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Casilla 4059, Valparaiso, Chile

E-mail: joaquim.gomis@ub.edu, axel.kleinschmidt@aei.mpg.de,

jakob.palmkvist@chalmers.se, patricio.salgado@pucv.cl

Abstract: We construct finite- and infinite-dimensional non-relativistic extensions of the

Newton-Hooke and Carroll (A)dS algebras using the algebra expansion method, starting

from the (anti-)de Sitter relativistic algebra in D dimensions. These algebras are also

shown to be embedded in different affine Kac-Moody algebras. In the three-dimensional

case, we construct Chern-Simons actions invariant under these symmetries. This leads

to a sequence of non-relativistic gravity theories, where the simplest examples correspond

to extended Newton-Hooke and extended (post-)Newtonian gravity together with their

Carrollian counterparts.

Keywords: Classical Theories of Gravity, Space-Time Symmetries, Global Symmetries,

p-branes

ArXiv ePrint: 1912.07564

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP02(2020)009

mailto:joaquim.gomis@ub.edu
mailto:axel.kleinschmidt@aei.mpg.de
mailto:jakob.palmkvist@chalmers.se
mailto:patricio.salgado@pucv.cl
https://arxiv.org/abs/1912.07564
https://doi.org/10.1007/JHEP02(2020)009


J
H
E
P
0
2
(
2
0
2
0
)
0
0
9

Contents

1 Introduction 1

2 Expansions of the (A)dS algebra 3

2.1 Extended Newton-Hooke algebras 3

2.2 Extended Carroll (A)dS algebras 7

3 Newton-Hooke and Carrollian affine algebra 9

3.1 Newton-Hooke affine algebras 10

3.2 (A)dS Carrollian affine algebras 13

4 Chern-Simons non-relativistic gravities 14

4.1 Extended Newton-Hooke gravities 15

4.2 Extended Carrollian gravities 20

5 Conclusions and outlook 22

A Further generalisations 24

A.1 Non-relativistic expansions of the Maxwell algebra 25

A.2 Non-relativistic brane expansions of (A)dS 26

1 Introduction

Non-relativistic symmetries are usually obtained from relativistic ones by means of Lie

algebra contractions. The most well-known example is the Wigner-Inönü contraction of

the Poincaré algebra that leads to the Galilei algebra [1] by sending the speed of light to

infinity. Lie algebra contractions necessarily preserve the number of generators but can

alter the cohomology of the Lie algebra, thus allowing for different central extensions like

the Bargmann extension of the Galilei algebra [2], which is crucial when taking the limit

of the relativistic particle action to the non-relativistic one [3, 4].

In recent years, more general constructions of non-relativistic symmetry algebras from

relativistic ones have been explored. One example is given by the method of Lie algebra

expansions [5–7] applied to the Poincaré algebra [8]. This method provides an infinite se-

quence of non-relativistic algebras extending the Galilei algebra with an increasing number

of generators, which have been used in [8–11] to construct various gravitational actions.

The Lie algebra expansion method can also be related to a sequence of post-Newtonian

limits as shown in [12], and has also been applied to derive diverse non-relativistic symme-

tries in the context of (super-)gravity [13–17]. Another method is based on a Galilean free

Lie algebra [18] that can be thought as the most general extension of the Galilei algebra
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and, upon taking quotients, has a connection to Lie algebra expansions and Kac-Moody

algebras. One interesting conceptual point made in [12] is that the sequence of Lie algebras

naturally comes with a generalisation of Minkowski space with more coordinates and an

extension of the Minkowski metric. Using this generalised Minkowski space it is possible to

define particle actions invariant under these extended algebras that naturally incorporate

post-Newtonian corrections in the non-relativistic limit.

In the present article, we study the non-relativistic symmetries obtained by Lie algebra

expansion of the AdS or dS algebra in D space-time dimensions, i.e. so(D−1, 2) or so(D, 1).

This generalises previous constructions to include a cosmological constant and generates

an infinite family of algebras of Newton-Hooke [19, 20] type. By taking the limit of the

cosmological constant to zero one recovers the non-relativistic algebras introduced in [10]

and further studied in [8, 12, 18].

Besides the non-relativistic limit related to Galilean symmetries (c → ∞) we also

consider the case of ultra-relativistic Carrollian limit (c→ 0).1 As is known from [24] the

Carroll algebra can be understood by very specific changes in the commutation relations

and associated changes in the starting point of the algebra expansion procedure. Applying

the expansion procedure then produces an infinite family of Lie algebras associated with

the Carrollian limit. We shall also show how our construction in both cases is related

to affine Kac-Moody algebras, where the role of the expansion parameter is taken by the

spectral (or loop) parameter of the affine algebra.

After the introduction of the infinite family of algebras we consider gravitational models

based on them by focussing on the case of 2+1 space-time dimensions. We construct Chern-

Simons theories based on these algebras since they admit non-degenerate bilinear forms. We

show that the family of algebras systematically generates non-relativistic gravity theories

extended by a cosmological constant, such as extended Newton-Hooke gravity [25, 26], that

reduces to extended Bargmann gravity for Λ→ 0 [27, 28], and post-Newtonian gravity [11].2

Our construction also connects to recent discussions of non-relativistic expansions of

the metric as described in [9, 10, 29–33]. This can be made very precise in the context of

the Chern-Simons formulation and we shall elaborate on this connection in the conclusions.

In an appendix, we generalise the expansion procedure to obtain an infinite family of

extensions of the non-relativistic Maxwell algebra. Moreover, we outline that our method

is not only applicable non-relativistic symmetries corresponding to point particle limits,

but also to extended objects where the D covariant dimensions are split into p + 1 and

D − p − 1 directions for a p-brane [34, 35]. Similar constructions in the case without a

cosmological constant have been considered previously in [8, 24, 36, 37].

Note added. While this manuscript was being finalised, the preprints [38, 39] appeared

on the arXiv that have some overlap with some of our results.

1Work on Carroll symmetries in the context of electrodynamics and brane dynamics can be found for

instance in [21–23].
2In [11] this was called ‘extended gravity’ but in the light of the results of [12] this is better understood

as a post-Newtonian correction.
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2 Expansions of the (A)dS algebra

In this section, we will construct an infinite family of non-relativistic algebras of the

Newton-Hooke and Carroll AdS type. The first members of this family will be given

by the Newton-Hooke algebra in the former case and the Carroll AdS algebra in the latter

(without extensions) [19, 20]. We also obtain an infinite-dimensional algebra that contains

these and other intermediate cases, generalises the one obtained in [8, 10, 18], as quotients.

All our algebras contain a cosmological constant as we start from the AdS algebra.

We will construct the series of non-relativistic algebras by means of Lie algebra ex-

pansions [5–7]. More precisely, we will use the semigroup expansion technique [7] with

semigroup S
(N)
E , which will be defined below.

Our starting point is the (A)dS algebra in D dimensions:

[J̃AB, P̃C ] = 2ηC[BP̃A] , (2.1a)

[J̃AB, J̃CD] = 4η[A[C J̃D]B] , (2.1b)

[P̃A, P̃B] = −ΛJ̃AB , (2.1c)

which denotes in a unified manner so(D− 1, 2) (for Λ < 0) and so(D, 1) (for Λ > 0). Here,

P̃A and J̃AB are the generators of spacetime translations and Lorentz transformations,

respectively. Capital indices run over A = 0, . . . , D−1 and the Minkowski metric has been

chosen to have mostly plus signature.

In order to perform a non-relativistic expansion of the (A)dS algebra, it is convenient

to decompose the relativistic indices in the time and space components, A = (0, a), where

a = 1, . . . , D − 1, and relabel the Lie algebra generators3 as

J̃AB → {J̃0a ≡ G̃a , J̃ab} , P̃A → {P̃0 ≡ H̃ , P̃a} . (2.2)

Then, the commutation relations (2.1) can be rewritten in the form

[G̃a, H̃] = P̃a , (2.3a)

[G̃a, P̃b] = δabH̃ , (2.3b)

[J̃ab, P̃c] = 2δc[bP̃a] , (2.3c)

[G̃a, G̃b] = J̃ab , (2.3d)

[J̃ab, G̃c] = 2δc[bG̃a] , (2.3e)

[J̃ab, J̃cd] = 4δ[a[cJ̃d]b] , (2.3f)

[P̃a, H̃] = ΛG̃a , (2.3g)

[P̃a, P̃b] = −ΛJ̃ab . (2.3h)

We note that the decomposition (2.2) is adapted to point particles in the sense that one

direction — that can be thought of as the world-line direction of the particle — is singled

out. In appendix A.2, we also consider the case of extended objects.

2.1 Extended Newton-Hooke algebras

In order to perform expansions of (A)dS of Newton-Hooke type, we first note that (2.3)

allows for the following subspace decomposition V = V0 ⊕ V1 [8]

V0 = {H̃, J̃ab} , V1 = {P̃a, G̃a} , (2.4)

3Notice this convention is different from the one in [12] where J̃a0 ≡ G̃a was used.
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which satisfies a Z2-graded structure, i.e.,

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 . (2.5)

This decomposition is similar to a symmetric space decomposition. The homogeneous coset

space in the case of AdS is SO(D − 1, 2)/(SO(D − 1)× R) and SO(D, 1)/(SO(D − 1)× R)

in the dS case.

