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1 Introduction

Studying exactly solvable models in 2D QFT can help us get a deep understanding

of general field theory. The next step is naturally taken to consider the deviation

from these exactly solvable models. In the language of renormalization group flow,

in general the study of deformations by turning on relevant operators is under more

controllable than irrelevant deformations which may introduce infinite divergences in

the UV. However, a special kind of irrelevant deformation of 2D QFT was shown to have

a number of remarkable properties even in the UV [1–3]. Such deformation preserves the

integrability if the undeformed theory is integrable, also the spectrum and the S-matrix

can be calculated. In addition, the deformed theory can be renormalized perturbatively

systematically [4].

Among these deformations there is a special one, referred to as T T̄ deformation,

have attracted much attention recently [5–28]. Here T is related to stress tensor of the

theory. The deformed Lagrangian S(λ) can be written as

∂S(λ)

∂λ
=

∫

d2zT T̄ (z), (1)

where the operator T T̄ (z) was first introduced in [1]. For conformal field theory, it was

found that the partition function of deformed theory can be computed and remains

modular invariant, and one can even obtain Cardy-like formula in deformed CFT.

Meanwhile, there are other different perspectives on the T T̄ deformation [29, 30], and

applications in string theory [31–42]. More interestingly, from holographic dual point

of view, it is suggested that the T T̄ deformed 2D CFT dual to AdS3 gravity with finite

cutoff in the radial direction [43]. Evidence for this non-CFT/non-AdS kind of duality

including matching of the energy spectrum, holographic entanglement entropies, exact

holographic renormalization and so on. For recent progress on holographic aspects of

T T̄ deformation see also [44–55].

There are many directions to generalize the T T̄ deformation, then an interesting

question to ask is that what will happen when additional symmetry is presented in the

theory, for example, conformal symmetry discussed above. In [56–59] (see also [60,61]),

the authors have taken into account the supersymmetry, more specific, N = (0, 1)

and extend SUSY with N = (1, 1), (2, 0), (2, 2) was considered. In these studies, the
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supersymmetric version of T T̄ operator appeared in eq.(1) was constructed based on the

supercurrent multiplet [62], and the deformed Lagrangian is also given for free theory

with or without potential. Taking N = (1, 1) for example [56], the deformed action

takes the form

Sα = S0 + λ

∫

d2σO(σ) (2)

with

O(σ) =

∫

dθ+dθ−O(ζ). (3)

Here O(ξ) = J+++(ζ)J−−−(ζ)−J−(ζ)J+(ζ), (J+++,J−) and (J−−−,J+) are two pairs

of superfields, which include stress energy tensor (For more details for this construct,

please refer to [56]). Moreover, it was shown that the deformation constructed in this

way preserves solvability and supersymmetry. Furthermore, the operator O in eq.(2)

is equal to bosonic T T̄ as appeared in eq.(1) up to total derivative terms vanished on

shell

O = T T̄ + EOM′s+ total derivatives. (4)

Similar relationships between bosonic T T̄ and its supersymmetric counterparts are also

hold in other extend SUSY mentioned above.

In this work, we are interested in studying the correlation functions in T T̄ defor-

mation of superconformal field theory perturbatively. Correlation functions are fun-

damental observables in QFT, thus it is of great importance to study the correlation

functions in its own right. The behavior of correlation functions was studied in both

T T̄ [19, 45] and JT̄ [17] perturbatively, and unperturbatively in deep UV region by J.

Cardy [18]. Inspired by these progress, here we would like to add supersymmetry to the

undeformed theory. Since we will work with Euclidean signature, we would like to focus

on our attention to the superconformal field theory with N = (1, 1) and N = (2, 2)

supersymmetry. As discussed above the operators O and T T̄ are equal on shell up to

some total derivative terms, thus we will employ the latter as the definition for T T̄ de-

formation in the process of computing correlation functions. Here we have to emphasize

that we only focus on the deformation region nearby the undeformed CFTs, where the

CFT Ward identity still holds and it is not necessary to take account the effect of the

renormalization group flow of the operator with the irrelevant deformation. Therefore,

the conformal symmetry can be considered as an approximate symmetry up to the first
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order of the T T̄ deformation and the correlation functions can also be obtained nearby

the original theory. Moreover, both in holography and quantum field theory, these

correlation functions can be also applied to obtain various interesting quantum infor-

mation quantities in the deformed field theory, e.g. the Rényi entanglement entropy of

local quench in various situations [63–65], entanglement negativity [66], entanglement

purification [67], information metric [68, 69], etc.

The remaining parts of the paper are organized as follows. In section 2, we first

briefly review the Ward identity in (1,1) superconformal and also the correlation func-

tions in undeformed theory, then formulate the 2-,3-, and n-point (n-pt) correlation

functions with T T̄ inserted, the last step is to perform the integral in conformal per-

turbation theory using dimensional regularization. In section 3, we first discuss the

Ward identity and undeformed correlators in (2,2) superconformal field theory. Then

following the same line as section 2, we compute the 2-,3-, and n-point deformed corre-

lation function. In section 4. We discuss the dimensional regularization methods used

in section 2 and section 3. In the final section, conclusions and discussions will be given.

2 N=(1,1) superconformal symmetry

In this section we review (1,1) superconformal symmetry and the corresponding Ward

identity. The coordinates on superspace are analytic coordinates Z = (z, θ) and anti-

analytic coordinates Z̄ = (z̄, θ̄) where z, z̄ are two complex coordinates and θ, θ̄ are

Grassmannian coordinates. The (1,1) superconformal algebra is the direct sum of (1,0)

and (0,1) algebra, thus for simplicity we may subsequently only write out the analytic

part. For (1,1) theory the superderivative is [70–73]

D = ∂θ + θ∂z , D2 = ∂z. (5)

The superfield

J(Z) = Θ(z) + θT (z) (6)

generate analytic supercoordinates transformations of in superspace. Here T (z) is

stress-energy tensor of the theory and Θ is generator of supersymmetry transforma-

tions. Similar expression can be write out for J̄(Z)
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Under analytic supercoordinates transformations with parameter E(Z), a local su-

perfield Φ(Z, Z̄) obeys

δEΦ(Z, Z̄) = [JE ,Φ(Z, Z̄)] =

∮

dZ ′E(Z ′)J(Z ′)Φ(Z, Z̄) (7)

with
∮

dZ ≡
1

2πi

∮

dz

∫

dθ. (8)

A superfield Φ(Z, Z̄) is called primary superfield if it transforms as

Φ(Z, Z̄) → (∂f)∆(∂̄f̄)∆̄Φ(Z, Z̄) (9)

under conformal transformation

Z = (z, θ) → Z ′ = (f(z),
√

∂zf(z)θ), Z̄ = (z̄, θ̄) → Z̄ ′ = (f̄(z̄),
√

∂̄f̄(z̄)θ̄). (10)

Here ∆, ∆̄ are the anomalous dimensions of Φ(Z, Z̄). The infinitesimal version of eq.(9)

is

δEΦ(Z, Z̄) = E(Z)∂zΦ(Z, Z̄) +
1

2
DE(Z)DΦ(Z, Z̄) + ∆∂zE(Z)Φ(Z, Z̄), (11)

where only the analytic part of the transformation is considered. Furthermore, one can

obtain the OPE between the superfield J(Z) containing stress tensor T (z) and primary

superfield Φ with dimension ∆, which is the generalization of OPE between stress tensor

and primary field T (z)φ(z′) in CFT. This can be done by substituting eq.(11) back to

eq.(7) and using super-Cauchy theorem 4 which implies

∮

dZ1E(Z1)
θ12
Z12

= E(Z2) (13)

∮

dZ1E(Z1)
1

Z12

= DE(Z2) (14)

∮

dZ1E(Z1)
θ12
Z2

12

= ∂zE(Z2) (15)

4
∮

dZ ′E(Z ′)
θ′ − θ

Z ′ − Z
= E(Z) (12)

5



where the SUSY invariant distance Z12 = z1 − z2 − θ1θ2 and θ12 = θ1 − θ2. We then

obtain the following OPE [72]

J(Z1)Φ(Z2) =
θ12
Z12

∂z2Φ(Z2, Z̄2) +
1

2

1

Z12
DΦ(Z2, Z̄2) + ∆

θ12
Z12

Φ(Z2, Z̄2). (16)

From this OPE, the N = (1, 1) superconformal Ward identity can be written as

〈J(Z0)Φ1(Z1, Z̄1)...Φn(Zn, Z̄n)〉

=
n

∑

i=1

( θ0i
Z0i

∂zi +
1

2Z0i
Di +∆i

θ0i
Z2

0i

)

〈Φ1(Z1, Z̄1)...Φn(Zn, Z̄n)〉.
(17)

and similar expressions for J̄(Z̄).

It is important to apply Ward identity to global superconformal transformation

whose algebra osp(2|1) is a subalgebra of superconformal algebra. By employing Ward

identity and the fact that correlator of primary superfields is invariant under global

superconformal transformation since it is a true symmetry of the theory, these correla-

tors will be highly constrained. And similar to the cases in bosonic CFT, it is possible

to completely fix 2- and 3-point correlators up to to some constant factors. The 2-pt

correlator is

〈Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)〉 = c12
1

Z2∆
12 Z̄

2∆̄
12

, ∆ ≡ ∆1 = ∆2, ∆̄ ≡ ∆̄1 = ∆̄2 (18)

with c12 a constant and 3-pt correlator is

〈Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)Φ3(Z3, Z̄3)〉 =
(

3
∏

i<j=1

1

Z
∆ij

ij Z̄
∆̄ij

ij

)

(c123 + c′123θ123θ̄), (19)

where the second factor in the right hand side can also be written as

c123 + c′123θ123θ̄ = c123e
c′
123

θ123 θ̄/c123 . (20)

Here c123, c
′
123 are constants, ∆ij = ∆i +∆j − ǫijk∆k, and θ123 is defined as

θijk =
1

√

ZijZjkZkl

(θiZjk + θjZki + θkZij + θiθjθk), (21)

which is invariant under global conformal transformation. By definition θ123 is Grassmann-

odd, thus θ2123 = 0 and eq.(20) follows.
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As for n-pt correlators with n ≥ 4, they depend on 2n coordinates zi, θi, i = 1, ..., n,

and 5 constraints corresponding to 5 generators of osp(2|1). Thus there are 2n − 5

independent variables in n-pt correlators. Actually, there exists the same number of

independent osp(2|1) invariants, i.e. 2n− 5, which are [72]

wj ≡ θ12j , j = 3, ..., n, Uk ≡ Z123k, k = 4, ..., n, (22)

where θ12j is defined in eq.(21) and Zijkl is an analogue of cross ratio in CFT

Zijkl =
ZijZkl

ZliZjk
. (23)

In terms of these variables the n-pt function can be determined as

〈Φ1(Z1, Z̄1)...Φn(Zn, Z̄n)〉 =
(

n
∏

i<j=1

1

Z
∆ij

ij Z̄
∆̄ij

ij

)

f(wi, w̄i, Uj , Ūj) (24)

with
∑

i 6=j ∆ij = 2∆j ,∆ij = ∆ji and similar for ∆̄ij . Here f is a function can not be

fixed by global superconformal symmetry, and it depends on the theory under consid-

eration.

