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Abstract
We investigate estimation offluctuating channels and its effect on security of continuous-variable
quantumkey distribution.Wepropose a novel estimation schemewhich is based on the clusterization
of the estimated transmittance data.We show that uncertainty aboutwhether the transmittance is
fixed or not results in a lower key rate.However, if the total number ofmeasurements is large, one can
obtain using ourmethod a key rate similar to the non-fluctuating channel even for highly fluctuating
channels.We also verify our theoretical assumptions using experimental data from an atmospheric
quantum channel. Ourmethod is therefore promising for secure quantum communication over
strongly fluctuating turbulent atmospheric channels.

1. Introduction

Quantumcryptography is well known to be themethod for secure communication based onmathematically
secure cryptosystems (such as the one-time pad [1]). Quantumkey distribution (QKD) protocols [2–5] are
aimed at distributing secret keys between two trusted parties. Recent developments in the field ofQKDare
concernedwith continuous-variable (CV) protocols [6] based onGaussian encoding [7] of continuous
observables, such as thefield quadratures. The security of GaussianCVQKDwith coherent [8] and squeezed [9]
states of light was shown against collective attacks [10–12] using the optimality of Gaussian attacks, and later
extended to general attacks in the asymptotic regime [13] as well as in thefinite-size regime for certain protocols
(see [14] for review of CVQKD security proofs). GaussianCVQKDprotocols based on coherent [15] and
squeezed states [16]were successfully tested in the channels with fixed transmittance andwere also studied for
free-space atmospheric channels with transmittance fluctuations [17].

One of themajor elements of CVQKDprotocols is the channel estimation because it allows the trusted
parties to assess the upper bound of the information leakage based on the parameters of the channel. The
estimation, however, is never perfect in practice since the number of signals is limited. The issuewas addressed
for conventional coherent [18, 19] and squeezed-state [20] protocols, as well asmeasurement-device-
independent [21]CV–QKDprotocols infixed-type channels, i.e. channels inwhich the transmittance is typically
stable (e.g.fiber-optical links). It was shown that for a set offixed parameters, the channel estimation procedure
can be optimized and that a doublemodulation can be used to approach the best performance of the protocols
[20, 22]. The problem, however, becomesmore complexwhen the transmittance of the channelfluctuates
because in this case the statistics of the fluctuationsmust be estimated aswell [17]. Thefluctuating (fading)
channels on the other hand are important for CVQKDbecause channel fading is typically observed in the
atmosphere, where it is caused by air turbulence. Therefore any implementation of free-space CVQKDwhich
does not rely onfiber-optical infrastructure has to deal with the estimation of fading channels, especiallyQKD
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implementations aiming for long-distance extraterrestrial QKD through a satellite [23, 24]. Importantly, the
channel has to be estimated using the same quantum states as used for transmitting the key because otherwise (if
bright probe pulses are used) an adversary couldmanipulate the signal and the bright pulses in different ways
and thereforemimic the eavesdropping attacks [25]. On the other hand the estimation using quantum states
with relatively low energy is far frombeing precise. Thus, additionalmethods have to be developed to improve
such estimation procedures. Atmospheric channels are actively studied in recent years [26–30], typically for
well-defined transmittance distributions (not a general transmittance distribution) and not including allfinite-
size effects.

In the present paperwe study the possibility of estimating fluctuating channels using quantum signals and
Gaussianmodulation.We analyze the estimation of fading channels theoretically and show that the imperfect
estimation influences CVQKDnegatively. To solve this issue, we propose the clusterization of the transmitted
data, which can practically compensate for the negative impact of channel fading onCVQKD for sufficiently
large data sets.We verify the results using experimental data fromGaussianmodulated coherent states and their
homodyne detection after passing through a fluctuating atmospheric channel. An important note is that
althoughwe used experimental data from atmospheric channels only, the givenmodel does not rely on the
specific transmittance pattern of an atmospheric channel. Our proposed estimationmethodworks for any kind
of transmittance distribution, so the results can be applied to awide range of fading channels (including fiber
channels, where clusterization, however, would not likely be needed due to already low transmittance
fluctuations).