We will consider expansions with the semigroup S
(N)
E = {λ0, . . . , λN+1}, whose multi-

plication law is given by [7]

λi · λj =

{
λi+j if i+ j ≤ N ,

λN+1 if i+ j > N ,
(2.6)

where λN+1 acts as the zero of the semigroup, as it satisfies λN+1 · λi = λi · λN+1 = λN+1

for all λi. This semigroup admits the subset decomposition

S
(N)
0 = s

(N)
0 ∪ {λN+1} , s

(N)
0 =

{
λ2m | m = 0, . . . ,

[
N

2

]}
,

S
(N)
1 = s

(N)
1 ∪ {λN+1} , s

(N)
1 =

{
λ2m+1 | m = 0, . . . ,

[
N − 1

2

]}
,

(2.7)

which is compatible with (2.5) in the sense that

S
(N)
0 · S(N)

0 ⊂ S(N)
0 , S

(N)
0 · S(N)

1 ⊂ S(N)
1 , S

(N)
1 · S(N)

1 ⊂ S(N)
0 , (2.8)

and therefore resonant with the choice of V0 and V1 in (2.4).

Thus, a reduced resonant expanded algebra can be defined as the direct sum{
s
(N)
0 ⊗ V0

}
⊕
{
s
(N)
1 ⊗ V1

}
(2.9)

where the reduction condition in the algebra is implemented by the constraints

λN+1 ⊗ J̃AB = 0 , λN+1 ⊗ P̃A = 0 , (2.10)

which map the zero λN+1 of the semigroup to the zero element in the expanded algebra.

In the following we will show how, for different choices of the semigroup S
(N)
E , the reduc-

tion (2.9) lead to a non-relativistic algebras that generalise the Newton-Hooke symmetry.

The simplest example in our construction corresponds to the expansion with the semi-

group S
(1)
E , which as we will see is equivalent to a non-relativistic contraction of the (A)dS

algebra. In other words, this expansion gives the Newton-Hooke algebras. By setting

N = 1 in (2.6) and (2.9), the generators of the expanded algebra are given by

Jab = λ0 ⊗ J̃ab , Ga = λ1 ⊗ G̃a ,
H = λ0 ⊗ H̃ , Pa = λ1 ⊗ P̃a .

(2.11)

– 4 –



J
H
E
P
0
2
(
2
0
2
0
)
0
0
9

Using the relativistic commutation relations (2.3) together with the reduction condi-

tion (2.10) for the zero element λ2, the commutation relations for the generators (2.11) read

[Ga, H] = Pa , (2.12a)

[Jab, Pc] = 2δc[bPa] , (2.12b)

[Jab, Gc] = 2δc[bGa] , (2.12c)

[Jab, Jcd] = 4δ[a[cJd]b] , (2.12d)

[Pa, H] = ΛGa , (2.12e)

which corresponds to the Newton-Hooke∓ algebra (with Λ ≶ 0) without extensions [19, 20],

this algebra reduces to the Galilei symmetry for Λ = 0. Therefore the use of the semi-

group S
(N)
E will create a family of generalised Newton-Hooke algebras for all the possible

values of N .

The case with N = 2 leads to a Newton-Hooke algebra with some extensions. Unlike

the previous case, when using the semigroup S
(2)
E , the element λ2 is no longer the zero of

the semigroup. In this case the reduction condition (2.10) holds for a new semigroup zero

element λ3, and (2.11) has to be supplemented with two extra expanded generators

Sab = λ2 ⊗ J̃ab , M = λ2 ⊗ H̃ . (2.13)

Using the semigroup product law (2.6) for N = 2, we find that the non-vanishing commuta-

tion relations for the expanded algebra are given by the Newton-Hooke commutators (2.12)

together with

[Ga, Pb] = δabM , (2.14a)

[Ga, Gb] = Sab , (2.14b)

[Jab, Scd] = 4δ[a[cSd]b] , (2.14c)

[Pa, Pb] = −ΛSab . (2.14d)

This expansion produces the Bargmann central extension M and a non-central extension

Sab [40]. This algebra can be understood as the generalisation of the double central ex-

tension [41–43] of the Newton-Hooke algebra to D > 3. In fact, in 2+1 dimensions the

generator Sab can be dualised to a scalar and becomes central. In that case the alge-

bra (2.14) becomes exactly the extended Newton-Hooke algebra (Λ 6= 0) [44, 45] or the

extended Bargmann algebra (Λ = 0) [46, 47].

Extended (post-)Newtonian gravity algebra. For N = 3 we obtain the Newton-

Hooke version of the algebra found in [9] as the symmetry of post-Newtonian gravity.

Moreover, when considering N = 4, we find an extension of the post-Newtonian gravity

algebra that generalises the algebra of [11] to any dimension. Explicitly, for N = 3 the

generators of the expanded algebra are given by (2.11), (2.13) and

Ba = λ3 ⊗ G̃a ,

Ta = λ3 ⊗ P̃a .
(2.15)

The zero of the semigroup S
(3)
E is λ4, and the reduction condition (2.10) together with

the semigroup law and the (A)dS commutation relations (2.3) leads to the following non-
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vanishing commutators for the expanded algebra:

[Ga, H] = Pa , (2.16a)

[Ga,M ] = Ta , (2.16b)

[Ba, H] = Ta , (2.16c)

[Ga, Pb] = δabM , (2.16d)

[Ga, Gb] = Sab , (2.16e)

[Sab, Gc] = 2δc[bBa] , (2.16f)

[Sab, Pc] = 2δc[bTa] , (2.16g)

[Jab, Jcd] = 4δ[a[cJd]b] , (2.16h)

[Jab, Scd] = 4δ[a[cSd]b] , (2.16i)

[Pa, H] = ΛGa , (2.16j)

[Pa,M ] = ΛBa , (2.16k)

[Ta, H] = ΛBa , (2.16l)

[Pa, Pb] = −ΛSab (2.16m)

[Jab, Xc] = 2δc[bXa] , (2.16n)

Xa = {Ga, Pa, Ba, Ta} .

In the case Λ = 0 this algebra corresponds to the one found in [9] and further studied

in [8, 12, 18].

One can extend this algebra by considering N = 4 in the expansion prescription (2.9).

In this case, (2.15) has to be supplemented with extra expanded generators given by

Zab = λ4 ⊗ J̃ab , Y = λ4 ⊗ H̃ . (2.17)

The zero element in S
(4)
E is given by λ5, which means that the reduction condition (2.10)

in this case sets λ5 ⊗ J̃AB = λ5 ⊗ P̃A ≡ 0 and the non-vanishing commutation relations of

the corresponding expanded algebra are given by (2.16) together with

[Ga, Tb] = δabY , (2.18a)

[Ba, Pb] = δabY , (2.18b)

[Ga, Bb] = Zab , (2.18c)

[Jab, Zcd] = 4δ[a[cZd]b] , (2.18d)

[Pa, Tb] = −ΛZab . (2.18e)

(2.18f)

In the case D = 2 + 1 and Λ = 0 this algebra corresponds to the one studied in [11] and

defines a central extension of the post-Newtonian gravity symmetry (2.18). For D > 2 + 1,

however, the generator Zab is no longer central, exactly as it happens with Sab in the

extension of the Newton-Hooke algebra.

Notice that if some generators are central for some value N of the semigroup, they are

no longer central in the N + 1 case. More specifically, the expansions with odd N do not

possess central elements, while expansions with even values of N always yield two central

elements given by λN ⊗ J̃ and tilde λN ⊗ H̃.

Instead of continuing with increasing values of N , in the next subsection we will con-

struct an infinite-dimensional graded algebra using an infinite-dimensional semigroup.

Infinite-dimensional Galilean algebra. The previous analysis suggests that we can

construct an infinite-dimensional graded non-relativistic algebra using the expansion pro-

cedure with an infinite-dimensional semigroup of the form [14]

S(∞) = {λ0, λ1, λ2, . . . } (2.19)
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with multiplication law

λα · λβ = λα+β . (2.20)

(This semigroup can be realised as powers of a formal variable ω by letting λα = ωα. The

finite semigroups S
(N)
E then correspond to working to order O(ωN+1).) As this semigroup

does not have a zero element, the resonant subset decomposition that satisfies (2.8) in this

case is simply given by

S
(∞)
0 = {λ2m | m = 0, 1, 2 . . . } ,

S
(∞)
1 = {λ2m+1 | m = 0, 1, 2 . . . } ,

(2.21)

and the corresponding resonant (non-reduced) expansion of (A)dS is{
S
(∞)
0 ⊗ V0

}
⊕
{
S
(∞)
1 ⊗ V1

}
, (2.22)

where V0 and V1 were defined in (2.4). Denoting the generators of the expanded alge-

bra (2.22) as

J
(m)
ab = λ2m ⊗ J̃ab , B(m)

a = λ2m+1 ⊗ G̃a ,

H(m) = λ2m ⊗ H̃ , P (m)
a = λ2m+1 ⊗ P̃a ,

(2.23)

leads to the infinite-dimensional graded algebra

[J
(m)
ab , P (n)

c ] = 2δc[bP
(m+n)
a] , (2.24a)

[J
(m)
ab , J

(n)
cd ] = 4δ[a[cJ

(m+n)
d]b] , (2.24b)

[B(m)
a , P

(n)
b ] = δabH

(m+n+1) , (2.24c)

[B(m)
a , H(n)] = P (m+n)

a , (2.24d)

[J
(m)
ab , B(n)

c ] = 2δc[bB
(m+n)
a] , (2.24e)

[B(m)
a , B

(n)
b ] = J

(m+n+1)
ab , (2.24f)

[P (m)
a , H(n)] = ΛB(m+n)

a , (2.24g)

[P (m)
a , P

(n)
b ] = −ΛJ

(m+n+1)
ab . (2.24h)

We can get the finite-dimensional algebras presented in the previous subsections as quo-

tients of (2.24) by suitable infinite ideals. For example, in the case of (2.16) the ideal is

generated by J
(m)
ab , B

(m)
a , P

(m)
a , H(m) for m > 2.

