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1 Introduction

Studying exactly solvable models in 2D QFT can help us get a deep understanding of

general field theory. The next natural step is to consider the deviation from these exactly

solvable models. In the language of renormalization group (RG) flow, when turning on

deformations, usually the relevant ones are more controllable than the irrelevant ones since

the latter may introduce infinite divergences in the UV. However, a special irrelevant

deformation has shown a number of remarkable properties even in the UV [1–3]. Such

deformation preserves the integrability if the undeformed theory is integrable, which makes

it convenient to obtain the spectrum and S-matrix. In addition, the deformed theory was

shown can be renormalized in a systematical way [4].
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Recently, the T T̄ deformation as a special deformation, has attracted much atten-

tion [5–28]. Here T is stress tensor of the theory. The deformed Lagrangian S(λ) can be

written as
∂S(λ)

∂λ
=

∫
d2zT T̄ (z), (1.1)

where the operator T T̄ (z) was first introduced in [1]. For conformal field theory (CFT) on

torus, the partition function with the deformation can be computed and it remains modular

invariant. Further, one can even obtain Cardy-like formula in deformed CFTs. Meanwhile,

there were also various other perspectives on the T T̄ deformation [29–42]. In particular,

from a holographic point of view, it was suggested that with coupling constant λ > 0 in

eq. (1.1), the T T̄ deformed 2D CFT is dual to an AdS3 gravity with finite cutoff in the

radial direction [43, 44]. Evidences for this dictionary are associated with matching of the

energy spectrum, holographic entanglement entropies, exact holographic renormalization

and so on. For recent progresses on holographic aspects of T T̄ deformation, one can also

refer to [45–56].

There are many directions to generalize the T T̄ deformation. An interesting question

is that what will happen when additional symmetry is presented in the theory, for example,

the supersymmetry (SUSY). In [57–60] (see also [61, 62]), the authors have taken the SUSY

into account, for examples, N = (0, 1) and extend SUSY with N = (1, 1), (2, 0), (2, 2). In

these studies, the supersymmetric extensions of T T̄ operator presented in eq. (1.1) was

constructed based on the supercurrent multiplet [63], and the deformed Lagrangian was

also given for free theory with or without the potential. Taking N = (1, 1) for example [57],

the deformed action takes the form

Sα = S0 + λ

∫
d2σO(σ) (1.2)

with

O(σ) =

∫
dθ+dθ−O(ζ), (1.3)

where O(ξ) = J+++(ζ)J−−−(ζ)−J−(ζ)J+(ζ), (J+++,J−) and (J−−−,J+) are two pairs

of superfields, which include the stress energy tensor (For more details for this construction,

one can refer to [57]). Moreover, it was shown that the deformation constructed in this

way preserves both the solvability and the SUSY. Furthermore, the O in eq. (1.2) is a

composite operator which is equivalent to the T T̄ as presented in eq. (1.1) at the classical

level up to some total derivative terms

O = T T̄ + EOM′s+ total derivatives. (1.4)

In the present paper, we are interested in studying the correlation functions of the T T̄

deformed superconformal field theory, perturbatively. The correlation functions have been

perturbatively investigated in T T̄ [19, 46] and JT̄ [17] deformed theories without SUSY,

and they were also proposed in a non-perturbative way by J. Cardy [18]. Since we will

work in the Euclidean signature, we will focus on the correlation functions of the deformed

superconformal field theory with N = (1, 1) and N = (2, 2) SUSY. Due to the on-shell
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condition, the operators O and T T̄ are equivalent up to some total derivative terms at the

classical level. For convenience, we will directly employ T T̄ instead of O in the processes

of computing the correlation functions. Here we have to emphasize that we only focus on

small deformations away from the undeformed CFTs, such that the CFT Ward identity

still holds and it is not necessary to take account the effect of the RG flow of the operator

with the irrelevant deformation. Therefore, the conformal symmetry can be considered as

an approximate symmetry up to the first order of the T T̄ deformation and the correlation

functions can also be obtained perturbatively. Moreover, both in holography and quantum

field theory, these correlation functions can also be applied to obtain various interesting

quantum information quantities in the deformed field theory, such as the Rényi entropy

of local quench in various situations [64–66], entanglement negativity [67], entanglement

purification [68], information metric [69, 70], etc.

The remaining parts of the paper are organized as follows. In section 2, we first

briefly review the Ward identity in (1,1) superconformal symmetry and also the correlation

functions in undeformed theory, then formulate the 2-, 3-, and n-point (n-pt) correlation

functions with T T̄ inserted, the last step is to perform the integral in conformal pertur-

bation theory using dimensional regularization. In section 3, we first discuss the Ward

identity and undeformed correlators in (2,2) superconformal field theory. Then following

the same line as section 2, we compute the 2-, 3-, and n-point deformed correlation func-

tions. In section 4. We discuss the dimensional regularization methods used in section 2

and section 3. In the final section, conclusions and discussions will be given. In appen-

dices, we would like to list some techniques and relevant notations which are very useful

in our analysis.

2 N = (1, 1) superconformal symmetry

In this section we review (1,1) superconformal symmetry and the corresponding Ward iden-

tity. The coordinates on superspace are analytic coordinates Z = (z, θ) and anti-analytic

coordinates Z̄ = (z̄, θ̄) where z, z̄ are two complex coordinates and θ, θ̄ are Grassmannian

coordinates. The (1,1) superconformal algebra is the direct sum of the (1,0) and the (0,1)

algebras, thus for simplicity, we will only write out its analytic part in the following. For

(1,1) theory the superderivative is [74–77]

D = ∂θ + θ∂z, D2 = ∂z. (2.1)

The superfield

J(Z) = Θ(z) + θT (z) (2.2)

generates analytic supercoordinates transformations in superspace. Here T (z) is stress-

energy tensor of the theory and Θ is a generator of SUSY transformations. Similar expres-

sion can be write out for J̄(Z).

Under analytic supercoordinates transformations with parameter E(Z), a local super-

field Φ(Z, Z̄) obeys

δEΦ(Z, Z̄) = [JE ,Φ(Z, Z̄)] =

∮
dZ ′E(Z ′)J(Z ′)Φ(Z, Z̄) (2.3)
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with ∮
dZ ≡ 1

2πi

∮
dz

∫
dθ. (2.4)

A superfield Φ(Z, Z̄) is called primary superfield if it transforms as

δEΦ(Z, Z̄) = E(Z)∂zΦ(Z, Z̄) +
1

2
DE(Z)DΦ(Z, Z̄) + ∆∂zE(Z)Φ(Z, Z̄), (2.5)

where only the analytic part of the transformation is considered. Furthermore, one can

obtain the OPE between the superfield J(Z) containing stress tensor T (z) and primary

superfield Φ with dimension ∆, which is the generalization of OPE between stress tensor

and primary field T (z)φ(z′) in CFT. This can be done by substituting eq. (2.5) back to

eq. (2.3) and using the identities∮
dZ1E(Z1)

θ12

Z12
= E(Z2), (2.6)∮

dZ1E(Z1)
1

Z12
= DE(Z2), (2.7)∮

dZ1E(Z1)
θ12

Z2
12

= ∂zE(Z2), (2.8)

where the SUSY invariant distance Z12 = z1 − z2 − θ1θ2 and θ12 = θ1 − θ2. Note these

identities can be obtained by super-Cauchy theorem∮
dZ ′E(Z ′)

θ′ − θ
Z ′ − Z

= E(Z). (2.9)

We then obtain the following OPE [76]

J(Z1)Φ(Z2) =
θ12

Z12
∂z2Φ(Z2, Z̄2) +

1

2

1

Z12
DΦ(Z2, Z̄2) + ∆

θ12

Z2
12

Φ(Z2, Z̄2). (2.10)

From this OPE, the N = (1, 1) superconformal Ward identity can be written as

〈J(Z0)Φ1(Z1, Z̄1) . . .Φn(Zn, Z̄n)〉

=

n∑
i=1

(
θ0i

Z0i
∂zi +

1

2Z0i
Di + ∆i

θ0i

Z2
0i

)
〈Φ1(Z1, Z̄1) . . .Φn(Zn, Z̄n)〉.

(2.11)

and similar expressions for J̄(Z̄).

It is important to apply the Ward identity to global superconformal transformation

whose algebra osp(2|1) is a subalgebra of superconformal algebra. By employing the Ward

identity and the fact that correlator of primary superfields is invariant under global super-

conformal transformation since it is a true symmetry of the theory, these correlators will be

highly constrained. And similar to the cases in bosonic CFT, it is possible to completely

fix 2- and 3-point correlators up to some constant factors. The 2-pt correlator is

〈Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)〉 = c12
1

Z2∆
12 Z̄

2∆̄
12

, ∆ ≡ ∆1 = ∆2, ∆̄ ≡ ∆̄1 = ∆̄2 (2.12)
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with c12 a constant and 3-pt correlator is

〈Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)Φ3(Z3, Z̄3)〉 =

 3∏
i<j=1

1

Z
∆ij

ij Z̄
∆̄ij

ij

 (c123 + c′123θ123θ̄123), (2.13)

where the second factor in the right hand side can also be written as

c123 + c′123θ123θ̄123 = c123e
c′123θ123θ̄123/c123 . (2.14)

Here c123, c
′
123 are constants, ∆ij = ∆i+∆j−εijk∆k, (i < j) (for i > j, we define ∆ij ≡ ∆ji

such that ∆ij is symmetric), and θ123 is defined as

θijk =
1√

ZijZjkZkl
(θiZjk + θjZki + θkZij + θiθjθk), (2.15)

which is invariant under global conformal transformation. By definition θ123 is Grassmann-

odd, thus θ2
123 = 0 and eq. (2.14) holds.

As for n-pt correlators with n ≥ 4, they depend on 2n coordinates zi, θi, i = 1, . . . , n,

and 5 constraints corresponding to 5 generators of osp(2|1). Thus there are 2n−5 indepen-

dent variables in n-pt correlators. Actually, there exists the same number of independent

osp(2|1) invariants, i.e. 2n− 5, which are [76]

wj ≡ θ12j , j = 3, . . . , n, Uk ≡ Z123k, k = 4, . . . , n, (2.16)

where θ12j is defined in eq. (2.15) and Zijkl is an analogue of cross ratio in CFT

Zijkl =
ZijZkl
ZliZjk

. (2.17)

The n-pt function can be determined in terms of these variables as

〈Φ1(Z1, Z̄1) . . .Φn(Zn, Z̄n)〉 =

 n∏
i<j=1

1

Z
∆ij

ij Z̄
∆̄ij

ij

 f(wi, w̄i, Uj , Ūj) (2.18)

with
∑

i 6=j ∆ij = 2∆j ,∆ij = ∆ji and similar for ∆̄ij . Here f is a function which can

not be fixed by global superconformal symmetry, and it depends on the theory under

consideration.