The paper is organized as follows: section 2 describes themodel applied in the article and the experiment
whichwas used to validate it; in section 3we introduce the theory of the channel parameter estimation,mainly
focusing on thefluctuating transmittance and furthermore examine howwell the predicted results of themodel
coincidewith the experimental data; in section 4we explore the limitations and basic properties of the
clusterizationmethod and in section 5we discuss the results and give our conclusions.

2. Preliminaries

2.1. Themodel
Weconsider the generic CVQKDprotocol, inwhichAlice sends CVquantum states of light to Bob through a
channel that is under control of an eavesdropper, Eve. The source states areGaussian squeezed or coherent
states, Alice applies aGaussian displacement to themusing a phase and (or, in case of a squeezed-state protocol)
amplitude quadraturemodulator, and Bob performs homodyne detection on the output of the channel
(figure 1).

The preparation and detection of quantum signals is relatively fast (the channelfluctuations are on the order
of several kHz, while the signal repetition rate is in theMHz-range), so for each signal sent through afluctuating
channel the transmittance can be considered stable. In this case the transfer of the quadrature variable through a
lossy and noisy channel can be described in theHeisenberg picture by the following evolution (the same holds
for the p-quadrature):

· ( ) · ( )= + + - + ex T x x T x x1 , 1B S M 0

where all variables are normally distributedwith zeromean, except the transmittance parameterT.We suppose
that the signal passes through afluctuating channel (e.g. an atmospheric channel), that is, the value of the
transmittanceT is an unknown, non-deterministic function of time. xB is the quadrature of the state Bob is
measuring; xS is the quadrature of the signal state with a variance ofVS (if the signal is a coherent state, then
VS=1); xM is the value of theGaussian displacement of the signal withmodulationV; x0 is the vacuumnoise
with variance one (also referred to as shot-noise unit). Finally, ex is the excess noise of the channel with
variance e.

Note that in practice xS, x0 and ex are all noises (they are unknownquantities), sowe can rewrite (1) in a
simpler form:

Figure 1.Prepare andmeasureGaussianCV–QKDusing a source (S) and a quadraturemodulator (M) at Alice’s side and a homodyne
detector (H) at Bob’s side.
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· ( )= +x T x x , 2B M N

where xN is the aggregated noise with zeromean and variance ≔ ( )e+ - -V T V1 1N S .We could have also
used a different parametrization (e.g. by scaling ex by T , or by not separating Alice’s state into signal and
modulation), we used this approach to simplify the obtained formulas.

It is furthermoreworth noting that even though the local oscillator plays an important role in homodyne
measurements, we did not include it in our analysis as this is rather a technical issue and can even be
circumvented. Similarly to the signal, the local oscillator is subject tofluctuations and it also has to be estimated
[31], but its estimation is considerably easier due to its high power and the fact that we only need to know its
intensity. So the normalization of the local oscillator can be performedwith high precision.Moreover, the issue
can be omitted entirely by using a local oscillator generated locally [32], which is not affected by the atmospheric
channel.

2.2. The experiment used for verification
In section 3 to test and verify our theoretical results, we used the data obtained in the free-space experiment
performed in Erlangen on the free-space link between the building of theMax Planck Institute for the Science of
Light and the computer science building of the Friedrich–Alexander-University Erlangen–Nürnberg (see [33]
for technical details, the same set-upwas also used to share effective entanglement over the free-space link as
reported in [34, 35]). Two electro-opticalmodulators were used to achieve a two-dimensionalmodulation in the
quadrature phase spacemimicked by 192 different displaced coherent states following a pseudo-random two-
dimensional Gaussian distribution. The states were repeatedly sent over the free-space channel with an effective
sending rate of 2.48× 106 states per second. At the remote side the channel transmittancewasmonitored using a
tap-off followed by an intensitymeasurement, while the remaining signal was split on a symmetric beamsplitter
and the x- and p-quadratures were simultaneouslymeasured using homodyne detectors. The results of the
intensitymeasurements of the channel transmittance (assumed to be unbiased and having standard deviation
mainly as low as 10−4)were used as a benchmark to verify the estimation usingGaussianmodulation of coherent
states to study the possibility of improving the fading channel estimation using quantum signals.

