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Abstract: A class of nonlinear control-affine systems with bounded time-varying drift is
considered. It is assumed that the control vector fields together with their iterated Lie brackets
satisfy Hörmander’s condition in a neighborhood of the origin. Then the problem of exponential
stabilization is treated by exploiting periodic time-varying feedback controls. An explicit
parametrization of such controllers is proposed under a suitable non-resonance assumption.
It is shown that these controllers ensure the exponential stability of the closed-loop system
provided that the period is small enough. The proposed control design methodology is applied
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1. INTRODUCTION

The paper focuses on the stabilization problem for a class
of nonholonomic systems in the control-affine form. As the
number of control inputs in such systems can be signifi-
cantly smaller than the dimension of the state vector, this
causes certain challenges in control design. There exists
a number of approaches which allow to stabilize control-
linear nonholonomic systems (see, e.g., Coron (1992);
Astolfi (1994); Morin et al. (1999); Zuyev (2016), and
references therein). However, the stabilization problem
becomes even more complicated for control-affine systems
with unstable drift terms. Controllability properties and
motion planning problems of control-affine systems were
discussed, e.g., in De Luca and Oriolo (1995); Godhavn
et al. (1999); Pomet (1999); Aguilar (2012); Jean and
Prandi (2015); Zuyev and Grushkovskaya (2017). While
rather general results have been obtained for motion plan-
ning problems, stabilization of nonholonomic systems with
drift is mainly studied for specific classes of systems (see,
e.g., M’Closkey and Morin (1998); Reyhanoglu et al.
(1999); Bullo et al. (2000); Floquet et al. (2000); Wang
et al. (2004); Yang and Yang (2010); Gao et al. (2011);
Zhao and Wu (2013), and Kolmanovsky and McClamroch
(1995); Michalska and Torres-Torriti (2003) for a survey).
A more general class of control-affine systems was con-
sidered in Hermes (1980); Michalska and Torres-Torriti
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(2003), where stabilizing controllers have been proposed
under the assumption that the system is strongly control-
lable and can be approximated by a system with nilpotent
Lie algebra, and that the drift term vanishes at the origin.
In this paper, we propose a class of control functions
that stabilize the origin of an underactuated control-affine
system with time-varying drift term. In general, we do not
assume that the drift vanishes at the origin, which leads
to the practical asymptotic stability of the correspond-
ing closed-loop system. For a special class of drift terms
vanishing at the origin, we show that the trajectories of
the system exponentially tend to zero. We also do not
involve the drift vector field in the controllability rank con-
dition. In Section 2, we formulate the problem statement
and present a novel stabilizability result as an the exten-
sion of the control design approach from (Zuyev (2016);
Grushkovskaya and Zuyev (2018)). Section 3 contains the
proofs. Several examples are presented in Section 4.

2. MAIN RESULTS

2.1 Problem statement

Consider a system

ẋ = g(t, x) +
m∑
i=1

fi(x)ui, x ∈ D ⊂ Rn, (1)

where x = (x1, . . . , xn)
� is the state, u = (u1, . . . , um)� ∈

Rm is the control, fi ∈ C3(D;Rn) describe the system
dynamics, and g : R×D → Rn is the drift term related to
the system dynamics or to disturbances. In this paper,
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satisfy Hörmander’s condition in a neighborhood of the origin. Then the problem of exponential
stabilization is treated by exploiting periodic time-varying feedback controls. An explicit
parametrization of such controllers is proposed under a suitable non-resonance assumption.
It is shown that these controllers ensure the exponential stability of the closed-loop system
provided that the period is small enough. The proposed control design methodology is applied
for the stabilization of an underwater vehicle model and a front-wheel drive car.

Keywords: exponential stabilization, time-varying feedback law, Lie algebra rank condition,
nonholonomic system.

1. INTRODUCTION

The paper focuses on the stabilization problem for a class
of nonholonomic systems in the control-affine form. As the
number of control inputs in such systems can be signifi-
cantly smaller than the dimension of the state vector, this
causes certain challenges in control design. There exists
a number of approaches which allow to stabilize control-
linear nonholonomic systems (see, e.g., Coron (1992);
Astolfi (1994); Morin et al. (1999); Zuyev (2016), and
references therein). However, the stabilization problem
becomes even more complicated for control-affine systems
with unstable drift terms. Controllability properties and
motion planning problems of control-affine systems were
discussed, e.g., in De Luca and Oriolo (1995); Godhavn
et al. (1999); Pomet (1999); Aguilar (2012); Jean and
Prandi (2015); Zuyev and Grushkovskaya (2017). While
rather general results have been obtained for motion plan-
ning problems, stabilization of nonholonomic systems with
drift is mainly studied for specific classes of systems (see,
e.g., M’Closkey and Morin (1998); Reyhanoglu et al.
(1999); Bullo et al. (2000); Floquet et al. (2000); Wang
et al. (2004); Yang and Yang (2010); Gao et al. (2011);
Zhao and Wu (2013), and Kolmanovsky and McClamroch
(1995); Michalska and Torres-Torriti (2003) for a survey).
A more general class of control-affine systems was con-
sidered in Hermes (1980); Michalska and Torres-Torriti

� This work is supported in part by the German Research Foun-
dation (project GR 5293/1-1), the State Fund for Fundamental
Research of Ukraine (project F78/206-2018), and NAS of Ukraine
(budget program KPKBK 6541230).