With the results discussed above, we can compute the T T̄ deformed correlators. The

variation of action under T T̄ deformation can be constructed as

δS = λ

∫
d2zT T̄ (z) = −λ

∫
d2z

∫
dθdθ̄J(Z)J̄(Z̄), (2.19)

where the minus sign comes from the anti-commutation nature of θ. Thus up to first order

in λ the variation of n-pt correlator is

− λ
∫
d2z

∫
dθdθ̄〈J(Z)J̄(Z̄)Φ(Z1, Z̄1) . . .Φ(Zn, Z̄n)〉. (2.20)

Note that the correlator inside the integral can be evaluated via the Ward identity. In the

following subsections we will compute eq. (2.20) for n = 2, 3 and n ≥ 4.
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2.1 2-point correlators

In this subsection we will consider the 2-point correlators with T T̄ deformation. The

undeformed correlator takes the form as eq. (2.12)

〈Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)〉 =
c12

Z2∆
12 Z̄

2∆̄
12

. (2.21)

First, considering the case with only holomorphic component of stress tensor inserted in

above correlator

〈J(Z)Φ1Φ2〉 =
2∑
i=1

(
θ0i

Z0i
∂zi +

1

2Z0i
Di +

∆iθ0i

Z2
0i

)
〈Φ1Φ2〉, (2.22)

where θ0i = θ− θi, Z0i = z− zi− θθi, and the derivatives on the right hand side can act on

both holomorphic and antiholomorphic parts of 〈Φ1Φ2〉. For example, for holomorphic part

∂z1
1

Z2∆
12

= −2∆
1

Z2∆+1
12

, D1
1

Z2∆
12

= −2∆
θ12

Z2∆+1
12

, (2.23)

and for antiholomorphic part1

∂z1
1

Z̄2∆̄
12

=
2∆̄

Z̄2∆̄−1
12

δ̃(z12)

(
1 +

2θ̄1θ̄2

z̄12

)
, (2.26)

Therefore

〈J(Z)Φ1Φ2〉

=

(
− 2∆

Z12

(
θ01

z01
− θ02

z02

)
−∆θ12

z12

(
1

Z01
+

1

Z02

)
+∆

(
θ01

z2
01

+
θ02

z2
02

)
−2

∆̄θ12

z01
(z̄12+θ̄1θ̄2)δ̃(z12)

)
〈Φ1Φ2〉

≡P 〈Φ1Φ2〉. (2.27)

Similarly, the correlator with antiholomorphic component of stress tensor inserted, i.e.

〈J̄(Z̄)Φ1Φ2〉 can be obtained by making the replacement Z → Z̄, θ → θ̄ in P defined

above, and we denote it as 〈J̄(Z̄)Φ1Φ2〉 ≡ P̄ 〈Φ1Φ2〉.

1Useful formulae
1

Z̄ij
=

1

z̄ij
+
θ̄1θ̄2

z̄2
ij

,
θij
Zij

=
θij
zij

,
θi
Zij

=
θi
zij

. (2.24)

And the differential

∂z1
1

Z̄12
= ∂z1

(
1

z̄12
+
θ̄1θ̄2

z̄2
12

)
= δ̃(z12)

(
1 +

2θ̄1θ̄2

z̄12

)
, δ̃(z12) ≡ 2πδ(2)(z12), (2.25)

where ∂z1
1
z̄12

= δ̃(z12) is used.
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A simplification can be made by noting that to extract 〈T (z)Φ1Φ2〉 from eq. (2.27),

one needs to integrate eq. (2.27) over θ, and the δ-function term in eq. (2.27) contains

no θ thus gives no contribution to 〈T (z)Φ1Φ2〉. In view of this point, we will neglect the

δ-function terms in both P and P̄ hereafter.

Having obtained 〈J̄(Z̄)Φ1Φ2〉 we are in position to consider 〈J(Z)J̄(Z̄)Φ1Φ2〉, which

follows as

〈JJ̄Φ1Φ2〉 =

2∑
i=1

(
θ0i

Z0i
∂zi +

1

2Z0i
Di +

∆iθ0i

Z2
0i

)
〈J̄(Z̄)Φ1Φ2〉 ≡ (G+ F )〈J̄(Z̄)Φ1Φ2〉,

(2.28)

where we have denoted the terms involving derivatives as G, and the remaining terms as

F in the second step for later convenience, namely

G =
n∑
i=1

θ0i

Z0i
∂zi +

1

2Z0i
Di, F =

n∑
i=1

∆iθ0i

Z2
0i

(2.29)

with n = 2 in the present case (For detailed calculation of eq. (2.28), please refer to the

appendix A.1 ).

Finally we obtain the first order integrals as∫
d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φn(Z2, Z̄2)〉/〈Φ1(Z1, Z̄1)Φn(Z2, Z̄2)〉

= ∆∆̄

∫
d2zdθdθ̄

[(
− 2

Z12

(
θ01

z01
− θ02

z02

)
− θ12

Z12

(
1

Z01
+

1

Z02

)
+

(
θ01

z2
01

+
θ02

z2
02

))

×
(
− 2

Z̄12

(
θ̄01

z̄01
− θ̄02

z̄02

)
− θ̄12

Z̄12

(
1

Z̄01
+

1

Z̄02

)
+

(
θ̄01

z̄2
01

+
θ̄02

z̄2
02

))]
.

(2.30)

Expanding the integrand, there will be nine terms. We will consider the first term here

and list the remaining eight terms in the appendix B. These integrals can be explicitly

performed by employing dimensional regularization which is discussed in section 4. More

concretely, the first term is (Consider the case ∆ = ∆̄)2

T11 ≡
∫
d2zdθdθ̄

4∆2

Z12Z̄12

(
θ01

z01
− θ02

z02

)(
θ̄01

z̄01
− θ̄02

z̄02

)
= − 4∆2

Z12Z̄12

∫
d2z

(
1

z01
− 1

z02

)(
1

z̄01
− 1

z̄02

)
= − 4∆2

Z12Z̄12
(I11(z1, z̄1) + I11(z2, z̄2)− I11(z1, z̄2)− I11(z2, z̄1))

= − 4∆2

Z12Z̄12
2π

(
−2

ε
+ ln |z12|2 + γ + lnπ

)
,

(2.32)

2Useful relations ∫
dθ
θ01

Z01
=

1

z01
,

∫
dθ

1

Z01
=

θ1

z2
01

,

∫
dθdθ̄θ̄θ = 1. (2.31)
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where in the second step we used the notation introduced in eq. (4.1), and γ is Euler

constant and ε is a infinitesimal constant coming from dimensional regularization.3 Here

the integral

I11(zi, z̄j) ≡
∫
d2z

1

z0iz̄0j
(2.34)

is computed in setion 4, and we only quote the results in the last line of eq. (2.32).

Finally putting together the results of the nine integrals will lead to

1

〈Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)〉

∫
d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)〉

= − 4π∆2

Z12Z̄12

(
−4

ε
+ 2 ln |z12|2 + 2γ + 2 lnπ − 2

)
.

(2.35)

In principle by setting θ1,2 → 0, one can get the results for bosonic CFT, which is

− 4π∆2

|z12|2

(
−4

ε
+ 2 ln |z12|2 + 2γ + 2 lnπ − 2

)
. (2.36)

Comparing this with the CFT results given in eq. (8) in [19] as

− 4π∆2

|z12|2

(
−4

ε
+ 2 ln |z12|2 + 2γ + 2 lnπ − 5

)
. (2.37)

One can find that only the last constant is different in eq. (2.36) and eq. (2.37). This

difference can be understood from the way we performing the integrals. On one hand, we

can use dimensional regularization to evaluate the integral directly∫
d2z

|z12|4

|z01|4|z02|4
= −4π∆2

|z12|2

(
−4

ε
+ 2 ln |z12|2 + 2γ + 2 lnπ − 5

)
, (2.38)

which will result in eq. (2.37). On the other hand, we can compute the above integral in

an indirect way as we did at the beginning, i.e., expanding the integrand into several terms

as below, then using dimensional regularization to compute each integral, finally adding

up the contribution of individual term∫
d2z

|z12|4

|z01|4|z02|4
=

∫
d2z

(
1

z2
01

+
1

z2
02

− 2

z01z02

)(
1

z̄2
01

+
1

z̄2
02

− 2

z̄01z̄02

)
= −4π∆2

|z12|2

(
−4

ε
+ 2 ln |z12|2 + 2γ + 2 lnπ − 2

)
,

(2.39)

3Also T11 can be evaluated in an alternatively way as

T11 = − 4∆2

Z12Z̄12

∫
d2z

(
1

z01
− 1

z02

)(
1

z̄01
− 1

z̄02

)
= −4∆2|z12|2

Z12Z̄12

∫
d2z

1

|z01|2|z02|2

= −4∆2|z12|2

Z12Z̄12
I1111(z1, z2, z̄1, z̄2)

= − 4∆2

Z12Z̄12
2π

(
−2

ε
+ ln |z12|2 + γ + log π +O(ε)

)
,

(2.33)

which is equal to result in eq. (2.32). The integral in the last step was computed in [19].
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which leads to eq. (2.36). Nevertheless, the difference between eq. (2.36) and eq. (2.37) can

be eliminated by redefining ε.