With the results discussed above, we can compute the T T̄ deformed correlators.

The variation of action under T T̄ deformation can be constructed as

δS = λ

∫

d2zT T̄ (z) = −λ

∫

d2z

∫

dθdθ̄J(Z)J̄(Z̄), (25)

where the minus sign comes from the anti-commutation nature of θ. Thus to first order

in λ the variation of n-pt correlator is

−λ

∫

d2z

∫

dθdθ̄〈J(Z)J̄(Z̄)Φ(Z1, Z̄1)...Φ(Zn, Z̄n)〉. (26)

Note that the correlator inside the integral can be evaluated via Ward identity. In the

following section we will compute eq.(26) for n = 2, 3 and n ≥ 4.

2.1 2-pt correlators

In this section we will consider the 2-pt correlators with T T̄ deformation. The unde-

formed correlator takes the form as eq.(18)

〈Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)〉 =
c12

Z2∆
12 Z̄

2∆̄
12

. (27)
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First consider only holomorphic component of stress tensor inserted in above correlator

〈J(Z)Φ1Φ2〉 =
2

∑

i=1

( θ0i
Z0i

∂zi +
1

2Z0i
Di +

∆iθ0i
Z2

0i

)

〈Φ1Φ2〉, (28)

where θ0i = θ−θi, Z0i = z−zi−θθi, and the derivatives on the right hand side can act on

both holomorphic and antiholomorphic parts of 〈Φ1Φ2〉. For example, for holomorphic

part

∂z1
1

Z2∆
12

= −2∆
1

Z2∆+1
12

, D1
1

Z2∆
12

= −2∆
θ12

Z2∆+1
12

, (29)

and for antiholomorphic part 5

∂z1
1

Z̄2∆̄
12

=
2∆̄

Z̄2∆̄−1
12

δ̃(2)(z12)
(

1 +
2θ̄1θ̄2
z̄12

)

, (32)

Therefore

〈J(Z)Φ1Φ2〉

=
(

−
2∆

Z12

(θ01
z01

−
θ02
z02

)

−
∆θ12
z12

( 1

Z01

+
1

Z02

)

+∆
(θ01
z201

+
θ02
z202

)

−
∆̄θ12
z01

(z̄12 + θ̄1θ̄2)δ̃(z12)
)

〈Φ1Φ2〉

≡P 〈Φ1Φ2〉.
(33)

Similarly, the correlator with antiholomorphic component of stress tensor inserted, i.e.

〈J̄(Z̄)Φ1Φ2〉 can be obtained by making the replacement Z → Z̄, θ → θ̄ in P defined

above, and we denote it as 〈J̄(Z̄)Φ1Φ2〉 ≡ P̄ 〈Φ1Φ2〉.

A simplification can be made by noting that to extract 〈T (z)Φ1Φ2〉 from eq.(33),

one need to integrate eq.(33) over θ, and the δ-function term in eq.(33) contains no θ

thus gives no contribution to 〈T (z)Φ1Φ2〉. In view of this point, we will neglect the

δ-function terms in both P and P̄ hereafter.

5Useful formulae
1

Z̄ij

=
1

z̄ij
+

θ̄1θ̄2

z̄2ij
,

θij

Zij

=
θij

zij
,

θi

Zij

=
θi

zij
. (30)

And the differential

∂z1
1

Z̄12
= ∂z1

( 1

z̄12
+

θ̄1θ̄2

z̄212

)

= δ̃(z12)
(

1 +
2θ̄1θ̄2
z̄12

)

, δ̃(z12) ≡ 2πδ(2)(z12), (31)

where ∂z1
1

z̄12
= δ̃(z12) is used.
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Having obtained 〈J̄(Z̄)Φ1Φ2〉 we are in position to consider 〈J(Z)J̄(Z̄)Φ1Φ2〉 which

follows as

〈JJ̄Φ1Φ2〉 =
2

∑

i=1

( θ0i
Z0i

∂zi +
1

2Z0i
Di +

∆iθ0i
Z2

0i

)

〈J̄(Z̄)Φ1Φ2〉 ≡ (G+ F )〈J̄(Z̄)Φ1Φ2〉,

(34)

where in the second step for later convenience we name the terms involving derivatives

as G, and the remaining terms as F

G =
n

∑

i=1

θ0i
Z0i

∂zi +
1

2Z0i

Di, F =
n

∑

i=1

∆iθ0i
Z2

0i

(35)

with n = 2 in the present case. To evaluate the right hand side of eq.(34), first consider

the anticommutator between P and J = F + G, noting P,G, F are all Grassmannian

odd
{J, P}R = J(PR) + P (JR)

= FPR+G(PR) + PFR+ P (GR)

= FPR+ (GP )R− P (GR) + PFR+ P (GR)

= (GP )R

(36)

with R ≡ 〈Φ1Φ2〉. Hence we obtain

〈JJ̄Φ1Φ2〉 = (PP̄ + (GP̄ ))〈Φ1Φ2〉, (37)

where the first term on the right hand side

PP̄ =∆∆̄
(

−
2

Z12

(θ01
z01

−
θ02
z02

)

−
θ12
z12

( 1

Z01

+
1

Z02

)

+
(θ01
z201

+
θ02
z202

))

×
(

−
2

Z̄12

( θ̄01
z̄01

−
θ̄02
z̄02

)

−
θ̄12
z̄12

( 1

Z̄01

+
1

Z̄02

)

+
( θ̄01
z̄201

+
θ̄02
z̄202

))

.

(38)

Here we have omitted δ-function terms in both P and P̄ as mentioned above. The

second term in eq.(37) is

GP̄ =∆̄
∑

i

( θ0i
Z0i

∂z1 +
1

2Z0i
∂θi +

1

2Z0i
θi∂zi

)

×
(

−
2

Z̄12

( θ̄01
z̄01

−
θ̄02
z̄02

)

−
θ̄12
z̄12

( 1

Z̄01

+
1

Z̄02

)

+
( θ̄01
z̄201

+
θ̄02
z̄202

))

,

(39)
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where the third term in the first bracket, i.e. 1
2Z0i

θi∂zi... =
1

2z0i
θi∂zi ..., will vanish after

integral over
∫

dθ, and the second term ∂θiP̄ = 0 since P̄ does not dependent on θi.

Thus the only term needed to compute is

∆̄
∑

i

( θ0i
Z0i

∂zi

)(

−
2

Z̄12

( θ̄01
z̄01

−
θ̄02
z̄02

)

−
θ̄12
z̄12

( 1

Z̄01

+
1

Z̄02

)

+
( θ̄01
z̄201

+
θ̄02
z̄202

))

. (40)

It turns out the contributions from the second and third terms in the second bracket

are nonzero after integration
∫

dθdθ̄, which is

∫

d2z

∫

dθdθ̄GP̄ = 2∆̄

∫

d2z
( θ̄1θ̄2
z̄12

+ 1
)( δ̃(2)(z01)

|z01|2
+
δ̃(2)(z02)

|z02|2

)

(41)

where we use
∫

d2z δ̃(z12)
z0i

= 0, which can be obtained in polar coordinates. This term

is divergent and it should be dropped, which can be seen as follows. By observing

eq.(41), one find that it only depends on ∆̄ while not on ∆, in other words, this term

is not symmetric under the interchange of ∆̄ and ∆. However 〈J̄JΦ1...〉 = −〈JJ̄Φ1...〉

should holds (the minus sign appears due to J(Z) is Grassmann odd), which implies

the correlator 〈JJ̄Φ1...〉 should be symmetric under interchange of ∆̄ and ∆. From this

reasoning we will drop these terms. Finally we obtain the integrals as

∫

d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φn(Z2, Z̄2)〉/〈Φ1(Z1, Z̄1)Φn(Z2, Z̄2)〉

=∆∆̄

∫

d2zdθdθ̄
[(

−
2

Z12

(θ01
z01

−
θ02
z02

)

−
θ12
Z12

( 1

Z01
+

1

Z02

)

+
(θ01
z201

+
θ02
z202

))

×
(

−
2

Z̄12

( θ̄01
z̄01

−
θ̄02
z̄02

)

−
θ̄12
Z̄12

( 1

Z̄01

+
1

Z̄02

)

+
( θ̄01
z̄201

+
θ̄02
z̄202

))]

.

(42)

Expanding the integrand, there will be nine terms. We will consider the first term

here and list the remaining eight terms in appendix. These integrals can be explicitly

performed by employing dimensional regularization which is discussed in section 4.
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More concretely, the first term is (Consider the case ∆ = ∆̄) 6

T11 ≡

∫

d2zdθdθ̄
4∆2

Z12Z̄12

(θ01
z01

−
θ02
z02

)( θ̄01
z̄01

−
θ̄02
z̄02

)

=−
4∆2

Z12Z̄12

∫

d2z
( 1

z01
−

1

z02

)( 1

z̄01
−

1

z̄02

)

=−
4∆2

Z12Z̄12

(I11(z1, z̄1) + I11(z2, z̄2)− I11(z1, z̄2)− I11(z2, z̄1))

=−
4∆2

Z12Z̄12

2π
(

−
2

ǫ
+ ln |z12|

2 + γ + ln π
)

,

(44)

where in the second step we used the notation introduced in eq.(134), and γ is Euler

constant and ǫ is an infinitesimal constant.

I11(zi, z̄j) ≡

∫

d2z
1

z0iz̄0j
. (45)

This integral is computed in setion 4, and we only quote the results in the last line

of eq.(44). ǫ is a infinitesimal constant coming from dimensional regularization. 7

Therefore putting together the results of the nine integrals leads to

1

〈Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)〉

∫

d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)〉

=−
4π∆2

Z12Z̄12

(

−
4

ǫ
+ 2 ln |z12|

2 + 2γ + 2 lnπ − 2
)

.

(47)

In principle by setting θ1,2 → 0, one can get the results for bosonic CFT, which is

−
4π∆2

|z12|2

(

−
4

ǫ
+ 2 ln |z12|

2 + 2γ + 2 lnπ − 2
)

. (48)

6Useful relations
∫

dθ
θ01

Z01
=

1

z01
,

∫

dθ
1

Z01
=

θ1

z201
,

∫

dθdθ̄θ̄θ = 1. (43)

7Also T11 can be evaluated in an alternatively way as

T11 =−
4∆2

Z12Z̄12

∫

d2z
( 1

z01
−

1

z02

)( 1

z̄01
−

1

z̄02

)

=−
4∆2|z12|2

Z12Z̄12

∫

d2z
1

|z01|2|z02|2

=−
4∆2|z12|

2

Z12Z̄12
I1111(z1, z2, z̄1, z̄2)

=−
4∆2

Z12Z̄12
2π

(

−
2

ǫ
+ ln |z12|

2 + γ + log π +O(ǫ)
)

.