(2003), where stabilizing controllers have been proposed
under the assumption that the system is strongly control-
lable and can be approximated by a system with nilpotent
Lie algebra, and that the drift term vanishes at the origin.
In this paper, we propose a class of control functions
that stabilize the origin of an underactuated control-affine
system with time-varying drift term. In general, we do not
assume that the drift vanishes at the origin, which leads
to the practical asymptotic stability of the correspond-
ing closed-loop system. For a special class of drift terms
vanishing at the origin, we show that the trajectories of
the system exponentially tend to zero. We also do not
involve the drift vector field in the controllability rank con-
dition. In Section 2, we formulate the problem statement
and present a novel stabilizability result as an the exten-
sion of the control design approach from (Zuyev (2016);
Grushkovskaya and Zuyev (2018)). Section 3 contains the
proofs. Several examples are presented in Section 4.

2. MAIN RESULTS

2.1 Problem statement

Consider a system
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we propose a family of control laws for stabilizing the
origin of system (1) under the assumption that the vector
fields fi together with their first- and second-order Lie
brackets span the whole n-dimensional space, and the drift
g satisfies certain boundedness assumptions.

Assumption 1. (Rank condition). Let S1 ⊆ {1, 2, ...,m},
S2 ⊆ {1, 2, ...,m}2, S3 ⊆ {1, 2, ...,m}3 be sets of indices
such that |S1|+ |S2|+ |S3| = n and, for each x ∈ D,

span
{
fi(x),[fj1 , fj2 ](x), [[f�1 , f�2 ], f�3 ] (x) |

i∈S1, (j1, j2)∈S2, (�1, �2, �3)∈S3

}
=Rn.

(2)

Assumption 2. (Boundedness of the drift). For each com-
pact set ξ ⊆ D, there exists a τ > 0 andMg ≥ 0 such that,
for any t0 ≥ 0, ‖g(t, x)‖ ≤ Mg for all t ∈ [t0, t0+τ ], x ∈ ξ.

To stabilize system (1) at x∗ = 0, we adopt the con-
trol design approach previously proposed for the case
g(t, x) = 0 in Zuyev et al. (2016); Grushkovskaya and
Zuyev (2018). Note that the presence of non-zero drift may
affect significantly the system behavior and complicates
the stabilization problem. Therefore, the results of the
above mentioned papers cannot be directly applied, and
more sophisticated analysis is required.

2.2 Notations and definitions

Definition 1. We say that there is a resonance of order
N ∈ N between the pairwise distinct numbers k1, . . . , kn,
if there exist relatively prime integers c1, . . ., cn such that
|c1|+ ...+ |cn| = N and c1k1 + ...+ cnkn = 0.

Similarly to the approaches of Clarke et al. (1997); Zuyev
(2016), we will exploit the sampling concept. For a given
ε > 0, define a partition πε of [0,+∞) into the intervals
[tj , tj+1), tj = εj, j = 0, 1, 2, . . . .

Definition 2. Given a feedback u = h(t, x), h : [0,+∞) ×
D → Rm, ε > 0, and x0 ∈ D, a πε-solution of (1)
corresponding to x0 and h(t, x) is an absolutely continuous
function x(t) ∈ D, defined for t ∈ [0,+∞), such that
x(0) = x0 and ẋ(t) = f

(
x(t), h(t, x(tj))

)
, t ∈ [tj , tj+1),

for each j=0,1,2,. . . .

For f, g : Rn → Rn, x ∈ Rn, the directional derivative is

denoted as Lgf(x) = lim
s→0

f(x+sg(x))−f(x)
s , and [f, g](x) =

Lfg(x) − Lgf(x) stands for the Lie bracket. Throughout
this paper, ‖a‖ denotes the Euclidean norm of a vector
a ∈ Rn, and the norm of an n× n-matrix F is defined as
‖F‖ = sup‖y‖=1 ‖Fy‖.

2.3 Control functions

Given positive real numbers ε and γ, we define the control
functions uk, k = 1, . . . ,m, as

uk = hε
k(t, x) =

∑
i1∈S1

ai1(x)φ
(k,ε)
i1

(t)

+ ε−
1
2

∑
(j1,j2)∈S2

√
|aj1j2(x)|φ

(k,ε)
j1j2

(t, x) (3)

+ ε−
2
3

∑
(�1,�2,�3)∈S3

3
√
a�1�2�3(x)φ

(k,ε)
�1�2�3

(t),

where the state-dependent vector function

a(x) =
(
ai1(x)

∣∣
i1∈S1

, aj1j2(x)
∣∣
(j1,j2)∈S2

,

a�1�2�3(x)
∣∣
(�1,�2,�3)∈S3

)� ∈ Rn

is chosen as

a(x) = −γF−1(x)x (4)

with some control gain γ > 0, and φ
(k,ε)
i1

(t) = δki1 ,

φ
(k,ε)
j1j2

(t, x)=2
√
πκj1j2

(
δkj1sign(aj1,j2(x)) cos

2πκj1j2

ε
t

+δkj2 sin
2πκj1j2

ε
t
)
,

φ
(k,ε)
�1�2�3

(t)=2 3
√
2π2κ3�1�2�3κ4�1�2�3

(
δkl31 cos

2πκ1�1�2�3t

ε

+δk�2 sin
2πκ2�1�2�3t

ε

+δk�3cos
2πκ1�1�2�3t

ε
sin

2πκ2�1�2�3t

ε

)
. (5)

Here δki is the Kronecker delta, and the integer parame-
ters κj1j2 , κ1�1�2�3 , κ2�1�2�3 are specified according to the
following assumption.

Assumption 3. (Absence of resonances). The positive in-
tegers κj1j2 , κ1�1�2�3 , κ2�1�2�3 , κ3�1�2�3 = κ1�1�2�3+κ2�1�2�3 ,
and κ4�1�2�3 = κ2�1�2�3 − κ1�1�2�3 are pairwise distinct,
and there are no third-order resonances between κs�1�2�3
(s = 1, . . . , 4), except those imposed by the definition of
κ3�1�2�3 , κ4�1�2�3 .