2.2 3-point correlators

The general form of three-point correlators can be written as

〈Φ(Z1, Z̄1)Φ(Z2, Z̄2)Φ(Z3, Z̄3)〉 = cO3Ō3e
aθ123θ̄123 , (2.40)

where a, c are two undetermined constants and for later convenience we denote

O3 =

3∏
i<j=1

1

Z
∆ij

ij

, Ō3 =

3∏
i<j=1

1

Z̄
∆̄ij

ij

. (2.41)

As discussed in 2-point correlators in the previous subsection, we first consider the corre-

lator 〈JΦ1Φ2Φ3〉 which can be calculated by using the definition of G,F in eq. (2.29) as

follows

(G+F )O3Ō3e
aθ123θ̄123

=FO3Ō3e
aθ123θ̄123 +[G(O3Ō3)]eaθ123θ̄123 +O3Ō3[Geaθ123θ̄123 ]

= (F+P )O3Ō3e
aθ123θ̄123 +O3(GŌ3)eaθ123θ̄123 +O3Ō3a[(Gθ123)θ̄123−θ123(Gθ̄123)]eaθ123θ̄123

→ (F+P+a(Gθ123)θ̄123)O3Ō3e
aθ123θ̄123 , (2.42)

where P (defined by GO3 ≡ PO3) turns out to be

P =
∑
i,k,k 6=i

∆ik

Zki

(
θ0i

z0i
− θki

2Z0i

)
. (2.43)

In the last step of eq. (2.42) we have omitted the “crossing” terms such as GŌ3, Gθ̄123 (By

crossing terms we mean the terms with holomorphic derivative ∂z acting on antiholomorphic

coordinates, or ∂z̄ acting on holomorphic coordinates, which will result in a δ-function as

∂z(1/z̄) = δ̃(z). Note that we have encountered crossing term as in eq. (2.26) in the 2-

point correlator case), since these terms will vanish when integrating over θ. To be concrete,

taking the term GŌ3 for example

GŌ3 =−
(
θ12

z01
∆̄12θ̄1θ̄2δ̃(z12)+

θ31

z01
∆̄13θ̄3θ̄1δ̃(z31)+

θ23

z02
∆̄23θ̄2θ̄3δ̃(z23)

)
Ō3

− θ23

2z02

∆̄23δ̃(z32)

Z̄∆̄12
12 Z̄∆̄23−1

23 Z̄∆̄13
31

− θ31

2z01

∆̄13δ̃(z31)

Z̄∆̄12
12 Z̄∆̄23

23 Z̄∆̄13−1
31

− θ12

2z01

∆̄12δ̃(z12)

Z̄∆̄12−1
12 Z̄∆̄23

23 Z̄∆̄13
31

,

(2.44)

thus
∫
dθGŌ3 = 0.

With 〈JΦ1Φ2Φ3〉 in hand, we can go on to consider 〈JJ̄Φ1Φ2Φ3〉

(G+ F )(Ḡ+ F̄ )O3Ō3e
aθ123θ̄123

= (G+ F )(P̄ + F̄ − aθ123(Ḡθ̄123))O3Ō3e
aθ123θ̄123

=
[
(F + P + a(Gθ123)θ̄123)(F̄ + P̄ − aθ123(Ḡθ̄123))

− a(Gθ123)(Ḡθ̄123) + aθ123(G(Ḡθ̄123)) +G(F̄ + P̄ )
]
O3Ō3e

aθ123θ̄123 .

(2.45)
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It is shown in appendix A.2 the last two terms in the last line of above equation will not

contribute. Hence from the results in appendix A.2, the 3-point correlator can be written as

1

〈Φ1Φ2Φ3〉

∫
d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)Φ3(Z3, Z̄3)〉

=

∫
d2z

 ∑
i,k,k 6=i

∆ik

Zki

(
1

z0i
+
θkθi
2z2

0i

)
+
∑
i

∆i

z2
0i

+ a
∑
i

(
1

z0i
∂ziθ123 +

θi
2z2

0i

∂θiθ123

)
θ̄123


× (−1)

 ∑
i,k,k 6=i

∆̄ik

Z̄ki

(
1

z̄0i
+
θ̄kθ̄i
2z̄2

0i

)
+
∑
i

∆̄i

z̄2
0i

+ aθ123

∑
i

(
1

z̄0i
∂z̄i θ̄123 +

θ̄i
2z̄2

0i

∂θ̄i θ̄123

)
− a

∑
i

(
1

z0i
∂ziθ123 +

θi
2z2

0i

∂θiθ123

)
×
∑
i

(
1

z̄0i
∂z̄i θ̄123 +

θ̄i
2z̄2

0i

∂θ̄i θ̄123

)
. (2.46)

Let us first consider the terms containing no a

−
∫
d2z
∑
ij

∑
k,k 6=i

∆ik

Zki

1

z0i
+

1

z2
0i

( ∑
k,k 6=i

θkθi∆ik

2Zki
+∆i

)∑
l,l 6=j

∆̄lj

Z̄lj

1

z̄0j
+

1

z̄2
0j

(∑
l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj
+∆̄j

)
=−

∑
ij

[
I11(zi, z̄j)

∑
k,k 6=i

∑
l,l 6=j

∆ik

Zki

∆̄lj

Z̄lj
+I22(zi, z̄j)

( ∑
k,k 6=i

θkθi∆ik

2Zki
+∆i

)(∑
l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj
+∆̄j

)

+I12(zi, z̄j)
∑
k,k 6=i

∆ik

Zki

(∑
l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj
+∆̄j

)
+I21(zi, z̄j)

( ∑
k,k 6=i

θkθi∆ik

2Zki
+∆i

)∑
l,l 6=j

∆̄lj

Z̄lj

]
.

(2.47)

Next evaluating the a1-terms which contains two parts, the first part is

V11≡−a
∑
ij

∫
d2z

[ ∑
k,k 6=i

∆ik

2Zki

1

z0i
+

1

z2
0i

( ∑
k,k 6=i

θkθi∆ik

2Zki
+∆i

)]
θ123

(
1

z̄0j
∂z̄j θ̄123+

θ̄j

2z̄2
0j

∂θ̄j θ̄123

)
−(barred↔ unbarred)

=−a
∑
ij

[
I11(zi, z̄j)

∑
k,k 6=i

∆ik

Zki
θ123∂z̄j θ̄123+I12(zi, z̄j)

∑
k,k 6=i

∆ik

2Zki
θ123θ̄j∂θ̄j θ̄123

+I21(zi, z̄j)

( ∑
k,k 6=i

θkθi∆ik

2Zki
+∆i

)
θ123∂z̄j θ̄123+

1

2
I22(zi, z̄j)

( ∑
k,k 6=i

θkθi∆ik

2Zki
+∆i

)
θ123θ̄j∂θ̄j θ̄123

]
−(barred↔ unbarred),

(2.48)

and the second part is

V12≡−a
∑
ij

(
1

z0i
∂ziθ123+

θi
2z2

0i

∂θiθ123

)(
1

z̄0j
∂z̄j θ̄123+

θ̄j
2z̄2

0j

∂θ̄j θ̄123

)

=−a
∑
ij

(
I11(zi, z̄j)∂ziθ123∂z̄j θ̄123+

1

2
I12(zi, z̄j)(∂ziθ123)θ̄j∂θ̄j θ̄123+

1

2
I21(zi, z̄j)θi∂θiθ123∂z̄j θ̄123

)
,

(2.49)
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As for the a2-term denoted as V2, by observing eq. (2.46) we find V2 = −aV12θ123θ̄123,

thus V12 + V2 = V12e
−aθ123θ̄123 . In summary, the result for 3-point correlators with T T̄

perturbation to first order is

1

〈Φ1Φ2Φ3〉

∫
d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φ2(Z2, Z̄2)Φ3(Z3, Z̄3)〉

=−
∑
ij

[
−π
(
−2

ε
+ln |zij |2+γ+lnπ

)

×
∑
k,k 6=i

(∑
l,l 6=j

∆ik

Zki

∆̄lj

Z̄lj
+a

∆ik

Zki
θ123∂z̄j θ̄123+a

∆̄ik

Z̄ki
∂zjθ123θ̄123+a∂ziθ123∂z̄j θ̄123e

−aθ123θ̄123

)

+
π

z̄ij

(
a

2
(∂ziθ123)θ̄j∂θ̄j θ̄123e

−aθ123θ̄123 +
∑
k,k 6=i

∆ik

Zik

∑
l,l 6=j

z̄lj∆̄lj

2Z̄lj

+a
∑
l,l 6=j

z̄lj∆̄jl

2Z̄lj
∂ziθ123θ̄123+a

∑
k,k 6=i

∆ik

2Zki
θ123θ̄j∂θ̄j θ̄123

)

− π

zij

(
a

2
(θi∂θiθ123)∂z̄j θ̄123e

−aθ123θ̄123 +a
∑
k,k 6=i

zki∆ik

2Zki
θ123∂z̄j θ̄123

+aθi∂θiθ123θ̄123

∑
l,l 6=j

∆̄lj

2Z̄lj
+
∑
k,k 6=i

zki∆ik

2Zki

∑
l,l 6=j

∆̄lj

Z̄lj

)]
, (2.50)

where the identity
∑

k,k 6=i ∆̄ik = 2∆̄i is used to simplify the final expression.

2.3 n-point correlators

For n point with n ≥ 4, the undeformed correlator functions take the form as

〈Φ1(Z1, Z̄1) . . .Φn(Zn, Z̄n)〉 = OnŌnf(Ui, Ūi, wk, w̄k) (2.51)

with

On =
∏
i<j

Z
−∆ij

ij , Ōn =
∏
i<j

Z̄
−∆̄ij

ij . (2.52)

Assuming all Φi have the same dimension (∆, ∆̄), we have

A ≡ ∆ij =
2∆

n− 1
, ∆̄ ≡ ∆̄ij =

2∆̄

n− 1
. (2.53)

Again the crossing terms ḠZijkl, Ḡθijk, ḠOn do not depend on θ and we will not consider

these terms below. The computation of correlators with J and JJ̄ insertion goes in parallel

with previous cases, the detailed calculation is presented in appendix A.3. Here we only
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give the results for the T T̄ deformed correlator, which takes the form

1

〈Φ1 . . .Φn〉

∫
d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1) . . .Φn(Zn, Z̄n)〉

=

∫
d2z(−1)

∑
ij

[ ∑
k,k 6=i

∆ik

Zki

1

z0i
+

1

z2
0i

( ∑
k,k 6=i

θkθi∆ik

2Zki
+∆i

)]

×

[∑
l,l 6=j

∆̄lj

Z̄lj

1

z̄0j
+

1

z̄2
0j

(∑
l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj
+∆̄j

)]

−
∑
ij

[(
1

z0i
∂Rzif+

θi
2z2

0i

DR
i f

)
1

f

][∑
l,l 6=j

∆̄lj

Z̄lj

1

z̄0j
+

1

z̄2
0j

(∑
l,l 6=j

θ̄lθ̄j∆̄lj

2Z̄lj
+∆̄j

)]

−
∑
ij

[ ∑
k,k 6=i

∆ik

Zki

1

z0i
+

1

z2
0i

( ∑
k,k 6=i

θkθi∆ik

2Zki
+∆i

)][(
1

z̄0j
∂Lz̄jf+

θ̄j
2z̄2

0j

D̄L
j f

)
1

f

]

+
∑
ij

[
1

z0i

(
− 1

z̄0j
∂Rzi∂

L
z̄jf−

θ̄j
2z̄2

0j

∂Rzi∂
L
θ̄j
f

)
+

θi
2z2

0i

(
− 1

z̄0j
∂Rθi∂

L
z̄jf+

θ̄j
2z̄2

0j

∂Rθi∂
L
θ̄j
f

)]
.