(46)

which is equal to result in eq.(44). The integral in the last step was computed in [19].
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Comparing this with the CFT results given in eq.(8) in [19] as

−
4π∆2

|z12|2

(

−
4

ǫ
+ 2 ln |z12|

2 + 2γ + 2 lnπ − 5
)

. (49)

One can find that the last constant is different in eq.(48) and eq.(49). This difference

can be understood from the way we performing the integrals. On one hand, we can use

dimensional regularization to evaluate the integral directly
∫

d2z
|z12|4

|z01|4|z02|4
= −

4π∆2

|z12|2

(

−
4

ǫ
+ 2 ln |z12|

2 + 2γ + 2 ln π − 5
)

, (50)

which will result in eq.(49). On the other hand, we can compute the above integral in

an indirect way as we did at the beginning, i.e., Firstly, expanding the integrand into

several terms as below, then using dimensional regularization to compute each integral,

finally adding up the contribution of individual term
∫

d2z
|z12|

4

|z01|4|z02|4
=

∫

d2z
( 1

z201
+

1

z202
−

1

z01z02

)( 1

z̄201
+

1

z̄202
−

1

z̄01z̄02

)

=−
4π∆2

|z12|2

(

−
4

ǫ
+ 2 ln |z12|

2 + 2γ + 2 lnπ − 2
)

,

(51)

which leads to eq.(48). The difference between eq.(48) and eq.(49) can be eliminated

by redefine ǫ.

2.2 3-pt correlators

The general form of 3pt correlators can be written as

〈Φ(Z1, Z̄1)Φ(Z2, Z̄2)Φ(Z3, Z̄3)〉 = cO3Ō3e
aθ123 θ̄123 , (52)

where a, c are two undetermined constants and for later convenience we denote

O3 =

3
∏

i<j=1

1

Z
∆ij

ij

, Ō3 =

3
∏

i<j=1

1

Z̄
∆̄ij

ij

. (53)

As discussed in 2-pt correlators in the previous section, we first consider the correlator

〈JΦ1Φ2Φ3〉 which can be calculated by using the definition of G,F in eq.(35) as follows

(G+ F )O3Ō3e
aθ123 θ̄123

=FO3Ō3e
aθ123 θ̄123 + [G(O3Ō3)]e

aθ123 θ̄123 +O3Ō3[Ge
aθ123 θ̄123 ]

=(F + P )O3Ō3e
aθ123 θ̄123 +O3(GŌ3)e

aθ123 θ̄123 +O3Ō3a[(Gθ123)θ̄123 − θ123(Gθ̄123)]e
aθ123 θ̄123

→(F + P + a(Gθ123)θ̄123)O3Ō3e
aθ123 θ̄123 ,

(54)
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where P (defined by GO3 ≡ PO3) turns out to be

P =
∑

i,k,k 6=i

∆ik

Zki

(θ0i
z0i

−
θki
2Z0i

)

. (55)

In the last step of eq.(54) we have omitted the ”crossing” terms such as GŌ3, Gθ̄123

(By crossing terms we mean the terms with holomorphic derivative ∂z acting on an-

tiholomorphic coordinates, or ∂z̄ acting on holomorphic coordinates, which will result

in a δ-function as ∂z(1/z̄) = δ̃(z). Note that we have encountered crossing term as in

eq.(32) in the 2pt correlator case), since these terms will vanish when integrating over

θ. To be concrete, taking the term GŌ3 for example

GŌ3 =−
(θ12
z01

∆̄12θ̄1θ̄2δ̃(z12) +
θ31
z01

∆̄13θ̄3θ̄1δ̃(z31) +
θ23
z02

∆̄23θ̄2θ̄3δ̃(z23)
)

Ō3

−
θ23
2z02

∆̄23δ̃(z32)

Z̄∆̄12

12 Z̄∆̄23−1
23 Z̄∆̄13

31

−
θ31
2z01

∆̄13δ̃(z31)

Z̄∆̄12

12 Z̄∆̄23

23 Z̄∆̄13−1
31

−
θ12
2z01

∆̄12δ̃(z12)

Z̄∆̄12−1
12 Z̄∆̄23

23 Z̄∆̄13

31

,

(56)

thus
∫

dθGŌ3 = 0.

With 〈JΦ1Φ2Φ3〉 in hand, we can go on to consider 〈JJ̄Φ1Φ2Φ3〉

(G+ F )(Ḡ+ F̄ )O3Ō3e
aθ123 θ̄123

=(G+ F )(P̄ + F̄ − aθ123(Ḡθ̄123))O3Ō3e
aθ123 θ̄123

=
[

(F + P + a(Gθ123)θ̄123)(F̄ + P̄ − aθ123(Ḡθ̄123))

− a(Gθ123)(Ḡθ̄123) + aθ123(G(Ḡθ̄123)) +G(F̄ + P̄ )
]

O3Ō3e
aθ123 θ̄123 .

(57)

Let us first focus on the last two terms which are crossing terms. After some computa-

tion the last term is
∫

dθdθ̄G(P̄ + F̄ ) = −2
∑

i

∆̄i
δ̃(2)(z0i)

|z0i|2
+

∑

i,k,i 6=k

δ̃(2)(z0i)

|z0i|2
θ̄k θ̄i
z̄ki

∆̄ik. (58)

For the same reason as discussed below eq.(41), this term should be dropped out. As

for the term G(Ḡθ̄123), after employing the anti-commutator

{G, Ḡ} =
∑

i

(θ0i
z0i

+
θi
2z0i

)

(−δ̃(z0i))
(

θ̄0i +
θ̄i
2

)

∂̄i +
∑

i

( θ̄0i
z̄0i

+
θ̄i
2z̄0i

)

(−δ̃(z0i))
(

θ0i +
θi
2

)

∂i

+
∑

i

(θ0i
z0i

+
θi
2z0i

)

(−δ̃(z0i))
(

1 +
2θ̄θ̄i
z̄0i

)1

2
∂θ̄i +

∑

i

( θ̄0i
z̄0i

+
θ̄i
2z̄0i

)

(−δ̃(z0i))
(

1 +
2θθi
z0i

)1

2
∂θi

(59)
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G(Ḡθ̄123) can be written as

G(Ḡθ̄123) → {G, Ḡ}θ̄123

→
∑

i

(θ0i
z0i

+
θi
2z0i

)

(−δ̃(z0i))
(

1 +
2θ̄θ̄i
z̄0i

)1

2
∂θ̄i θ̄123

+
∑

i

(θ0i
z0i

+
θi
2z0i

)

(−δ̃(z0i))
(

θ̄0i +
θ̄i
2

)

∂̄iθ̄123

(60)

where the term Gθ̄123 is omitted in the first step, and also for ∂zj θ̄123 in the second step

since they do not contain θ. Thus finally we get

∫

d2zdθdθ̄G(Ḡθ̄123) =
∑

i

∫

d2z
−δ̃(z0i)θ̄i
|z0i|2

∂θ̄i θ̄123, (61)

which is also singular and should be dropped. This can be seen by noting that if we

interchange the position in 〈J(Z)J̄(Z̄)Φ1...〉, and to consider 〈J̄(Z̄)J(Z)Φ1...〉 we will

obtain a term different with eq.(61) as

∫

d2zdθdθ̄Ḡ(Gθ123) = −
∑

i

∫

d2z
−δ̃(z0i)θi
|z0i|2

∂θiθ123. (62)

thus the appearance of eq.(61) implies the identity 〈J̄(Z̄)J(Z)Φ1...〉 = −〈J(Z)J̄(Z̄)Φ1...〉

does not hold. Thus we must drop the crossing term eq.(61). From this consideration

we will omit all the crossing terms without explicitly pointing out in the following case

with n ≥ 4 point correlation functions.

Finally we obtain the 3pt correlator as

1

〈Φ1Φ2Φ3〉

∫

d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)Φ3(Z3, Z̄3)〉

=

∫

d2z
[

∑

i,k,k 6=i

∆ik

Zki

( 1

z0i
+
θkθi
2z20i

)

+
∑

i

∆i

z20i
+ a

∑

i

( 1

z0i
∂ziθ123 +

θi
2z20i

∂θiθ123

)

θ̄123

]

× (−1)
[

∑

i,k,k 6=i

∆̄ik

Z̄ki

( 1

z̄0i
+
θ̄kθ̄i
2z̄20i

)

+
∑

i

∆̄i

z̄20i
+ aθ123

∑

i

( 1

z̄0i
∂z̄i θ̄123 +

θ̄i
2z̄20i

∂θ̄i θ̄123

)]

− a
∑

i

( 1

z0i
∂ziθ123 +

θi
2z20i

∂θiθ123

)

×
∑

i

( 1

z̄0i
∂z̄i θ̄123 +

θ̄i
2z̄20i

∂θ̄i θ̄123

)

.

(63)
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Let us first consider the terms containing no a

−

∫

d2z
∑

ij

[

∑

k,k 6=i

∆ik

Zki

1

z0i
+

1

z20i

(

∑

k,k 6=i

θkθi∆ik

2Zki
+∆i

)][

∑

l,l 6=j

∆̄lj

Z̄lj

1

z̄0j
+

1

z̄20j

(

∑

l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj

+ ∆̄j

)]

=−
∑

ij

[

I11(zi, z̄j)
∑

k,k 6=i

∑

l,l 6=j

∆ik

Zki

∆̄lj

Z̄lj

+ I22(zi, z̄j)
(

∑

k,k 6=i

θkθi∆ik

2Zki
+∆i

)(

∑

l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj

+ ∆̄j

)

+ I12(zi, z̄j)
∑

k,k 6=i

∆ik

Zki

(

∑

l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj

+ ∆̄j

)

+ I21(zi, z̄j)
(

∑

k,k 6=i

θkθi∆ik

2Zki
+∆i

)

∑

l,l 6=j

∆̄lj

Z̄lj

]

.