2.4 Stabilization of system (1)

Consider the matrix

F(x) =
((

fi(x)
)
j1∈S1

(
[fj1 , fj2 ](x)

)
(j1,j2)∈S2(

[[f�1 , f�2 ], f�3 ] (x)
)
(�1,�2,�3)∈S3

)
,

(6)

which is nonsingular in D provided that condition (2)
holds. The main result of this paper is the following
theorem.

Theorem 1. Let D ⊆ Rn, fi ∈ C3(D;Rn), i = 1, . . . ,m.
Suppose that Assumptions 1–2 hold in D and there exists
an α > 0 such that ‖F−1(x)‖ ≤ α for all x ∈ D, where
the matrix F(x) is given by (6).
If the functions uk = hε

k(t, x), k = 1, . . . ,m, are defined
as in (3)–(5) with the parameters satisfying Assumption 3,
then for any δ, ρ > 0 there exist γ, ε̄ > 0 such that, for any
ε ∈ (0, ε̄], the πε-solution of system (1) with the initial
data x(0) = x0 ∈ Bδ(0) is well-defined on t ∈ [0,+∞) and

‖x(t)‖ ≤ ‖x0‖e−λt + ρ for all t ∈ [t0, t1),

and ‖x(t)‖ ≤ ρ for all t ∈ [t1,∞),

with some λ, t1 > 0.

The proof is given in Section 3.1. Note that the proof
provides a constructive procedure for choosing γ, λ and ε̄.
Theorem 1 gives the practical exponential stability condi-
tions of the point x = 0. Obviously, to stabilize system (1)
in the practical sense at any other point x∗ ∈ D, one
can take a(x) = −γF−1(x)(x− x∗). Under some stronger
assumptions on g(t, x), even local exponential stability can
be achieved, as stated in the following corollaries.

Corollary 1. Let D ⊆ Rn, fi ∈ C3(D;Rn), i = 1, . . . ,m.
Assume that Assumption 1 holds in D and there exists an
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origin of system (1) under the assumption that the vector
fields fi together with their first- and second-order Lie
brackets span the whole n-dimensional space, and the drift
g satisfies certain boundedness assumptions.

Assumption 1. (Rank condition). Let S1 ⊆ {1, 2, ...,m},
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Assumption 2. (Boundedness of the drift). For each com-
pact set ξ ⊆ D, there exists a τ > 0 andMg ≥ 0 such that,
for any t0 ≥ 0, ‖g(t, x)‖ ≤ Mg for all t ∈ [t0, t0+τ ], x ∈ ξ.

To stabilize system (1) at x∗ = 0, we adopt the con-
trol design approach previously proposed for the case
g(t, x) = 0 in Zuyev et al. (2016); Grushkovskaya and
Zuyev (2018). Note that the presence of non-zero drift may
affect significantly the system behavior and complicates
the stabilization problem. Therefore, the results of the
above mentioned papers cannot be directly applied, and
more sophisticated analysis is required.

2.2 Notations and definitions

Definition 1. We say that there is a resonance of order
N ∈ N between the pairwise distinct numbers k1, . . . , kn,
if there exist relatively prime integers c1, . . ., cn such that
|c1|+ ...+ |cn| = N and c1k1 + ...+ cnkn = 0.
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(2016), we will exploit the sampling concept. For a given
ε > 0, define a partition πε of [0,+∞) into the intervals
[tj , tj+1), tj = εj, j = 0, 1, 2, . . . .

Definition 2. Given a feedback u = h(t, x), h : [0,+∞) ×
D → Rm, ε > 0, and x0 ∈ D, a πε-solution of (1)
corresponding to x0 and h(t, x) is an absolutely continuous
function x(t) ∈ D, defined for t ∈ [0,+∞), such that
x(0) = x0 and ẋ(t) = f
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, t ∈ [tj , tj+1),

for each j=0,1,2,. . . .

For f, g : Rn → Rn, x ∈ Rn, the directional derivative is

denoted as Lgf(x) = lim
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s , and [f, g](x) =

Lfg(x) − Lgf(x) stands for the Lie bracket. Throughout
this paper, ‖a‖ denotes the Euclidean norm of a vector
a ∈ Rn, and the norm of an n× n-matrix F is defined as
‖F‖ = sup‖y‖=1 ‖Fy‖.

2.3 Control functions

Given positive real numbers ε and γ, we define the control
functions uk, k = 1, . . . ,m, as

uk = hε
k(t, x) =
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i1∈S1

ai1(x)φ
(k,ε)
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(t)

+ ε−
1
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|aj1j2(x)|φ

(k,ε)
j1j2

(t, x) (3)

+ ε−
2
3

∑
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√
a�1�2�3(x)φ

(k,ε)
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(t),
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,
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with some control gain γ > 0, and φ
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(t) = δki1 ,
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(k,ε)
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(t, x)=2
√
πκj1j2

(
δkj1sign(aj1,j2(x)) cos

2πκj1j2

ε
t

+δkj2 sin
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ε
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�1�2�3
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√

2π2κ3�1�2�3κ4�1�2�3
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ε
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ε
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ε
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ε
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Here δki is the Kronecker delta, and the integer parame-
ters κj1j2 , κ1�1�2�3 , κ2�1�2�3 are specified according to the
following assumption.

Assumption 3. (Absence of resonances). The positive in-
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(s = 1, . . . , 4), except those imposed by the definition of
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((

fi(x)
)
j1∈S1

(
[fj1 , fj2 ](x)

)
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)
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which is nonsingular in D provided that condition (2)
holds. The main result of this paper is the following
theorem.