3. Estimation of channel parameters

In the followingwe discuss the estimation of the channel transmittance, when it is changing over time.

3.1. Estimation of the transmittance for individual packages
Let us divide the transmitted states during the observed timewindow intom packages each containing the same
number (n) ofGaussian states (that is, altogetherwe haveN=n·m states). The time of transmission for a
package should be so small that one can assume that the transmittanceT is constant for a particular package.

We suppose that the variance of themodulation (V ) is known, that is, the channel at the ith package
( { }Î ¼i m1, 2, , ) can be parametrized using only two unknown parameters:Ti and ei. From each package Alice
or Bob reveal some fraction (r) of theirmeasured data to obtain an estimation of the current transmittance T̂i.
Therefore, for every package the estimation is based on ·r n Gaussian states.

We verify the security of CVQKDby valuating the lower bound on the key rate (further simply referred to as
the key rate) incorporating thefinite size effects, which forfixed channel transmittance [18] is

( ) · [ ( ) ([ ] )] ( )= - - D -e¥K r K T V r N1 , 1 , 3LOW UP

whereTLOW, eVUP are estimates of channel parameters to evaluate the pessimistic (worst case) secure key rate,Δ
is related to the errors during privacy amplification, andK∞ is the lower bound on the asymptotic key rate given
by

( ) ( ) ( )b= -e¥K T V I A B S B E, : : ,

whereβä[0, 1] is the reconciliation efficiency, I(A :B) is themutual information of Alice and Bob, while S(B :
E) is themaximal information Eve can retain about Bob’s state (seemore details on theGaussianCVQKD
security analysis in [25]).We consider reverse reconciliation, which ismore robust against channel attenuation
[36]. It is alsoworthmentioning that the key rate is amonotonous function of the channel parameters, so (3) is
valid aswe can obtain a confidence interval for the key rate based on the confidence intervals of the channel
parameters.

Let us denote for the ith package the realizations of xM and xBwithMj andBj ( { · }Î ¼j r n1, 2, , ),
respectively.We know that the covariance of xM and xB is ( ) · ≕=x x T V CCov ,M B i MB. That is, we can

estimate the value of Ti (see figure 2) by
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· ( ) =T
V

C
1

, 4i MB

wherewe use themaximum likelihood estimator

·
( )

·
 å=

=

C
r n

M B
1

. 5MB
j

r n

j j
1

It follows from the central limit theorem thatCMB is approximately normally distributed, so (4) is an
unbiased estimator of Ti , moreover its variance can be calculated from the parameters of the channel [20]:

⎛
⎝⎜

⎞
⎠⎟( )

·
· ( ) = +T

r n
T

V

T V
Var

1
2 . 6i i

N

i

Experimental data provide a very similar, approximately normal distribution (see figure 3)with a variance close
to the theoretical value (0.0091 versus 0.0096) suggested by (6). Let us note as a reminder that in the given
experiment the channel intensity wasmeasured directly beside the quantum states to be able to compare the
estimated transmittance values T̂i fromhomodynemeasurement (blue boxes) to their directlymeasured
counterpartsTi (yellow boxes).

Similarly, we can estimate the value ofTi from

ˆ · ( ) ( )=T
V

C
1

. 7i MB2
2

Figure 2. Fluctuations of the transmittance over the observed time (solid line). To obtain an estimation themeasurement data is
divided into packages such away that the time of transmission for one package is so small that one can assume that the transmittance is
constantwithin. Fromeach packageAlice or Bob reveal some fraction of their data to obtain an estimation of the current transmittance
(blue points).