Taking the limit Λ→ 0, we obtain as a contraction of (2.24), the infinite-dimensional

extension of the Galilei algebra introduced in [10] and further studied in [18].

2.2 Extended Carroll (A)dS algebras

The (A)dS Carroll algebra corresponds to the ultra-relativistic contraction of the (A)dS

algebra (2.1) [19]. It can alternatively be obtained by means of an expansion procedure

when considering the following subspace decomposition for (A)dS,

V0 = {P̃a, J̃ab} , V1 = {H̃, G̃b} , (2.25)

which is Z2-graded. Note that here Pa and H have been interchanged with respect to

the subspace decomposition used in the Newton-Hooke case (2.4). This is a special case

of a general duality at the level of the translation generators between Galilean and Car-

rollian symmetries [24]. Using the decomposition (2.25), we can generalise the procedure

outlined in the previous section to define Carrollian expansions of (A)dS, whose simplest

– 7 –
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case is the Carroll (A)dS algebra. Indeed, the non-vanishing commutation relations of the

corresponding reduced resonant expanded algebra is given by(
s
(N)
0 × {P̃a, J̃ab}

)
⊕
(
s
(N)
1 × {H̃, G̃b}

)
, (2.26)

where s
(N)
0 and s

(N)
1 are given in (2.7), and the case N = 1 leads to the (A)dS Carroll

algebra in D dimensions

[Jab, Pc] = 2δc[bPa] , (2.27a)

[Jab, Jcd] = 4δ[a[cJd]b] , (2.27b)

[Ga, Pb] = δabH , (2.27c)

[Jab, Gc] = 2δc[bGa] , (2.27d)

[Pa, H] = ΛGa , (2.27e)

[Pa, Pb] = −ΛJab , (2.27f)

where the expanded generators have been defined as

Pa = λ0 ⊗ P̃a , H = λ1 ⊗ H̃ ,

Jab = λ0 ⊗ J̃ab , Ga = λ1 ⊗ G̃a .
(2.28)

Naturally, when setting Λ = 0, this allows one to obtain the Carroll algebra in D dimensions

as an expansion of the Poincaré algebra. Subsequently, we can consider greater values of

N to obtain extended Carroll (A)dS algebras. In the case N = 2 the expanded algebra has

extra generators given by
Ta = λ2 ⊗ P̃a ,
Sab = λ2 ⊗ J̃ab .

(2.29)

and the commutation relations are the ones of (2.27) together with

[Ga, H] = Ta , (2.30a)

[Ga, Gb] = Sab , (2.30b)

[Jab, Tc] = 2δc[bTa] , (2.30c)

[Sab, Pc] = 2δc[bTa] , (2.30d)

[Jab, Scd] = 4δ[a[cSd]b] (2.30e)

[Pa, Tb] = −ΛSab . (2.30f)

In the case N = 3, we get two extra generators,

M = λ3 ⊗ H̃ ,

Ba = λ3 ⊗ G̃a .
(2.31)

The commutation relations of this expanded algebra are (2.27), (2.30) plus

[Jab, Bc] = 2δc[bBa] , (2.32a)

[Ga, Tb] = δabM , (2.32b)

[Ba, Pb] = δabM , (2.32c)

[Sab, Gc] = 2δcBa] , (2.32d)

[Ta, H] = ΛBa , (2.32e)

[Pa,M ] = ΛBa . (2.32f)

For Λ = 0, this algebra defines a Carrollian counterpart of the (post-)Newtonian symmetry

introduced in [10] in the context of general relativity. In the same way, one can check that

the N = 4 case defines a higher-dimensional Carrollian (A)dS analogue of the extended

(post-)Newtonian symmetry given in [11].
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Infinite-dimensional Carroll algebra. Similarly to the Newton-Hooke construction,

the ultra-relativistic expansions of (A)dS form a family of algebras, which can be described

in a unified fashion by considering the infinite semigroup (2.19) and the non-reduced reso-

nant expansion (
S
(∞)
0 ×

{
J̃ab, P̃a

})
⊕
(
S
(∞)
1 ×

{
G̃a, H̃

})
, (2.33)

where S
(∞)
0 and S

(∞)
1 are given in (2.21). By defining an infinite set of expanded genera-

tors by

J
(m)
ab = λ2m ⊗ J̃ab , B(m)

a = λ2m+1 ⊗ G̃a ,

P (m)
a = λ2m ⊗ P̃a , H(m) = λ2m+1 ⊗ H̃ ,

(2.34)

we obtain an infinite-dimensional Carrollian expansion of the (A)dS algebra

[J
(m)
ab , P (n)

c ] = 2δc[bP
(m+n)
a] , (2.35a)

[J
(m)
ab , J

(n)
cd ] = 4δ[a[cJ

(m+n)
d]b] , (2.35b)

[B(m)
a , P

(n)
b ] = δabH

(m+n) , (2.35c)

[B(m)
a , H(n)] = P (m+n+1)

a , (2.35d)

[J
(m)
ab , B(n)

c ] = 2δc[bB
(m+n)
a] , (2.35e)

[B(m)
a , B

(n)
b ] = J

(m+n+1)
ab . (2.35f)

[P (m)
a , H(n)] = ΛB(m+n)

a , (2.35g)

[P (m)
a , P

(n)
b ] = −ΛJ

(m+n)
ab . (2.35h)

The different finite expansions previously constructed using the semigroup S
(N)
E can be

obtained from the infinite case by considering suitable quotients. Redefining the generators

according to

J
(m)
ab → J

(m)
ab ,

P (m)
a → P (m−1)

a (m ≥ 1) ,

B(m)
a → B(m)

a ,

H(m) → −H(m) (2.36)

and, taking the limit Λ → 0, we obtain an extension of the infinite-dimensional algebra

in [10] as a contraction of the infinite-dimensional extended Carrollian algebra (2.35). A

related contraction was obtained from the infinite-dimensional extended Newton-Hooke

algebra (2.24) above. In the contraction of the Carroll algebra (2.35), it is extended in a

semidirect sum by the additional generator P
(0)
a (which should then rather be called P

(−1)
a

in the notation of [10]). Conversely, the algebra in [10] can be seen as an extension of

the contracted infinite-dimensional extended Carroll algebra if we again redefine H(m) →
H(m+1) and then add a generator H(0).

3 Newton-Hooke and Carrollian affine algebra

In this section, we will show that the infinite-dimensional Lie algebras (2.24) and (2.35)

also can be obtained from the extension of so(D − 1) to an (untwisted or twisted) affine

Kac-Moody algebra. We shall only require parabolic subalgebras of these Kac-Moody

algebras and this construction can be linked to free Lie algebras in terms of quotients by

Serre relations. The algebras for finite N discussed in the previous section then correspond

to further quotients, similar to the constructions in [18, 48].
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0 1 r − 1

r−1

−1

0 1 r

Figure 1. Dynkin diagrams of B
(1)
r+1 (lower) and D

(1)
r+1 (upper). These are relevant for the infinite

Newton-Hooke algebras.

3.1 Newton-Hooke affine algebras

Consider first the complex Lie algebra gr = Dr if d = D − 1 is even (d = 2r), or gr = Br
if d = D − 1 is odd (d = 2r + 1). Thus gr is the complexification of so(d). We can extend

gr to gr+1 (either Dr+1 or Br+1) by adding a node labelled 0 and then further to an affine

Kac-Moody algebra g
(1)
r+1 by adding a node labelled −1 to the Dynkin diagram of gr. The

resulting diagram, together with our labelling of the nodes, is shown in figure 1. The

corresponding Cartan matrix is

Aij =



2 0 −1 · · · 0 0 0

0 2 −1 · · · 0 0 0

−1 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 −1

0 0 0 · · · −1 2 0

0 0 0 · · · −1 0 2


(3.1)

for D
(1)
r+1 and

Aij =



2 −2 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −2 2


(3.2)

for B
(1)
r+1 (where rows and columns are counted −1, 0, 1, . . . , r from left to right and from

top to bottom).

When we add the two nodes 0 and −1 we also add six generators ei, fi, hi for i = 0,−1

to the generators of gr. This gives a central extension of the loop algebra of gr+1 where
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the central element is given by

c = h−1 + h0 + 2h1 + 2h2 + · · ·+ 2hr−2 + hr−1 + hr . (3.3)

The affine algebra g
(1)
r+1 is then obtained from it by adding also a derivation generator d

satisfying [d, e−1] = e−1 and [d, f−1] = −f−1 and commuting with all the other generators.

We consider the subalgebra of g
(1)
r+1 generated by ei, hi for i = 0,−1 together with

the generators of gr. This Lie algebra has an (N × N)-grading associated to these two

nodes, which can be trivially extended to a (Z × Z)-grading. It can thus be decomposed

into a direct sum of subspaces, each labelled by a pair (`0, `−1) of non-negative integers.

The subspace labelled by (`0, `−1) is spanned by elements formed as multibrackets of the

generators, where e0 and e−1 appear `0 and `−1 times, respectively. The subalgebra at

(`0, `−1) = (0, 0) contains gr but also the two additional Cartan generators h0 and h−1. By

taking the linear combinations

h = h−1 + h1 + h2 + · · ·+ hr−2 +
1

2
hr−1 +

1

2
hr ,

h′ = h0 + h1 + h2 + · · ·+ hr−2 +
1

2
hr−1 +

1

2
hr ,

(3.4)

(such that c = h+ h′) we get elements that commute with gr. Furthermore, they satisfy

[h, e−1] = e−1 , [h′, e−1] = −e−1 ,
[h, e0] = −e0 , [h′, e0] = e0 .

(3.5)

The (Z×Z)-grading gives rise to a Z-grading, where the single level ` is the sum of `0 and

`−1. Since gr is a subalgebra at level zero, we get representations of it at each level.

