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Abstract: The paper deals with the extremum seeking problem for a class of cost functions
depending only on a part of state variables of a control system. This problem is related to the
concept of partial asymptotic stability and analyzed by Lyapunov’s direct method and averaging
schemes. Sufficient conditions for the practical partial stability of a system with oscillating inputs
are derived with the use of Lie bracket approximation techniques. These conditions are exploited
to describe a broad class of extremum-seeking controllers ensuring the partial stability of the
set of minima of a cost function. The obtained theoretical results are illustrated by the Brockett
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1. INTRODUCTION

Extremum seeking has become an important branch of
modern control theory because of challenging theoreti-
cal features and various practical applications. The goal
of extremum seeking control is to optimize the steady-
state performance of a control system using the output
measurements. The main motivation behind this problem
statement is to reduce the amount of information needed
for the control design. In particular, an optimal operating
point as well as analytical expression of the output (cost)
function are assumed to be unknown. During the past
couple of decades, several important approaches for the
extremum seeking control design have been developed (see,
e.g., Krstić and Wang (2000); Krstić and Ariyur (2003);
Guay and Zhang (2003); Tan et al. (2010); Nešić et al.
(2010); Dürr et al. (2013); Guay and Dochain (2015);
Haring and Johansen (2017); Dürr et al. (2017); Suttner
and Dashkovskiy (2017); Scheinker and Krstić (2017);
Grushkovskaya et al. (2018a,b)). The above approaches
assume that the cost function depends essentially on all
state variables, and/or that the system admits an asymp-
totically stable steady-state. However, these assumptions
can be redundant for various applied problems, for which it
is important (or even only possible) to optimize the system
with respect to a prescribed part of state variables, and
consequently to stabilize the system only with respect to
these variables. In particular, such problems arise if the
cost function depends on a part of system variables, if
only partial output measurements are available for control
design, or if the partial stabilization is sufficient for correct
system operation. As a simple example, one can imagine
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the problem of tracking a planar target by a multi-DOF
robot (see, e.g., Cochran et al. (2009); Matveev et al.
(2011); Khong et al. (2014); Mandić and Mǐsković (2015))
The goal of this paper is to introduce the problems of
partial extremum seeking, in which the goal is to optimize
the system performance with respect to a part of state
variables only. Such problem statement allows to consider
a broader class of systems and applications. The contri-
bution of this paper is twofold. First, we generalize the
Lie bracket approximation approach (see, e.g., Moreau and
Aeyels (2000); Dürr et al. (2013); Dürr et al. (2017)) and
techniques introduced in Grushkovskaya et al. (2018b) to
input-affine systems whose Lie bracket system has a par-
tially asymptotically stable manifold. To solve the problem
under consideration, we attract methods of partial stabil-
ity theory, which dates back to Lyapunov and has been
developed in the works of Malkin (1952); Rumyantsev and
Oziraner (1987); Vorotnikov (2012); Zuyev (2000, 2003);
Kovalev et al. (2009); Grushkovskaya and Zuyev (2015)
and others (see Vorotnikov (2005) for a review). Second,
we consider a class of extremum seeking problems, in which
the system has to be optimized with respect to a prescribed
part of variables. Up to our best knowledge, such problem
statement has not been considered before.
The rest of the paper is organized as follows. Section 1.1
contains some notations and definitions which will be used
throughout the paper. In Section 2.1, we extend the Lie
bracket approximation approach assuming that the cor-
responding Lie bracket system is partially asymptotically
stable, and derive conditions for practical partial asymp-
totic stability. These results are applied to extremum seek-
ing problems in Section 2.2. In Section 3, we consider
several examples illustrating the proposed approach and
some possible extensions.
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1.1 Notations and definitions

Consider the system

ẋ = fε(t, x), x ∈ Rn, t ≥ 0, (1)

where f : R+ × Rn → Rn, and ε > 0 is a parameter.
We will split the components of the state vector x as
x = (y�, z�)� ∈ Rn with y ∈ Rn1 , z ∈ Rn2 , n1 + n2 = n.
With a slight abuse of notations, the column x will be also
denoted as x = (y, z). Throughout the text, Bδ(x

∗) and

Bδ(x∗) = Bδ(x
∗) ∪ ∂Bδ(x

∗) denote the δ-neighborhood of
an x∗∈Rn and its closure, respectively. Notation ϕ ∈ K
means that a function ϕ belongs to the class K, i.e.
ϕ : R+ → R+ is a continuous strictly increasing function,
ϕ(0) = 0. For f, g : Rn → Rn, x ∈ Rn, we denote

the directional derivative as Lgf(x) = lim
s→0

f(x+sg(x))−f(x)
s ,

and [f, g](x) = Lfg(x) − Lgf(x) is the Lie bracket. We
will use the following definition, which extends the notion
of partial asymptotic stability (Rumyantsev and Oziraner
(1987); Vorotnikov (2012); Zuyev (2003)) to systems with
parameters of the form (1).

Definition 1. For y∗ ∈ Rn1 , the set D∗ = {x = (y, z) ∈
Rn : y = y∗} is practically uniformly y-asymptotically
stable for system (1), if it is:
− practically uniformly y-stable for system (1), i.e., for
every ρ > 0, there exist δ > 0, ε̄ > 0 such that the following
property holds for all t0 ≥ 0, z(t0) ∈ Rn2 , ε ∈ (0, ε̄):

if y(t0) ∈ Bδ(y
∗) then y(t) ∈ Bρ(y

∗) for all t ∈ [t0,∞);

− practically uniformly y-attractive for system (1), i.e., for
some δ>0, for every ρ>0, there are t1≥0, ε̄>0 such that the
following property holds for all t0≥0, z(t0) ∈ Rn2 , ε∈(0, ε̄):
if y(t0) ∈ Bδ(y

∗) then y(t) ∈ Bρ(y
∗) for all t ∈ [t0+t1,∞).