Figure 3.The histogram (with relative frequencies νi) of the estimated square root of the transmittance valuesTi (blue bars) if the
real transmittance is close to 0.8 (0.78<Ti<0.82, that is < <T0.883 0.906i )using the experimental data. The real transmittance
distribution (yellow bars) is truncated to ensure a better view of the estimated transmittance distribution. The red solid line shows the
corresponding theoretical Gaussian distribution.
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It can be shown that T̂i is an asymptotically unbiased estimation ofTiwith standard deviation

⎛
⎝⎜

⎞
⎠⎟( ˆ )

·
· ≕ ( ) ( )s» +T

r n
T

V

T V
TVar

4
2 . 8i i

N

i
i

2 2

Since the number of states in a package (n) is limited, T̂i will be just a rough estimate ofTiwith a high
uncertainty, whichmay result in a security break. A straightforward solution to overcome this problem is that
instead of performing key distribution for each package independently, wemerge the packages.

3.2. The effect offluctuations
The covariancematrix ofmeasurement outcomes of xM and xB is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

e
=

á ñ

á ñ á ñ ¢ + +
x x

V T V

T V T V
Cov ,

1
, 9M B

where á ñT and á ñT are themean values ofTi and T i for the given time interval, and ¢ = + -V V V 1S (for
coherent states ¢ =V V ).

The given covariancematrix after a fading channel can be equivalently parametrized as originating from a
channel with afixed effective transmittance and effective excess noise [17]:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

e
=

¢ + +
x x

V T V

T V T V
Cov ,

1
. 10M B

eff

eff eff eff

Using ( ) = á ñ - á ñT T TVar 2 and the equivalence of (9) and (10), one can obtain the effective
transmittance as

( )= á ñT T , 11eff
2

while the effective excess noise is

( ) ( )e e= + ¢T VVar . 12eff

It is known that the key rate is very sensitive to the excess noise. Therefore, if the channel is heavily fluctuating,
then ( )TVar and the respective effective excess noise will be large, which results in a low key rate or could even
lead to a security break [17]. This can be partially compensated by the use of squeezed states [37] or by stabilizing
the channel [38].

3.3.Data clusterization and empirical distribution
To avoid the negative effect of a heavily fluctuating channel we do notmerge every data package into a single
covariancematrix. Insteadwe can clusterize (split intoC clusters) the packages (seefigure 4). Themain idea is
that if thefluctuation of the channel within each cluster becomes significantly lower, then according to (12), the
effective excess noise decreases, which results in an increased key rate. Since each data point is generated
independently of the others, if we take a data point from a specific cluster, it will not contain any information
about the data points fromother clusters. Sowe perform security analysis for each cluster independently, and the
total key ratewill be the sumof the key rates determined for the individual clusters.

Note that the number of clusters is a quantity to optimize since there is an obvious trade-off:

• If we use toomany clusters, then the clusters will contain a small number of states, so the finite size effects will
be strong (the effect ofΔ in (3)will be dominant for fewer data points in a cluster),

Figure 4.The histogramof transmittance valuesTi in our experiment. The vertical lines define a possible clusterization of the data to 3
clusters: [0.6, 0.7], [0.7, 0.8], [0.8, 0.9]. The key rate is evaluated for every cluster independently.
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• If we do not use enough clusters, then the fluctuationwithin a single cluster will be very large resulting in a too
large effective excess noise (see the improvement usingmore clusters infigure 11).

To evaluate the key rate for a given cluster we have to estimate the transmittance statistics. This task is,
however, far from trivial, since by simply averaging the estimated transmittance values belonging to this cluster
wewould obtain a biased estimate. The reason for this is simple: we are interested in themean of the actual values
of transmittance (Ti), while we can perform the clustering only based on the estimated transmittance values (T̂i ).