Theorem 1. Let D ⊆ Rn, fi ∈ C3(D;Rn), i = 1, . . . ,m.
Suppose that Assumptions 1–2 hold in D and there exists
an α > 0 such that ‖F−1(x)‖ ≤ α for all x ∈ D, where
the matrix F(x) is given by (6).
If the functions uk = hε

k(t, x), k = 1, . . . ,m, are defined
as in (3)–(5) with the parameters satisfying Assumption 3,
then for any δ, ρ > 0 there exist γ, ε̄ > 0 such that, for any
ε ∈ (0, ε̄], the πε-solution of system (1) with the initial
data x(0) = x0 ∈ Bδ(0) is well-defined on t ∈ [0,+∞) and

‖x(t)‖ ≤ ‖x0‖e−λt + ρ for all t ∈ [t0, t1),

and ‖x(t)‖ ≤ ρ for all t ∈ [t1,∞),

with some λ, t1 > 0.

The proof is given in Section 3.1. Note that the proof
provides a constructive procedure for choosing γ, λ and ε̄.
Theorem 1 gives the practical exponential stability condi-
tions of the point x = 0. Obviously, to stabilize system (1)
in the practical sense at any other point x∗ ∈ D, one
can take a(x) = −γF−1(x)(x− x∗). Under some stronger
assumptions on g(t, x), even local exponential stability can
be achieved, as stated in the following corollaries.

Corollary 1. Let D ⊆ Rn, fi ∈ C3(D;Rn), i = 1, . . . ,m.
Assume that Assumption 1 holds in D and there exists an
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α > 0 such that ‖F−1(x)‖ ≤ α for all x ∈ D, where the
matrix F(x) is given by (6). Assume also that there are
Mg,Lg ≥ 0 and δ0 > 0 such that

g(t, x) ≤ Mg‖x‖3,
∥∥∥g(t, x)− g(t, y)

∥∥∥ ≤ Lg‖x− y‖,

for all t ≥ 0, x, y ∈ Bδ0(0). If the functions uk = hε
k(t, x),

k = 1, . . . ,m, are defined as in (3)–(5) with the parameters
satisfying Assumption 3, then for any δ > 0 there exist
γ, ε̄ > 0 such that, for any ε ∈ (0, ε̄], the πε-solution of
system (1) with the initial data x(0) = x0 ∈ Bδ(0) is well-
defined on t ∈ [0,+∞) and

‖x(t)‖ = O(e−λt) as t → ∞, with some λ > 0.

The proof of Corollary 1 is in Section 3.2.

3. PROOFS OF THE MAIN RESULTS

3.1 Proof of Theorem 1

For any x0 ∈ D, let ρ, δ, δ′ > 0 be such that Bρ(0) ⊂
Bδ(0) ⊂ Bδ′(0) ⊂ D, and Mf = sup

x∈Bδ′ (0)
‖fi(x)‖,

Mg = sup
x∈Bδ′ (0),t∈[0,τ ]

‖g(t, x)‖. Let ε0 = min
{
τ, 1

γ

}

and Uε(x0) = max
0≤t≤ε

∑m
i=1 |hε

i (t, x
0)|. Here we assume that

γ > 0 is fixed, since, as it will be shown later, γ can
be defined independently on ε. From (Grushkovskaya and
Zuyev (2018)), for every ε ∈ (0, ε0),

Uε(x0) ≤ cu1γ‖x0‖+ cu2

√
γ

ε
‖x0‖+ 3

√
γ

ε2
‖x0‖,

Uεε(x0) ≤ cu
3
√
εγ‖x0‖,

(7)

where

cu1 = α
√
|S1|, cu2 = 4

√
πα

( ∑
(j1,j2)∈S2

κj1j2
2/3

)3/4

,

cu3=6
3
√
2π2α

( ∑
(�1,�2,�3)∈S3

|κ2
2�1�2�3−κ2

1�1�2�3 |
2/5

)5/6

,

and
cu = cu1‖x0‖2/3 + cu2‖x0‖1/6 + cu3.

The integral representation

x(t)− x0 =

∫ t

0

( m∑
i=1

fi(x(s))h
ε
i (s, x

0) + g(s, x(s))
)
ds

yields that, for any x0 ∈ Bδ(0), ε ∈ (0, ε0),

‖x(t)− x0‖ ≤ Mfcu
3
√
εγ‖x0‖+ εMg for all t ∈ [0, ε].

For d = min{δ′−δ, 1
2ρ} > 0, let ε1 be the smallest positive

root of the equation

Mfcu
3
√
εγδ′ + εMg = d.

Then for any ε ∈ (0,min{ε0, ε1}), the solutions of (1), (3)
with x(0) ∈ Bδ are well defined in D (‖x(t)‖ ≤ δ′) for
t ∈ [0, ε], and

if ‖x0‖ ≤ ρ

2
then ‖x(t)‖ ≤ ρ for all t ∈ [0, ε]. (8)

Then we use the Chen–Fliess series to represent the πε-
solution of system (1) at time ε, taking into account the
drift term g(t, x) and formula (4):

x(ε) =x0 + ε
∑
j1∈S1

fj1(x
0)aj1(x

0)

+ ε
∑

(j1,j2)∈S2

[fj1 , fj2 ](x
0)aj1j2(x

0)

+ ε
∑

(�1,�2,�3)∈S3

[[f�1 , f�2 ], f�3 ](x
0)a�1�2�3(x

0)

+ Ω(a, ε) + rf (ε) + rg(ε) +

∫ ε

0

g(s, x(s))ds

=x0 − γεx0 +

∫ ε

0

g(s, x(s))ds+Ω(a, ε)