If the attractivity property holds for any δ̂>0, then y∗

is called to be semi-globally practically uniformly y-
asymptotically stable for system (1). For systems inde-
pendent of ε, we omit the terms “practically” and “semi”.
In case n1 = n, n2 = 0, the above definition coincides
with a well-known definition of practical asymptotic sta-
bility (Moreau and Aeyels (2000); Dürr et al. (2013)). Up
to our best knowledge, the proposed definition of practical
partial stability is introduced here for the first time.

2. MAIN RESULTS

2.1 Lie bracket approximation & partial stability

In this section, we extend the Lie bracket approxima-
tion approach to partially asymptotically stable systems.
Namely, we consider the system

ẋ = f0(x) +

m∑
i=1

fi(x)ui, x ∈ Rn, (2)

where ui=
1√
ε
wi

(
t
ε

)
, wi

(
t
ε

)
are ε-periodic continuous

functions with some ε>0, and
∫ ε

0
wi

(
t
ε

)
dt=0. We assume

that there exists aW>0 such that max
1≤i≤m,0≤t≤ε

wi

(
t
ε

)
≤W for each ε>0.

Consider also the so-called Lie bracket system

˙̄x = f0(x̄) +

m∑
i<j,i,j=1

[fi, fj ](x̄)νij , x̄ ∈ Rn, (3)

where νij = 1
ε2

∫ ε

0

∫ τ

0
wj

(
τ
ε

)
wi

(
s
ε

)
dsdτ . Denote x =

(y, z), x̄ = (ȳ, z̄), y, ȳ ∈ Rn1 , z, z̄ ∈ Rn2 , n1 + n2 = n.

Assumption 1. Let D1 ⊆ Rn1 and D2 ⊆ Rn2 be domains,
and let y∗ ∈ D1, D = {(y, z) ∈ Rn : y ∈ D1, z ∈ D2},
D∗ = {x = (y, z) ∈ D : y = y∗}. We suppose that:

A1.1) f0, f1, . . . , fm ∈ C2(D \D∗;Rn);

A1.2) for any compact D̃1 ⊂ D1, the functions fi, Lfjfi,

LflLfjfi ∈ C(D;Rn) are bounded for all y ∈ D̃1,
z ∈ D2, i, j, l ∈ {0, . . . ,m};

A1.3) if x(t)∈D, t∈I=[t0, t1) is a solution of (2) such that
inf
t∈I

dist(y(t), ∂D1)>0 then inf
t∈I

dist(z(t), ∂D2)>0.

Here dist(ξ,X) denotes the Euclidian distance between
a point ξ∈Rnk and a set X⊂Rnk . If both D2⊂Rn2 and
z(t)∈D2, t∈I, are unbounded, we will follow the conven-
tion that inft∈I dist(z(t), ∂D2) = 0. Note that A1.3) is
a reformulation of the standard z-extendability assump-
tion in partial stability theory (see, e.g., Rumyantsev and
Oziraner (1987)). For the case D2=Rn2 , this assumption
means that z(t) cannot escape to infinity in finite time
whenever y(t) remains bounded. The above assumption is
usually satisfied in well-posed practical problems without
blow-up of solutions.
The first main result of the paper is as follows.

Theorem 1. Let D1 ⊆ Rn1 , D2 ⊆ Rn2 be such that
Assumption 1 is satisfied, y∗ ∈ D1, and let there exist a
function V (x) ∈ C2(D) such that the following conditions
hold for all x = (y, z) ∈ D:

1.1) α1(‖y − y∗‖) ≤ V (x) ≤ α2(‖y − y∗‖),
1.2) Lf̄V (x) ≤ −α3(‖y − y∗‖).

Here f̄(x) = f0(x) +
∑

i<j [fi, fj ](x)νij is the right-hand

side of system (3), and α1, α2, α3 ∈ K.
Then D∗ = {x = (y, z) ∈ D : y = y∗} is practically
y-asymptotically stable for (2) with the initial conditions
from the set D0 = {(y, z) ∈ Rn : ‖y − y∗‖ ≤ δ, z ∈ D2},
where δ ∈

(
0, α−1

2

(
α1(dist(y

∗, ∂D1))
))

.

The proof of Theorem 1 is in Appendix A. Note that the
assumptions of Theorem 1 are more general than those
used in Grushkovskaya et al. (2018b), so that the proof of
this result extends the approaches of Grushkovskaya et al.
(2018b) to a broader class of systems.
The next results follow from the proof of Theorem 1.

Corollary 1. If the conditions of Theorem 1 hold with 1.1)
replaced by α1(‖y − y∗‖) ≤ V (x) ≤ α̃2(‖x − x∗‖), x∗ =
(y∗, z∗), z∗ ∈ D2, where α̃2 ∈ K, then the set D∗ is
practically y-attractive in D0 for system (2) provided that

there exist δ > 0, cδ ∈
(
0, α1

(
dist(y∗, ∂D1)

))
such that

α2(‖x− x∗‖) ≤ cδ for all x ∈ D0.

Corollary 2. If the conditions of Theorem 1 hold with the
function V depending on the y-variable only, then the
assertion of Theorem 1 holds even if the z-components of
the functions from A1.2) are unbounded.