At level ` = 0 we have the generators Jab of (the complexification of) so(d) and the

two so(d) scalars h and h′. At level ` = 1 we have two lowest weight representations with

lowest weight vectors e−1 and e0, respectively. The Dynkin labels of both corresponding

highest weight representations are [1, 0, 0, . . . , 0] since

[h1, e−1] = −1 , [h2, e−1] = [h2, e−1] = · · · = [hr, e−1] = 0 ,

[h1, e0] = −1 , [h2, e0] = [h2, e0] = · · · = [hr, e0] = 0 .
(3.6)

Thus they are vector representations, and we denote the corresponding generators by Xa

(with lowest weight vector e−1) and Ya (with lowest weight vector e0), where a = 1, 2, . . . , d

as before. It follows from (3.5) that

[h,Xa] = Xa , [h′, Xa] = −Xa ,

[h, Ya] = −Ya , [h′, Ya] = Ya .
(3.7)

(The parabolic subalgebra of the ‘horizontal’ algebra gr+1 is generated by Jab, Ya and h0.)

In the free Lie algebra generated by all Xa and Ya at level ` = 1, the subspace at level

` = 2 decomposes into a direct sum of so(d) modules with Dynkin labels

2[1, 0, 0, . . . , 0] ∧ 2[1, 0, 0, . . . , 0] = 2([1, 0, 0, . . . , 0] ∧ [1, 0, 0, . . . , 0])

⊕ [1, 0, 0, . . . , 0]⊗ [1, 0, 0, . . . , 0]

= 3[0, 1, 0, . . . , 0]⊕ [2, 0, 0, . . . , 0]⊕ [0, 0, 0, . . . , 0] ,

(3.8)
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(where ∧ denotes the antisymmetric tensor product, coming from the antisymmetry of the

Lie bracket). The free Lie algebra construction continues to all positive levels [18, 48] but

in order to reproduce the algebra (2.24) we need to take a quotient. This quotient leads to

the subalgebra of g
(1)
r+1 at positive levels and the ideal that one quotients out is generated

by the Serre relations

[e−1, [e−1, e1]] = [e0, [e0, e1]] = [e−1, e0] = 0 , (3.9)

corresponding to the representation

2[0, 1, 0, . . . , 0]⊕ [2, 0, 0, . . . , 0] . (3.10)

Thus, this representation has to be removed from the antisymmetric tensor product (3.8),

leaving only the direct sum

[0, 1, 0, . . . , 0]⊕ [0, 0, 0, . . . , 0] (3.11)

at level ` = 2. We denote the corresponding 2-form and scalar generators by Jab
2 and

h2, respectively, where the superscript indicates that they appear at level ` = 2. The

commutation relations among the generators at level ` = 1 giving rise to these generators

at level ` = 2 are

[Xa, Yb] = Jab
2 + δabh

2 , [Xa, Xb] = [Ya, Yb] = 0 . (3.12)

The pattern with two vectors at odd levels and a 2-form and a scalar at even levels

continues, as shown in table 1. The set of generators at non-negative levels are4{
h′, h2k, Jab

2k, Xa
2k+1, Ya

2k+1
}

(3.13)

for k ≥ 0 (where again the superscript is the level `), and the non-vanishing commutation

relations (except for those involving h′, which we have omitted since they turn out to be

irrelevant) are

[Jab
2k, Jcd

2k′ ] = 4δ[c[bJa]d]
2(k+k′) ,

[Jab
2k, Xc

2k′+1] = 2δc[bXa]
2(k+k′)+1 ,

[h2k, Xa
(2k′+1)] = Xa

2(k+k′)+1 ,

[Jab
2k, Yc

2k′+1] = 2δc[bYa]
2(k+k′)+1 , (3.14)

[h2k, Ya
2k′+1] = −Ya2(k+k

′)+1 ,

[Xa
2k+1, Yb

2k′+1] = Jab
2(k+k′+1) + δabh

2(k+k′+1) ,

4In this notation, we have singled out h′ arbitrarily. As the diagrams are symmetric under the exchange

of nodes 0 and −1, we could have also exchanged the roles of h and h′.
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`−1 = 0 `−1 = 1 `−1 = 2 `−1 = 3 `−1 = 4 · · ·
`0 = 0 Jab

0 , h0 , h′ Xa
1

`0 = 1 Ya
1 Jab

2 , h2 Xa
3

`0 = 2 Ya
3 Jab

4 , h4 Xa
5

`0 = 3 Ya
5 Jab

6 , h6 Xa
7

`0 = 4 Ya
7 Jab

8 , h8
. . .

...
. . .

. . .

Table 1. The non-negative levels of the affine Kac-Moody algebra g
(1)
r+1.

where Jab
0 = Jab, h

0 = h, Xa
1 = Xa and Ya

1 = Ya. If we then set

Jab = Jab
0 , Sab = Jab

2 ,

H =
√

Λh0 , M =
√

Λh2 ,

Ga =
1√
2

(
Ya

1 +Xa
1
)
, Ba =

1√
2

(
Ya

3 +Xa
3
)
,

Pa =

√
Λ√
2

(
Ya

1 −Xa
1
)
, Ta =

√
Λ√
2

(
Ya

3 −Xa
3
)
,

(3.15)

for Λ > 0, then we recover the commutation relations (2.16). More generally, if we set

Jab
(m) = Jab

2m ,

H(m) =
√

Λh2m ,

Ba
(m) =

1√
2

(
Ya

2m+1 +Xa
2m+1

)
,

Pa
(m) =

√
Λ√
2

(
Ya

2m+1 −Xa
2m+1

)
(3.16)

for Λ > 0, then we recover the commutation relations (2.24). These formulas are still valid

for Λ < 0 if we interpret
√

Λ as ±i
√
|Λ| and we will then obtain a different real form of

the complex Lie algebra g
(1)
r+1.

3.2 (A)dS Carrollian affine algebras

The procedure for obtaining (2.35) from an affine algebra is very similar to the previous

discussion so we shall be rather brief.

We first note that due to the choice of subspaces in (2.25), the infinitely expanded

algebra (2.35) consists of infinite repetitions of copies of {J̃ab, P̃a} as even level spaces and

{H̃, G̃a} as odd level spaces, see (2.33). Since in the Carrollian limit the commutation rela-

tions (2.27) are perfectly compatible with identifying the complexification of V0 = {J̃ab, P̃a}
as the algebra so(D) and the complexification of V1 = {H̃, G̃a} as its D-dimensional vector

representation, we have to look for a Kac-Moody algebra where these two spaces repeat in-

finitely. Thus, there must be Serre relations corresponding to an ideal such that we obtain

the positive levels as a quotient of the free Lie algebra generated by the space V1.
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0 1 r

r + 1

0 1 r

Figure 2. Dynkin diagrams of B
(1)
r+1 (upper) and D

(2)
r+1 (lower). These are relevant to the (A)dS

Carroll algebras.

The problem turns out to be identical to one already solved in [18], where the corre-

sponding algebras were identified as the untwisted affine algebra of type B
(1)
r+1 (for D even

and r+1 = D/2) and as the twisted affine algebra D
(2)
r+1 (for D odd and r = (D−1)/2). The

corresponding Dynkin diagrams are reproduced in figure 2 for convenience. By redefining

the generators in (2.35) according to

J
(m)
ab → J

(m)
ab ,

P (m)
a →

√
−ΛP (m−1)

a (m ≥ 1) ,

B(m)
a → B(m)

a ,

H(m) → −
√
−ΛH(m), (3.17)

in the AdS case (Λ < 0) we recover the commutation relations in (3.11) of [18]. The dS case

(Λ > 0) corresponds to taking a different real form of the complex Kac-Moody algebra,

interpreting
√
−Λ as ±i

√
Λ.

4 Chern-Simons non-relativistic gravities

In this section we want to find realisations of the previous non-relativistic symmetries. We

will be interested in the construction of Chern-Simons gravities in 2+1 dimensions, defined

by the action5

SCS[A] =

∫ 〈
A ∧ dA+

2

3
A ∧A ∧A

〉
, (4.1)

where the gauge algebra is given by (2.24) and (2.35). In order to carry out this con-

struction we shall construct invariant tensors of these algebras in the following way: in

2 + 1 dimensions, an invariant tensor for the expanded algebras of interest can be obtained

following [7], by first defining the structure constants Kγ
αβ of the semigroup (2.19) as

λαλβ = Kγ
αβ λγ . (4.2)

Given the invariant tensor on so(2, 2),〈
J̃ABP̃C

〉
= εABC (ε012 = −1) , (4.3)

5All our integrals are over three-dimensional space-time.
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the invariant tensor on the expanded algebra can be defined as〈(
λα ⊗ J̃AB

)(
λβ ⊗ P̃C

)〉
= α(γ)K

γ
αβ εABC , (4.4)

where we have introduced an infinite set of arbitrary constants α(γ).