(2.54)

Hence using the results for integrals in section 4, the final result is

1

〈Φ1 . . .Φn〉

∫
d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1) . . .Φn(Zn, Z̄n)〉

=
∑
ij

[
− π

(
−2

ε
+ ln |zij |2 + γ + lnπ

)

×

(
−
∑
k,k 6=i

∆ik

Zki

∑
l,l 6=j

∆̄lj

Z̄lj
− ∂Rzif

∑
l,l 6=j

∆̄lj

fZ̄lj
−
∑
k,k 6=i

∆ik

Zki
∂Lz̄jf

1

f
− ∂Rzi∂

L
z̄jf

1

f

)

− π

z̄ij

( ∑
k,k 6=i

∆ik

Zki

∑
l,l 6=j

z̄lj∆̄lj

2Z̄lj
+ ∂Rzif

1

f

∑
l,l 6=j

z̄lj∆̄lj

2Z̄lj
+
∑
k,k 6=i

∆ik

2Zki
θ̄j∂

L
θ̄j
f

1

f
− θ̄j

2
∂Rzi∂

L
θ̄j
f

1

f

)

+
π

zij

( ∑
k,k 6=i

zki∆ik

2Zki

∑
l,l 6=j

∆̄lj

Z̄lj
+
θi
2f
∂Rθif

∑
l,l 6=j

∆̄lj

Z̄lj
+
∑
k,k 6=i

zki∆ik

2Zki
∂Lz̄jf

1

f
− θi

2
∂Rθi∂

L
z̄jf

1

f

)]
.

(2.55)

Setting n = 4, the above results can be used to investigate, for example, the out of time

order correlation function (OTOC). The OTOC is suggested as a diagnostic of quantum

chaos [71, 72] since one can extract the Lyapunov exponent corresponding to time evolution

form OTOC. Remarkably, the field theory with Einstein gravity dual is proposed to exhibit

the maximal Lyapunov exponent which measures the growth rate of the OTOC [72]. The

OTOC of CFT have been considered in [73], where the OTOC indicates for generic CFT

including holographic CFT, the theory have chaotic behavior, but not for integral model

such as critical Ising model. Furthermore, the T T̄ -deformed OTOC for bosonic CFT was

investigated in [19]. It was shown that the T T̄ deformation does not effect the maximal

chaos the for the CFT. In addition, the T T̄ -deformed integrable model is expected still

integrable [19]. This is compatible with the fact that the T T̄ deformation does not effect
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the integrability of the system. Based on these developments, it is will be interesting

to investigate the OTOC for T T̄ -deformed supersymmetric CFT here, we first write the

superfield as

Φ(Z, Z̄) = φ+ θψ1 + θ̄ψ2 + θθ̄f (2.56)

and its conjugate

Φ(Z, Z̄)† = φ† − θψ†2 − θ̄ψ
†
1 + θθ̄f †. (2.57)

As an example consider the OTOC involving two fields φ, ψ1, from (45) in [19], at first

order one of the four-point functions needed to compute is

〈φ(z1, z̄1)φ†(z2, z̄2)ψ1(z3, z̄3)ψ†1(z4, z̄4)〉λ

= −
∫
dθ3dθ̄4

∫
d2zdθdθ̄〈J(Z)J̄(Z̄)Φ1(Z1, Z̄1)Φ†(Z2, Z̄2)Φ(Z3, Z̄3)Φ†(Z4, Z̄4)〉|θ1=θ̄1=θ2=θ̄2=θ4=θ̄3=0

= −
∫
dθ3θ̄4

{∑
i 6=j

[
− π

(
− 2

ε
+ ln |zij |2 + γ + lnπ

)

×

(
−
∑
k,k 6=i

∆ik

zki

∑
l,l 6=j

∆̄lj

z̄lj
f − ∂Rzif

∑
l,l 6=j

∆̄lj

z̄lj
−
∑
k,k 6=i

∆ik

zki
∂Lz̄jf − ∂

L
z̄j∂

R
zif

)

− π

z̄ij

( ∑
k,k 6=i

∆ik

zki
∆̄jf + ∂Rzif∆̄j + δj4

∑
k,k 6=i

∆ik

2zki
θ̄j∂

L
θ̄j
f − δj4

θ̄j
2
∂Rzi∂

L
θ̄j
f

)

+
π

zij

(
∆i

∑
l,l 6=j

∆̄lj

z̄lj
f + δi3

θi
2
∂Rθif

∑
l,l 6=j

∆̄lj

z̄lj
+ ∆i∂

L
z̄jf − δi3

θi
2
∂Rθi∂

L
z̄jf

)]

×
∏
i<j

z
−∆ij

ij z̄
−∆̄ij

ij

}
|θ1=θ̄1=θ2=θ̄2=θ4=θ̄3=0, (2.58)

where in the integrand, we can replace Zij → zij , Z̄ij → z̄ij . In the bosonic CFT, four-point

correlators can be expressed as conformal blocks whose universal properties are known in

some cases, thus the OTOC can be computed [73], while in eq. (2.58) the function f is

unknown in general. Thus it is more difficult to compute OTOC here.

3 N = (2, 2) superconformal symmetry

For (2,2) superconformal symmetry, the coordinates on superspace is divided into holo-

morphic Z = (z, θ, θ̄) and antiholomorphic part Z̃ = (z̄, θ̃,
¯̃
θ) respectively. In parallel with

the situation in (1,1) case, (2,2) superconformal group is a direct product of (2,0) and

(0,2) superconformal group which acts on Z and Z̃ respectively. Thus we will only write

out the holomorphic coordinates explicitly hereafter. For holomorphic part the covariant

derivatives are [74, 75, 78–80]

D = ∂θ + θ̄∂z, D̄ = ∂θ̄ + θ∂z, (3.1)

which satisfy D2 = D̄2 = 0, {D, D̄} = 2∂z. The energy momentum superfield is

J(Z) = j(z) + iθḠ(z) + iθ̄G(z) + 2θθ̄T (z), (3.2)
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and similar for J̄(Z̄). Here T (z) is stress tensor of the theory, and G(z), Ḡ(z) are two

supersymmetric generators, j(z) corresponds to the U(1) symmetry of rotation of the two

SUSY charges.

Super-analytic transformation can be defined via the transformation law of covariant

derivatives as

D = (Dθ′)D′, D̄ = (D̄θ̄′)D̄′. (3.3)

Superconformal primary fields are defined such that under super-analytic transformation

they transform as

Φ(Z) = (Dθ′)∆+Q/2(D̄θ̄′)∆−Q/2Φ′(Z ′), (3.4)

where ∆, J are the dimension and charge of Φ respectively. The OPE between energy

momentum superfield J(Z) and primary superfield have been considered in [78, 80]

J(Z1)Φ(Z2) = 2∆
θ12θ̄12

Z2
12

Φ(Z2) + 2
θ12θ̄12

Z12
∂z2Φ(Z2) +

θ12

Z12
DΦ(Z2)− θ̄12

Z12
D̄Φ(Z2) +Q

Φ(Z2)

Z12
,

(3.5)

where Z12 = z12 − θ1θ̄2 − θ̄1θ2 (also Z̃12 = z̄12 − θ̃1
¯̃
θ2 − ¯̃

θ1θ̃2). In analogy with (1,1) case in

the previous section, from this OPE, we can get the Ward identity as4

〈J(Z0)Φ1(Z1, Z̃1) . . .Φn(Zn, Z̃n)〉

=

n∑
i=1

(
2∆i

θ0iθ̄0i

Z2
0i

+ 2
θ0iθ̄0i

Z0i
∂zi +

θ0i

Z0i
Di −

θ̄0i

Z0i
D̄i +

Qi
Z0i

)
〈Φ1(Z1, Z̃1) . . .Φn(Zn, Z̃n)〉.

(3.6)

In NS sector the n-pt correlators on the right hand side of eq. (3.6) are constrained by the

Ward identity corresponding to global superconformal Osp(2|2) transformation [80]. When

n = 2, the correlator is fixed as

〈Φ(Z1, Z̃1)Φn(Zn, Z̃n)〉 =
1

Z2∆
12 Z̃

2∆̄
12

e
Q2

θ12θ̄12
Z12 e

Q̄2
θ̃12

¯̃
θ12

Z̃12 , (3.7)

where ∆1 = ∆2, Q1 + Q2 = 0 and similar for ∆̄, Q̄. Note that we have written out the

antiholomorphic part explicitly.

For n = 3 the correlators take the form

〈Φ1(Z1, Z̃1)Φ2(Z2, Z̃2)Φ3(Z3, Z̃3)〉=

 3∏
i<j

Z
−∆ij

ij

exp

∑
i<j

Aij
θij θ̄ij
Zij

δQ1+Q2+Q3,0

×

 3∏
i<j

Z̃
−∆̄ij

ij

exp

∑
i<j

Āij
θ̃ij

¯̃
θij

Z̃ij

δQ̄1+Q̄2+Q̄3,0

(3.8)

with Aij =−Aji,
∑3

j=1,j 6=iAij =−Qi, and similar for the Āij , Q̄i. Note that not all Aij are

fixed, this is because for three-point case there are nine coordinates (zi,θi, θ̄i), i= 1,2,3, and

4For the N = 2 Super-Cauchy theorem see [78].
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eight generators for osp(2|2), thus there remains one degree of freedom which corresponds

to the invariant quantity

R123 =
θ12θ̄12

Z12
+
θ31θ̄31

Z31
+
θ23θ̄23

Z23
(3.9)

with R2
123 = 0.