(64)

Next evaluating the a1-terms which contains two parts, the first part is

V11 ≡− a
∑

ij

∫

d2z
[

∑

k,k 6=i

∆ik

2Zki

1

z0i
+

1

z20i

(

∑

k,k 6=i

θkθi∆ik

2Zki
+∆i

)]

θ123

( 1

z̄0j
∂z̄j θ̄123 +

θ̄j
2z̄20j

∂θ̄j θ̄123

)

− (barred ↔ unbarred)

=− a
∑

ij

[

I11(zi, z̄j)
∑

k,k 6=i

∆ik

Zki

θ123∂z̄j θ̄123 + I12(zi, z̄j)
∑

k,k 6=i

∆ik

2Zki

θ123θ̄j∂θ̄j θ̄123

+ I21(zi, z̄j)
(

∑

k,k 6=i

θkθi∆ik

2Zki
+∆i

)

θ123∂z̄j θ̄123 +
1

2
I22(zi, z̄j)

(

∑

k,k 6=i

θkθi∆ik

2Zki
+∆i

)

θ123θ̄j∂θ̄j θ̄123

]

− (barred ↔ unbarred),
(65)

and the second part is

V12 ≡− a
∑

ij

( 1

z0i
∂ziθ123 +

θi
2z20i

∂θiθ123

)( 1

z̄0j
∂z̄j θ̄123 +

θ̄j
2z̄20j

∂θ̄j θ̄123

)

=− a
∑

ij

(

I11(zi, z̄j)∂ziθ123∂z̄j θ̄123 +
1

2
I12(zi, z̄j)(∂ziθ123)θ̄j∂θ̄j θ̄123 +

1

2
I21(zi, z̄j)θi∂θiθ123∂z̄j θ̄123,

(66)

As for the a2-term denoted as V2, by observing eq.(63) we find V2 = −aV12θ123θ̄123,

thus V12 + V2 = V12e
−aθ123 θ̄123 . In summary, the result for 3-pt correlators with T T̄

15



perturbation to first order is

1

〈Φ1Φ2Φ3〉

∫

d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)Φ3(Z3, Z̄3)〉

=−
∑

ij

[

− π(−
2

ǫ
+ ln |zij |

2 + γ + ln π)

×
∑

k,k 6=i

(

∑

l,l 6=j

∆ik

Zki

∆̄lj

Z̄lj

+ a
∆ik

Zki

θ123∂z̄j θ̄123 + a
∆̄ik

Z̄ki

∂zjθ123θ̄123 + a∂ziθ123∂z̄j θ̄123e
−aθ123 θ̄123

)

+
π

z̄ij

(a

2
(∂ziθ123)θ̄j∂θ̄j θ̄123e

−aθ123 θ̄123 +
∑

k,k 6=i

∆ik

Zik

∑

l,l 6=j

z̄lj∆̄lj

2Z̄lj

+ a
∑

l,l 6=j

z̄lj∆̄jl

2Z̄lj

∂ziθ123θ̄123 + a
∑

k,k 6=i

∆ik

2Zki

θ123θ̄j∂θ̄j θ̄123

)

−
π

zij

(a

2
(θi∂θiθ123)∂z̄j θ̄123e

−aθ123 θ̄123 + a
∑

k,k 6=i

zki∆ik

2Zki

θ123∂z̄j θ̄123

+ aθi∂θiθ123θ̄123
∑

l,l 6=j

∆̄lj

2Z̄lj

+
∑

k,k 6=i

zki∆ik

2Zki

∑

l,l 6=j

∆̄lj

Z̄lj

]

,

(67)

where the identity
∑

k,k 6=i ∆̄ik = 2∆̄i. is used to simplify the final expression.

2.3 n-pt correlators

For n point with n ≥ 4, the undeformed correlator functions take the form as

〈Φ1(Z1, Z̄1)...Φn(Zn, Z̄n)〉 = OnŌnf(Ui, Ūi, wk, w̄k) (68)

with

On =
∏

i<j

Z
−∆ij

ij , Ōn =
∏

i<j

Z̄
−∆̄ij

ij . (69)

Assuming all Φi have the same dimension (∆, ∆̄), we have

A ≡ ∆ij =
2∆

n− 1
, ∆̄ ≡ ∆̄ij =

2∆̄

n− 1
. (70)

Again the crossing terms ḠZijkl, Ḡθijk, ḠOn do not depend on θ and we will not consider

these terms below. Now evaluate

〈JΦ1...Φn〉 = (F +G)OnŌnf = (F + P )OnŌnf +QOnŌn, (71)
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where P takes the same form as eq.(55) with summation from 1 to n, and

Q ≡ (GUi)
∂f

∂Ui
+ (Gwk)

∂f

∂wk
=

n
∑

j=1

( θ0j
Z0j

∂Rzjf +
1

2Z0j
DR

j f
)

, (72)

where we introduced the notation ∂Rzj , D
R
j , ∂

R
θ which act on zi, θi but not on z̄i, θ̄i, and

similarly let ∂Lz̄j , D̄
L
j , ∂

L
θ̄

act on z̄i, θ̄i but not on zi, θi (thus ∂Rzj (1/z̄j) = 0). When

inserting JJ̄ , yields

(F +G)[(F̄ + P̄ )OnŌnf + Q̄OnŌn]

=(F + P )(F̄ + P̄ )OnŌnf +Q(F̄ + P̄ )OnŌn + (F + P )Q̄OnŌn + (GQ̄)OnŌn

(73)

with

Q̄ =
n

∑

j=1

(( θ̄0j
z̄0j

+
θ̄j
2z̄0j

)

∂Lz̄jf +
1

2Z̄0j

∂Lθ̄jf
)

. (74)

Naively the last term in eq.(73) looks like a crossing term, but this is not the case as

can be see below

GQ̄ =−
∑

ij

( θ̄0j
z̄0j

+
θ̄j
2z̄0j

)(

(∂z̄j Ūi)
(

G
∂f

∂Ūi

)

− (∂z̄j w̄i)
(

G
∂f

∂w̄i

))

−
∑

ij

1

2Z̄0j

(

(∂θ̄j Ūi)
(

G
∂f

∂Ūi

)

− (∂θ̄j w̄i)
(

G
∂f

∂w̄i

))

,

(75)

where for example one has

G
∂f

∂Ūi

=
∑

j

(

(GUj)
∂2f

∂Uj∂Ūi

+ (Gwj)
∂2f

∂wj∂Ūi

)

≡ GR ∂f

∂Ūi
(76)

with GR acting only on Uj , wj but not on Ūj , w̄j. Eventually one can get

∫

dθdθ̄GQ̄ =
∑

ij

[ 1

z0i

(

−
1

z̄0j
∂Rzi∂

L
z̄j
f −

θ̄j
2z̄20j

∂Rzi∂
L
θ̄j
f
)

+
θi
2z20i

(

−
1

z̄0j
∂Rθn∂

L
z̄j
f +

θ̄j
2z̄20j

∂Rθn∂
L
θ̄j
f
)]

.

(77)
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In summary the T T̄ deformed correlator is of the form

1

〈Φ1...Φn〉

∫

d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)...Φn(Zn, Z̄n)〉

=

∫

d2z(−1)
∑

ij

[

∑

k,k 6=i

∆ik

Zki

1

z0i
+

1

z20i

(

∑

k,k 6=i

θkθi∆ik

2Zki

+∆i

)]

×
[

∑

l,l 6=j

∆̄lj

Z̄lj

1

z̄0j
+

1

z̄20j

(

∑

l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj

+ ∆̄j

)]

−
∑

ij

[( 1

z0i
∂Rzif +

θi
2z20i

DR
i f

) 1

f

][

∑

l,l 6=j

∆̄lj

Z̄lj

1

z̄0j
+

1

z̄20j

(

∑

l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj

+ ∆̄j

)]

−
∑

ij

[

∑

k,k 6=i

∆ik

Zki

1

z0i
+

1

z20i

(

∑

k,k 6=i

θkθi∆ik

2Zki
+∆i

)][( 1

z̄0j
∂Lz̄jf +

θ̄j
2z̄20j

D̄L
j f

)1

f

]

+
∑

ij

[ 1

z0i

(

−
1

z̄0j
∂Rzi∂

L
z̄j
f −

θ̄j
2z̄20j

∂Rzi∂
L
θ̄j
f
)

+
θi
2z20i

(

−
1

z̄0j
∂Rθi∂

L
z̄j
f +

θ̄j
2z̄20j

∂Rθi∂
L
θ̄j
f
)]

.

(78)

Hence using the results for integrals in section 4, the final result is

1

〈Φ1...Φn〉

∫

d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)...Φn(Zn, Z̄n)〉

=
∑

ij

[

− π
(

−
2

ǫ
+ ln |zij|

2 + γ + ln π
)

×
(

−
∑

k,k 6=i

∆ik

Zki

∑

l,l 6=j

∆̄lj

Z̄lj

− ∂Rzif
∑

l,l 6=j

∆̄lj

fZ̄lj

−
∑

k,k 6=i

∆ik

Zki

∂Lz̄jf
1

f
− ∂Rzi∂

L
z̄j
f
1

f

)

−
π

z̄ij

(

∑

k,k 6=i

∆ik

Zki

∑

l,l 6=j

z̄lj∆̄lj

2Z̄lj

+ ∂Rzif
1

f

∑

l,l 6=j

z̄lj∆̄lj

2Z̄lj

+
∑

k,k 6=i

∆ik

2Zki
θ̄j∂

L
θ̄j
f
1

f
−
θ̄j
2
∂Rzi∂

L
θ̄j
f
1

f

)

+
π

zij

(

∑

k,k 6=i

zki∆ik

2Zki

∑

l,l 6=j

∆̄lj

Z̄lj

+
θi
2f
∂Rθif

∑

l,l 6=j

∆̄lj

Z̄lj

+
∑

k,k 6=i

zki∆ik

2Zki

∂Lz̄jf
1

f
−
θi
2
∂Rθi∂

L
z̄j
f
1

f

)]

.

(79)

Setting n = 4, the above results can be used to investigate, for example, the OTOC.

The superfield can be written as

Φ(Z, Z̄) = φ+ θψ1 + θ̄ψ2 + θθ̄f (80)

and its conjugate

Φ(Z, Z̄)† = φ† − θψ†
2 − θ̄ψ†

1 + θθ̄f † (81)
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To consider the OTOC involving two fields φ, ψ1, from (45) in [19], at first order one of

the 4pt functions needed to compute is

〈φ(z1, z̄1)φ
†(z2, z̄2)ψ1(z3, z̄3)ψ

†
1(z4, z̄4)〉λ

=−

∫

dθ3dθ̄4

∫

d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φ
†(Z2, Z̄2)Φ(Z3, Z̄3)Φ

†(Z4, Z̄4)〉|θ1=θ̄1=θ2=θ̄2=θ4=θ̄3=0

=−

∫

dθ3θ̄4

{

∑

i 6=j

[

− π
(

−
2

ǫ
+ ln |zij|

2 + γ + ln π
)

×
(

−
∑

k,k 6=i

∆ik

zki

∑

l,l 6=j

∆̄lj

z̄lj
f − ∂Rzif

∑

l,l 6=j

∆̄lj

z̄lj
−

∑

k,k 6=i

∆ik

zki
∂Lz̄jf − ∂Lz̄j∂

R
zi
f
)

−
π

z̄ij

(

∑

k,k 6=i

∆ik

zki
∆̄jf + ∂Rzif∆̄j + δj4

∑

k,k 6=i

∆ik

2zki
θ̄j∂

L
θ̄j
f − δj4

θ̄j
2
∂Rzi∂

L
θ̄j
f
)

+
π

zij

(

∆i

∑

l,l 6=j

∆̄lj

z̄lj
f + δi3

θi
2
∂Rθif

∑

l,l 6=j

∆̄lj

z̄lj
+∆i∂

L
z̄j
f − δi3

θi
2
∂Rθi∂

L
z̄j
f
)]

×
∏

i<j

z
−∆ij

ij z̄
−∆̄ij

ij

}

|θ1=θ̄1=θ2=θ̄2=θ4=θ̄3=0,

(82)

where in the integrand, we can replace Zij → zij , Z̄ij → z̄ij . In the bosonic CFT, 4-pt

correlators can be expressed as conformal blocks whose universal properties are known

in some cases, thus the OTOC can be computed [74], while in eq.(82) the function f is

unknown in general. Thus it is more difficult to compute OTOC here.

