcid.org/0000-0003-1967-2766
https://orcid.org/0000-0003-1967-2766
https://orcid.org/0000-0003-1967-2766
https://orcid.org/0000-0003-1967-2766
https://orcid.org/0000-0003-4114-6068
https://orcid.org/0000-0003-4114-6068
https://orcid.org/0000-0003-4114-6068
https://orcid.org/0000-0003-4114-6068
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1038/npjqi.2016.25
http://arxiv.org/abs/1906.01645
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevLett.88.057902
https://doi.org/10.1103/PhysRevA.63.052311
https://doi.org/10.1103/PhysRevLett.97.190502
https://doi.org/10.1103/PhysRevLett.97.190503
https://doi.org/10.1103/PhysRevLett.101.200504
https://doi.org/10.1103/PhysRevLett.110.030502

I0OP Publishing NewJ. Phys. 21 (2019) 123036 L Ruppert et al

[14] Diamanti E and Leverrier A 2015 Entropy 17 6072-92

[15] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 37881

[16] MadsenLS, Usenko V C, Lassen M, Filip R and Andersen U L 2012 Nat. Commun. 3 1083

[17] Usenko V C, Heim B, Peuntinger C, Wittmann C, Marquardt C, Leuchs G and Filip R 2012 New J. Phys. 14 093048

[18] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343

[19] Thearle O, Assad SM and Symul T 2016 Phys. Rev. A 93 042343

[20] RuppertL, Usenko V Cand Filip R 2014 Phys. Rev. A90 062310

[21] Papanastasiou P, Ottaviani C and Pirandola S 2017 Phys. Rev. A 96 042332

[22] ChenZ,ZhangY, WangX, Yu Sand Guo H 2019 Entropy 21 652

[23] Liao SKetal 2017 Nature 549 43

[24] Bedington R, Arrazola ] M and Ling A 2017 npj Quantum Inf. 3 30

[25] Usenko V Cand Filip R2016 Entropy 18 20

[26] Wang$, Huang P, Wang T and Zeng G 2018 New J. Phys. 20 083037

[27] ChaiG, Cao Z, Liu W, Wang S, Huang P and Zeng G 2019 Phys. Rev. A 99 032326

[28] ChaiG, Liang K, Liu W, Huang P, Cao Z and Zeng G 2019 Int. J. Theor. Phys. 58 3746—64

[29] Huang W, Mao Y, Xie C and Huang D 2019 Phys. Rev. A100 012316

[30] ShenSY,DaiM W, Zheng X T, Sun QY, Guo G Cand Han Z F 2019 Phys. Rev. A100 012325

[31] ZhaoY, ZhangY, Huang Y, Xu B, Yu Sand Guo H 2018 J. Phys. B: At. Mol. Opt. Phys. 52015501

[32] QiB, Lougovski P, Pooser R, Grice W and Bobrek M 2015 Phys. Rev. X 5 041009

[33] Heim B, Peuntinger C, Killoran N, Khan I, Wittmann C, Marquardt C and Leuchs G 2014 New J. Phys. 16 113018

[34] Rigas], Githne O and Liitkenhaus N 2006 Phys. Rev. A 73 012341

[35] Héseler H, Moroder T and Liitkenhaus N 2008 Phys. Rev. A77 032303

[36] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 23841

[37] Derkach 1, Usenko V Cand Filip R 2018 arXiv:1809.10167

[38] Usenko V C, Peuntinger C, Heim B, Giinthner K, Derkach I, Elser D, Marquardt C, Filip R and Leuchs G 2018 Opt. Express 26 31106—15

[39] Khanl, Stiller B, Jaksch K, Jain N, Peuntinger C, Giinthner K, Réthlingsofer T, Elser D, Marquardt C and Leuchs G 2015 Towards
continuous-variable quantum key distribution at ghz rates QCrypt 2015, V Int. Conf. on Quantum Cryptography (Tokyo, Japan, 28
September—2 October)

[40] Papanastasiou P, Weedbrook C and Pirandola S 2018 Phys. Rev. A97 032311

[41] VasylyevDY, Semenov A and Vogel W 2012 Phys. Rev. Lett. 108 220501

[42] Vasylyev D, Semenov A and Vogel W 2016 Phys. Rev. Lett. 117 090501

12


https://doi.org/10.3390/e17096072
https://doi.org/10.3390/e17096072
https://doi.org/10.3390/e17096072
https://doi.org/10.1038/nphoton.2013.63
https://doi.org/10.1038/nphoton.2013.63
https://doi.org/10.1038/nphoton.2013.63
https://doi.org/10.1038/ncomms2097
https://doi.org/10.1088/1367-2630/14/9/093048
https://doi.org/10.1103/PhysRevA.81.062343
https://doi.org/10.1103/PhysRevA.93.042343
https://doi.org/10.1103/PhysRevA.90.062310
https://doi.org/10.1103/PhysRevA.96.042332
https://doi.org/10.3390/e21070652
https://doi.org/10.1038/nature23655
https://doi.org/10.1038/s41534-017-0031-5
https://doi.org/10.3390/e18010020
https://doi.org/10.1088/1367-2630/aad9c4
https://doi.org/10.1103/PhysRevA.99.032326
https://doi.org/10.1007/s10773-019-04245-x
https://doi.org/10.1007/s10773-019-04245-x
https://doi.org/10.1007/s10773-019-04245-x
https://doi.org/10.1103/PhysRevA.100.012316
https://doi.org/10.1103/PhysRevA.100.012325
https://doi.org/10.1088/1361-6455/aaf0b7
https://doi.org/10.1103/PhysRevX.5.041009
https://doi.org/10.1088/1367-2630/16/11/113018
https://doi.org/10.1103/PhysRevA.73.012341
https://doi.org/10.1103/PhysRevA.77.032303
https://doi.org/10.1038/nature01289
https://doi.org/10.1038/nature01289
https://doi.org/10.1038/nature01289
http://arxiv.org/abs/1809.10167
https://doi.org/10.1364/OE.26.031106
https://doi.org/10.1364/OE.26.031106
https://doi.org/10.1364/OE.26.031106
https://doi.org/10.1103/PhysRevA.97.032311
https://doi.org/10.1103/PhysRevLett.108.220501
https://doi.org/10.1103/PhysRevLett.117.090501

	1. Introduction
	2. Preliminaries
	2.1. The model
	2.2. The experiment used for verification

	3. Estimation of channel parameters
	3.1. Estimation of the transmittance for individual packages
	3.2. The effect of fluctuations
	3.3. Data clusterization and empirical distribution
	3.4. Confidence intervals of channel parameters

	4. Semi-analytical investigation of the scheme
	4.1. The package size
	4.2. The effect of clusterization

	5. Summary and conclusion
	Acknowledgments
	References