+ rg(ε) + ra(ε),

(9)

rg(ε) =

ε∫

0

s1∫

0

m∑
j1=1

Lgfj1(x(s))h
ε
j1(s1, x

0)ds2ds1

+

ε∫

0

s1∫

0

s2∫

0

m∑
j1,j2=1

LgLfj2
fj1(x(p))

× hε
j2(s2, x

0)hε
j1(s1, x

0)ds3ds2ds1

+

m∑
j1,j2,j3=1

ε∫

0

s1∫

0

s2∫

0

s3∫

0

LgLfj3
Lfj2

fj1(x(s4))

× hε
j3(s3, x

0)hε
j2(s2, x

0)hε
j1(s1, x

0)ds4ds3ds2ds1,

rf (ε) =

m∑
j1,...,j4=1

ε∫

0

s1∫

0

s2∫

0

s3∫

0

Lfj4
Lfj3

Lfj2
fj1(x(s4))

×hε
j4(s4, x

0)hε
j3(s3, x

0)hε
j2(s2, x

0)hε
j1(s1, x

0)ds4ds3ds2ds1.

We omit the explicit expression for Ω(a, ε) due to the space
limits. Similarly to (Grushkovskaya and Zuyev (2018);
Grushkovskaya et al. (2018); Zuyev and Grushkovskaya
(2019)), it can be shown that there exist cΩ, cg, cf ≥ 0

such that, for any x0 ∈ Bδ(0),

‖Ω(a, ε)‖ ≤ cΩ(ε‖x0‖)7/6,
‖rg(ε)‖ ≤ cgMgε

4/3‖x0‖1/3, ‖rf (ε)‖ ≤ cf (ε‖x0‖)4/3.
Applying these estimates to (9), we conclude that

‖x(ε)‖ ≤ (1− γε)‖x0‖+ σ(ε)ε7/6‖x0‖1/3 +Mgε, (10)

where σ(ε) = cΩδ
5/6 + ε1/6

(
cgMg + cfδ

)
. Assume x0 ∈

Bδ(0)\Bρ/2(0). Then the latter inequality can be rewritten
as

‖x(ε)‖ ≤ (1− γε)‖x0‖+ σε7/6
(2
ρ

)2/3

‖x0‖+ 2Mg

ρ
ε‖x0‖

= (1− ελ1)‖x0‖,

where λ1 = γ − 2Mg

ρ − σ(ε)ε1/6
(

2
ρ

)2/3

. Taking γ >
2Mg

ρ ,

we ensure that there exists a λ2 > 0 such that γ −
2Mg

ρ > λ2. For any λ ∈ (0, λ2), let ε2 = min
{

1
λ , ε̂

}
, where

ε̂ is the smallest positive root of the equation

σ(ε)ε1/6
(2
ρ

)2/3

= λ2 − λ.

Then, for any ε ∈ (0, ε̄ = min{ε0, ε1, ε2}), if ‖x0‖ > ρ
2 ,

then
‖x(ε)‖ ≤ (1− ελ)‖x0‖.

Since x0 ∈ Bδ(0) then x(ε) ∈ Bδ(0), and we repeat the
above argumentation for the solutions x(t) of system (1),
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(3) with the initial conditions x(ε) ∈ Bδ(0). Thus, we
conclude that there exists an N ∈ N ∪ {0} such that

‖x(jε)‖ ≥ ρ

2
for all j = 0, . . . , N − 1, ‖x(Nε)‖ ≤ ρ

2
,

which implies that the solutions x(t) of system (1), (3)
with the initial conditions x(0) = x0 ∈ Bδ(0) are well
defined for all t ∈ [0, (N + 1)ε], and

‖x(jε)‖ ≤ ‖x0‖e−λjε for all j = 0, . . . , N.

Furthermore, ‖x
(
(N + 1)ε

)
‖ ≤ ρ from (8). If ‖x

(
(N +

1)ε
)
‖ ≥ ρ

2 , we apply again the same reasoning and obtain∥∥x((N + 2)ε
)∥∥ ≤ ‖x

(
(N + 1)ε

)
‖. Otherwise, (8) implies

‖x
(
(N + 2)ε

)
‖ ≤ ρ. Thus, for any ε ∈ (0, ε̄), the solutions

of system (1), (3) with the initial conditions x(0) = x0 ∈
Bδ(0) satisfy the following properties:

‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ‖x0‖e−λt +
ρ

2
for all t ≥ 0,

and there exists a t1 > 0 such that ‖x(t)‖ ≤ ρ for t ≥ t1.

3.2 Proof of Corollary 1

As it follows from Theorem 1 and its proof, for any
δ, δ0 > 0, there exists an ε̄1 > 0 such that, for any
ε ∈ (0, ε̄1], the πε-solution of system (1) with the initial
data x(0) = x0 ∈ Bδ(0) is well-defined on t ∈ [0,+∞) and

‖x(t)‖ ≤ ‖x0‖e−λ1t + δ0 for all t ∈ [t0, t1),

and ‖x(t)‖ ≤ δ0 for all t ∈ [t1,∞),
(11)

with some λ1, t1 > 0. The proof is similar to the proof of
Theorem 1 withD = Bδ0(0), so we just briefly describe the
main differences. Let us analyze the behavior of solutions
of system (1) in Bδ0(0).