The n-pt correlators can be fixed by Ward identity up to an undetermined function

〈Φ1(Z1, Z̃1) . . .Φ2(Zn, Z̃n)〉

=

 n∏
i<j

1

Z
∆ij

ij

1

Z̃
∆̄ij

ij

 exp

 n∑
i<j

Āij
θ̃ij

¯̃
θij

Z̃ij

 exp

 n∑
i<j

Aij
θij θ̄ij
Zij


× f(x1, x2, . . . , x3n−8, x̄1, x̄2, . . . , x̄3n−8)δ∑

iQi,0
δ∑

i Q̄i,0
,

Aij = −Aji, ∆ij = ∆ji,
∑
j,j 6=i

Aij = −Qi,
∑
j,j 6=i

∆ij = 2∆i,

(3.10)

where xi is Osp(2|2) invariant variables which may be either Rijk or Zijkl

Rijk =
θij θ̄ij
Zij

+
θjkθ̄jk
Zjk

+
θkiθ̄ki
Zki

, Zijkl =
ZijZkl
ZliZjk

. (3.11)

It should be pointed out that only 3n− 8 variables out of all Rijk, Zijkl are independent.

In parallel with (1,1) case, we can now define T T̄ deformed correlators for (2,2) case.

The variation of action under T T̄ deformation can be constructed as

δS = λ

∫
d2zT T̄ (z) = λ

∫
d2z

∫
dθdθ̄dθ̃

¯̃
θJ(Z)J̄(Z̄). (3.12)

Also up to first order the n-pt correlators is

− λ
∫
d2z

∫
dθdθ̄dθ̃d

¯̃
θ〈J(Z)J̄(Z̄)Φ(Z1, Z̄1) . . .Φ(Zn, Z̄n)〉. (3.13)

In the following subsections we will consider eq. (3.13) with n = 2, 3 and n ≥ 4.

3.1 2-point correlators

Up to a constant prefactor, the 2-point correlators have following form

〈Φ1(Z1, Z̃1)Φ2(Z2, Z̃2)〉 =
1

Z2∆
12 Z̃

2∆̄
12

e
Q2

θ12θ̄12
Z12 e

Q̄2
θ̃12

¯̃
θ12

Z̃12 . (3.14)

To obtain T T̄ deformed correlators, first considering correlators only with the holomorphic

component of stress tensor inserted, from eq. (3.6), this is

〈JΦ1Φ2〉 ≡ (F +G)〈Φ1Φ2〉, (3.15)

where for later convenience we introduced G,F such that G contains derivatives and F

does not

G =

n∑
i=1

(
2
θ0iθ̄0i

Z0i
∂zi +

θ0i

Z0i
Di −

θ̄0i

Z0i
D̄i

)
, F =

n∑
i=1

(
2∆i

θ0iθ̄0i

Z2
0i

+
Qi
Z0i

)
. (3.16)
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Having obtained eq. (3.15), we can go on to consider JJ̄ inserted correlator which is

〈JJ̄Φ1Φ2〉 = (F +G)(F̃ + G̃)〈Φ1Φ2〉 (3.17)

Both eq. (3.15) and eq. (3.17) will computed in appendix A.4. One can note that the

procedure is similar to the case N = (1, 1) cases. Finally, we get the first order T T̄

deformation of 2-point correlators

1

〈Φ1Φ2〉

∫
d2zdθdθ̄dθ̃d

¯̃
θ〈JJ̄Φ1Φ2〉

=

∫
d2zdθdθ̄dθ̃d

¯̃
θ(F+P )(F̃+P̃ )

=

∫
d2z
[
−2∆

(
1

z2
01

+
1

z2
02

)
−2Q2

(
θ̄1θ1

z3
01

− θ̄2θ2

z3
02

)
+4∆

(
1

z01
− 1

z02

)
1

Z12
−
(
θ1

z2
01

+
θ2

z2
02

)
2∆θ̄21

Z12

−
(
θ̄1

z2
01

+
θ̄2

z2
02

)
2∆θ21

Z12
+2Q2

θ12θ̄12

z2
12

(
1

z01
− 1

z02

)
−Q2

(
θ1

z2
01

− θ2

z2
02

)
θ̄12

Z12
+Q2

(
θ̄1

z2
01

− θ̄2

z2
02

)
θ12

Z12

]
×
[
−2∆̄

(
1

z̄2
01

+
1

z̄2
02

)
−2Q̄2

( ¯̃
θ1θ̃1

z̄3
01

−
¯̃
θ2θ̃2

z̄3
02

)
+4∆̄

(
1

z̄01
− 1

z̄02

)
1

Z̃12

−
(
θ̃1

z̄2
01

+
θ̃2

z̄2
02

)
2∆̄

¯̃
θ21

Z̃12

−
( ¯̃
θ1

z̄2
01

+
¯̃
θ2

z̄2
02

)
2∆̄θ̃21

Z̃12

+2Q̄2
θ̃12

¯̃
θ12

z̄2
12

(
1

z̄01
− 1

z̄02

)
−Q̄2

(
θ̃1

z̄2
01

− θ̃2

z̄2
02

) ¯̃
θ12

Z̃12

+Q̄2

( ¯̃
θ1

z̄2
01

−
¯̃
θ2

z̄2
02

)
θ̃12

Z̃12

]
.

(3.18)

Further performing the integral over z using dimensional regularization, one can obtain

1

〈Φ1Φ2〉

∫
d2zdθdθ̄dθ̃d

¯̃
θ〈JJ̄Φ1Φ2〉

= 2π

(
−2

ε
+ ln |zij |2 + γ + lnπ

)(
4∆

Z12
+ 2Q2

θ12θ̄12

z2
12

)(
4∆̄

Z̃12

+ 2Q̄2
θ̃12

¯̃
θ12

z̄2
12

)

− π

z̄ij

(
4∆

Z12
+ 2Q2

θ12θ̄12

z2
12

)(
4∆̄z̄12

Z̃12

+ Q̄2
(θ̃1 + θ̃2)

¯̃
θ12

z̄12
− Q̄2

(
¯̃
θ1 +

¯̃
θ2)θ̃12

z̄12

)

− π

zij

(
4∆z12

Z12
+Q2

θ12(θ̄1 + θ̄2)

z12
−Q2

θ̄12(θ1 + θ2)

z12

)(
4∆̄

Z̃12

+ 2Q̄2
θ̃12

¯̃
θ12

z̄2
12

)

+
π

z̄2
ij

(
4∆

Z12
+ 2Q2

θ12θ̄12

z2
12

)(
2Q̄2

¯̃
θ2θ̃2 + 2Q̄2

¯̃
θ1θ̃1

)
+

π

z2
ij

(
2Q2θ̄1θ1 + 2Q2θ̄2θ2

)( 4∆̄

Z̃12

+ 2Q̄2
θ̃12

¯̃
θ12

z̄2
12

)
.

(3.19)

3.2 3-point correlators

Using the Ward identity, the 3-point correlators take the general form as

〈Φ1(Z1, Z̃1)Φ2(Z2, Z̃2)Φ3(Z3, Z̃3)〉 =

 3∏
i<j

Z
−∆ij

ij

 exp

∑
i<j

Aij
θij θ̄ij
Zij

 δQ1+Q2+Q3,0

×

 3∏
i<j

Z̃
−∆̄ij

ij

 exp

∑
i<j

Āij
θ̃ij

¯̃
θij

Z̃ij

 δQ̄1+Q̄2+Q̄3,0.

(3.20)
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Following the same line as 2-point correlators, we first consider

〈JΦ1Φ2Φ3〉 = 〈G+ F 〉〈Φ1Φ2Φ3〉. (3.21)

Based on this equation, we can go further investigate the JJ̄ insertion

〈JJ̄Φ1Φ2Φ3〉 =(G+ F )(G̃+ F̃ )〈Φ1Φ2Φ3〉. (3.22)

The detailed computations of eq. (3.21) and eq. (3.22) are similar to the 2-point case, and

are presented in appendix A.5. Consequently, the final result for 3-point correlators are

1

〈Φ1Φ2Φ3〉

∫
d2zdθdθ̄dθ̃d

¯̃
θ〈JJ̄Φ1Φ2Φ3〉

=
∑
ij

[
−π
(
−2

ε
+ln |zij |2+γ+lnπ

) ∑
k,i 6=k

(
2∆ki

Zki
+

2θkiθ̄kiAki
z2
ki

)∑
l,j 6=l

(
2∆̄lj

Z̃lj
+

2θ̃lj
¯̃
θljĀlj
z̄2
lj

)

+
π

z̄ij

∑
k,i 6=k

(
2∆ki

Zki
+

2θkiθ̄kiAki
z2
ki

)∑
l,j 6=l

(
z̄lj∆̄lj

Z̃lj
+Ājl

θ̃j
¯̃
θjl− ¯̃

θj θ̃jl
z̄jl

)

− π

zij

∑
k,i 6=k

(
zki∆ki

Zki
+Aik

θiθ̄ik−θ̄iθik
zik

)∑
l,j 6=l

(
2∆̄lj

Z̃lj
+

2θ̃lj
¯̃
θljĀlj
z̄2
lj

)

− π

z̄2
ij

∑
k,i 6=k

(
2∆ki

Zki
+

2θkiθ̄kiAki
z2
ki

)
2Q̄j

¯̃
θjθj−

π

z2
ij

2Qiθ̄iθi
∑
l,j 6=l

(
2∆̄lj

Z̃lj
+

2θ̃lj
¯̃
θljĀlj
z̄2
lj

)]
. (3.23)

3.3 n-point correlators

The n-point function can be fixed by the Ward identity up to an undetermined function