3 N=(2,2) superconformal symmetry

For (2,2) superconformal symmetry, the coordinates on superspace is divided into holo-

morphic Z = (z, θ, θ̄) and antiholomorphic part Z̃ = (z̄, θ̃,
¯̃
θ) respectively. In parallel

with the situation in (1,1) case, (2,2) superconformal group is a direct product of (2,0)

and (0,2) superconformal group which acts on Z and Z̃ respectively. Thus we will only

write out the holomorphic coordinates explicitly hereafter. For holomorphic part the

covariant derivatives are [70, 71, 75–77]

D = ∂θ + θ̄∂z, D̄ = ∂θ̄ + θ∂z , (83)

which satisfy D2 = D̄2 = 0, {D, D̄} = 2∂z . The energy momentum superfield is

J(Z) = j(z) + iθḠ(z) + iθ̄G(z) + 2θθ̄T (z), (84)
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and similar for J̄(Z̄). Here T (z) is stress tensor of the theory, and G(z), Ḡ(z) are two

supersymmetric generators, j(z) corresponds to the U(1) symmetry of rotation of the

two supersymmtries.

Super-analytic transformation can be defined via the transformation law of covariant

derivatives as

D = (Dθ′)D′, D̄ = (D̄θ̄′)D̄′. (85)

Superconformal primary fields are defined such that under super-analytic transforma-

tion they transform as

Φ(Z) = (Dθ′)∆+Q/2(D̄θ̄′)∆−Q/2Φ′(Z ′) (86)

where ∆, J are the dimension and charge of Φ respectively. The OPE between energy

momentum superfield J(Z) and primary superfield have been considered in [75, 77]

J(Z1)Φ(Z2) = 2∆
θ12θ̄12
Z2

12

Φ(Z2)+2
θ12θ̄12
Z12

∂z2Φ(Z2)+
θ12
Z12

DΦ(Z2)−
θ̄12
Z12

D̄Φ(Z2)+Q
Φ(Z2)

Z12
,

(87)

where Z12 = z12 − θ1θ̄2 − θ̄1θ2 (also Z̃12 = z̄12 − θ̃1
¯̃
θ2 −

¯̃
θ1θ̃2). In analogy with (1,1) case

in the previous section, from this OPE, we can get the Ward identity as 8

〈J(Z0)Φ1(Z1, Z̃1)...Φn(Zn, Z̃n)〉

=
n

∑

i=1

(

2∆i
θ0iθ̄0i
Z2

0i

+ 2
θ0iθ̄0i
Z0i

∂zi +
θ0i
Z0i

Di −
θ̄0i
Z0i

D̄i +
Qi

Z0i

)

〈Φ1(Z1, Z̃1)...Φn(Zn, Z̃n)〉.

(88)

In NS sector the n-pt correlators on the right hand side of eq.(88) are constrained by

Ward identity corresponding to global superconformal Osp(2|2) transformation [77].

When n = 2, the correlator is fixed as

〈Φ(Z1, Z̃1)Φn(Zn, Z̃n)〉 =
1

Z2∆
12 Z̃

2∆̄
12

e
Q2

θ12 θ̄12
Z12 e

Q̄2
θ̃12

¯̃
θ12

Z̃12 , (89)

where ∆1 = ∆2, Q1 + Q2 = 0 and similar for ∆̄, Q̄. Note here we have written the

antiholomorphic part explicitly.

8For the N = 2 Super-Cauchy theorem see [75]
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For n = 3 the correlators take the form

〈Φ1(Z1, Z̃1)Φ2(Z2, Z̃2Φ3(Z3, Z̃3〉 =
(

3
∏

i<j

Z
−∆ij

ij

)

exp
(

∑

i<j

Aij
θij θ̄ij
Zij

)

δQ1+Q2+Q3,0

×
(

3
∏

i<j

Z̃
−∆̄ij

ij

)

exp
(

∑

i<j

Āij
θ̃ij

¯̃θij

Z̃ij

)

δQ̄1+Q̄2+Q̄3,0

(90)

with Aij = −Aji,
∑3

j=1,j 6=iAij = −Qi, and similar for the Āij , Q̄i. Note that not all Aij

are fixed, this is because for 3-pt case there are nine coordinates (zi, θi, θ̄i), i = 1, 2, 3,

and eight generators for osp(2|2), thus there remains one degree of freedom which

corresponds to the invariant quantity

R123 =
θ12θ̄12
Z12

+
θ31θ̄31
Z31

+
θ23θ̄23
Z23

(91)

with R2
123 = 0.

The n-pt correlators can be fixed by Ward identity up to an undetermined function

〈Φ1(Z1, Z̃1)...Φ2(Zn, Z̃n)〉

=
(

n
∏

i<j

1

Z
∆ij

ij

1

Z̃
∆̄ij

ij

)

exp
(

n
∑

i<j

Āij
θ̃ij

¯̃
θij

Z̃ij

)

exp
(

n
∑

i<j

Aij
θij θ̄ij
Zij

)

× f(x1, x2, ..., x3n−8, x̄1, x̄2, ..., x̄3n−8)δ
∑

i Qi,0δ
∑

i Q̄i,0,

Aij = −Aji, ∆ij = ∆ji,
∑

j,j 6=i

Aij = −Qi,
∑

j,j 6=i

∆ij = 2∆i,

(92)

where xi is Osp(2|2) invariant variables which may be either Rijk or Zijkl

Rijk =
θij θ̄ij
Zij

+
θjkθ̄jk
Zjk

+
θkiθ̄ki
Zki

, Zijkl =
ZijZkl

ZliZjk
. (93)

It should be point out that only 3n− 8 variables Rijk, Zijkl are independent.

In parallel with (1,1), we can now define T T̄ deformed correlators for (2,2) case.

The variation of action under T T̄ deformation can be constructed as

δS = λ

∫

d2zT T̄ (z) = λ

∫

d2z

∫

dθdθ̄dθ̃ ¯̃θJ(Z)J̄(Z̄), (94)

Also to first order the n-pt correlators is

−λ

∫

d2z

∫

dθdθ̄dθ̃d
¯̃
θ〈J(Z)J̄(Z̄)Φ(Z1, Z̄1)...Φ(Zn, Z̄n)〉. (95)

In the following section we will consider eq.(95)) with n = 2, 3 and n ≥ 4.
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3.1 2-pt correlators

Up to a constant prefactor, the 2-pt correlators take the form as

〈Φ1(Z1, Z̃1)Φ2(Z2, Z̃2)〉 =
1

Z2∆
12 Z̃

2∆̄
12

e
Q2

θ12 θ̄12
Z12 e

Q̄2
θ̃12

¯̃
θ12

Z̃12 . (96)

To obtain T T̄ deformed correlators, first consider only the correlators with holomorphic

component of stress tensor inserted, from eq.(88), this is

〈JΦ1Φ2〉 ≡ (F +G)〈Φ1Φ2〉, (97)

where for later convenience we introduced G,F such that G contains derivatives and F

does not

G =
n

∑

i=1

(

2
θ0iθ̄0i
Z0i

∂zi +
θ0i
Z0i

Di −
θ̄0i
Z0i

D̄i

)

, F =
n

∑

i=1

(

2∆i
θ0iθ̄0i
Z2

0i

+
Qi

Z0i

)

. (98)

To evaluate eq.(97), firstly, let us consider the crossing terms (holomorphic derivatives

∂z acting on antiholomorphic coordinates or vice versa) in eq.(97). In analogy with the

(1, 1) case, it can be shown that this kind of terms vanish when integrating over θ, θ̄,

thus it will not contribute to the final results eq.(95). Explicitly, consider the crossing

term G 1

Z̃2∆̄
12

9

G
1

Z̃2∆̄
12

=

∫

dθdθ̄
∑

i

(

2
θ0iθ̄0i
Z0i

∂zi +
θ0i
Z0i

Di −
θ̄0i
Z0i

D̄i

) 1

Z̃2∆̄
12

=

∫

dθdθ̄
(θ01
z01

θ̄1 −
θ̄01
z01

θ1 −
θ02
z02

θ̄2 +
θ̄02
z02

θ2 + 2
(θ01θ̄01

z01
−
θ02θ̄02
z02

)) 2∆̄

Z̃2∆̄−1
12

∂z1
1

Z̃12

= 0,

(102)

where in the last step we have used

∂z1
1

Z̃12

= −∂z2
1

Z̃12

= δ̃(z12)
(

1 + 2
θ̃1
¯̃
θ2 +

¯̃
θ1θ̃2

z̄12
+ 6

θ̃1
¯̃
θ2
¯̃
θ1θ̃2
z̄212

)

. (103)

9Some useful expressions

1

Z0i
=

1

z0i
+

θ0θ̄i + θ̄0θi

z20i
+ 2

θ0θ̄iθ̄0θi

z30i
, (99)

θ0i

Z0i
=

θ0i

z0i
−

θ0θiθ̄0i

z20i
,

θ̄0i

Z0i
=

θ̄0i

z0i
−

θ̄0θ̄iθ0i

z20i
,

θ0iθ̄0i

Z0i
=

θ0iθ̄0i

z0i
, (100)

∫

dθdθ̄θ̄θ = 1. (101)
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In the same manner one has
∫

dθdθ̄Ge
Q̄2

θ̃12
¯̃
θ12

Z̃12 = 0. Therefore we can derive eq.(97) in

the following without considering crossing terms, which is

〈JΦ1Φ2〉 = (F + G)〈Φ1Φ2〉 ≡ (F + P )〈Φ1Φ2〉 (104)

with

F = 2∆
(θ01θ̄01

z201
+
θ02θ̄02
z202

)

−Q2

( 1

Z01

−
1

Z02

)

(105)

and P is defined as (similar for P̃ , F̃ )

P ≡ G〈Φ1Φ2〉/〈Φ1Φ2〉

=− 4∆
(θ01θ̄01

z01
−
θ02θ̄02
z02

) 1

Z12
+
(θ01θ̄21
Z01

+
θ02θ̄21
Z02

) 2∆

Z12

−
( θ̄01θ21
Z01

+
θ̄02θ21
Z02

) 2∆

Z12
− 2Q2

θ12θ̄12
z212

(θ01θ̄01
z01

−
θ02θ̄02
z02

)

+ Q2

( θ01
Z01

−
θ02
Z02

) θ̄12
Z12

+Q2

( θ̄01
Z01

−
θ̄02
Z02

) θ12
Z12

.