Let x̃0 ∈ Bδ0(0). Using the integral representation of x(t),
the Grönwall–Bellman inequality, estimate (7), and the
assumptions on g(t, x), we conclude that

‖x(t)− x̃0‖ ≤ cx
3
√
ε‖x̃0‖ for all t ∈ [0, ε], (12)

where cx =
(
Mfcu 3

√
γ + Mgδ

2
0(εδ0)

2/3
)
eLf cu

3
√

εγδ0+Lg ,

and Lf is such that
∥∥∥f(x) − f(y)

∥∥∥ ≤ Lf‖x − y‖ for all

x, y ∈ Bδ′(0). Furthermore,

‖g(t,x(t))‖ ≤ Mg‖x(t)‖3 ≤ Mg(‖x̃0‖+ ‖x(t)− x̃0‖)3

≤ Mg‖x̃0‖(δ20 + cx
3
√
ε)3 for all t ∈ [0, ε].

(13)
Then the term rg(ε) in (9) can be estimated as ‖rg(ε)‖ ≤
c̃g(ε‖x̃0‖)4/3 with some c̃g > 0. Consequently, the esti-
mate (10) can be written as

‖x(ε)‖ ≤(1− γε)‖x0‖+ σ̃(ε)ε7/6‖x0‖7/6

+ εMg‖x̃0‖(δ20 + cx
3
√
ε)3

=
(
1− ε

(
γ −Mgδ

6
0 − ε1/6σ1(ε)

))
‖x0‖.

Here σ̃(ε) = cΩ + (εδ0)
1/6

(
c̃g + cf

)
, σ1(ε) = σ̃(ε)δ

1/6
0 .

Taking γ > Mgδ
6
0 , λ2 ∈ (0, γ − Mgδ0), and ε̃1 as the

smallest positive root of the equation ε1/6σ1(ε) = λ̃,
we obtain ‖x(ε)‖ ≤ (1 − λ2ε)‖x̃0‖. Repeating the above
argumentation for an arbitrary x̃0 ∈ Bδ0(0), we conclude
that

‖x(jε)‖ ≤ ‖x̃0‖e−λ2jε, for j = 0, 1, 2, . . . . (14)

For any t ≥ 0 and ε ∈ (0, ε̄ = min{ε̃0, ε̃1}), we have

‖x(t)‖ ≤
∥∥∥x(t)− x

([ t
ε

]
ε
)∥∥∥+

∥∥∥x
([ t

ε

]
ε
)∥∥∥

≤ 3

√∥∥∥x
([ t

ε

]
ε
)∥∥∥

(
cx

3
√
ε+

∥∥∥x
([ t

ε

]
ε
)∥∥∥

2/3)
.

Using (14), we obtain the following estimate:

‖x(t)‖ ≤ µ1
3
√
‖x̃0‖e−

λ2
3 t, (15)

with µ1 = eλ2ε
(
cx 3
√
ε + δ

2/3
0

)
. Choosing ε̄ = min{ε̄1, ε̄2}

and summarizing (11) and (15), we conclude that, for any
ε ∈ (0, ε̄], there exists a t1 > 0

‖x(t)‖ ≤

{
‖x0‖e−λ1t + δ0 for t ∈ [0, t1),

µ1
3
√
‖x(t1)‖e−

λ2
3 t for t ∈ [t1,∞),

which proves the Corollary.

4. EXAMPLES

4.1 Underwater vehicle with drift

Consider the equations of motion for an autonomous
3D underwater vehicle studied, e.g., in Barraquand and
Latombe (1989), and assume that the motion of the vehicle
is also affected by external disturbances:

ẋ1 =

4∑
k=1

fk(x)uk + g(t), (16)

where (x1, x2, x3) are the coordinates of the center of
mass, (x4, x5, x6) describe the vehicle orientation (Euler
angles), u1 is the translational velocity along the Ox1 axis,
(u2, u3, u4) are the angular velocity components, and the
vector fields of the unperturbed system are

f1(x) = (cosx5 cosx6, cosx5 sinx6,− sinx5, 0, 0, 0)
�,

f2(x) = (0, 0, 0, 1, 0, 0)�,

f3(x)=(0, 0, 0, sinx4tg x5, cosx4, sinx4 secx5)
�,

f4(x)=(0, 0, 0, cosx4tg x5,− sinx4, cosx4 secx5)
�.

The drift term in (16) accounts for the external distur-
bances caused by waves and ocean currents, and we choose
the following form for g(t):

g(t) = (0, d, a sin(ωt+ b), 0, 0, 0)�,

where a, b, d, ω are some positive constants. The rank
condition (2) is satisfied in the domain D = {x ∈ R6 | −
π
2 < x5 < π

2 } with S1 = {1, 2, 3, 4}, S2 = {(1, 3), (1, 4)},
S3 = ∅. Then the matrix (6) takes the form

F(x) = (f1(x), f2(x), f3(x), f4(x), [f1, f3](x), [f1, f4](x)) ,

and we may write controls (3) as uk = hε
k(t, x):

hε
1(t, x) =a1(x) + 2 sign(a13(x))

√
π|a13(x)|

ε cos 2πk13t
ε

+ 2 sign(a14(x))

√
π|a14(x)|

ε cos 2πk14t
ε ,

hε
2(t, x) =a2(x), (17)

hε
3(t, x) =a3(x) + 2

√
π|a13(x)|

ε sin 2πk13t
ε ,

hε
4(t, x) =a4(x) + 2

√
π|a14(x)|

ε sin 2πk14t
ε ,

with a(x) = (a1(x), a2(x), a13(x), a14(x))
�
=−γF−1(x)x.

The behavior of system (16) with controls (17) is illus-
trated in Fig. 1a). For numerical simulations, we take
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(3) with the initial conditions x(ε) ∈ Bδ(0). Thus, we
conclude that there exists an N ∈ N ∪ {0} such that

‖x(jε)‖ ≥ ρ

2
for all j = 0, . . . , N − 1, ‖x(Nε)‖ ≤ ρ

2
,

which implies that the solutions x(t) of system (1), (3)
with the initial conditions x(0) = x0 ∈ Bδ(0) are well
defined for all t ∈ [0, (N + 1)ε], and

‖x(jε)‖ ≤ ‖x0‖e−λjε for all j = 0, . . . , N.