To highlight this effect let us look at the example of taking the estimates T̂i falling into the cluster of [0.78,
0.82] (figure 5, blue bars). If we check how the real transmittance values of these packages are distributed (yellow
bars), we can see that the actual transmittance values are quite irregular and can reachwell over the boundaries of
the given cluster. Note that this is in some sense the opposite offigure 3, wherewe define the same cluster by real
transmittance and investigate the estimated transmittance distribution for these states (which ismuchmore
regular).

In this particular example the average of the estimated transmittance values ˆá ñTi belonging to this cluster is
about 0.8, while the average of their actual values á ñTi is about 0.769 (which is actually outside of the investigated
interval). So if we evaluate the key rate simply from the average of the estimated value ˆá ñTi , we get a biased
estimation, whichmay result in over- or underestimated key rate.

3.4. Confidence intervals of channel parameters
For the evaluation of the key rate one should use the covariancematrix defined in (9). But sincewe do not know
the exact values of the parameters of the channel, we should use theworst case scenario from the appropriate
confidence intervals (similarly as it was discussed for the fixed channel case after (3)). It is easy to see that in the
worst case we should use the lower bound á ñT LOW for á ñT , while the upper bounds á ñT UP and eUP for á ñT
and e, respectively.

However, we can see a strong correlation between the values of á ñT 2 and á ñT (seefigure 6). Thatmeans that

if we use rectangular confidence zones, then á ñ á ñT T,LOW UP will result in a large ( )TVar and sowewill have
hugely increased excess noise.

To exploit the correlationwe introduce the following transformed variables

≔ ( )á ñ - á ñ =X T T TVar1
2

and

≔ á ñ + á ñX T T ,2
2

andwe calculate rectangular confidence intervals for these variables (see figure 7) similarly to the approach used
in [20]. This will result in the original variables in amuch tighter, diagonal rectangular confidence interval (see
figure 6 inset, black rectangle).

It is easy to see that for theworst case scenario we should use the upper bound for X1
UP and the lower bound

for X2
LOW, so using these new variables we can obtain the following lower bound for the effective transmittance

(11)

( )=
-

T
X X

2
13eff

LOW 2
LOW

1
UP

Figure 5.The histogramof estimated transmittance values T̂i between 0.78 and 0.82 (blue bars) and the histogramof their actual
valuesTi (yellow bars)using the experimental data.
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and the upper bound for the effective excess noise (12)

· ( )e e= + ¢X V . 14eff
UP UP

1
UP

Note that we detailed here only how to obtain confidence intervals for the transmittance parameters as the same
for excess noise (eUP) is already discussed in the literature (see for example [20]).

Themain advantage of using this parametrization is that in this case we explicitly obtain an upper bound on
the channelfluctuation ( )TVar . The simplermethod yields ( )á ñ - á ñT TUP LOW 2 instead, which typically
results in a 20–30 timesworse estimation of ( )TVar (for comparison see figure 6, red and black big dots).
From (12)we know that amuch higher value of ( )TVar results in a significantly higher effective excess noise,
thus, in a lower key rate. The significance of this comes from the fact that the value of e in practical scenarios is
usually not large, so actually, the biggest restriction on the key rate comes not from actual noise, but from the
estimation of the noise. Therefore, if we can substantially improve the estimation of the transmittance
parameters, that will also improve the estimation of effective excess noise, thus resulting in a higher key rate.

Note that the above describedmethodworks for any given cluster. This also includes the case when there is
no clusterization (C=0), i.e. when all data are included into the calculation.

4. Semi-analytical investigation of the scheme

In the previous sectionwe described how to estimate the channel parameters, and showed that the theory behind
the estimationfits the experiment verywell.

In the followingwe evaluate the key rate in several theoretical settings to investigate the dependence on the
package size and on the clusterization of the packages.