(106)

Having obtained eq.(97), next we can investigate 〈JJ̄Φ1Φ2〉

(F +G)(F̃ + G̃)〈Φ1Φ2〉 = (F +G)(F̃ + P̃ )〈Φ1Φ2〉

=(F + P )(F̃ + P̃ )O2Õ2 + [G(F̃ + P̃ )]〈Φ1Φ2〉.
(107)

Note that the last term is also a crossing term which can be dropped by the same

reason as discussed around eq.(58). Finally, we get the first order T T̄ deformation of

2-pt correlators

1

〈Φ1Φ2〉

∫

d2zdθdθ̄dθ̃d ¯̃θ〈JJ̄Φ1Φ2〉

=

∫

d2zdθdθ̄dθ̃d ¯̃θ(F + P )(F̃ + P̃ )

=

∫

d2z
[

− 2∆
( 1

z201
+

1

z202

)

− 2Q2

( θ̄1θ1
z301

−
θ̄2θ2
z302

)

+ 4∆
( 1

z01
−

1

z02

) 1

Z12

−
( θ1
z201

+
θ2
z202

)2∆θ̄21
Z12

−
( θ̄1
z201

+
θ̄2
z202

)θ212∆

Z12

+ 2Q2
θ12θ̄12
z212

( 1

z01
−

1

z02

)

−Q2

( θ1
z201

−
θ2
z202

) θ̄12
Z12

+Q2

( θ̄1
z201

−
θ̄2
z202

) θ12
Z12

]

×
[

− 2∆̄
( 1

z̄201
+

1

z̄202

)

− 2Q̄2

(
¯̃
θ1θ̃1
z̄301

−
¯̃
θ2θ̃2
z̄302

)

+ 4∆̄
( 1

z̄01
−

1

z̄02

) 1

Z̃12

−
( θ̃1
z̄201

+
θ̃2
z̄202

)2∆̄
¯̃
θ21

Z̃12

−
(
¯̃
θ1
z̄201

+
¯̃
θ2
z̄202

) θ̃212∆̄

Z̃12

+ 2Q̄2
θ̃12

¯̃
θ12
z̄212

( 1

z̄01
−

1

z̄02

)

− Q̄2

( θ̃1
z̄201

−
θ̃2
z̄202

)
¯̃
θ12

Z̃12

+ Q̄2

(
¯̃
θ1
z̄201

−
¯̃
θ2
z̄202

) θ̃12

Z̃12

]

.

(108)
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Further Performing the integral over z using dimensional regularization, yields

1

〈Φ1Φ2〉

∫

d2zdθdθ̄dθ̃d ¯̃θ〈JJ̄Φ1Φ2〉

=2π
(

−
2

ǫ
+ ln |zij |

2 + γ + ln π +O(ǫ)
)( 4∆

Z12
+ 2Q2

θ12θ̄12
z212

)( 4∆̄

Z̃12

+ 2Q̄2
θ̃12

¯̃
θ12
z̄212

)

−
π

z̄ij

( 4∆

Z12
+ 2Q2

θ12θ̄12
z212

)(4∆̄z̄12

Z̃12

+ Q̄2
(θ̃1 + θ̃2)

¯̃θ12
z̄12

− Q̄2
(¯̃θ1 +

¯̃θ2)θ̃12
z̄12

)

−
π

zij

(4∆z12
Z12

+Q2
θ12(θ̄1 + θ̄2)

z12
−Q2

θ̄12(θ1 + θ2)

z12

)( 4∆̄

Z̃12

+ 2Q̄2
θ̃12

¯̃
θ12
z̄212

)

+
π

(z̄ij)2

( 4∆

Z12
+ 2Q2

θ12θ̄12
z212

)(

2Q̄2
¯̃
θ2θ̃2 + 2Q̄2

¯̃
θ1θ̃1

)

+
π

(zij)2

(

2Q2θ̄1θ1 + 2Q2θ̄2θ2

)( 4∆̄

Z̃12

+ 2Q̄2
θ̃12

¯̃
θ12
z̄212

)

.

(109)

3.2 3-pt correlators

Using Ward identity, the 3pt correlators take the general form as

〈Φ1(Z1, Z̃1)Φ2(Z2, Z̃2)Φ3(Z3, Z̃3〉 =
(

3
∏

i<j

Z
−∆ij

ij

)

exp
(

∑

i<j

Aij
θij θ̄ij
Zij

)

δQ1+Q2+Q3,0

×
(

3
∏

i<j

Z̃
−∆̄ij

ij

)

exp
(

∑

i<j

Āij
θ̃ij

¯̃
θij

Z̃ij

)

δQ̄1+Q̄2+Q̄3,0.

(110)

Following the same line as 2-pt correlators, we first consider

〈JΦ1Φ2Φ3〉 = 〈G+ F 〉〈Φ1Φ2Φ3〉. (111)

It can be shown that the crossing terms do not contribute, i.e.

∫

dθdθ̄G
(

3
∏

i<j

Z̃
−∆̄ij

ij

)

= 0,

∫

dθdθ̄G exp
(

∑

i<j

Āij
θ̃ij

¯̃θij

Z̃ij

)

= 0. (112)

Therefore we only need to consider

G
(

3
∏

i<j

Z
−∆ij

ij

)

=
∑

i,k,i 6=k

(

2
θ0kθ̄0k
z0k

∆ik

Zik
+
θ0k
Z0k

θ̄ki∆ik

Zik
−
θ̄0k
Z0k

θki∆ik

Zik

)(

3
∏

i<j

Z
−∆ij

ij

)

≡P1

(

3
∏

i<j

Z
−∆ij

ij

)

(113)
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and

G exp
(

∑

i<j

Aij
θij θ̄ij
zij

)

=
∑

j,k,j 6=k

(

2
θ0kθ̄0k
z0k

Ajk
θjkθ̄jk
z2jk

+
θ0k
Z0k

Akj
θ̄kj
Zkj

−
θ̄0k
Z0k

Ajk
θjk
Zjk

)

exp
(

∑

i<j

Aij
θij θ̄ij
zij

)

≡P2 exp
(

∑

i<j

Aij
θij θ̄ij
zij

)

.

(114)

Thus we obtain 〈JΦ1Φ2Φ3〉 = (F + P1 + P2)〈Φ1Φ2Φ3〉, and it follows that

〈JJ̄Φ1Φ2Φ3〉 =(G+ F )(G̃+ F̃ )〈Φ1Φ2Φ3〉

=(P1 + P2 + F )(P̃1 + P̃2 + F̃ )〈Φ1Φ2Φ3〉+ [G(P̃1 + P̃2 + F̃ )]〈Φ1Φ2Φ3〉,
(115)

where the last term should be dropped as discussed in previous sections. Substituting

the expression of P1, P2, F into eq.(115), we have

1

〈Φ1Φ2Φ3〉

∫

d2zdθdθ̄dθ̃d
¯̃
θ〈JJ̄Φ1Φ2Φ3〉

=

∫

d2z
[

∑

i,k,i 6=k

(

−
2

z0k

∆ik

Zik

+
1

z20k

(θkθ̄i + θ̄kθi)∆ik

Zik

− 2
1

z0k
Aik

θik θ̄ik
z2ik

−
θk
z20k

Aki
θ̄ki
Zki

−
θ̄k
z20k

Aik
θik
Zik

)

+
∑

i

(

− 2∆i
1

z20i
+ 2

Qiθ̄iθi
z30i

)]

×
[

∑

j,k,j 6=k

(

−
2

z̄0k

∆̄jk

Z̃jk

+
1

z̄20k

(θ̃k
¯̃
θj +

¯̃
θkθ̃j)∆̄jk

Z̃jk

− 2
1

z̄0k
Ājk

θ̃jk
¯̃
θjk
z̄2jk

−
θ̃k
z̄20k

Ākj

¯̃
θkj
Z̄kj

−
¯̃
θk
z̄20k

Ājk
θ̃jk
Z̄jk

)

+
∑

j

(

− 2∆̄j
1

z̄20j
+ 2

Q̄j
¯̃
θj θ̃j
z̄30j

)]

.

(116)

Using
∑

i,i 6=k ∆ik = 2∆k, the first and second line of the integrand can be expressed as

[

∑

i,k,i 6=k

(

−
2

z0i

∆ki

Zki
+

1

z20i

(θiθ̄k + θ̄iθk)∆ki

Zki
− 2

1

z0i
Aki

θkiθ̄ki
z2ki

−
θi
z20i
Aik

( θ̄ik
zik

−
θikθ̄iθ̄k
z2ik

)

−
θ̄i
z20i
Aki

(θki
zki

−
θkθiθ̄ki
z2ik

))

+
∑

i

(

− 2∆i
1

z20i
+ 2

Qiθ̄iθi
z30i

)]

=
∑

i,k,i 6=k

(

−
1

z0i

(2∆ki

Zki
+

2θkiθ̄kiAki

z2ki

)

−
1

z20i

(zki∆ki

Zki
+ Aik

θiθ̄ik − θ̄iθik
zik

))

+
∑

i

2Qiθ̄iθi
z30i

.

(117)
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Consequently, the final result for 3-pt correlators are

1

〈Φ1Φ2Φ3〉

∫

d2zdθdθ̄dθ̃d ¯̃θ〈JJ̄Φ1Φ2Φ3〉

=
∑

ij

[(

− π(−
2

ǫ
+ ln |zij|

2 + γ + lnπ +O(ǫ))
)

∑

k,i 6=k

(2∆ki

Zki
+

2θkiθ̄kiAki

z2ki

)

∑

l,j 6=l

(2∆̄lj

Z̃lj

+
2θ̃lj

¯̃θljĀlj

z̄2lj

)

+
π

z̄ij

∑

k,i 6=k

(2∆ki

Zki
+

2θkiθ̄kiAki

z2ki

)

∑

l,j 6=l

( z̄lj∆̄lj

Z̃lj

+ Ājl
θ̃j
¯̃θjl −

¯̃θj θ̃jl
z̄jl

)

−
π

zij

∑

k,i 6=k

(zki∆ki

Zki

+ Aik
θiθ̄ik − θ̄iθik

zik

)

∑

l,j 6=l

(2∆̄lj

Z̃lj

+
2θ̃lj

¯̃θljĀlj

z̄2lj

)

−
π

z̄2ij

∑

k,i 6=k

(2∆ki

Zki

+
2θkiθ̄kiAki

z2ki

)

2Q̄j
¯̃θjθj −

π

z2ij
2Qiθ̄iθi

∑

l,j 6=l

(2∆̄lj

Z̃lj

+
2θ̃lj

¯̃
θljĀlj

z̄2lj

)]

.

(118)

3.3 n-pt correlators

The n-pt function can be fixed by Ward identity up to an undetermined function

〈Φ1(Z1, Z̃1)...Φn(Zn, Z̃n)〉

=
(

n
∏

i<j

1

Z
∆ij

ij

1

Z̃
∆̄ij

ij

)

exp
(

n
∑

i<j

Āij
θ̃ij

¯̃
θij

Z̃ij

)

exp
(

n
∑

i<j

Aij
θij θ̄ij
Zij

)

× f(x1, x2, ..., x3n−8, x̄1, x̄2, ..., x̄3n−8)δ∑i Qi,0δ
∑

i Q̄i,0,

(119)

where xi can be either of the following invariant variables

Rijk =
θij θ̄ij
Zij

+
θjkθ̄jk
Zjk

+
θkiθ̄ki
Zki

, Zijkl =
ZijZkl

ZliZjk
. (120)

Note that only 3n− 8 of Rijk and Zijkl are independent.