Remark 1. Under some additional assumptions on the
function V and the vector fields of system (2), it is possible
to state classical (instead of practical) asymptotical stabil-
ity conditions and to describe the decay rate of solutions
of system (2), as it was done in (Grushkovskaya et al.
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1.1 Notations and definitions

Consider the system

ẋ = fε(t, x), x ∈ Rn, t ≥ 0, (1)

where f : R+ × Rn → Rn, and ε > 0 is a parameter.
We will split the components of the state vector x as
x = (y�, z�)� ∈ Rn with y ∈ Rn1 , z ∈ Rn2 , n1 + n2 = n.
With a slight abuse of notations, the column x will be also
denoted as x = (y, z). Throughout the text, Bδ(x

∗) and

Bδ(x∗) = Bδ(x
∗) ∪ ∂Bδ(x

∗) denote the δ-neighborhood of
an x∗∈Rn and its closure, respectively. Notation ϕ ∈ K
means that a function ϕ belongs to the class K, i.e.
ϕ : R+ → R+ is a continuous strictly increasing function,
ϕ(0) = 0. For f, g : Rn → Rn, x ∈ Rn, we denote

the directional derivative as Lgf(x) = lim
s→0

f(x+sg(x))−f(x)
s ,

and [f, g](x) = Lfg(x) − Lgf(x) is the Lie bracket. We
will use the following definition, which extends the notion
of partial asymptotic stability (Rumyantsev and Oziraner
(1987); Vorotnikov (2012); Zuyev (2003)) to systems with
parameters of the form (1).

Definition 1. For y∗ ∈ Rn1 , the set D∗ = {x = (y, z) ∈
Rn : y = y∗} is practically uniformly y-asymptotically
stable for system (1), if it is:
− practically uniformly y-stable for system (1), i.e., for
every ρ > 0, there exist δ > 0, ε̄ > 0 such that the following
property holds for all t0 ≥ 0, z(t0) ∈ Rn2 , ε ∈ (0, ε̄):

if y(t0) ∈ Bδ(y
∗) then y(t) ∈ Bρ(y

∗) for all t ∈ [t0,∞);

− practically uniformly y-attractive for system (1), i.e., for
some δ>0, for every ρ>0, there are t1≥0, ε̄>0 such that the
following property holds for all t0≥0, z(t0) ∈ Rn2 , ε∈(0, ε̄):
if y(t0) ∈ Bδ(y

∗) then y(t) ∈ Bρ(y
∗) for all t ∈ [t0+t1,∞).

If the attractivity property holds for any δ̂>0, then y∗

is called to be semi-globally practically uniformly y-
asymptotically stable for system (1). For systems inde-
pendent of ε, we omit the terms “practically” and “semi”.
In case n1 = n, n2 = 0, the above definition coincides
with a well-known definition of practical asymptotic sta-
bility (Moreau and Aeyels (2000); Dürr et al. (2013)). Up
to our best knowledge, the proposed definition of practical
partial stability is introduced here for the first time.

2. MAIN RESULTS

2.1 Lie bracket approximation & partial stability

In this section, we extend the Lie bracket approxima-
tion approach to partially asymptotically stable systems.
Namely, we consider the system

ẋ = f0(x) +

m∑
i=1

fi(x)ui, x ∈ Rn, (2)

where ui=
1√
ε
wi

(
t
ε

)
, wi

(
t
ε

)
are ε-periodic continuous

functions with some ε>0, and
∫ ε

0
wi

(
t
ε

)
dt=0. We assume

that there exists aW>0 such that max
1≤i≤m,0≤t≤ε

wi

(
t
ε

)
≤W for each ε>0.

Consider also the so-called Lie bracket system

˙̄x = f0(x̄) +

m∑
i<j,i,j=1

[fi, fj ](x̄)νij , x̄ ∈ Rn, (3)

where νij = 1
ε2

∫ ε

0

∫ τ

0
wj

(
τ
ε

)
wi

(
s
ε

)
dsdτ . Denote x =

(y, z), x̄ = (ȳ, z̄), y, ȳ ∈ Rn1 , z, z̄ ∈ Rn2 , n1 + n2 = n.

Assumption 1. Let D1 ⊆ Rn1 and D2 ⊆ Rn2 be domains,
and let y∗ ∈ D1, D = {(y, z) ∈ Rn : y ∈ D1, z ∈ D2},
D∗ = {x = (y, z) ∈ D : y = y∗}. We suppose that:

A1.1) f0, f1, . . . , fm ∈ C2(D \D∗;Rn);

A1.2) for any compact D̃1 ⊂ D1, the functions fi, Lfjfi,

LflLfjfi ∈ C(D;Rn) are bounded for all y ∈ D̃1,
z ∈ D2, i, j, l ∈ {0, . . . ,m};

A1.3) if x(t)∈D, t∈I=[t0, t1) is a solution of (2) such that
inf
t∈I

dist(y(t), ∂D1)>0 then inf
t∈I

dist(z(t), ∂D2)>0.

Here dist(ξ,X) denotes the Euclidian distance between
a point ξ∈Rnk and a set X⊂Rnk . If both D2⊂Rn2 and
z(t)∈D2, t∈I, are unbounded, we will follow the conven-
tion that inft∈I dist(z(t), ∂D2) = 0. Note that A1.3) is
a reformulation of the standard z-extendability assump-
tion in partial stability theory (see, e.g., Rumyantsev and
Oziraner (1987)). For the case D2=Rn2 , this assumption
means that z(t) cannot escape to infinity in finite time
whenever y(t) remains bounded. The above assumption is
usually satisfied in well-posed practical problems without
blow-up of solutions.
The first main result of the paper is as follows.