4.1 Extended Newton-Hooke gravities

Now we will consider the infinite-dimensional extended Newton-Hooke algebra (2.24),

where the definition (2.23) of the expanded generators leads to〈
B(m)
a P

(n)
b

〉
= −α(2m+2n+2)εab ,

〈
J
(m)
ab H(n)

〉
= −α(2m+2n)εab . (4.5)

Therefore, as the constants α(γ) in (4.5) are non-vanishing only for even values of γ, it is

convenient to relabel them in terms of a set of constants µ(m) = α(2m). Finally, using (2.23)

and dualising Jab and Ba in the form

J (m) ≡ 1

2
εabJ

(m)
ab , G(m)

a ≡ ε b
a B

(m)
b , (4.6)

(a, b = 1, 2) yields〈
G(m)
a P

(n)
b

〉
= µ(m+n+1)δab ,

〈
J (m)H(n)

〉
= −µ(m+n) . (4.7)

In terms of the dual generators (4.6), the infinite-dimensional graded algebra (2.24) takes

the form

[J (m), P (n)
a ] = −εabP

(m+n)
b , (4.8a)

[G(m)
a , G

(n)
b ] = εabJ

(m+n+1) , (4.8b)

[J (m), G(n)
a ] = −εabG

(m+n)
b , (4.8c)

[G(m)
a , P

(n)
b ] = εabH

(m+n+1) , (4.8d)

[H(m), G(n)
a ] = −εabP

(m+n)
b , (4.8e)

[H(m), P (n)
a ] = ΛεabG

(m+n)
b , (4.8f)

[P (m)
a , P

(n)
b ] = −ΛεabJ

(m+n+1) . (4.8g)

Action. In order to construct a Chern-Simons action, we define a connection one-form

taking values on (4.8)

A =

∞∑
m=0

(
ea(m)P

(m)
a + ωa(m)G

(m)
a + τ(m)H

(m) + ω(m)J
(m)
)
. (4.9)

The curvature 2-form F = dA+A ∧A then reads

F =
∞∑
m=0

(
F a
[
P (m)

]
P (m)
a + F a

[
G(m)

]
G(m)
a + F

[
H(m)

]
H(m) + F

[
J (m)

]
J (m)

)
, (4.10)
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where the curvature components can be worked out using the algebra (4.8) and read ex-

plicitly

F a
[
P (m)

]
= dea(m) −

∞∑
n,p=0

δn+pm εab

(
ωb(n)τ(p) + eb(n)ω(p)

)
F a
[
G(m)

]
= dωa(m) −

∞∑
n,p=0

δn+pm εab

(
ωb(n)ω(p) − Λeb(n)τ(p)

)
,

F
[
H(m)

]
= dτ(m) +

∞∑
n,p=0

δn+p+1
m εab e

a
(n)ω

b
(p) ,

F
[
J (m)

]
= dω(m) +

1

2

∞∑
n,p=0

δn+p+1
m εab

(
ωa(n)ω

b
(p) − Λ ea(n)e

b
(p)

)
.

(4.11)

Here and from now on the wedge product between forms are not written explicitly. Using

the gauge connection (4.9) and the invariant bilinear form (4.7), the action (4.1) takes the

form

SCS =

∞∑
m,n=0

µ(m+n+1)

∫ (
ea(m)Fa

[
G(n)

]
+ωa(m)Fa

[
P (n)

])

−
∞∑

m,n=0

µ(m+n)

∫ (
τ(m)F

[
J (n)

]
+ω(m)F

[
H(n)

])

+
∞∑

m,n,p=0

µ(m+n+p+1)

∫
εab

(
ea(m)ω

b
(n)ω(p)+

1

2

(
ωa(m)ω

b
(n)−Λea(m)e

b
(n)

)
τ(p)

)
,

(4.12)

where the different terms can be rearranged in terms of µ(n) as

SCS =
∞∑
i=0

µ(i)S(i) . (4.13)

We shall now discuss in more detail the first three terms in the sum.

• The µ(0) term can be directly read off from the second sum in (4.12). Up to total

derivatives it reads

S(0) = −2

∫
τ(0)dω(0) , (4.14)

which corresponds to Galilean gravity in 2+1 dimensions [49].

• In order to write down the µ(1) term in a familiar way, we first note that we can

relate the curvatures associated to the different generators (4.11) in the form

ωa(0)Fa

[
P (0)

]
= ea(0)Fa

[
G(0)

]
− εab

(
ωa(0)ω

b
(0) + Λea(0)e

b
(0)

)
τ(0) + T.D. ,

ω(1)F
[
H(0)

]
= τ(0)F

[
J (1)

]
− 1

2
εab

(
ωa(0)ω

b
(0) − Λea(0)e

b
(0)

)
τ(0) + T.D. ,

ω(0)F
[
H(1)

]
= τ(1)F

[
J (0)

]
+ εabe

a
(0)ω

b
(0)ω(0) + T.D. ,

(4.15)
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where T.D. stands for total derivative terms. Using these relations, the action S(1)
takes the form

S(1) = 2

∫ (
ea(0)Fa

[
G(0)

]
− τ(0)F

[
J (1)

]
− τ(1)F

[
J (0)

]
− Λεabe

a
(0)e

b
(0)τ(0)

)
. (4.16)

This action defines extended Newton-Hooke gravity [25, 26] and generalises extended

Bargmann gravity [27, 28] to include the cosmological constant. This can be seen

clearly by relabeling the gauge fields as

ea(0) = ea , τ(0) = τ , τ(1) = m,

ωa(0) = ωa , ω(0) = ω , ω(1) = s .
(4.17)

• For the µ(2) term we use the relations

ωa(0)Fa

[
P (1)

]
= ea(1)Fa

[
G(0)

]
− εab

(
ωa(0)ω

b
(0)τ(1) + ωa(0)ω

b
(1)τ(0) + ωa(0)e

b
(0)ω(1)

)
+ T.D ,

ωa(1)Fa

[
P (0)

]
= ea(0)Fa

[
G(1)

]
− εab

(
ωa(1)ω

b
(0)τ(0) − ω

a
(0)e

b
(0)ω(1)

)
+ T.D. ,

ω(0)F
[
H(2)

]
= τ(2)F

[
J (0)

]
+ εab

(
ea(0)ω

b
(1)ω(0) + ea(1)ω

b
(0)ω(0)

)
+ T.D. ,

ω(1)F
[
H(1)

]
= τ(1)F

[
J (1)

]
+ εab

(
ea(0)ω

b
(0)ω(1) −

1

2
ωa(0)ω

b
(0)τ(1)

)
+ T.D. ,

ω(2)F
[
H(0)

]
= τ(0)F

[
J (2)

]
− εabωa(0)ω

b
(1)τ(0) + T.D. ,

(4.18)

which allows one to express S(2) as

S(2) = 2

∫ (
ea(0)Fa

[
G(1)

]
+ ea(1)Fa

[
G(0)

]
− τ(0)F

[
J (2)

]
− τ(1)F

[
J (1)

]
− τ(2)F

[
J (0)

]
− Λ εab

(
ea(0)e

b
(0)τ(1) + ea(0)e

b
(1)τ(0) + ea(1)e

b
(0)τ(0)

))
.

(4.19)

For Λ = 0, this is precisely the Lagrangian for non-relativistic three-dimensional

gravity found in [11], where the gauge fields should identified as in (4.20) together with

ea(1) = ta , τ(2) = y ,

ωa(1) = ba , ω(2) = z .
(4.20)

In general the action S(i) can be written, after partial integration, in the form

S(i) = 2

∫ ( ∞∑
m,n=0

(
δm+n+1
i ea(m)Fa

[
G(n)

]
+ δm+n

i τ(m)F
[
J (n)

])
− Λ

∞∑
m,n,p=0

δm+n+p+1
i εabe

a
(m)e

b
(n)τ(p)

) (4.21)
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It is important to note that the infinite sum (4.13) can be consistently truncated to give

SCS =

i0∑
i=0

µ(i)Si , (4.22)

which gives an action for the gauge fields

ea(m), ω
a
(m), for m = 0, 1, . . . , i0 , τ(n), ω(n), for n = 0, 1, . . . , i0 + 1 , (4.23)

and sets all the other gauge fields to zero. In this case, the invariant tensor (4.7) in non-

degenerate for µ(i0+1) 6= 0, and the truncation leads to the condition

µ(m) = 0 , for m > i0 + 1 . (4.24)

This corresponds to the Chern-Simons action for non-relativistic gravity invariant under

the expanded algebra (2.9) for N = 2(i0 + 1),(
s
(2(i0+1))
0 × {H̃, J̃}

)
⊕
(
s
(2(i0+1))
1 × {P̃a, G̃b}

)
. (4.25)

This means that only the expanded algebras with even values of N give rise to Chern-

Simons actions with a non-degenerate invariant bilinear form.

AdS case. Let us consider now the general non-relativistic algebra (4.8) in the case of

negative cosmological constant and set Λ = −`−2 < 0. In this case it takes the form

[J (m), P (n)
a ] = −εabP

(m+n)
b , (4.26a)

[G(m)
a , G

(n)
b ] = εabJ

(m+n+1) , (4.26b)

[J (m), G(n)
a ] = −εabG

(m+n)
b , (4.26c)

[G(m)
a , P

(n)
b ] = εabH

(m+n+1) , (4.26d)

[H(m), G(n)
a ] = −εabP

(m+n)
b , (4.26e)

[H(m), P (n)
a ] = − 1

`2
εabG

(m+n)
b , (4.26f)

[P (m)
a , P

(n)
b ] =

1

`2
εabJ

(m+n+1) . (4.26g)

By defining the change of basis

L±(m)
a =

1

2

(
G(m)
a ± `P (m)

a

)
, L±(m) =

1

2

(
J (m) ± `H(m)

)
, (4.27)

this algebra can be written as the direct sum
{
L
+(m)
a , L+(m)

}
⊕
{
L
−(m)
a , L−(m)

}
, where

[L±(m), L±(n)a ] = −ε b
a L

±(m+n)
b , [L±(m)

a , L
±(n)
b ] = εabL

±(m+n+1) . (4.28)

The invariant tensor in this basis follows from (4.7) and has takes the form〈
L±(m)
a L

±(n)
b

〉
= ± `

2
µ(m+n+1)δab ,

〈
L±(m)L±(n)

〉
= ∓ `

2
µ(m+n) . (4.29)