Let us first consider only holomorphic component J(Z) inserted

〈JΦ1...Φn〉 = (G+ F )〈Φ1...Φn〉, (121)

where we will encounter new crossing terms GR̃ijk, GZ̃ijkl in addition to these appeared

in eq.(112). By using eq.(103) it can be checked that they will vanish, i.e.

∫

dθdθ̄GR̃ijk = 0,

∫

dθdθ̄GZ̃ijkl = 0. (122)
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Thus we will not consider crossing terms in eq.(121), then

(G+ F )〈Φ1...Φn〉 = (P1 + P2 + F )〈Φ1...Φn〉

=(P1 + P2 + F )〈Φ1...Φn〉+Q〈Φ1...Φn〉
1

f
,

(123)

where P1, P2 be of the same form as defined in eq.(113) and eq.(114). Here Q equals

Gf , which is

Q =
(

∑

Rijk

(GRijk)
∂f

∂Rijk

+
∑

Zijkl

(GZijkl)
∂f

∂Zijkl

)

=
∑

n

(2θ0nθ̄0n
z0n

(

(∂znR)
∂f

∂R
+ (∂znZ)

∂f

∂Z

)

+
θ0n
Z0n

(

(∂θnR)
∂f

∂R
+ (∂θnZ)

∂f

∂Z

)

−
θ̄0n
Z0n

(

(∂θ̄nR)
∂f

∂R
+ (∂θ̄nZ)

∂f

∂Z

))

≡
∑

n

(2θ0nθ̄0n
z0n

∂Rznf +
θ0n
Z0n

∂Rθnf −
θ̄0n
Z0n

∂Rθ̄nf
)

,

(124)

where for simplicity we have abbreviated Rijk as R, Zijkl as Z and suppressed the

summation
∑

Rijk
,
∑

Zijkl
. Note in the first step in eq.(124) we omit the terms vanishing

after integration over θ, θ̄. Following the same way we introduce Q̃ as

Q̃ ≡
∑

n

(2θ̃0n
¯̃
θ0n

z̄0n
∂Lz̄nf +

θ̃0n

Z̃0n

∂L
θ̃n
f −

¯̃
θ0n

Z̃0n

∂L¯̃θn
f
)

. (125)

Next consider 〈JJ̄Φ1...Φn〉, which is

(G+ F )(G̃+ F̃ )〈Φ1...Φn〉

=(F + P )(F̃ + F̃ )〈Φ1...Φn〉+Q(F̃ + P̃ )〈Φ1...Φn〉/f + (F + P )Q̃〈Φ1...Φn〉/f

+ (GQ̃)〈Φ1...Φn〉/f + [G(P̃ + F̃ )]〈Φ1...Φn〉,

(126)

where the last term should be dropped as discussed in previous sections. And the term

(GQ̃)〈Φ1...Φn〉/f is very similar to the (1,1) case as discussed in eq.(75), which is not

a crossing term. Actually,

GQ̃ =
∑

i,n

(2θ0iθ̄0i
z0i

∂Rzi +
θ0i
Z0i

∂Rθi −
θ̄0i
Z0i

∂Rθ̄i

)(2θ̃0n
¯̃
θ0n

z̄0n
∂Lz̄n +

θ̃0n

Z̃0n

∂L
θ̃n

−
¯̃
θ0n

Z̃0n

∂L¯̃
θn

)

f, (127)

thus
∫

dθdθ̄dθ̃d
¯̃
θGQ̃ =

∑

i,n

( 2

z0i
∂Rzi +

θi
z20i
∂Rθi +

θ̄i
z20i
∂Rθ̄i

)( 2

z̄0n
∂Lz̄n +

θ̃n
z̃20n

∂L
θ̃n

+
¯̃
θn
z̃20n

∂L¯̃
θn

)

f.

(128)
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Gathering all the results together, we then have

1

〈Φ1...Φn〉

∫

d2zdθdθ̄dθ̃d
¯̃
θ〈JJ̄Φ1...Φn〉

=

∫

d2z
[

∑

i,k,i 6=k

(

−
2

z0k

∆ik

Zik
+

1

z20k

(θkθ̄i + θ̄kθi)∆ik

Zik
− 2

1

z0k
Ajk

θjkθ̄jk

z2jk
−

θk

z20k
Akj

θ̄kj

Zkj

−
θ̄k

z20k
Ajk

θjk

Zjk

)

+
∑

i

(

− 2∆i
1

z20i
+ 2

Qiθ̄iθi

z30i

)]

×
[

∑

i,k,i 6=k

(

−
2

z̄0k

∆̄ik

Z̃ik

+
1

z̄20k

(θ̃k
¯̃
θi +

¯̃
θkθ̃i)∆̄ik

Z̃ik

− 2
1

z̄0k
Ājk

θ̃jk
¯̃
θjk

z̄2jk
−

θ̃k

z̄20k
Ākj

¯̃
θkj

Z̄kj

−
¯̃
θk

z̄20k
Ājk

θ̃jk

Z̄jk

)

+
∑

i

(

− 2∆̄i
1

z̄20i
+ 2

Q̄i
¯̃
θiθ̃i

z̄30i

)]

+
∑

n

(−2

z0n
∂R
znf −

θn

z20n
∂R
θnf −

θ̄n

z20n
∂R
θ̄n
f
) 1

f

×
[

∑

i,k,i 6=k

(

−
2

z̄0k

∆̄ik

Z̃ik

+
1

z̄20k

(θ̃k
¯̃
θi +

¯̃
θkθ̃i)∆̄ik

Z̃ik

− 2
1

z̄0k
Ājk

θ̃jk
¯̃
θjk

z̄2jk
−

θ̃k

z̄20k
Ākj

¯̃
θkj

Z̄kj

−
¯̃
θk

z̄20k
Ājk

θ̃jk

Z̄jk

)

+
∑

i

(

− 2∆̄i
1

z̄20i
+ 2

Q̄i
¯̃
θiθ̃i

z̄30i

)]

+
[

∑

i,k,i 6=k

(

−
2

z0k

∆ik

Zik
+

1

z20k

(θkθ̄i + θ̄kθi)∆ik

Zik
− 2

1

z0k
Ajk

θjkθ̄jk

z2jk
−

θk

z20k
Akj

θ̄kj

Zkj

−
θ̄k

z20k
Ajk

θjk

Zjk

)

+
∑

i

(

− 2∆i
1

z20i
+ 2

Qiθ̄iθi

z30i

)]

×
∑

n

(−2

z̄0n
∂L
z̄nf −

θ̃n

z̄20n
∂L
θ̃n
f −

¯̃
θn

z̄20n
∂L
¯̃θn
f
) 1

f

+

∫

d2z
(

∑

i,n

( 2

z0i
∂R
zi +

θi

z20i
∂R
θi +

θ̄i

z20i
∂R
θ̄i

)( 2

z̄0n
∂L
z̄n +

θ̃n

z̃20n
∂L
θ̃n

+
¯̃
θn

z̃20n
∂L
¯̃θn

)

f
) 1

f

(129)
Note that the first term of the integrand has the same form as 3-pt correlators in
eq.(116) except for the summation here runs from 1 to n instead of 3 in eq.(116). After
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integration the final result is

1

〈Φ1...Φn〉

∫

d2zdθdθ̄dθ̃d
¯̃
θ〈JJ̄Φ1...Φn〉

=
∑

ij

(

− π(−
2

ǫ
+ ln |zij |

2 + γ + lnπ +O(ǫ))
)(

∑

k,i 6=k

(2∆ki

Zki
+

2θkiθ̄kiAki

z2ki

)

∑

l,j 6=l

(2∆̄lj

Z̃lj

+
2θ̃lj

¯̃
θljĀlj

z̄2lj

)

+ 2∂R
zif

1

f

∑

k,k 6=j

(2∆̄kj

Z̃kj

+
2θ̃kj

¯̃
θkjĀkj

z̄2kj

)

+
∑

k,k 6=j

(2∆ki

Zki
+

2θkiθ̄kiAki

z2ki

)

2∂L
z̄jf

1

f
+ 4∂L

z̄j∂
R
zif

1

f

)

+
∑

ij

π

z̄ij

(

∑

k,i 6=k

(2∆ki

Zki
+

2θkiθ̄kiAki

z2ki

)

∑

l,j 6=l

( z̄lj∆̄lj

Z̃lj

+ Ājl
θ̃j
¯̃
θjl −

¯̃
θj θ̃jl

z̄jl

)

+ 2∂R
zif

∑

k,k 6=j

( z̄kj∆̄kj

Z̃kj

+ Ājk
θ̃j
¯̃
θjk −

¯̃
θj θ̃jk

z̄jk

) 1

f
+

∑

k,k 6=i

(2∆ki

Zki
+

2θkiθ̄kiAki

z2ki

)(

θ̃j∂
L
θ̃j
f +

¯̃
θj∂

L
¯̃
θj
f
) 1

f

+ (2
¯̃
θj∂

L
¯̃θj
∂R
zif + 2θ̃j∂

L
θ̃j
∂R
zif)

1

f

)

+
∑

ij

−π

zij

(

∑

k,i 6=k

(zki∆ki

Zki
+Aik

θiθ̄ik − θ̄iθik

zik

)

∑

l,j 6=l

(2∆̄lj

Z̃lj

+
2θ̃lj

¯̃
θljĀlj

z̄2lj

)

+
(

θi∂
R
θif + θ̄i∂

R
θ̄j
f
)

∑

k,k 6=j

(2∆̄kj

Z̃kj

+
2θ̃kj

¯̃
θkjĀkj

z̄2kj

) 1

f
+

∑

k,k 6=i

(zki∆ki

Zki
+Aik

θiθ̄ik − θ̄iθik

zik

)

2∂L
z̄jf

1

f

+ (2θi∂
R
θi∂

L
z̄jf + 2θ̄i∂

R
θ̄i
∂L
z̄jf)

1

f

)

−
∑

ij

π

(z̄ij)2

(

4∂R
zif

1

f
Q̄j

¯̃
θj θ̃j +

∑

k,i 6=k

(2∆ki

Zki
+

2θkiθ̄kiAki

z2ki

)

2Q̄j
¯̃
θjθj

)

−
∑

ij

π

(zij)2

(

4Qiθ̄iθi∂
L
z̄jf

1

f
+ 2Qiθ̄iθi

∑

l,j 6=l

(2∆̄lj

Z̃lj

+
2θ̃lj

¯̃
θljĀlj

z̄2lj

))

(130)

As an application, we briefly discuss the 4-pt functions that might be useful in the

study of the deformed OTOC. The superfield in (2,2) superspace takes the form

Φ(Z, Z̃) = φ+ θψ1 + ..., (131)

where there are total 16 terms at the right hand side, and we only explicitly write out

the first two components since we are only interested in correlators involving φ, ψ1 as

we did in (1,1) case. The conjugated superfield then is

Φ(Z, Z̃)† = φ† − θ̄ψ†
1 + ... (132)
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Thus the following operator appeared in first order perturbation of OTOC

〈φ(z1, z̄1)φ
†(z2, z̄2)ψ1(z3, z̄3)ψ

†
1(z4, z̄4)〉λ

=−

∫

dθ3dθ̄4

∫

d2zdθdθ̄〈J(Z)J̄(Z̃)Φ(Z1, Z̃1)

× Φ†(Z2, Z̃2)Φ(Z3, Z̃3)Φ
†(Z4, Z̃4)〉|θ1=θ̄1=θ2=θ̄2=θ4=θ̄3=0,θ̃i=

¯̃θi=0

(133)

can be computed by utilizing eq.(130).