Theorem 1. Let D1 ⊆ Rn1 , D2 ⊆ Rn2 be such that
Assumption 1 is satisfied, y∗ ∈ D1, and let there exist a
function V (x) ∈ C2(D) such that the following conditions
hold for all x = (y, z) ∈ D:

1.1) α1(‖y − y∗‖) ≤ V (x) ≤ α2(‖y − y∗‖),
1.2) Lf̄V (x) ≤ −α3(‖y − y∗‖).

Here f̄(x) = f0(x) +
∑

i<j [fi, fj ](x)νij is the right-hand

side of system (3), and α1, α2, α3 ∈ K.
Then D∗ = {x = (y, z) ∈ D : y = y∗} is practically
y-asymptotically stable for (2) with the initial conditions
from the set D0 = {(y, z) ∈ Rn : ‖y − y∗‖ ≤ δ, z ∈ D2},
where δ ∈

(
0, α−1

2

(
α1(dist(y

∗, ∂D1))
))

.

The proof of Theorem 1 is in Appendix A. Note that the
assumptions of Theorem 1 are more general than those
used in Grushkovskaya et al. (2018b), so that the proof of
this result extends the approaches of Grushkovskaya et al.
(2018b) to a broader class of systems.
The next results follow from the proof of Theorem 1.

Corollary 1. If the conditions of Theorem 1 hold with 1.1)
replaced by α1(‖y − y∗‖) ≤ V (x) ≤ α̃2(‖x − x∗‖), x∗ =
(y∗, z∗), z∗ ∈ D2, where α̃2 ∈ K, then the set D∗ is
practically y-attractive in D0 for system (2) provided that

there exist δ > 0, cδ ∈
(
0, α1

(
dist(y∗, ∂D1)

))
such that

α2(‖x− x∗‖) ≤ cδ for all x ∈ D0.

Corollary 2. If the conditions of Theorem 1 hold with the
function V depending on the y-variable only, then the
assertion of Theorem 1 holds even if the z-components of
the functions from A1.2) are unbounded.

Remark 1. Under some additional assumptions on the
function V and the vector fields of system (2), it is possible
to state classical (instead of practical) asymptotical stabil-
ity conditions and to describe the decay rate of solutions
of system (2), as it was done in (Grushkovskaya et al.
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(2018b)) by extending the techniques of (Grushkovskaya
and Zuyev (2014); Zuyev and Grushkovskaya (2017)). We
leave these studies for future work.

2.2 Partial stabilization of control-affine extremum seeking
systems

In this section, we apply the proposed results to extremum
seeking problems in which the goal is to optimize the
system performance with respect to certain part of vari-
ables. Namely, we assume that the set of minima of a
cost function J : Rn → R is a hyperplane of the form
argmin J = {x = (y, z) : y = y∗}, where the value of
y∗ ∈ Rn1 is a priori unknown for the control design. Thus
we arrive to the following problem statement.

Problem 1. Given a cost function J :Rn → R such that
argmin J={x=(y, z)∈Rn : y=y∗} with some y∗∈Rn1 . The
goal is to construct a control u = ũ(t, J(x)) such that the
set argmin J is practically y-asymptotically stable for (2).

Such kind of problems appears, for example, if the cost J
depends on the y-variables only, or if J can be represented
as J(x) = J∗(y − y∗)φ(z), where J∗(η) is a positive
definite function, and φ(z) > 0 for all z ∈ Rn2 . The
above task is relevant to the output stabilization problem,
if the stabilization with respect to all variables is not
possible (or not required for control purposes), and to
synchronization problems, where the goal y = y∗ describes
synchronous motion of a multi-agent system (e.g., system
of pendulums) while the z-variables stand for redundant
degrees of freedom. Let us define the controls ui as

ui =
1√
ε

(
gi(J(x))wi

( t

ε

)
+gi+m(J(x))wi+m

( t

ε

))
, (4)

where ε > 0, wi, wi+n satisfy the assumptions of section 2.1
and are such that νij = 0 whenever j �= i+m, νii+m = 1,
and the functions gi, gi+m satisfy the relation

gi+m(z) = −γigi(z)

∫
dz

gi(z)2
, γi > 0, i = 1,m. (5)

Theorem 2. Let D1 ⊆ Rn1 , D2 ⊆ Rn2 be convex domains
such that Assumption 1 is satisfied, y∗ ∈ D1, and let the
function V (x) = J(x)− J(y∗, z) satisfies the conditions of
Theorem 1 with f̄(x) = f0(x)−

∑m
i=1 γifi(x)f

�
i (x)∇J(x).

Then the set D∗ = {x = (y, z) ∈ D : y = y∗} is
practically y-asymptotically stable in D0 for system (2)
with the controls ui given by (4)–(5).

Proof. Straightforward calculations show that the Lie
bracket system for (2) with the controls ui given by (4)–(5)
has the form ˙̄x = f0(x̄)−

∑m
i=1 γifi(x̄)f

�
i (x̄)∇J(x̄). Then

the conditions of Theorem 1 are satisfied.

The assumptions on the cost function J required in The-
orem 2 are common in extremum seeking studies for en-
suring the stability with respect to all variables (cf. Tan
et al. (2006); Guay and Atta (2018)). They can be relaxed
for certain classes of systems, as in the next result.