4.1. The package size
First we assume that the transmittance of the fluctuating channel is normally distributedwithmean 0.5 and
standard deviation 0.1 (that is, ( )~ T 0.5, 0.1i ). Besides the transmittance distribution, we have to define seven

Figure 6.The value of á ñT 2 as a function of á ñT using experimental data. The two-dimensional confidence interval (using themean
plus-minus two times standard deviation) is plottedwith a red rectangle, theworst case scenario (that is, which parameters provide the
minimal key rate within the given confidence interval) is plottedwith the big red dot. (inset) Inside the gray dashed rectangle is the
magnification of the left bottom corner of the red rectangle.

Figure 7.The value ofX2 as a function ofX1 using experimental data. The two-dimensional confidence interval (using themean plus-
minus two times standard deviation) is plottedwith a black rectangle, the worst case scenario is plottedwith the black dot.
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further parameters for the numerical evaluation of specific examples. The values of the reconciliation efficiency
(β), the channel excess noise (e), and the squeezing parameter of Alice’s state (VS) are defined in the captions.
The ratio of states used for estimation (r) and the variance of Alice’smodulation (V ) are always optimized. The
total number of states (N) and the number of states in each package (n) are in some graphs shown as variables, or
denoted in the legends, or defined in the caption.

If we plot the key rate as a function of the total number of used states (see figure 8), we can see that forfinite
package sizes the key ratewill not converge to the asymptotic value. This is due to the uncertainty of the
estimators T̂i which estimates themean value of the transmittance for each package. The achievable key rate
increases with the number of states in each package (n): with n=105 it will be close to the asymptotic case,
however, evenwith n=103 it will produce a reasonable key rate. But this is true only if the total number of states
(N) is high enough because it is also important to have a reasonable number of packages (m).

So it is important tofix n as high as possible to still have a (nearly)fixed value of transmittance for each
package. For a fast state preparation and detection system, the value of nwill be higher and sowe can get a better
key rate, and thenN basically corresponds to the elapsed time. If wewait longer then the key rate will be higher,
but this process saturates relatively quickly (see figure 8).

As a reference, the fluctuation of an atmospheric channel is typically of the order of several kHz, while the
lasers and homodyne detectors operate typically at hundreds ofMHz (recently CV systemsworking in theGHz
regimewere also reported forQKD [39]). The ratio between the speed offluctuation and that of the state
preparation andmeasurement defines themaximal size of the packages, which is of the order of the investigated
values (rounding down to remain on the safe side), and thenm=103 corresponds to a runwhich is about
1 s long.

If we plot the optimal ratio used for estimation (r) (figure 9)we can see that if we havemore states then a
lower percentage is sufficient for estimation. The values saturate at a non-zero level due to the uncertain
estimation forfixed size packages. Note that these values are quite low, even in the casewhen a package contains
only 103 states, 200–300 states are enough to use for channel parameter estimation, still leaving themajority of
states for the key distribution itself (instead of the previously proposed 1 out of 1000 ratio [17]). This is due to the
fact that even though these estimators would give a quite poor approximation of the actual value of the channel

Figure 8.The key rate without clusterization as a function of the total number of states (N=n·m)using
( ) b e~ = = =T V0.5, 0.1 , 0.95, 0.01, 0.1i S and optimalV and r. As a reference, the thick black line shows the asymptotically

achievable key rate.

Figure 9.The optimal ratio of states used for channel estimation (r)without clusterization as a function of the total number of states
(N) using ( ) b e~ = = =T V0.5, 0.1 , 0.95, 0.01, 0.1i S .
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parameters, if we havemany packages, the errors will cancel out. That is, even if the individual estimators are
inaccurate, the effective parameters can be estimated quite well.We can also see a similar effect as in the case of
the key rate: asymptotically larger package sizes result in a smaller ratio of discarded states for the channel
estimation, but if the total number of states (N) is not so large, this can be even the opposite (i.e. smaller package
size could result in a smaller optimal ratio of r).

4.2. The effect of clusterization
Now that we knowhow the key rate behaves without clusterization, wewill investigate howmuch improvement
can come fromusing clusters.