〈Φ1(Z1, Z̃1) . . .Φn(Zn, Z̃n)〉

=

 n∏
i<j

1

Z
∆ij

ij

1

Z̃
∆̄ij

ij

 exp

 n∑
i<j

Āij
θ̃ij

¯̃
θij

Z̃ij

 exp

 n∑
i<j

Aij
θij θ̄ij
Zij


× f(x1, x2, . . . , x3n−8, x̄1, x̄2, . . . , x̄3n−8)δ∑

iQi,0
δ∑

i Q̄i,0
,

(3.24)

where xi can be either of the following invariant variables

Rijk =
θij θ̄ij
Zij

+
θjkθ̄jk
Zjk

+
θkiθ̄ki
Zki

, Zijkl =
ZijZkl
ZliZjk

. (3.25)

Note that the prefactor in front of the function f in eq. (3.24) takes the same form as

3-point correlator, therefore the only difference for J and JJ̄ inserted correlators from the
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3-point case is the effect of function f in eq. (3.24). The main details are included in

appendix A.6. After integration eq. (A.42) explicitly, the final result is

1

〈Φ1 . . .Φn〉

∫
d2zdθdθ̄dθ̃d

¯̃
θ〈JJ̄Φ1 . . .Φn〉

=−
∑
ij

π
(
−2

ε
+ln |zij |2+γ+lnπ

)( ∑
k,i 6=k

(
2∆ki

Zki
+

2θkiθ̄kiAki

z2
ki

)∑
l,j 6=l

(
2∆̄lj

Z̃lj
+

2θ̃lj
¯̃
θljĀlj

z̄2
lj

)

+2∂Rzif
1

f

∑
k,k 6=j

(
2∆̄kj

Z̃kj
+

2θ̃kj
¯̃
θkjĀkj

z̄2
kj

)
+
∑
k,k 6=j

(
2∆ki

Zki
+

2θkiθ̄kiAki

z2
ki

)
2∂Lz̄jf

1

f
+4∂Lz̄j∂

R
zif

1

f

)

+
∑
ij

π

z̄ij

( ∑
k,i 6=k

(
2∆ki

Zki
+

2θkiθ̄kiAki

z2
ki

)∑
l,j 6=l

(
z̄lj∆̄lj

Z̃lj
+Ājl

θ̃j
¯̃
θjl− ¯̃

θj θ̃jl

z̄jl

)

+2∂Rzif
∑
k,k 6=j

(
z̄kj∆̄kj

Z̃kj
+Ājk

θ̃j
¯̃
θjk− ¯̃

θj θ̃jk

z̄jk

)
1

f
+
∑
k,k 6=i

(
2∆ki

Zki
+

2θkiθ̄kiAki

z2
ki

)
(θ̃j∂

L
θ̃j
f+

¯̃
θj∂

L
¯̃
θj
f)

1

f

+(2
¯̃
θj∂

L
¯̃
θj
∂Rzif+2θ̃j∂

L
θ̃j
∂Rzif)

1

f

)
−
∑
ij

π

zij

( ∑
k,i 6=k

(
zki∆ki

Zki
+Aik

θiθ̄ik−θ̄iθik
zik

)∑
l,j 6=l

(
2∆̄lj

Z̃lj
+

2θ̃lj
¯̃
θljĀlj

z̄2
lj

)

+(θi∂
R
θif+θ̄i∂

R
θ̄j
f)
∑
k,k 6=j

(
2∆̄kj

Z̃kj
+

2θ̃kj
¯̃
θkjĀkj

z̄2
kj

)
1

f
+
∑
k,k 6=i

(
zki∆ki

Zki
+Aik

θiθ̄ik−θ̄iθik
zik

)
2∂Lz̄jf

1

f

+(2θi∂
R
θi∂

L
z̄jf+2θ̄i∂

R
θ̄i
∂Lz̄jf)

1

f

)
−
∑
ij

π

z̄2
ij

(
4∂Rzif

1

f
Q̄j

¯̃
θj θ̃j+

∑
k,i 6=k

(
2∆ki

Zki
+

2θkiθ̄kiAki

z2
ki

)
2Q̄j

¯̃
θjθj

)

−
∑
ij

π

z2
ij

(
4Qiθ̄iθi∂

L
z̄jf

1

f
+2Qiθ̄iθi

∑
l,j 6=l

(
2∆̄lj

Z̃lj
+

2θ̃lj
¯̃
θljĀlj

z̄2
lj

))
(3.26)

As an application of last equation, we briefly discuss the 4-point functions that might be use-

ful in the study of the deformed OTOC. The superfield in (2,2) superspace takes the form

Φ(Z, Z̃) = φ+ θψ1 + . . . , (3.27)

where there are total 16 terms at the right hand side, and we only explicitly write out the

first two components since we are only interested in correlators involving φ, ψ1 as we did

in (1,1) case. The conjugated superfield then is

Φ(Z, Z̃)† = φ† − θ̄ψ†1 + . . . (3.28)

Thus the following operator appeared in first order perturbation of OTOC

〈φ(z1, z̄1)φ†(z2, z̄2)ψ1(z3, z̄3)ψ†1(z4, z̄4)〉λ

= −
∫
dθ3dθ̄4

∫
d2zdθdθ̄〈J(Z)J̄(Z̃)Φ(Z1, Z̃1)

× Φ†(Z2, Z̃2)Φ(Z3, Z̃3)Φ†(Z4, Z̃4)〉|
θ1=θ̄1=θ2=θ̄2=θ4=θ̄3=0,θ̃i=

¯̃
θi=0

(3.29)

can be computed by utilizing eq. (3.26).
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4 Dimensional regularization

Using Feynman parametrization and dimensional regularization, one can obtain the fol-

lowing basic integral [17] (Let z1 6= z2)5

I11(z1, z̄2) =

∫
d2z

1

z01z̄02
= −π

(
−2

ε
+ ln |z12|2 + γ + lnπ

)
+O(ε) (4.2)

with ε being a infinitesimal constant. Next consider I12(z1, z̄2) with z1 6= z2∫
d2z

1

z01z̄2
02

=

∫
d2z

z̄01z
2
02

|z01|2|z02|4

= 2

∫ 1

0
du(1− u)

∫
d2z

z̄01z
2
02

(u|z01|2 + (1− u)|z02|2)3

= 2

∫ 1

0
du(1− u)

∫
d2y

2uz12|y|2 − (1− u)u2z2
12z̄12

(|y|2 + (1− u)u|z12|2)3

= 2z12

∫ 1

0
duu(1− u)

∫
d2y

2|y|2 −A2

(|y|2 +A2)3

= 2z12

∫ 1

0
duu(1− u)Vd

∫
dρρd−1 2ρ2 −A2

(ρ2 +A2)3

= 2z12

∫ 1

0
duu(1− u)VdA

−2 1

4
=

π

z̄12
,

(4.3)

where in the last step d = 2 is set directly since there is no divergence in the integral, and

analytical continuation of the dimension is not required. Here Vd = 2πd/2/Γ(d/2) is the

area of (d − 1)-sphere with unit radius, also we denote A2 = (1 − u)u|z12|2 and use the

coordinates transformation

z = y + uz1 + (1− u)z2, z01 = y − (1− u)z12, z02 = y + uz12 (4.4)

Let us mention that the result in eq. (4.3) is consistent with eq. (4.2), i.e. they satisfy

∂z̄2I11(zi, z̄j) = I12(zi, z̄j).

For I22(z1, z̄2) with z1 6= z2, similarly we can obtain∫
d2z

1

z2
01z̄

2
02

=

∫
d2z

z̄2
01z

2
02

|z01|4|z02|4

= 6

∫ 1

0
duu(1−u)

∫
d2y

(ȳ−(1−u)z̄12)2(y+uz12)2

(|y|2+(1−u)u|z12|2)4

= 6

∫ 1

0
duu(1−u)

∫
d2y
|y|4−4|y|2u(1−u)|z12|2+(1−u)2u2|z12|4

(|y|2+(1−u)u|z12|2)4

= 6

∫ 1

0
duu(1−u)

∫
d2y
|y|4−4|y|2A2+A4

(|y|2+A2)4
= 0.

(4.5)

5The notation of integrals is taken the same form as [19]

Ia1,··· ,am,b1,··· ,bn(zi1 , · · · , zim , z̄j1 , · · · , z̄jn) ≡
∫

d2z

(z − zi1)a1 · · · (z − zim)am(z̄ − z̄j1)b1 · · · (z̄ − z̄jn)bn
.

(4.1)
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In summary, by using dimensional regularization we can obtain the following basic

integrals which appear in N =(1,1) case

I11(zi, z̄j) = −π
(
−2

ε
+ ln |zij |2 + γ + lnπ +O(ε)

)
,

I12(zi, z̄j) =
π

z̄ij
, I21(zi, z̄j) = − π

zij
, I22(zi, z̄j) = 0,

I11(zi, z̄i) = 0, I12(zi, z̄i) = 0, I22(zi, z̄i) = 0,

(4.6)

where in the last line the integrals with two points coincide are listed. For these integrals

by translation symmetry, we can set zi = 0, thus there is no scale in the integrals and

we can set these integrals equal zero in dimensional regularization. Note that the integral

I22(zi, z̄j) is proportional to a delta function δ(2)(zij) in (B.7) of [17]. However, we will

omit this delta function here due to the fact that once we let zi = zj in I22(zi, z̄j), as

mentioned above, by translation symmetry there is no scale in the integral. Thus the term

δ(2)(zij) in (B.7) of [17] is simply replaced by zero in eq. (4.6).

By using Feynman parametrization, following the same line as above, we can also

obtain the integrals needed in the N = (2, 2) case, which are

I13(zi, z̄j) =
π

(z̄ij)2
, I31(zi, z̄j) =

π

(zij)2
,

I23(zi, z̄j) = I32(zi, z̄j) = I33(zi, z̄j) = 0,
(4.7)

where we also let the integrals with two points coinciding with each other vanish.

5 Conclusions

In the present paper we investigated the correlation functions with T T̄ deformation for

N = (1, 1) and N = (2, 2) superconformal field theory perturbatively to the first order

of the deformation. This extends previous work on the correlation function from bosonic

CFTs [19] to supersymmetric ones. Much like the bosonic CFT, the undeformed 2- and

3-point functions are almost fixed by global superconformal symmetry, while the n-point

(n ≥ 4) functions depend on a undetermined function f which depends on the cross ratio.