Theorem 3. Let a control system be of the form

ẏ =

n1∑
i=1

f̃i(x)ui, ż = h(x, u), (6)

where the vector fields f̃i : Rn → Rn and h : Rn ×
Rn1 → Rn2 satisfy A1.1)–A1.2). Assume that the vector

fields f̃i(x) = (f̃i1(x) . . . f̃in1
(x))�, i = 1, 2, . . . , n1, are

linearly independent at each x ∈ D, and the cost function
J = J(y) : D1 ⊂ Rn1 → R satisfies the inequalities

α1(‖y − y∗‖) ≤ J(y)− J(y∗) ≤ α2(‖y − y∗‖),
‖∇J(y)‖ ≤ −α3(‖y − y∗‖)

with some α1, α2, α3 ∈ K.
Then the set D∗ is practically y-asymptotically stable for
system (6) with the controls ui given by (4)–(5).

Sketch of the proof. Computing the time-derivative of
J along the trajectories of the corresponding Lie bracket

system for (6), we get J̇(ȳ) = −
∑n1

i,j=1 γi

(
∂J(ȳ)
∂ȳj

f̃ij(x̄)
)2

.

In general, J̇(ȳ) does not satisfy condition 1.2). However, it

is easy to see that J̇(ȳ) = 0 if and only if ∇J(ȳ)F (x̄) = 0,

where F (x̄) =




f̃11(x̄) . . . f̃n11(x̄)
...

. . .
...

f̃1n1(x̄) . . . f̃n1n1(x̄)


 .

Under the conditions of Theorem 3, the matrix F (x̄) is

nonsingular for all x̄, which means J̇(ȳ) = 0 if and only
if ȳ = y∗. Then the practical asymptotic stability can be
proved similar to Theorem 1.

3. EXAMPLES

In this section, we consider several examples illustrating
the obtained results and some possible extensions. In all
the examples, we use extremum seeking controls u =
(u1, u2)

� with

u1 = γ1

√
π

ε

(
g1(J(x)) cos

2πt

ε
+ g3(J(x)) sin

2πt

ε

)
,

u2 = γ2

√
π

ε

(
g2(J(x)) sin

2πt

ε
− g4(J(x)) cos

2πt

ε

)
,

(7)

where γ1, γ2 > 0, and the functions gi, gi+2 satisfy (5),
i = 1, 2. We exploit two types of such functions:

gi(z) = sin z, gi+2 = cos z; (8)

gi(z) =

√
1−e−z/4

1+ez/4
sin(ez/4 + 2 ln(ez/4−1)),

gi+2(z) =

√
1−e−z/4

1+ez/4
cos(ez/4 + 2 ln(ez/4−1)), z > 0,

(9)

which were introduced in (Scheinker and Krstić (2014))
and (Grushkovskaya et al. (2018b)), respectively. Note
that our reason for this is not to compare the performance
of these control strategies, but just to illustrate different
possibilities for control design.

3.1 Partial stabilization of the Brockett integrator

As the first example, we consider Problem 1 with the
extremum seeking system described by the equations

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2, (10)

and the two cost functions:

J1(x1, x2) = (x1 − 3)2 + (x2 − 1)2, (11)

J2(x1, x3) = (x1 − 4)2 + x2
3. (12)

For the cost function J1(x1, x2), one can easily see that
the assumptions of Theorem 3 are satisfied since the
vector fields f̃1 = (1, 0)� and f̃2 = (0, 1)� are linearly

independent in R2. For J2(x1, x3), f̃1 = (1, x2)
� and
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Fig. 1. Projections of the trajectories of system (10) on the (x1, x2)-plane (top) and the graph of x3(t) (bottom)
with controls (7),(8) (plot a)) and (7),(9) (plots b),c)). In the plots a),b), the cost function is given by (11);
x(0) = (0, 0, 2)�, y∗ = (3, 1)�. In the plot c), the cost function is given by (12); x(0) = (1, 1, 2)�, y∗ = (4, 0)�.

Fig. 2. Projections of the trajectories of system (13) on the (x1, x2)-plane (top) and graph of x3(t) (bottom) with
controls (7),(8) (plot a)) and (7),(9) (plots b),c)), J(x) = x2

1 + x2
2 (a),b)) and J(x) = x2

1 + x2
2 + x2

3 (c)). Here
A1 = 1, A2 = 2, A3 = 3, ε = 0.25, x(0) = (2, 1, 1)�, y∗ = (0, 0)�.

f̃2 = (0,−x1)
� are linearly independent if x1 �= 0 which

can be achieved if x1(0)x
∗
1 > 0 and if ε is small enough.

Note that the boundedness of the vector fields of (10) holds
only for controls (7),(9), since in this case it can be proved
that x1(t), x2(t) belongs to a compact set for all t ≥ 0.
Fig. 1,a) illustrates the behavior of trajectories of sys-
tem (10) with the cost function (11) and controls (7),(8),
ε = 0.75, γ1 = γ2 = 2. In this case, we observe the practical
asymptotic stability property. We expect that the use of
controls (7),(9) yields the classical asymptotic stability
result, similarly to the one obtained in Grushkovskaya
et al. (2018b). This property is illustrated in Fig. 1,b).
For the cost function (12), the behavior of trajectories of
system (10) with controls (7),(9) is shown in Fig. 1,c).

3.2 Partial stabilization of a rotating rigid body

As another example, consider the Euler equations describ-
ing the rotational motion of a rigid body:

ẋ1 = A3−A2

A1
x2x3 + u1 , ẋ2 = A1−A3

A2
x1x3 + u2,

ẋ3 = A2−A1

A3
x1x2.