In the following numerical simulationswe use n=m=104, so altogether a relatively large, but still
experimentally feasible number ofN=108Gaussian states.We always optimize the values of r andV (the latter
being in the order of few shot-noise units, corresponding to the vacuumquadrature fluctuations), and optimize
the boundaries of the intervals defining the clusters. This optimization is easy to perform if we know the exact
transmittance distribution (like in this sectionwhen using numerically generated examples), but in realistic
scenarios, this process is problematic aswe need to know the transmittance in advance to optimize the
parameters.What has to be done in this case is using a rough estimate of the expected transmittance distribution,
calculate the optimalmodulationV and optimal ratio r based on this rough estimate, send through the channel
the states with the correspondingmodulation, reveal states from each package randomlywith the calculated
ratio, and then perform the proper estimation based on these revealed states (and use clusterization if needed).
In this case, the usedV and r for all packages will not coincide with the real optimal values, but as the key rate is
not overly sensitive to these parameters, we can get very close to the optimal key rate even if the transmittance
distribution used as a rough estimate is not too close to the actual distribution (that is, if there is some difference
inTi, there will be a smaller difference in the optimalV and r and an even smaller difference in the related key
rates).

To investigate how the key rate depends on different types of channelfluctuations, we use four different
theoretical distributions for the transmittance. For better comparison theirmeans are very close or equal to 0.5
(á ñ »T 0.5i ), but their variances and profiles are very different (see figure 10, black thick lines).

Next we need to obtain the real distribution after we select a given cluster of experimental data. This can be
performed easily if we know the distribution of the transmittance. Let us assume that the aggregated likelihood
function of the transmittance during the given time interval is f (x). Then the probability that the actual value of
the transmittance is s and the estimated value is t is

Figure 10.The optimal clusterization (C=3) for transmittance distribution of (top left) uniform[0, 1], (top right)Weibull[1.25, 0.8],
(bottom left)Weibull[1.47, 0.6] and (bottom right)normal[0.5, 0.1]. The ends of cluster intervals are notedwith ticks, the conditional
likelihood functions p of each cluster are plottedwith colored areas (blue, yellow and green), the probability density function of the
original distribution is plottedwith black thick line. The other parameters are b e= = = = =V n m0.95, 0.01, 0.1, 10S

4.
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( ˆ ) ( ) · ( )f» » ~T s T t f s tProb , ,s

wherefs(x) is the probability density function of a normal distributionwithmean s and standard deviationσ(s),
which is defined in (8). So the conditional distribution of the actual values supposing that the estimated value is
in the interval [ ]T T,min max is given by:

( ) ≔ ( ∣ ˆ [ ]) ( ) · ( ) ( ) · ( ( ) ( ))ò f» Î ~ = F - Fp s T s T T T f s t t f s T TProb , d ,
T

T

s s smin max max min
min

max

where heuristically thefirst factor describes the number of points at disposal and the second factor describes the
probability of remaining in the investigated interval after adding the properGaussian noise coming from
estimation uncertainty. Using this conditional likelihood function p(s) (see for example figure 10, colored areas)
we can obtain themean value and the standard deviation (hence the confidence interval) of the transmittance for
a given cluster (as it is discussed in section 3.4) and for this worst case scenario we obtain the appropriate key rate.
The optimized results can be seen infigure 11.

If the transmittance is completely random, that is, it is uniformly distributed between 0 and 1 (blue circles),
then itsfluctuationwill be very high ( ( ) =TVar 0.055i ). This case has been recently studied as amodel for fast-
fading channels in [40]. In the asymptotic case this results in a very large effective excess noise (even up to
e » 20%eff ), therefore it is nowonder that without clusteringwe obtain the lowest key rate here.

We also investigated the log-negativeWeibull distribution, which emerges naturally in the case of
atmospheric channels as a result of beamwandering [41], themainmechanism for channel fluctuations in the
regime of weak atmospheric turbulence [42]. If we have parameters s= =W a 1.25, 0.8b (yellow squares)
then there is amedium fluctuation ( ( ) =TVar 0.018i ), if we use parameters s= =W a 1.47, 0.6b (green
diamonds)we have a smallfluctuation ( ( ) =TVar 0.0047i ). Note that the given parameters are related to the
beam spot to aperture size ratio, and the variance of the fluctuations of the beam around the aperture,
respectively.