Furthermore, ‖x
(
(N + 1)ε

)
‖ ≤ ρ from (8). If ‖x

(
(N +

1)ε
)
‖ ≥ ρ

2 , we apply again the same reasoning and obtain∥∥x((N + 2)ε
)∥∥ ≤ ‖x

(
(N + 1)ε

)
‖. Otherwise, (8) implies

‖x
(
(N + 2)ε

)
‖ ≤ ρ. Thus, for any ε ∈ (0, ε̄), the solutions

of system (1), (3) with the initial conditions x(0) = x0 ∈
Bδ(0) satisfy the following properties:

‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ‖x0‖e−λt +
ρ

2
for all t ≥ 0,

and there exists a t1 > 0 such that ‖x(t)‖ ≤ ρ for t ≥ t1.

3.2 Proof of Corollary 1

As it follows from Theorem 1 and its proof, for any
δ, δ0 > 0, there exists an ε̄1 > 0 such that, for any
ε ∈ (0, ε̄1], the πε-solution of system (1) with the initial
data x(0) = x0 ∈ Bδ(0) is well-defined on t ∈ [0,+∞) and

‖x(t)‖ ≤ ‖x0‖e−λ1t + δ0 for all t ∈ [t0, t1),

and ‖x(t)‖ ≤ δ0 for all t ∈ [t1,∞),
(11)

with some λ1, t1 > 0. The proof is similar to the proof of
Theorem 1 withD = Bδ0(0), so we just briefly describe the
main differences. Let us analyze the behavior of solutions
of system (1) in Bδ0(0).

Let x̃0 ∈ Bδ0(0). Using the integral representation of x(t),
the Grönwall–Bellman inequality, estimate (7), and the
assumptions on g(t, x), we conclude that

‖x(t)− x̃0‖ ≤ cx
3
√

ε‖x̃0‖ for all t ∈ [0, ε], (12)

where cx =
(
Mfcu 3

√
γ + Mgδ

2
0(εδ0)

2/3
)
eLf cu

3
√

εγδ0+Lg ,

and Lf is such that
∥∥∥f(x) − f(y)

∥∥∥ ≤ Lf‖x − y‖ for all

x, y ∈ Bδ′(0). Furthermore,

‖g(t,x(t))‖ ≤ Mg‖x(t)‖3 ≤ Mg(‖x̃0‖+ ‖x(t)− x̃0‖)3

≤ Mg‖x̃0‖(δ20 + cx
3
√
ε)3 for all t ∈ [0, ε].

(13)
Then the term rg(ε) in (9) can be estimated as ‖rg(ε)‖ ≤
c̃g(ε‖x̃0‖)4/3 with some c̃g > 0. Consequently, the esti-
mate (10) can be written as

‖x(ε)‖ ≤(1− γε)‖x0‖+ σ̃(ε)ε7/6‖x0‖7/6

+ εMg‖x̃0‖(δ20 + cx
3
√
ε)3

=
(
1− ε

(
γ −Mgδ

6
0 − ε1/6σ1(ε)

))
‖x0‖.

Here σ̃(ε) = cΩ + (εδ0)
1/6

(
c̃g + cf

)
, σ1(ε) = σ̃(ε)δ

1/6
0 .

Taking γ > Mgδ
6
0 , λ2 ∈ (0, γ − Mgδ0), and ε̃1 as the

smallest positive root of the equation ε1/6σ1(ε) = λ̃,
we obtain ‖x(ε)‖ ≤ (1 − λ2ε)‖x̃0‖. Repeating the above
argumentation for an arbitrary x̃0 ∈ Bδ0(0), we conclude
that

‖x(jε)‖ ≤ ‖x̃0‖e−λ2jε, for j = 0, 1, 2, . . . . (14)

For any t ≥ 0 and ε ∈ (0, ε̄ = min{ε̃0, ε̃1}), we have

‖x(t)‖ ≤
∥∥∥x(t)− x

([ t
ε

]
ε
)∥∥∥+

∥∥∥x
([ t

ε

]
ε
)∥∥∥

≤ 3

√∥∥∥x
([ t

ε

]
ε
)∥∥∥

(
cx

3
√
ε+

∥∥∥x
([ t

ε

]
ε
)∥∥∥

2/3)
.

Using (14), we obtain the following estimate:

‖x(t)‖ ≤ µ1
3
√

‖x̃0‖e−
λ2
3 t, (15)

with µ1 = eλ2ε
(
cx 3
√
ε + δ

2/3
0

)
. Choosing ε̄ = min{ε̄1, ε̄2}

and summarizing (11) and (15), we conclude that, for any
ε ∈ (0, ε̄], there exists a t1 > 0

‖x(t)‖ ≤

{
‖x0‖e−λ1t + δ0 for t ∈ [0, t1),

µ1
3
√

‖x(t1)‖e−
λ2
3 t for t ∈ [t1,∞),

which proves the Corollary.