(13)

Here x1, x2, x3 represent the principal components of the
angular velocity vector, A1, A2, A3 > 0 are the main

central moments of inertia, and u1, u2 are the control
torques. Our goal is to stabilize system (13) along the x3-
axis, i.e. to x∗

1 = x∗
2 = 0, assuming that the cost function

is J(x) = x2
1 + x2

2. As in the previous example, we use
controls (7), (8), and (9). Then the Lie bracket system
for (13) takes the form

˙̄x1 = A3−A2

A1
x̄2x̄3 − 2x̄1, ˙̄x2 = A1−A3

A2
x̄1x̄3 − 2x̄2,

˙̄x3 = A2−A1

A3
x̄1x̄2. (14)

Using the Lyapunov function V (x̄) = A1x̄
2
1+A2x̄

2
2+A3x̄

2
3,

one can show that V̇ (x̄) = −4(A1x
2
1+A2x

2
2). Note that in

this case condition 1.1) of Theorem 1 is not satisfied; how-
ever, using Corollary 1 we can prove the practical asymp-
totic attractivity. Furthermore, if max{A1, A2} < A3 (or
min{A1, A2} > A3), then the conditions of Theorem 1
can be ensured with V (x) = A1

A3−A2
x2
1 + A2

A3−A1
x2
2 (or

V (x) = A1

A2−A2
x2
1 +

A2

A1−A3
x2
2) (see Fig. 2,a) and b)).

The proposed techniques for generating partially stabiliz-
ing gradient-free controllers can also be used in related
problems, e.g., for partial output stabilization of control
systems. In particular, assume that in the considered ex-
ample only the measurements of J(x) = x2

1 + x2
2 + x2

3 are
available. Then Corollary 1 implies that the controls (7),
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a) b) c)

Fig. 1. Projections of the trajectories of system (10) on the (x1, x2)-plane (top) and the graph of x3(t) (bottom)
with controls (7),(8) (plot a)) and (7),(9) (plots b),c)). In the plots a),b), the cost function is given by (11);
x(0) = (0, 0, 2)�, y∗ = (3, 1)�. In the plot c), the cost function is given by (12); x(0) = (1, 1, 2)�, y∗ = (4, 0)�.

Fig. 2. Projections of the trajectories of system (13) on the (x1, x2)-plane (top) and graph of x3(t) (bottom) with
controls (7),(8) (plot a)) and (7),(9) (plots b),c)), J(x) = x2

1 + x2
2 (a),b)) and J(x) = x2

1 + x2
2 + x2

3 (c)). Here
A1 = 1, A2 = 2, A3 = 3, ε = 0.25, x(0) = (2, 1, 1)�, y∗ = (0, 0)�.

f̃2 = (0,−x1)
� are linearly independent if x1 �= 0 which

can be achieved if x1(0)x
∗
1 > 0 and if ε is small enough.

Note that the boundedness of the vector fields of (10) holds
only for controls (7),(9), since in this case it can be proved
that x1(t), x2(t) belongs to a compact set for all t ≥ 0.
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ε = 0.75, γ1 = γ2 = 2. In this case, we observe the practical
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A1
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A2
x1x3 + u2,

ẋ3 = A2−A1

A3
x1x2.

(13)
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central moments of inertia, and u1, u2 are the control
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A3
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2
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2
2+A3x̄

2
3,
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2
1+A2x

2
2). Note that in
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x2
1 + A2

A3−A1
x2
2 (or

V (x) = A1

A2−A2
x2
1 +

A2

A1−A3
x2
2) (see Fig. 2,a) and b)).

The proposed techniques for generating partially stabiliz-
ing gradient-free controllers can also be used in related
problems, e.g., for partial output stabilization of control
systems. In particular, assume that in the considered ex-
ample only the measurements of J(x) = x2

1 + x2
2 + x2

3 are
available. Then Corollary 1 implies that the controls (7),
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(9) still can be used for steering system (13) to a neigh-
borhood of the set {x∈R3 : x1=x2=0} (see Fig. 2,c)).

4. CONCLUSIONS

In this paper, we have addressed the problem of extremum
seeking with respect to a part of variables. To obtain
practical partial asymptotic stability conditions, we have
extended the Lie bracket approximation approach and
the methods proposed in Grushkovskaya et al. (2018b) to
control-affine systems, whose averaged system has only a
partially asymptotically stable equilibrium. The obtained
results have been exploited for the design of extremum
seeking controllers. Besides, we have illustrated applica-
tions of the proposed techniques to partial output stabi-
lization on the rotating rigid body example. In future work,
we expect to derive classical (instead of practical) partial
asymptotic stability conditions and relax assumptions on
the Lyapunov function and the cost. Furthermore, we
expect that the proposed approach will be of particular
use for synchronization tasks.
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Appendix A. PROOF OF THEOREM 1

Without loss of generality, assume t0 = 0.