This isomorphism implies that one can reformulate the expanded Newton-Hooke gravity

action (4.12) in the form

SCS[A] = SCS[A+]− SCS[A−] , (4.30)
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where the gauge connections are given by

A± =

∞∑
m=0

[(
ωa(m) ±

1

`
ea(m)

)
L(m)
a +

(
ω(m) ±

1

`
τ(m)

)
L(m)

]
, (4.31)

and the
{
L
(m)
a , L(m)

}
is now a single set of generators satisfying

[L(m), L(n)
a ] = −ε b

a L
(m+n)
b , [L(m)

a , L
(n)
b ] = εabL

(m+n+1) , (4.32)〈
L(m)
a L

(n)
b

〉
=

1

2
γ(m+n+1)δab ,

〈
L(m)L(n)

〉
=

1

2
γ(m+n) . (4.33)

This is in completely analogy with the relativistic case, where three-dimensional Einstein

gravity with negative cosmological constant can be reformulated as a Chern-Simons theory

of the form (4.30) with chiral connections taking values in the sl(2,R) algebra [50–54]. In

fact, the algebra (4.32) can be obtained as a non-relativistic S(∞) expansion of so(2, 1) ≈
sl(2,R) by defining

L(m) = λ2m ⊗ L̃ , L(m)
a = λ2m+1 ⊗ L̃a , (4.34)

where L̃A =
{
L̃ ≡ L̃0, L̃a

}
are the generators of the Lorentz algebra in 2+1 dimensions

and satisfy
[
L̃A, L̃B

]
= εCABL̃C . Once again, quotients by suitable ideals reproduce S

(N)
E

expansions. The case N = 1 shows that the Newton-Hooke algebra in 2+1 dimensions is

isomorphic to two copies of the Euclidean algebra in 1+1 dimensions, while the N = 2

case expresses the extended Newton-Hooke symmetry in three-dimensions as two copies of

the centrally extended Newton-Hooke symmetry in two dimensions [45], isomorphic to the

Nappi-Witten algebra [16, 55].

Exotic invariant bilinear form. As so(2, 2) is semi-simple there are two independent

invariant bilinear forms. Besides (4.3), a second invariant bilinear form on so(2, 2) is

〈JABJCD〉 = ηADηBC − ηACηBD , 〈PAPB〉 = −ΛηAB , (4.35)

which induces the following invariant tensor for the expanded generators (2.23)〈
J
(m)
ab J

(n)
cb

〉
= β(2m+2n) (δadδbc − δacδbd) ,

〈
B(m)
a B

(n)
b

〉
= β(2m+2n+2)δab , (4.36)〈

H(m)H(n)
〉

= Λβ(2m+2n) ,
〈
P (m)
a P

(n)
b

〉
= −Λβ(2m+2n+2)δab . (4.37)

Defining β(2m) = ν(m) and using (4.6) this leads to

〈
J (m)J (n)

〉
= −ν(m+n) ,

〈
G(m)
a G

(n)
b

〉
= ν(m+n+1)δab , (4.38)〈

H(m)H(n)
〉

= Λν(m+n) ,
〈
P (m)
a P

(n)
b

〉
= −Λν(m+n+1)δab . (4.39)
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In this case, the action (4.1) boils down to

SCS =

∞∑
m,n=0

ν(m+n+1)

∫ (
ωa(m)Fa

[
G(n)

]
−Λea(m)Fa

[
P (n)

])
(4.40)

−
∞∑

m,n=0

ν(m+n)

∫ (
ω(m)F

[
J (n)

]
−Λτ(p)F

[
H(q)

])

+
∞∑

m,n,p=0

ν(m+n+p+1)

∫
εab

(
−Λea(m)ω

b
(n)τ(p)+

1

2

(
ωa(m)ω

b
(n)−Λea(m)e

b
(n)

)
ω(p)

)
.

The exotic invariant tensor in the chiral basis (4.27) takes the form

〈
L±(m)
a L

±(n)
b

〉
=

1

2
ν(m+n+1)δab ,

〈
L(m)L(n)

〉
= −1

2
ν(m+n) . (4.41)

Therefore, the action (4.40) can be reformulated in terms of (4.31) as

SCS[A] = SCS[A+] + SCS[A−] , (4.42)

where now the relative sign between the two Chern-Simons actions is changed compared

to (4.30).

4.2 Extended Carrollian gravities

In the Carrollian case, the definition of the expanded generators with algebra given in (2.35)

together with (4.4) yields the following invariant tensor〈
B(m)
a P

(n)
b

〉
= −α(2m+2n+1)εab ,

〈
J
(m)
ab H(n)

〉
= −α(2m+2n+1)εab . (4.43)

Thus, in contrast with the Newton-Hooke case, the constants α(γ) in (4.5) are non-vanishing

only for odd values of γ, and we will relabel them as ρ(m) = α(2m+1). Using (2.34) and the

dual generators (4.6) the invariant bilinear form in the D = 3 case can also be written as〈
G(m)
a P

(n)
b

〉
= ρ(m+n)δab ,

〈
J (m)H(n)

〉
= −ρ(m+n) . (4.44)

The infinite-dimensional algebra (2.35) takes the form

[J (m), P (n)
a ] = −εabP

(m+n)
b , (4.45a)

[G(m)
a , G

(n)
b ] = εabJ

(m+n+1) , (4.45b)

[J (m), G(n)
a ] = −εabG

(m+n)
b , (4.45c)

[G(m)
a , P

(n)
b ] = εabH

(m+n) , (4.45d)

[H(m), G(n)
a ] = −εabP

(m+n+1)
b , (4.45e)

[H(m), P (n)
a ] = ΛεabG

(m+n)
b , (4.45f)

[P (m)
a , P

(n)
b ] = −ΛεabJ

(m+n) . (4.45g)
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Action. In the Carrollian case, the connection one-form (4.9) together with the commu-

tation relations (4.45) yields a curvature two-form (4.10) with the following components:

F a
[
P (m)

]
= dea(m) −

∞∑
n,p=0

εab

(
δn+p+1
m ωb(n)τ(p) − δ

(n+p)
m eb(n)ω(p)

)
F a
[
G(m)

]
= dωa(m) −

∞∑
n,p=0

δn+pm εab

(
ωb(n)ω(p) − Λeb(p)τ(n)

)
,

F
[
H(m)

]
= dτ(m) +

∞∑
n,p=0

δn+pm εab e
a
(p)ω

b
(n) ,

F
[
J (m)

]
= dω(m) +

1

2

∞∑
n,p=0

εab

(
δn+p+1
m ωa(n)ω

b
(p) − Λδn+pm ea(n)e

b
(p)

)
.

(4.46)

The Chern-Simons action (4.1) then takes the form

SCS =
∞∑

m,n=0

ρ(m+n)

∫ (
ea(m)Fa

[
G(n)

]
+ωa(m)Fa

[
P (n)

]
−τ(m)F

[
J (n)

]
−ω(m)F

[
H(n)

])

+

∞∑
m,n,p=0

∫
εab

(
ρ(m+n+p)

(
ea(m)ω

b
(n)ω(p)−

Λ

2
ea(m)e

b
(n)τ(p)

)
+

1

2
ρ(m+n+p+1)ω

a
(m)ω

b
(n)τ(p)

)
,

(4.47)

which can be also written as

SCS =
∞∑
i=0

ρ(i)S(i) , (4.48)

where after integration by parts we can write S(i) as

S(i) = 2

∫ ( ∞∑
m,n=0

δm+n
i

(
ea(m)Fa

[
G(n)

]
−τ(m)F

[
J (n)

])
−Λ

∞∑
m,n,p=0

δm+n+p
i εabe

a
(m)e

b
(n)τ(p)

)
.

(4.49)

The first action in this sequence is given by

S(0) = 2

∫ (
eaFa [G]− τF [J ]− Λεabe

aeb τ
)
, (4.50)

where we have used the field redefinition (4.17). This corresponds to Carrollian AdS Chern-

Simons gravity [39, 56] and reduces to three-dimensional Carroll gravity [43, 57, 58] in the

vanishing cosmological constant limit.6

Using also (4.20), the second term of the sum reads

S(1) = 2

∫ (
eaFa [B] + taFa [G]− τF [S]−mF [J ]− Λεab

(
eaebm+ 2eatb τ

))
(4.51)

6The first realisations of the Carroll symmetry in gravity appeared in the study of the zero signature

limit [59, 60] or strong coupling limit [61, 62] (see also [63, 64]) of general relativity, the last one being

closely related to the Belinski-Khalatnikov-Lifshitz (BKL) limit of gravity [65–67]. On the other hand, the

ultra-relativistic expansion of general relativity has been explored in [68], while the Carrollian limit at the

level of the Einstein-Hilbert action has been studied in [49]. It is also important to mention the realisation

of the Carroll symmetry in the near horizon limit of black holes [69].
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and defines a Carrollian counterpart of (post-)Newtonian gravity action [9] in three dimen-

sions including cosmological constant. Similarly, the next actions in the sequence define

further post-Carrollian corrections for three-dimensional Carroll (A)dS gravity.

In is interesting that unlike the Newton-Hooke expansion, truncations of the general

Carrollian action (4.48) for arbitrary r lead to a non-degenerate invariant bilinear form for

the corresponding truncation in (4.45). Also, the extended Carrollian algebras for (A)dS

do not include central terms, which is in contrast with the Newton-Hooke case, where

the central extensions are precisely the ones that allow us to find non-generate pairings

when (4.22) holds.