Since we only focus on the first order correction to the correlation function, the supercon-

formal symmetry is still hold approximately. One can make use of superconformal Ward

identities to work out the obvious form of correlation functions with T T̄ deformation. We

have shown that the correlation function can be expressed by the several basic integrals

listed in the last section. As a consequence, these integrals have been done with dimensional

regularization in a systematical way. As a possible application, we briefly mentioned the

OTOC in the deformed superconformal CFTs. Unlike the bosonic CFTs, due to unknown

function f in 4-point functions, one can not directly apply the final correlation function

to evaluate OTOC, in superconformal field theory with the deformation. Thus more infor-

mations about the function f is needed to study the OTOC in superconformal CFTs with

the deformation.
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In the present paper we only considered the effect of T T̄ deformation on correlation

functions perturbatively near the IR conformal fixed point. Since T T̄ deformation is be-

lieved to be UV complete, it is interesting to study the correlation functions of superconfor-

mal theory in the deep UV region as what has been done for the bosonic CFT in [18]. An-

other interesting problem is to study the correlation functions in N = (1, 0) and N = (2, 0)

theories, which exist for Lorentz signature. Possibly, one can also consider correction of

the JT̄ deformation to the correlation in supersymmetric CFTs recently studied in [62].
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A Computation details

A.1 N = (1, 1): 2-point case

To evaluate the right hand side of eq. (2.28), first consider the anticommutator between P

and J = F +G, noting P,G, F are all Grassmannian odd

{J, P}R = J(PR) + P (JR)

= FPR+G(PR) + PFR+ P (GR)

= FPR+ (GP )R− P (GR) + PFR+ P (GR)

= (GP )R

(A.1)

with R ≡ 〈Φ1Φ2〉. Hence we obtain

〈JJ̄Φ1Φ2〉 = (PP̄ + (GP̄ ))〈Φ1Φ2〉, (A.2)

where the first term on the right hand side

PP̄ = ∆∆̄

(
− 2

Z12

(
θ01

z01
− θ02

z02

)
− θ12

z12

(
1

Z01
+

1

Z02

)
+

(
θ01

z2
01

+
θ02

z2
02

))
×
(
− 2

Z̄12

(
θ̄01

z̄01
− θ̄02

z̄02

)
− θ̄12

z̄12

(
1

Z̄01
+

1

Z̄02

)
+

(
θ̄01

z̄2
01

+
θ̄02

z̄2
02

))
.

(A.3)

Here we have omitted δ-function terms in both P and P̄ as mentioned above. The second

term in eq. (A.2) is

GP̄ = ∆̄
∑
i

(
θ0i

Z0i
∂zi +

1

2Z0i
∂θi +

1

2Z0i
θi∂zi

)
×
(
− 2

Z̄12

(
θ̄01

z̄01
− θ̄02

z̄02

)
− θ̄12

z̄12

(
1

Z̄01
+

1

Z̄02

)
+

(
θ̄01

z̄2
01

+
θ̄02

z̄2
02

))
,

(A.4)

– 21 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
0

where the third term in the first bracket, i.e. 1
2Z0i

θi∂zi . . . = 1
2z0i

θi∂zi . . ., will vanish after

integral over
∫
dθ, and the second term ∂θiP̄ = 0 since P̄ does not dependent on θi. Thus

the only term needed to compute is

∆̄
∑
i

(
θ0i

Z0i
∂zi

)(
− 2

Z̄12

(
θ̄01

z̄01
− θ̄02

z̄02

)
− θ̄12

z̄12

(
1

Z̄01
+

1

Z̄02

)
+

(
θ̄01

z̄2
01

+
θ̄02

z̄2
02

))
. (A.5)

It turns out the contributions from the second and third terms in the second bracket are

nonzero after integration
∫
dθdθ̄, which is∫

d2z

∫
dθdθ̄GP̄ = 2∆̄

∫
d2z

(
θ̄1θ̄2

z̄12
+ 1

)(
δ̃(2)(z01)

|z01|2
+
δ̃(2)(z02)

|z02|2

)
(A.6)

where we use
∫
d2z δ̃(z12)

z0i
= 0, which can be obtained in polar coordinates. This term is

divergent and it should be dropped, which can be seen as follows. By observing eq. (A.6),

one find that it only depends on ∆̄ while not on ∆, in other words, this term is not

symmetric under the interchange of ∆̄ and ∆. However 〈J̄JΦ1 . . .〉 = −〈JJ̄Φ1 . . .〉 should

holds (the minus sign appears due to J(Z) is Grassmann odd), which implies the correlator

〈JJ̄Φ1 . . .〉 should be symmetric under interchange of ∆̄ and ∆. From this reasoning we

will drop these terms.

A.2 N = (1, 1): 3-point case

Let us first focus on the last two terms in () which are crossing terms. After some compu-

tation the last term is∫
dθdθ̄G(P̄ + F̄ ) = −2

∑
i

∆̄i
δ̃(2)(z0i)

|z0i|2
+
∑
i,k,i 6=k

δ̃(2)(z0i)

|z0i|2
θ̄kθ̄i
z̄ki

∆̄ik. (A.7)

For the same reason as discussed below eq. (A.6), this term should be dropped out. As for

the term G(Ḡθ̄123), after employing the anti-commutator

{G,Ḡ}=
∑
i

(
θ0i

z0i
+

θi
2z0i

)
(−δ̃(z0i))

(
θ̄0i+

θ̄i
2

)
∂̄i+

∑
i

(
θ̄0i

z̄0i
+

θ̄i
2z̄0i

)
(−δ̃(z0i))

(
θ0i+

θi
2

)
∂i

+
∑
i

(
θ0i

z0i
+

θi
2z0i

)
(−δ̃(z0i))

(
1+

2θ̄θ̄i
z̄0i

)
1

2
∂θ̄i+

∑
i

(
θ̄0i

z̄0i
+

θ̄i
2z̄0i

)
(−δ̃(z0i))

(
1+

2θθi
z0i

)
1

2
∂θi

(A.8)

G(Ḡθ̄123) can be written as

G(Ḡθ̄123)→ {G, Ḡ}θ̄123

→
∑
i

(
θ0i

z0i
+

θi
2z0i

)
(−δ̃(z0i))

(
1 +

2θ̄θ̄i
z̄0i

)
1

2
∂θ̄i θ̄123

+
∑
i

(
θ0i

z0i
+

θi
2z0i

)
(−δ̃(z0i))

(
θ̄0i +

θ̄i
2

)
∂̄iθ̄123

(A.9)
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where the term Gθ̄123 is omitted in the first step, and also for ∂zj θ̄123 in the second step

since they do not contain θ. Thus finally we get∫
d2zdθdθ̄G(Ḡθ̄123) =

∑
i

∫
d2z
−δ̃(z0i)θ̄i
|z0i|2

∂θ̄i θ̄123, (A.10)

which is also singular and should be dropped. This can be seen by noting that if we

interchange the position in 〈J(Z)J̄(Z̄)Φ1 . . .〉, and to consider 〈J̄(Z̄)J(Z)Φ1 . . .〉 we will

obtain a term different with eq. (A.10) as∫
d2zdθdθ̄Ḡ(Gθ123) = −

∑
i

∫
d2z
−δ̃(z0i)θi
|z0i|2

∂θiθ123. (A.11)

thus the appearance of eq. (A.10) implies the identity 〈J̄(Z̄)J(Z)Φ1 . . .〉=−〈J(Z)J̄(Z̄)Φ1 . . .〉
does not hold. Thus we must drop the crossing term eq. (A.10). From this consideration

we will omit all the crossing terms without explicitly pointing out in the following case

with n ≥ 4 point correlation functions.

A.3 N = (1, 1): n-point case

Now evaluate

〈JΦ1 . . .Φn〉 = (F +G)OnŌnf = (F + P )OnŌnf +QOnŌn, (A.12)

where P takes the same form as eq. (2.43) with summation from 1 to n, and

Q ≡ (GUi)
∂f

∂Ui
+ (Gwk)

∂f

∂wk
=

n∑
j=1

(
θ0j

Z0j
∂Rzjf +

1

2Z0j
DR
j f

)
, (A.13)

where we introduced the notation ∂Rzj , D
R
j , ∂

R
θ which act on zi, θi but not on z̄i, θ̄i, and

similarly let ∂Lz̄j , D̄
L
j , ∂

L
θ̄

act on z̄i, θ̄i but not on zi, θi (thus ∂Rzj (1/z̄j) = 0). When inserting

JJ̄ , yields

(F +G)[(F̄ + P̄ )OnŌnf + Q̄OnŌn]

= (F + P )(F̄ + P̄ )OnŌnf +Q(F̄ + P̄ )OnŌn + (F + P )Q̄OnŌn + (GQ̄)OnŌn
(A.14)

with

Q̄ =

n∑
j=1

((
θ̄0j

z̄0j
+

θ̄j
2z̄0j

)
∂Lz̄jf +

1

2Z̄0j
∂Lθ̄jf

)
. (A.15)

Naively the last term in eq. (A.14) looks like a crossing term, but this is not the case as

can be see below

GQ̄ = −
∑
ij

(
θ̄0j

z̄0j
+

θ̄j
2z̄0j

)(
(∂z̄j Ūi)

(
G
∂f

∂Ūi

)
− (∂z̄j w̄i)

(
G
∂f

∂w̄i

))

−
∑
ij

1

2Z̄0j

(
(∂θ̄j Ūi)

(
G
∂f

∂Ūi

)
− (∂θ̄j w̄i)

(
G
∂f

∂w̄i

))
,

(A.16)
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where for example one has

G
∂f

∂Ūi
=
∑
j

(
(GUj)

∂2f

∂Uj∂Ūi
+ (Gwj)

∂2f

∂wj∂Ūi

)
≡ GR ∂f

∂Ūi
(A.17)

with GR acting only on Uj , wj but not on Ūj , w̄j . Eventually one can get∫
dθdθ̄GQ̄=

∑
ij

[
1

z0i

(
− 1

z̄0j
∂Rzi∂

L
z̄jf−

θ̄j
2z̄2

0j

∂Rzi∂
L
θ̄j
f

)
+

θi
2z2

0i

(
− 1

z̄0j
∂Rθn∂

L
z̄jf+

θ̄j
2z̄2

0j

∂Rθn∂
L
θ̄j
f

)]
.