For any δ ∈
(
0, α−1

2

(
α1(dist(y

∗, ∂D1))
))

, let cδ = α2(δ),

D0 = {(y, z) ∈ Rn : ‖y − y∗‖ ≤ δ, z ∈ D2}. Then
D0 ⊆ D′ = {x : z ∈ D2, V (x) ≤ cδ} ⊂ D. From
Assumption 1, we define

M0 = sup
x∈D′

‖f0(x)‖, M1 = sup
x∈D′,1≤i≤m

‖fi(x)‖

M2 = sup
x∈D′,0≤i,j≤m

‖Lfjfi(x)‖,

M3 = sup
x∈D′,1≤i,j≤m

0≤l≤m

‖LflLfjfi(x)‖.
(A.1)

For any ρ > 0, take δ′ ∈
(
0, α−1

2

(
α1(ρ)

))
and put

ρ′ = α−1
1

(
α2(δ

′)
)
,

d = min
{
ρ− ρ′, dist(y∗, ∂D1)− α−1

1 (cδ)
}
> 0.

By the conditions of Theorem 1, if z(0) = z0 ∈ D2 then
z(t) ∈ D2 for all t ≥ 0. Thus, to ensure that the solutions
x(t) with initial conditions x(0) = x0 ∈ D′ are well-defined
in D for t ∈ [0, ε], it suffices to define ε0 as the positive
root of the equation M0ε +M1W

√
ε = d. Then, for each

ε ∈ (0, ε0), x
0 ∈ D′, and for all t ∈ [0, ε],

‖y(t)−y∗‖≤tM0 +
tM1W√

ε
+δ′<d+δ′<dist(y∗, ∂D1).

The above choice of ρ′, d implies the following properties:

V (x0)≤α2(δ
′)⇒‖y0−y∗‖<ρ′⇒‖y(t)−y∗‖<ρ, t ∈ [0, ε].

(A.2)
To investigate the behavior of V (x) along the trajectories
of system (2), consider the Volterra series expansion of
the solution x(t) of system (2) with an arbitrary initial
condition x(0) = x0 from D′ on the interval t ∈ [0, ε]:

x(t) = x0 + tf0(x
0) +

1√
ε

m∑
i=1

fi(x
0)

∫ t

0

wi

(τ
ε

)
dτ

+
1

ε

∑
i<j

[fi, fj ](x
0)

∫ t

0

∫ τ

0

(
wj

(τ
ε

)
wi

(s
ε

)

− wi

(τ
ε

)
wj

(s
ε

))
dsdτ +R(t),

(A.3)

where

R(t) =

∫ t

0

∫ τ

0

Lf0f0(x(s))dsdτ

+
1√
ε

m∑
i=1

∫ t

0

∫ τ

0

(
Lfif0(x(s))wi

(s
ε

)
+ Lf0fi(x(s))

× wi

(τ
ε

))
dsdτ +

1

ε

m∑
i=1

Lfifi(x
0)

∫ t

0

∫ τ

0

wi

(τ
ε

)

× wi

(s
ε

)
dsdτ +

1

ε

m∑
i,j=1

∫ t

0

∫ τ

0

∫ s

0

Lf0Lfjfi(x(p))wi

(τ
ε

)

× wj

(s
ε

)
dpdsdτ +

1

ε3/2

m∑
i,j,l=1

∫ t

0

∫ τ

0

∫ s

0

LflLfjfi(x(p))

× wi

(τ
ε

)
wj

(s
ε

)
wl

(p
ε

)
dpdsdτ.

In particular, for t = ε, representation (A.3) takes the form

x(ε) = x0 + ε
(
f0(x

0) +
∑
i<j

[fi, fj ](x
0)νij

)
+R(ε), (A.4)

and from (A.1) the remainder can be estimated as

‖R(ε)‖≤ε3/2
(
M2 +

W 2m2M3

6

)(√
ε+Wm

)
=σε3/2,

where σ =
(
M2+

W 2m2M3

6

)(√
ε+Wm

)
is monotone with

respect to ε. Next, we apply Taylor’s formula to V (x(ε)):

V (x(ε)) = V (x0) +
(
∇V (x0), x(ε)− x0

)

+
1

2

m∑
i,j=1

∂2V (x)

∂xi∂xj

∣∣∣
x=x0+θ(x(ε)−x0

(xi(ε)− x0
i )(xj(ε)− x0

j ),

with some θ ∈ (0, 1). Let µ1 = supx∈D′

∥∥∇V (x)
∥∥,

µ2 = 2 supx∈D′

∥∥∥∂2V (x)
∂x2

∥∥∥(M0 + M2

∑
i<j νij +

√
εσ

)2
.

Then, from (A.4) and (A.1), we conclude that

V (x(ε)) ≤ V (x0) + εLf̄V (x0) + ε3/2σµ1 + ε2µ2.

Recall that Lf̄V (x) ≤ −α3(‖y− y∗‖) in D. Thus, if ‖y0 −
y∗‖ ≥ ρ′ then

V (x(ε)) ≤ V (x0)− εα3(ρ
′) + ε3/2σµ1 + ε2µ2.

Let λ ∈ (0, α3(ρ
′)) and let ε1 be the smallest positive root

of the equation√
εσµ1 + ε2µ2 = α3(ρ

′)− λ.

Then
V (x(ε)) ≤ V (x0)− ελ < V (x0), (A.5)

provided that ‖y0 − y∗‖ ≥ ρ′. The last inequality shows
that x(ε) ∈ D′, and the solutions x(t) of system (2) with
the initial conditions x(0) = x0 ∈ D0 ⊂ D′ are well-defined
in D for t ∈ [0, 2ε]. Furthermore, we conclude that there
exists an N ∈ N ∪ {0} such that

‖y(jε)− y∗‖ ≥ ρ′ for all j = 0, . . . , N − 1,

and ‖y(Nε)− y∗‖ ≤ ρ′.
(A.6)

Indeed, assume ‖y(jε) − y∗‖ ≥ ρ′ for all j ∈ N ∪ {0}.
Then repeating inequality (A.5), we get V (x(Nε)) ≤
V (x0)−Nελ. With an increase of N , the right-hand side of
the above inequality becomes negative which contradicts
V (x(Nε))≥0. Thus, there exists an N ∈ N ∪ {0} such
that (A.6) holds.
Estimate (A.2) implies that ‖y

(
(N + 1)ε

)
− y∗‖ ≤ ρ. If

‖y
(
(N +1)ε

)
− y∗‖ ≥ ρ′, we apply (A.5) again and obtain

V
(
(N + 2)ε

)
< V

(
(N + 1)ε

)
.