4. EXAMPLES

4.1 Underwater vehicle with drift

Consider the equations of motion for an autonomous
3D underwater vehicle studied, e.g., in Barraquand and
Latombe (1989), and assume that the motion of the vehicle
is also affected by external disturbances:

ẋ1 =

4∑
k=1

fk(x)uk + g(t), (16)

where (x1, x2, x3) are the coordinates of the center of
mass, (x4, x5, x6) describe the vehicle orientation (Euler
angles), u1 is the translational velocity along the Ox1 axis,
(u2, u3, u4) are the angular velocity components, and the
vector fields of the unperturbed system are

f1(x) = (cosx5 cosx6, cosx5 sinx6,− sinx5, 0, 0, 0)
�,

f2(x) = (0, 0, 0, 1, 0, 0)�,

f3(x)=(0, 0, 0, sinx4tg x5, cosx4, sinx4 secx5)
�,

f4(x)=(0, 0, 0, cosx4tg x5,− sinx4, cosx4 secx5)
�.

The drift term in (16) accounts for the external distur-
bances caused by waves and ocean currents, and we choose
the following form for g(t):

g(t) = (0, d, a sin(ωt+ b), 0, 0, 0)�,

where a, b, d, ω are some positive constants. The rank
condition (2) is satisfied in the domain D = {x ∈ R6 | −
π
2 < x5 < π

2 } with S1 = {1, 2, 3, 4}, S2 = {(1, 3), (1, 4)},
S3 = ∅. Then the matrix (6) takes the form

F(x) = (f1(x), f2(x), f3(x), f4(x), [f1, f3](x), [f1, f4](x)) ,

and we may write controls (3) as uk = hε
k(t, x):

hε
1(t, x) =a1(x) + 2 sign(a13(x))

√
π|a13(x)|

ε cos 2πk13t
ε

+ 2 sign(a14(x))

√
π|a14(x)|

ε cos 2πk14t
ε ,

hε
2(t, x) =a2(x), (17)

hε
3(t, x) =a3(x) + 2

√
π|a13(x)|

ε sin 2πk13t
ε ,

hε
4(t, x) =a4(x) + 2

√
π|a14(x)|

ε sin 2πk14t
ε ,

with a(x) = (a1(x), a2(x), a13(x), a14(x))
�
=−γF−1(x)x.

The behavior of system (16) with controls (17) is illus-
trated in Fig. 1a). For numerical simulations, we take
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Fig. 1. Time-plots of the trajectories of system (16) with controls (17).

g(t) = (0, 2, 5 sin t, 0, 0, 0)�, x0 =
(
5, 10, 10, 3π

2 , π
4 ,−π

)�
,

ε = 0.1, γ = 10, k13 = 1, k14 = 2. To illustrate Corol-
lary 1, assume that the drift is described by g(t, x) =
(0, x3

1(t), x
3
2(t) sin t, 0, 0, 0)

�. As it is shown in Fig.1b), the
trajectories of system (16) tend asymptotically to zero in
this case.

4.2 Front-wheel drive car

As an example of a nonholonomic system satisfying con-
dition (2) with the second-order Lie brackets, consider
a kinematic model of the front-wheel drive car (see,
e.g., De Luca and Oriolo (1995)):

ẋ1 =

2∑
k=1

fk(x)uk,

where (x1, x2) are the Cartesian coordinates of the rear
axle center, the angle x3 defines the car orientation with re-
spect to the x1-axis, x4 is the steering angle, u1, u2 denote
the driving and the steering velocity input, respectively;
thus the vector fields of the system are given by

f1(x) = (cosx3 cosx4, sinx3 cosx4, sinx4, 0)
�,

f2(x) = (0, 0, 0, 1)�.

It can be verified that the rank condition (2) is satisfied
with S1 = {1, 2}, S2 = {(1, 2)}, S3 = {(1, 2, 1)}, so that
the matrix F(x)=

(
f1(x), f2(x), [f1, f2](x),

[
[f1, f2], f1

]
(x)

)
is nonsingular in R4. If the control input acts with an
error, i.e. uk = hε

k(t, x) + nk(t, x), where nk(t, x) are some
disturbances, then the system equations can be interpreted
as the system with drift:

ẋ1 =
2∑

k=1

fk(x)uk + g(t, x), (18)

where g(t, x) =
2∑

k=1

fk(x)nk(x, t). According to the pro-

posed design procedure, we take controls of the form (3):

hε
1(t, x) =a1(x) + 2 sign(a12(x))

√
π|a12(x)|

ε cos 2πk12t
ε

+ 2
3

√
2π2(k2121−k1121)a121(x)

ε2 cos 2πk1121t
ε

×
(
1 + 2πk2121t

ε sin
)
, (19)

hε
2(t, x) =a2(x) + 2

√
π|a12(x)|

ε sin 2πk12t
ε ,

+ 2
3

√
2π2(k2121−k1121)a121(x)

ε2 sin 2πk2121t
ε

with

a(x) = (a1(x), a2(x), a12(x), a121(x))
�
= −γF−1(x)x.

For the numerical simulation, we take n1(t, x) = 2 cos 10πt,

n2(t, x) = sin 20πt, x0 =
(
5, 3,−π

2 ,
π
4

)�
, ε = 0.5, γ = 15,

k12 = 7, k1121 = 3, k2121 = 1. The corresponding plots are
depicted in Fig. 2.

5. CONCLUSIONS

We have considered a class of nonholonomic systems with
time-varying drift term satisfying certain boundedness as-
sumptions. Extending the approach of Zuyev et al. (2016);
Grushkovskaya and Zuyev (2018), we have obtained a
family of time-periodic control functions with rather sim-
ple formulas for state-dependent coefficients. It should be
emphasized that the considered systems with vanishing
controls, in general, do not admit the trivial equilibrium.
It is also crucial that the exponential decay estimates
have been derived without assuming that the drift can
be compensated by a linear combination of control vector
fields.
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Fig. 2. Time-plots of the trajectories of system (18) with
controls (19).
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Fig. 2. Time-plots of the trajectories of system (18) with
controls (19).
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