Exotic invariant bilinear form. We can also consider the exotic invariant tensor for

(A)dS (4.35), which leads to the following expression for pairings of the expanded genera-

tors (2.34)〈
J
(m)
ab J

(n)
cb

〉
= β(2m+2n) (δadδbc − δacδbd) ,

〈
B(m)
a B

(n)
b

〉
= β(2m+2n+2)δab , (4.52)〈

H(m)H(n)
〉

= Λβ(2m+2m+2) ,
〈
P (m)
a P

(n)
b

〉
= −Λβ(2m+2n)δab . (4.53)

Defining β(2m) = σ(m) and using (4.6) this can also be written as〈
J (m)J (n)

〉
= −σ(m+n) ,

〈
G(m)
a G

(n)
b

〉
= σ(m+n+1)δab , (4.54a)〈

H(m)H(n)
〉

= Λσ(m+n+1) ,
〈
P (m)
a P

(n)
b

〉
= −Λσ(m+n)δab . (4.54b)

In this case, the action (4.1) reduces to

SCS =

∞∑
m,n=0

∫ (
σ(m+n+1)

(
ωa(m)Fa

[
G(n)

]
− Λτ(m)F

[
H(n)

])
− σ(m+n)

(
ω(m)F

[
J (n)

]
+ Λea(m)Fa

[
P (n)

]))

+

∞∑
m,n,p=0

εab

∫ (
σ(m+n+p+1)

[
−Λea(m)ω

b
(n)τ(p) +

1

2
ωa(m)ω

b
(n)ω(p)

]

− Λ

2
σ(m+n+p) e

a
(m)e

b
(n)ω(p)

)
.

(4.55)

One can consider again finite truncations of this actions and, which produce exotic Carroll

and post-Carrollian gravity theories in 2 + 1 dimensions.

5 Conclusions and outlook

We have studied the non-relativistic symmetries obtained by Lie algebra expansion of

the AdS or dS algebra in D space-time dimensions, i.e. so(D − 1, 2) or so(D, 1). This

generalises previous constructions to include a cosmological constant and generates an

infinite family of algebras of Newton-Hooke [19, 20] or Carrollian type. Subsequently we
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have shown how these infinite-dimensional symmetries can be embedded in different Kac-

Moody algebras. Moreover, the different finite S
(N)
E expansions contained in each family

can be systematically constructed as a free algebra and correspond to suitable quotients of

the infinite-dimensional case.

We have considered a gravitational model based on them by focussing on the case of

(2 + 1)-dimensional Chern-Simons theories. We show that the family of algebras generates

systematically non-relativistic gravity theories extended by a cosmological constant, such

as extended Bargmann gravity [26, 28] and (post-)Newtonian gravity [11].

As stated in [10] these extended Newton-Hooke symmetries encode the large c expan-

sion of general relativity. An interesting way to see this in 2+1 dimensions is that the

Chern-Simons formulation of AdS three-dimensional gravity allows to construct the metric

out of the chiral connections (4.31) in the form [70]

ds2 = gµνdx
µdxν =

`2

2

〈(
A+ −A−

)
⊗
(
A+ −A−

)〉
. (5.1)

Using (4.31) and rearranging the sum in terms of γ(n) we get

ds2 = −
∞∑

m,n=0

γ(m+n)τ(m)τ(n) +
∞∑

m,n=0

γ(m+n+1)e
a
(m)e

b
(n) . (5.2)

The flat version of this metric has been studied in [12] as an infinite extension of Minkowski

space where post-Newtonian corrections to relativistic symmetries can be naturally im-

plemented. This metric can be found in the vanishing cosmological constant limit by

defining coordinates xµ(m) such that τ(m) = τ(m)µdx
µ
(m) and ea(m) = ea(m)µdx

µ
(m). Then, the

Minkowskian case is obtained by setting ea(m)µ = δaµ and τ(m)µ = (1, 0, 0, 0) for all m, which

leads to the expanded metric constructed in [12].

On the other hand, keeping the gauge field components τ(m)µ and ea(m)µ arbitrary while

identifying the coordinates as xµ(m) = xµ, allows one to find the (2+1)-dimensional version

of the post-Newtonian expansion of the metric used in [10, 29–33]. Indeed, identifying the

invariant tensor constants as powers of the speed of light in the form γ(n) → c2(1−n), and

defining the spatial metrics hµνdx
µdxν = ea(0)ea(0) and Φµνdx

µdxν = ea(0)ea(1) + ea(1)ea(0),

this expression reproduces the aforementioned non-relativistic expansion:

gµν = −c2 τµτν + hµν − τµmν −mµτν + c−2 (Φµν −mµmν − τµyν − yµτν) +O(c−4) , (5.3)

where we have also relabeled the metric fields according to (4.17) and (4.20). Alternatively

one can introduce an expansion of the dreibein forms

E0 =

∞∑
m=0

λ2m τ
(m) , Ea =

∞∑
m=0

λ2m+1 e
a
(m) , (5.4)

similar to what was done in [8]. Then, by identifying the tangent space metric with the

exotic pairing for the translations (4.35), one can write [71]

gµν = ηABE
AEB = `2

〈
EAPAE

BPB
〉
, (5.5)
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which also leads to the expansion of the metric (5.2) with γ(n) = ν(n), where ν(n) appears

in the pairing of the momentum generators in (4.39).

We have also considered the Carrollian case with cosmological constant to construct a

corresponding Chern-Simons theory based on the algebra (2.35). This reproduces known

ultra-relativistic gravity theories in 2+1 dimensions and an infinite family of generalisations.

Applying the same procedure as (5.2) in the case of expanded Carrollian (A)dS alge-

bras (4.45) leads to a novel expansion for the metric tensor that reads

gµν = −
∞∑

m,n=0

σ(m+n+1)τ(m)µτ(n)ν +
∞∑

m,n=0

σ(m+n)e
a
(m)µe

b
(n)ν

= σ(0)hµν + σ(1) (Φµν − τµτν) + σ(2) (Ψµν − τµmν −mµτν) + . . . .

(5.6)

where we have also defined Ψµνdx
µdxν = ea(1)ea(1) + ea(0)ea(2) + ea(2)ea(0). This metric can

be conjectured to describe the ultra-relativistic expansion of three-dimensional Einstein

gravity. To evaluate whether this expansion can be generalised to higher dimensions in

the context of the Carroll limit of general relativity along the lines of [59] or [68] is an

interesting question that we hope to address in the future.

There are several directions in which this research could be extended. One would be

to generalise our work of symmetries of post-Newtonian correction in the flat Minkowski

space [12] to curved (A)dS space and construct particle actions in the curved generalisation

of the infinite-dimensional Minkowski space. On the other hand it would be interesting to

analyse particle systems in the presence of a constant background field by considering the

non-relativistic expansions of the Maxwell algebra according to appendix A.1. One could

also construct actions for extended objects by means of the p-brane symmetries outlined in

appendix A.2. Finally, it would be interesting to extend the analysis to the supersymmetric

(A)dS case.
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A Further generalisations

The procedure for obtaining non-relativistic expansions of a given relativistic algebra can

be generalised to several other interesting cases. Here, we apply the general scheme to

obtain non-relativistic Maxwell algebras and non-relativistic brane symmetries.
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A.1 Non-relativistic expansions of the Maxwell algebra

The relativistic Maxwell algebra in D space-time dimensions is given is given by the fol-

lowing extension of the Poincaré algebra [72] (see also [48, 73, 74] and references therein)

[J̃AB, P̃C ] = 2ηC[BP̃A] , (A.1a)

[J̃AB, J̃CD] = 4η[A[C J̃D]B] , (A.1b)

[J̃AB, Z̃CD] = 4η[A[CZ̃D]B] , (A.1c)

[P̃A, P̃B] = Z̃AB . (A.1d)

There is no cosmological constant present in this algebra.

As in the (A)dS case, we decompose the relativistic indices in the time and space

components, A = (0, a), where a = 1, . . . , D − 1, and relabel the Lie algebra generators

using (2.2) plus the corresponding relation for the new generator Z̃AB given by

Z̃AB → {Z̃a ≡ Z̃0a , Z̃ab} . (A.2)

In the following, we consider the infinite-dimensional semigroup S(∞) given in (2.19)

and derive Galilean and Carrollian expansions of the Maxwell algebra by choosing different

resonant subspace decompositions.

Galilean expansions. Galilean expansions of the Maxwell algebra are determined by

the following Z2-graded subspace decomposition

V0 = {J̃ab, H̃, Z̃ab} , V1 = {G̃a, P̃a, Z̃a} , (A.3)

and the resonant non-reduced expansion(
S
(∞)
0 ×

{
J̃ab, H̃, Z̃ab

})
⊕
(
S
(∞)
1 ×

{
G̃a, P̃a, Z̃a

})
(A.4)

where S
(∞)
0 and S

(∞)
1 are given in (2.21). Defining the expanded generators in the form

J
(m)
ab = λ2m ⊗ J̃ab , B(m)

a = λ2m+1 ⊗ G̃a ,

H(m) = λ2m ⊗ H̃ , P (m)
a = λ2m+1 ⊗ P̃a , (A.5)

Z
(m)
ab = λ2m ⊗ Z̃ab , Z(m)

a = λ2m+1 ⊗ Z̃a ,

leads to the following infinite-dimensional algebra

[B(m)
a , H(n)] = P (m+n)

a , (A.6a)

[B(m)
a , P

(n)
b ] = δabH

(m+n+1) , (A.6b)

[J
(m)
ab , P (n)

c ] = 2δc[bP
(m+n)
a] , (A.6c)

[B(m)
a , B

(n)
b ] = J

(m+n+1)
ab , (A.6d)

[J
(m)
ab , B(n)

c ] = 2δc[bB
(m+n)
a] , (A.6e)

[J
(m)
ab , J

(n)
cd ] = 4δ[a[cJ

(m+n)
d]b] , (A.6f)

[J
(m)
ab , Z

(n)
cd ] = 4δ[a[cZ

(m+n)
d]b] , (A.6g)

[J
(m)
ab , Z(n)

c ] = 2δc[bZ
(m+n)
a] , (A.6h)

[Z
(m)
ab , B(n)

c ] = 2δc[bZ
(m+n)
a] , (A.6i)

[B(m)
a , Z

(n)
b ] = Z

(m+n+1)
ab , (A.6j)

[P (m)
a , H(n)] = −Z(m+n)

a , (A.6k)

[P (m)
a , P

(n)
b ] = Z

(m+n+1)
ab . (A.6l)

Truncations of this infinite-dimensional algebra by different ideals lead to expansions

with finite semigroups S
(N)
E (2.6). For N = 1, we get the electric non-relativistic Maxwell
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algebra [18], while the N = 2 case leads to a generalisation of the exotic Maxwellian

Bargmann algebra [75] for D > 3. For N = 3, the resulting algebra is a Maxwell extension

of the post-Newtonian symmetry (2.24) with Λ = 0, first found in [10]. For greater values

of N we obtain further post-Newtonian corrections of the electric non-relativistic Maxwell

algebra.