Otherwise we have ‖y
(
(N + 2)ε

)
− y∗‖ ≤ ρ and repeat

the procedure. Taking ε̄ = min{ε0, ε1}, we conclude that,
for any ε ∈ (0, ε̄), the solutions of system (2) satisfy the
following property:

if ‖y(0)− y∗‖ ≤ δ and z(0) ∈ D2 then there exists

a t1 > 0 such that ‖y(t)− y∗‖ ≤ ρ for all t ≥ t1.

Since ρ is assumed to be an arbitrary positive number,
the practical y-attractivity has been proved. To prove the
practical y-stability property, for any ρ > 0 we take the
δ′ defined as before. Then, for any y0 ∈ Bδ′(y

∗) ⊂ Bρ(y
∗)

and z0 ∈ D2, V (x0) ≤ α2(δ
′). Summarizing (A.2),(A.5)

and the previous argumentation, we conclude with the
stability property.
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and put
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,

d = min
{
ρ− ρ′, dist(y∗, ∂D1)− α−1

1 (cδ)
}
> 0.

By the conditions of Theorem 1, if z(0) = z0 ∈ D2 then
z(t) ∈ D2 for all t ≥ 0. Thus, to ensure that the solutions
x(t) with initial conditions x(0) = x0 ∈ D′ are well-defined
in D for t ∈ [0, ε], it suffices to define ε0 as the positive
root of the equation M0ε +M1W
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ε = d. Then, for each
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0 ∈ D′, and for all t ∈ [0, ε],

‖y(t)−y∗‖≤tM0 +
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To investigate the behavior of V (x) along the trajectories
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the solution x(t) of system (2) with an arbitrary initial
condition x(0) = x0 from D′ on the interval t ∈ [0, ε]:
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V (x(ε)) = V (x0) +
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∇V (x0), x(ε)− x0

)

+
1
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x=x0+θ(x(ε)−x0
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∥∥∥∂2V (x)
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∥∥∥(M0 + M2

∑
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√
εσ

)2
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Then, from (A.4) and (A.1), we conclude that

V (x(ε)) ≤ V (x0) + εLf̄V (x0) + ε3/2σµ1 + ε2µ2.

Recall that Lf̄V (x) ≤ −α3(‖y− y∗‖) in D. Thus, if ‖y0 −
y∗‖ ≥ ρ′ then

V (x(ε)) ≤ V (x0)− εα3(ρ
′) + ε3/2σµ1 + ε2µ2.
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′)) and let ε1 be the smallest positive root

of the equation√
εσµ1 + ε2µ2 = α3(ρ

′)− λ.

Then
V (x(ε)) ≤ V (x0)− ελ < V (x0), (A.5)

provided that ‖y0 − y∗‖ ≥ ρ′. The last inequality shows
that x(ε) ∈ D′, and the solutions x(t) of system (2) with
the initial conditions x(0) = x0 ∈ D0 ⊂ D′ are well-defined
in D for t ∈ [0, 2ε]. Furthermore, we conclude that there
exists an N ∈ N ∪ {0} such that

‖y(jε)− y∗‖ ≥ ρ′ for all j = 0, . . . , N − 1,

and ‖y(Nε)− y∗‖ ≤ ρ′.
(A.6)

Indeed, assume ‖y(jε) − y∗‖ ≥ ρ′ for all j ∈ N ∪ {0}.
Then repeating inequality (A.5), we get V (x(Nε)) ≤
V (x0)−Nελ. With an increase of N , the right-hand side of
the above inequality becomes negative which contradicts
V (x(Nε))≥0. Thus, there exists an N ∈ N ∪ {0} such
that (A.6) holds.
Estimate (A.2) implies that ‖y

(
(N + 1)ε

)
− y∗‖ ≤ ρ. If

‖y
(
(N +1)ε

)
− y∗‖ ≥ ρ′, we apply (A.5) again and obtain

V
(
(N + 2)ε

)
< V

(
(N + 1)ε

)
.

Otherwise we have ‖y
(
(N + 2)ε

)
− y∗‖ ≤ ρ and repeat

the procedure. Taking ε̄ = min{ε0, ε1}, we conclude that,
for any ε ∈ (0, ε̄), the solutions of system (2) satisfy the
following property:

if ‖y(0)− y∗‖ ≤ δ and z(0) ∈ D2 then there exists

a t1 > 0 such that ‖y(t)− y∗‖ ≤ ρ for all t ≥ t1.

Since ρ is assumed to be an arbitrary positive number,
the practical y-attractivity has been proved. To prove the
practical y-stability property, for any ρ > 0 we take the
δ′ defined as before. Then, for any y0 ∈ Bδ′(y

∗) ⊂ Bρ(y
∗)

and z0 ∈ D2, V (x0) ≤ α2(δ
′). Summarizing (A.2),(A.5)

and the previous argumentation, we conclude with the
stability property.
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