Finally, we plotted a normally distributed transmittancewithmean 0.5 and standard deviation 0.1 (red
triangles). Thefluctuation of the transmittance in this case is also small ( ( ) =TVar 0.0052i ), it is a bit higher
than in the secondWeibull case, and the related key rate is also a bit smaller.

The result is clear and not surprising, smallerfluctuations result in a higher key rate.However, if we
introduce a single cluster (as it is proposed in [17]) this difference becomes smaller andwe can get reasonable key
rate even if the fluctuation of the transmittance is high. If we addmore clusters we see the same effect: we have a
higher and higher key rate, so the effect of the originalfluctuation vanishes. If the fluctuation of the
transmittance is small, the increment in the key rate will be small, but for largefluctuations the improvement can
be substantial (we can even double the key rate by using only two clusters).

An important observation is that in the three-cluster case (figure 10), all three clusters contain a similar
number of states (which is related to the sizes of colored areas). The smallest cluster is the [0.23, 0.37] for the
Weibull[1.47, 0.6]distribution (blue area in the bottom left subfigure), but even that contains about 10%of all
points,meaning a block size of 107 points. This is important as one has to have large block sizes to achieve high
reconciliation efficiency (weused in our numerical calculations a conservative value of 0.95, but in practice, it
depends onmany factors, which are hard to predict). Therefore in ourmodel we observe a trade-off:

• If a cluster contained a very lownumber of points, then the termΔ in (3) concerning privacy amplification
would be very large, potentially resulting in security break (turning key rate to zero).

Figure 11.The optimal key rate as a function of the number of clusters (C), with b e= = = = =V n m0.95, 0.01, 0.1, 10S
4 for

different distributions of the transmittance. InC=0 case we do not use any clusters, that is, we include all points into the calculation.
For comparisonwe plotted the optimal key rate for a channel with fixed transmittance ofT=0.5 (black thick line).
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• If a cluster contained a very large number of points, then the fluctuation of the channel within ( ( )TVar )
would be large too, resulting in a large effective excess noise and so in a decreased key rate.

In general, we can assume that the optimal clusters do not necessarily have equal sizes, but their sizes are at least
of similarmagnitudes and therewill not be any very small clusters.

Note that for the discussed experimental distributionwe have ( ) »TVar 0.0015i , meaning that its
fluctuation is even smaller than the given examples, so using clusterization therewould not be necessary.
However, our results show that even if therewas a very strong fluctuation in the channel, we could still obtain a
similar key rate. And this improvement is achieved only by better data processing, with no need to change the
experimental setup.

5. Summary and conclusion

In the current workwe developed a framework to evaluate the lower bound on the key rate for CVQKDover
fluctuating channels, e.g. for atmospheric channels.We divided the states into smaller packages containing the
same number of states (n) for which the transmittance can be considered constant.We estimated the
transmittance for each package independently. This only gave us a very rough estimation of the actual value of
the transmittance for a single package since n is small (typically n 104). However, if we combine the data from
all these estimators we can estimate the effective transmittance and fluctuation quite accurately, which results in
a high key rate.We also demonstrated that the properties of our estimation theoryfit experimental data obtained
froman atmosphericQKD setup verywell.

In general we can obtain a higher key rate by having a sourcewith a higher frequency,more packages (more
time) and a lowerfluctuation of the transmittance. But as we showed, if we clusterize the estimated
transmittance valueswe can almost entirely eliminate the negative effect caused by the fluctuations of the
transmittance even for very strong fluctuations. For a sufficient total number of states, even using only 2–3
clusters, the original difference between the key rates vanishes andwe can obtain in all cases a key rate close to the
one corresponding to the non-fluctuating channel.
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