4 Dimensional regularization

Using Feynman parametrization and dimensional regularization one can obtain the

following basic integral [17] (Let z1 6= z2)
10

I11(z1, z̄2) =

∫

d2z
1

z01z̄02
= −π

(

−
2

ǫ
+ ln |z12|

2 + γ + ln π
)

+O(ǫ) (135)

with ǫ being a infinitesimal constant. Next consider I12(z1, z̄2) with z1 6= z2

∫

d2z
1

z01z̄
2
02

=

∫

d2z
z̄01z

2
02

|z01|2|z02|4

= 2

∫ 1

0

du(1− u)

∫

d2z
z̄01z

2
02

(u|z01|2 + (1− u)|z02|2)3

= 2

∫ 1

0

du(1− u)

∫

d2y
2uz12|y|2 − (1− u)u2z212z̄12
(|y|2 + (1− u)u|z12|2)3

= 2z12

∫ 1

0

duu(1− u)

∫

d2y
2|y|2 − A2

(|y|2 + A2)3

= 2z12

∫ 1

0

duu(1− u)Vd

∫

dρρd−1 2ρ2 −A2

(ρ2 + A2)3

= 2z12

∫ 1

0

duu(1− u)VdA
−21

4
=

π

z̄12
,

(136)

where in the last step d = 2 is set directly since there is no divergence in the integral,

and analytical continuation of the dimension is not required. Here Vd = 2πd/2/Γ(d/2)

10The notation of integrals is taken the same form as [19]

Ia1,··· ,am,b1,··· ,bn(zi1 , · · · , zim , z̄j1 , · · · , z̄jn) ≡

∫

d2z

(z − zi1)
a1 · · · (z − zim)am(z̄ − z̄j1)

b1 · · · (z̄ − z̄jn)
bn

.

(134)
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is the area of (d − 1)-sphere with unit radius, also we denote A2 = (1 − u)u|z12|2 and

use the coordinates transformation

z = y + uz1 + (1− u)z2, z01 = y − (1− u)z12, z02 = y + uz12 (137)

Let us mention that the result in eq.(136) is consistent with eq.(135), i.e. they satisfy

∂z̄2I11(zi, z̄j) = I12(zi, z̄j).

For I22(z1, z̄2) with z1 6= z2, similarly we can obtain
∫

d2z
1

z201z̄
2
02

=

∫

d2z
z̄201z

2
02

|z01|4|z02|4

= 6

∫ 1

0

duu(1− u)

∫

d2y
(ȳ − (1− u)z̄12)

2(y + uz12)
2

(|y|2 + (1− u)u|z12|2)4

= 6

∫ 1

0

duu(1− u)

∫

d2y
|y|4 − 4|y|2u(1− u)|z12|2 + (1− u)2u2|z12|4

(|y|2 + (1− u)u|z12|2)4

= 6

∫ 1

0

duu(1− u)

∫

d2y
|y|4 − 4|y|2A2 + A4

(|y|2 + A2)4
= 0.

(138)

In summary, by using dimensional regularization we can obtain the following basic

integrals which appear in N =(1,1) case

I11(zi, z̄j) = −π(−
2

ǫ
+ ln |zij |

2 + γ + ln π +O(ǫ)),

I12(zi, z̄j) =
π

z̄ij
, I21(zi, z̄j) = −

π

zij
, I22(zi, z̄j) = 0,

I11(zi, z̄i) = 0, I12(zi, z̄i) = 0, I22(zi, z̄i) = 0,

(139)

where in the last line the integrals with two points coincide are listed. For these integrals

by translation symmetry, we can set zi = 0, thus there is no scale in the integrals and we

can set these integrals equal zero in dimensional regularization. Note that the integral

I22(zi, z̄j) is proportional to a delta function δ(2)(zij) in (B.7) of [17]. However, we will

omit this delta function here due to the fact that once we let zi = zj in I22(zi, z̄j), as

mentioned above, by translation symmetry there is no scale in the integral. Thus the

term δ(2)(zij) in (B.7) of [17] is simply replaced by zero in eq.(139).

By using Feynman parametrization, following the same line as above, we can also

obtain the integrals needed in the N = (2, 2) case, which are

I13(zi, z̄j) =
π

(z̄ij)2
, I31(zi, z̄j) =

π

(zij)2
,

I23(zi, z̄j) = I32(zi, z̄j) = I33(zi, z̄j) = 0,
(140)
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where we also let the integrals with two points coinciding with each other vanish.

5 Conclusions

In the paper we investigated the correlation functions with T T̄ deformation for N =

(1, 1) and N = (2, 2) superconformal field theory perturbatively to the first order in

the coupling constant. This extends previous work on the correlation function from

bosonic CFT to supersymmetry case. Much like the bosonic CFT, the undeformed 2-

and 3-point function almost fixed by global superconformal symmetry, while the n-pt

(n ≥ 4) functions dependent on a undetermined function f . By using superconformal

Ward identities, we work out the correlation functions with T T̄ operator inserted. It is

shown that all the integral in first order perturbation can be decomposed into several

basic integral as listed in the last section. As a consequence, we only need to evaluate

these integrals, which have been done with dimensional regularization. As a possible

application, we briefly mentioned the OTOC under deformation. Unlike the bosonic

CFT, where the conformal blocks in 4-pt functions can be used to evaluate the OTOC,

for superconformal field theory, there is an unknown function f in 4-pt functions. Thus

more information about the function f is required to study the OTOC of superconformal

field theory.

In the present paper we only considered the effect of T T̄ deformation on correlation

functions perturbatively near the IR conformal fixed point. Since T T̄ deformation is

believed to have good behavior in the UV, it is interesting to study the correlation

functions of superconformal theory in the UV as what has been done for the bosonic

CFT in [18]. Another interesting problem is to study the correlation functions in

N = (1, 0) and N = (2, 0) theories, which exist for Lorentz signature. Possibly, one

can also consider the JT̄ deformation in supersymmetry theory recently studied in [61].
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A Integrals in 2pt-correlators

There are nine terms in eq.(42), the first one have been considered in eq.(44). Below by

using the integrals in section 4 we list the remaining eight terms in the integral eq.(42).

The second term

T22 ≡

∫

d2zdθdθ̄
∆θ12
Z12

( 1

Z01
+

1

Z02

)∆θ̄12
Z̄12

( 1

Z̄01

+
1

Z̄02

)

=
∆2θ12θ̄12
Z12Z̄12

∫

d2z

∫

dθ
( 1

Z01
+

1

Z02

)

∫

dθ̄
( 1

Z̄01

+
1

Z̄02

)

=
∆2θ12θ̄12
Z12Z̄12

∫

d2z
( θ1
z201

+
θ2
z202

)( θ̄1
z̄201

+
θ̄2
z̄202

)

=−
∆2θ1θ2θ̄1θ̄2
Z12Z̄12

(2I22(z1, z̄1) + I22(z1, z̄2) + I22(z2, z̄1)) = 0.

(141)

The third term

T33 ≡∆2

∫

d2zdθdθ̄
( θ01
Z2

01

+
θ02
Z2

02

)( θ̄01
Z̄2

01

+
θ̄02
Z̄2

02

)

=−∆2

∫

d2z
( 1

z201
+

1

z202

)( 1

z̄201
+

1

z̄202

)

=−∆2(2I22(z1, z̄1) + I22(z1, z̄2) + I22(z2, z̄1)) = 0.

(142)

The fourth term

T12 ≡

∫

d2zdθdθ̄
2∆2

Z12

( θ01
Z01

−
θ02
Z02

) θ̄12
Z̄12

( 1

Z̄01

+
1

Z̄02

)

=
2∆2θ̄1θ̄2
Z12Z̄12

∫

d2z
( 1

z01
−

1

z02

)( 1

z̄201
+

1

z̄202

)

=
2∆2θ̄1θ̄2
Z12Z̄12

(I12(z1, z̄1) + I12(z1, z̄2)− I12(z2, z̄1)− I12(z2, z̄2))

=
2∆2θ̄1θ̄2
Z12Z̄12

(I12(z1, z̄2)− I12(z2, z̄1)) =
2∆2θ̄1θ̄2
Z12Z̄12

2π

z̄12
.

(143)
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The fifth term

T21 ≡
2∆2θ1θ2
Z12Z̄12

(I12(z̄1, z2)− I12(z̄2, z1)) =
2∆2θ1θ2
Z12Z̄12

2π

z12
. (144)

The sixth term

T13 ≡−

∫

d2zdθdθ̄
2∆2

Z12

( θ01
Z01

−
θ02
Z02

)( θ̄01
Z̄2

01

+
θ̄02
Z̄2

02

)

=
2∆2

Z12

∫

d2z
( 1

z01
−

1

z02

)( 1

z̄201
+

1

z̄202

)

=
2∆2

Z12

(I12(z1, z̄2)− I12(z2, z̄1)) =
2∆2

Z12

2π

z̄12
.

(145)

The seventh term

T31 ≡
2∆2

Z̄12

(I12(z̄1, z2)− I12(z̄2, z1)) =
2∆2

Z̄12

2π

z12
. (146)

The eighth term

T23 ≡−

∫

d2zdθdθ̄
∆2θ12
Z12

( 1

Z01
+

1

Z02

)( θ̄01
Z̄2

01

+
θ̄02
Z̄2

02

)

=−
∆2θ1θ2
Z12

∫

d2z
( 1

z201
+

1

z202

)( 1

z̄201
+

1

z̄202

)

=−
∆2θ1θ2
Z12

(2I22(z1, z̄1) + I22(z1, z̄2) + I22(z2, z̄1)) = 0.

(147)

The ninth term

T32 ≡−
∆2θ̄1θ̄2
Z̄12

(2I22(z1, z̄1) + I22(z1, z̄2) + I22(z2, z̄1)) = 0. (148)

Finally, the total contribution from the eight terms is

T12 + T21 + T13 + T23 =
8π∆2

Z12Z̄12

. (149)
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