Carrollian expansions. Similarly, we can define Carrollian expansions of the Maxwell

algebra by using the following alternative Z2-graded subspace decomposition

V0 = {J̃ab, P̃a, Z̃ab} , V1 = {G̃a, H̃, Z̃a} (A.7)

where we have interchanged the generators H and Pa with respect to the Galilean case.

This leads to the resonant non-reduced expanded algebra(
S
(∞)
0 ×

{
J̃ab, P̃a, Z̃ab

})
⊕
(
S
(∞)
1 ×

{
G̃a, H̃, Z̃a

})
(A.8)

The expanded in this case take the form

J
(m)
ab = λ2m ⊗ J̃ab , B(m)

a = λ2m+1 ⊗ G̃a
P (m)
a = λ2m ⊗ P̃a , H(m) = λ2m+1 ⊗ H̃

Z
(m)
ab = λ2m ⊗ Z̃ab , Z(m)

a = λ2m+1 ⊗ Z̃a ,

(A.9)

which leads to the infinite-dimensional Carrollian Maxwell algebra

[B(m)
a , H(n)] = P (m+n+1)

a , (A.10a)

[B(m)
a , P

(n)
b ] = δabH

(m+n) , (A.10b)

[J
(m)
ab , P (n)

c ] = 2δc[bP
(m+n)
a] , (A.10c)

[B(m)
a , B

(n)
b ] = J

(m+n+1)
ab , (A.10d)

[J
(m)
ab , B(n)

c ] = 2δc[bB
(m+n)
a] , (A.10e)

[J
(m)
ab , J

(n)
cd ] = 4δ[a[cJ

(m+n)
d]b] , (A.10f)

[J
(m)
ab , Z

(n)
cd ] = 4δ[a[cZ

(m+n)
d]b] , (A.10g)

[J
(m)
ab , Z(n)

c ] = 2δc[bZ
(m+n)
a] , (A.10h)

[Z
(m)
ab , B(n)

c ] = 2δc[bZ
(m+n)
a] , (A.10i)

[B(m)
a , Z

(n)
b ] = Z

(m+n+1)
ab , (A.10j)

[P (m)
a , H(n)] = −Z(m+n)

a , (A.10k)

[P (m)
a , P

(n)
b ] = Z

(m+n)
ab . (A.10l)

As before, quotients of this algebra by suitable ideals reproduce the S
(N)
E expansions, which

define Maxwell extensions of the algebras presented in section 2.2 for Λ = 0.

A.2 Non-relativistic brane expansions of (A)dS

In order to define non-relativistic p-brane expansions of the (A)dS algebra (2.1) we decom-

pose the relativistic indices

A = (α, a) , α = 0, 1, . . . , p , a = p+ 1, . . . , D − 1 . (A.11)

This induces the following decomposition of the generators:

J̃AB → {J̃αβ , J̃αa, J̃ab} , P̃A → {P̃α, P̃a} . (A.12)
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p-brane Newton-Hooke expansions. Non-relativisitic brane expansions of (A)dS of

Newton-Hooke type can be defined starting from the following subspace decomposition ,

V0 = {P̃α, J̃αβ , J̃ab} , V1 = {P̃a, J̃αa} . (A.13)

Using (2.21) we define the following resonant expansion of (A)dS(
S
(∞)
0 × {P̃α, J̃αβ , J̃ab}

)
⊕
(
S
(∞)
1 × {P̃a, J̃αa}

)
, (A.14)

which is spanned by the following expanded generators

H(m)
α = λ2m ⊗ P̃α , P (m)

a = λ2m+1 ⊗ P̃a ,

J
(m)
αβ = λ2m ⊗ J̃αβ , B(m)

αa = λ2m+1 ⊗ J̃αa ,

J
(m)
ab = λ2m ⊗ J̃ab .

(A.15)

The algebra of these generators is given by

[J
(m)
αβ ,H

(n)
γ ] = 2ηγ[βH

(m+n)
α] , (A.16a)

[J
(m)
ab ,P (n)

c ] = 2δc[bP
(m+n)
a] , (A.16b)

[J
(m)
αβ ,J

(n)
γδ ] = 4η[α[γJ

(m+n)
δ]β] , (A.16c)

[J
(m)
ab ,J

(n)
cd ] = 4δ[a[cJ

(m+n)
d]b] , (A.16d)

[B(m)
αa ,P

(n)
b ] = δabH

(m+n+1)
α , (A.16e)

[B(m)
αa ,H

(n)
β ] =−ηαβP (m+n)

a , (A.16f)

[H(m)
α ,H

(n)
β ] =−ΛB

(m+n)
αβ , (A.16g)

[P (m)
a ,H(n)

α ] = ΛB(m+n)
αa , (A.16h)

[P (m)
a ,P

(n)
b ] =−ΛJ

(m+n+1)
ab , (A.16i)

[J
(m)
αβ ,B

(n)
γd ] = 2ηγ[βB

(m+n)
α]d , (A.16j)

[J
(m)
ab ,B(n)

αc ] = 2δc[b|B
(m+n)
α|a] , (A.16k)

[B(m)
αa ,B

(n)
βb ] =−ηαβJ

(m+n+1)
ab −δabJ

(m+n+1)
αβ .

(A.16l)

Truncations of this infinite-dimensional algebra by suitable ideals give rise to finite

expansions with the semigroup S
(N)
E for different values of N . The simplest case corresponds

to N = 1, which is the unextended p-brane Newton-Hooke algebra in D dimensions [35, 76].

The case N = 2 gives a higher-dimensional p-brane generalisation of the three-dimensional

extended stringy Newton-Hooke algebra [77]. As in the particle case, higher values of N

give rise to post-Newtonian extensions of the brane Newton-Hooke algebra. In the case

of vanishing cosmological constant, these reduce to the non-relativistic expansion of the

p-brane Galilean algebra [78–80], which have been studied in [37].

p-brane Carrollian expansions. In order to formulate p-brane Carrollian expansions,

we follow [24] and interchange P̃α and P̃a in the subspace decomposition (A.13), i.e.

V0 = {P̃a, J̃αβ , J̃ab} , V1 = {P̃α, J̃αa} , (A.17)

leading to the resonant expanded algebra(
S
(∞)
0 × {P̃a, J̃αβ , J̃ab}

)
⊕
(
S
(∞)
1 × {P̃α, J̃αa}

)
, (A.18)

– 27 –



J
H
E
P
0
2
(
2
0
2
0
)
0
0
9

and expanded generators

P (m)
a = λ2m ⊗ P̃a , H(m)

α = λ2m+1 ⊗ P̃α ,

J
(m)
αβ = λ2m ⊗ J̃αβ , B(m)

αa = λ2m+1 ⊗ J̃αa ,

J
(m)
ab = λ2m ⊗ J̃ab .

(A.19)

This yields the following infinite-dimensional Carrollian (A)dS algebra

[J
(m)
αβ ,H

(n)
γ ] = 2ηγ[βH

(m+n)
α] , (A.20a)

[J
(m)
ab ,P (n)

c ] = 2δc[bP
(m+n)
a] , (A.20b)

[J
(m)
αβ ,J

(n)
γδ ] = 4η[α[γJ

(m+n)
δ]β] , (A.20c)

[J
(m)
ab ,J

(n)
cd ] = 4δ[a[cJ

(m+n)
d]b] , (A.20d)

[B(m)
αa ,P

(n)
b ] = δabH

(m+n)
α , (A.20e)

[B(m)
αa ,H

(n)
β ] =−ηαβP (m+n+1)

a , (A.20f)

[H(m)
α ,H

(n)
β ] =−ΛB

(m+n+1)
αβ , (A.20g)

[P (m)
a ,H(n)

α ] = ΛB(m+n)
αa , (A.20h)

[P (m)
a ,P

(n)
b ] =−ΛJ

(m+n)
ab , (A.20i)

[J
(m)
αβ ,B

(n)
γd ] = 2ηγ[βB

(m+n)
α]d , (A.20j)

[J
(m)
ab ,B(n)

αc ] = 2δc[b|B
(m+n)
α|a] , (A.20k)

[B(m)
αa ,B

(n)
βb ] =−ηαβJ

(m+n+1)
ab −δabJ

(m+n+1)
αβ .

(A.20l)

The N = 1 truncation of this infinite-dimensional symmetry corresponds to the p-brane

Carroll (A)dS algebra in D dimensions [22], while S
(N)
E expansions for greater values of N

define post-Carrollian (A)dS p-brane symmetries. See also [81] for further discussions of

Carrollian branes.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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