(A.18)

A.4 N = (2, 2): 2-point case

To evaluate eq. (3.15), firstly, let us consider the crossing terms (holomorphic derivatives

∂z acting on antiholomorphic coordinates or vice versa) in eq. (3.15). In analogy with the

(1, 1) case, it can be shown that this kind of terms vanish when integrating over θ, θ̄, thus

it will not contribute to the final results eq. (3.13). Explicitly, consider the crossing term

G 1
Z̃2∆̄

12

,6

G
1

Z̃2∆̄
12

=

∫
dθdθ̄

∑
i

(
2
θ0iθ̄0i

Z0i
∂zi+

θ0i

Z0i
Di−

θ̄0i

Z0i
D̄i

)
1

Z̃2∆̄
12

=

∫
dθdθ̄

(
θ01

z01
θ̄1−

θ̄01

z01
θ1−

θ02

z02
θ̄2+

θ̄02

z02
θ2+2

(
θ01θ̄01

z01
− θ02θ̄02

z02

))
2∆̄

Z̃2∆̄−1
12

∂z1
1

Z̃12

= 0,

(A.22)

where in the last step we have used

∂z1
1

Z̃12

= −∂z2
1

Z̃12

= δ̃(z12)

(
1 + 2

θ̃1
¯̃
θ2 +

¯̃
θ1θ̃2

z̄12
+ 6

θ̃1
¯̃
θ2

¯̃
θ1θ̃2

z̄2
12

)
. (A.23)

In the same manner one has
∫
dθdθ̄Ge

Q̄2
θ̃12

¯̃
θ12

Z̃12 = 0. Therefore we can derive eq. (3.15) in

the following without considering crossing terms, which is

〈JΦ1Φ2〉 = (F +G)〈Φ1Φ2〉 ≡ (F + P )〈Φ1Φ2〉 (A.24)

with

F = 2∆

(
θ01θ̄01

z2
01

+
θ02θ̄02

z2
02

)
−Q2

(
1

Z01
− 1

Z02

)
(A.25)

6Some useful expressions

1

Z0i
=

1

z0i
+
θ0θ̄i + θ̄0θi

z2
0i

+ 2
θ0θ̄iθ̄0θi
z3

0i

, (A.19)

θ0i

Z0i
=
θ0i

z0i
− θ0θiθ̄0i

z2
0i

,
θ̄0i

Z0i
=
θ̄0i

z0i
− θ̄0θ̄iθ0i

z2
0i

,
θ0iθ̄0i

Z0i
=
θ0iθ̄0i

z0i
, (A.20)∫

dθdθ̄θ̄θ = 1. (A.21)
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and P is defined as (similar for P̃ , F̃ )

P ≡ G〈Φ1Φ2〉/〈Φ1Φ2〉

= −4∆

(
θ01θ̄01

z01
− θ02θ̄02

z02

)
1

Z12
+

(
θ01θ̄21

Z01
+
θ02θ̄21

Z02

)
2∆

Z12

−
(
θ̄01θ21

Z01
+
θ̄02θ21

Z02

)
2∆

Z12
− 2Q2

θ12θ̄12

z2
12

(
θ01θ̄01

z01
− θ02θ̄02

z02

)
+Q2

(
θ01

Z01
− θ02

Z02

)
θ̄12

Z12
+Q2

(
θ̄01

Z01
− θ̄02

Z02

)
θ12

Z12
.

(A.26)

Having obtained eq. (3.15), next we can investigate 〈JJ̄Φ1Φ2〉

(F +G)(F̃ + G̃)〈Φ1Φ2〉 = (F +G)(F̃ + P̃ )〈Φ1Φ2〉
= (F + P )(F̃ + P̃ )O2Õ2 + [G(F̃ + P̃ )]〈Φ1Φ2〉.

(A.27)

Note that the last term is also a crossing term which can be dropped by the same reason

as discussed around eq. (A.7).

A.5 N = (2, 2): 3-point case

It can be shown that the crossing terms in eq. (3.21) do not contribute, i.e.∫
dθdθ̄G

 3∏
i<j

Z̃
−∆̄ij

ij

 = 0,

∫
dθdθ̄G exp

∑
i<j

Āij
θ̃ij

¯̃
θij

Z̃ij

 = 0. (A.28)

Therefore we only need to consider

G

 3∏
i<j

Z
−∆ij

ij

 =
∑
i,k,i 6=k

(
2
θ0kθ̄0k

z0k

∆ik

Zik
+
θ0k

Z0k

θ̄ki∆ik

Zik
− θ̄0k

Z0k

θki∆ik

Zik

) 3∏
i<j

Z
−∆ij

ij


≡ P1

 3∏
i<j

Z
−∆ij

ij

 (A.29)

and

G exp

∑
i<j

Aij
θij θ̄ij
zij


=

∑
j,k,j 6=k

(
2
θ0kθ̄0k

z0k
Ajk

θjkθ̄jk
z2
jk

+
θ0k

Z0k
Akj

θ̄kj
Zkj
− θ̄0k

Z0k
Ajk

θjk
Zjk

)
exp

∑
i<j

Aij
θij θ̄ij
zij


≡ P2 exp

∑
i<j

Aij
θij θ̄ij
zij

 .

(A.30)

Thus we obtain 〈JΦ1Φ2Φ3〉 = (F + P1 + P2)〈Φ1Φ2Φ3〉, and it follows that

〈JJ̄Φ1Φ2Φ3〉= (G+F )(G̃+F̃ )〈Φ1Φ2Φ3〉
= (P1+P2+F )(P̃1+P̃2+F̃ )〈Φ1Φ2Φ3〉+[G(P̃1+P̃2+F̃ )]〈Φ1Φ2Φ3〉,

(A.31)
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where the last term should be dropped as discussed in previous sections. Substituting the

expression of P1, P2, F into eq. (A.31), we have

1

〈Φ1Φ2Φ3〉

∫
d2zdθdθ̄dθ̃d

¯̃
θ〈JJ̄Φ1Φ2Φ3〉

=

∫
d2z

[ ∑
i,k,i 6=k

(
− 2

z0k

∆ik

Zik
+

1

z2
0k

(θkθ̄i+θ̄kθi)∆ik

Zik
−2

1

z0k
Aik

θikθ̄ik
z2
ik

− θk
z2

0k

Aki
θ̄ki
Zki

− θ̄k
z2

0k

Aik
θik
Zik

)
+
∑
i

(
−2∆i

1

z2
0i

+2
Qiθ̄iθi
z3

0i

)]

×

[ ∑
j,k,j 6=k

(
− 2

z̄0k

∆̄jk

Z̃jk
+

1

z̄2
0k

(θ̃k
¯̃
θj+

¯̃
θkθ̃j)∆̄jk

Z̃jk
−2

1

z̄0k
Ājk

θ̃jk
¯̃
θjk
z̄2
jk

− θ̃k
z̄2

0k

Ākj

¯̃
θkj
Z̄kj

−
¯̃
θk
z̄2

0k

Ājk
θ̃jk
Z̄jk

)
+
∑
j

(
−2∆̄j

1

z̄2
0j

+2
Q̄j

¯̃
θj θ̃j
z̄3

0j

)]
.

(A.32)

Using
∑

i,i 6=k ∆ik = 2∆k, the first and second line of the integrand can be expressed as

[ ∑
i,k,i 6=k

(
− 2

z0i

∆ki

Zki
+

1

z2
0i

(θiθ̄k+θ̄iθk)∆ki

Zki
−2

1

z0i
Aki

θkiθ̄ki
z2
ki

− θi
z2

0i

Aik

(
θ̄ik
zik
− θikθ̄iθ̄k

z2
ik

)

− θ̄i
z2

0i

Aki

(
θki
zki
− θkθiθ̄ki

z2
ik

))
+
∑
i

(
−2∆i

1

z2
0i

+2
Qiθ̄iθi
z3

0i

)]

=
∑
i,k,i 6=k

(
− 1

z0i

(
2∆ki

Zki
+

2θkiθ̄kiAki
z2
ki

)
− 1

z2
0i

(
zki∆ki

Zki
+Aik

θiθ̄ik−θ̄iθik
zik

))
+
∑
i

2Qiθ̄iθi
z3

0i

.

(A.33)

A.6 N = (2, 2): n-point case

Let us first consider only holomorphic component J(Z) inserted

〈JΦ1 . . .Φn〉 = (G+ F )〈Φ1 . . .Φn〉, (A.34)

where we will encounter new crossing terms GR̃ijk, GZ̃ijkl in addition to these appeared

in eq. (A.28). By using eq. (A.23) it can be checked that they will vanish, i.e.∫
dθdθ̄GR̃ijk = 0,

∫
dθdθ̄GZ̃ijkl = 0. (A.35)

Thus we will not consider crossing terms in eq. (A.34), then

(G+ F )〈Φ1 . . .Φn〉 = (P1 + P2 + F )〈Φ1 . . .Φn〉

= (P1 + P2 + F )〈Φ1 . . .Φn〉+Q〈Φ1 . . .Φn〉
1

f
,

(A.36)
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where P1, P2 be of the same form as defined in eq. (A.29) and eq. (A.30). Here Q equals

Gf , which is

Q =

∑
Rijk

(GRijk)
∂f

∂Rijk
+
∑
Zijkl

(GZijkl)
∂f

∂Zijkl


=
∑
n

(
2θ0nθ̄0n

z0n

(
(∂znR)

∂f

∂R
+ (∂znZ)

∂f

∂Z

)
+
θ0n

Z0n

(
(∂θnR)

∂f

∂R
+ (∂θnZ)

∂f

∂Z

)

− θ̄0n

Z0n

(
(∂θ̄nR)

∂f

∂R
+ (∂θ̄nZ)

∂f

∂Z

))

≡
∑
n

(
2θ0nθ̄0n

z0n
∂Rznf +

θ0n

Z0n
∂Rθnf −

θ̄0n

Z0n
∂Rθ̄nf

)
,

(A.37)

where for simplicity we have abbreviated Rijk as R, Zijkl as Z and suppressed the summa-

tion
∑

Rijk
,
∑

Zijkl
. Note in the first step in eq. (A.37) we omit the terms vanishing after

integration over θ, θ̄. Following the same way we introduce Q̃ as

Q̃ ≡
∑
n

(
2θ̃0n

¯̃
θ0n

z̄0n
∂Lz̄nf +

θ̃0n

Z̃0n

∂L
θ̃n
f −

¯̃
θ0n

Z̃0n

∂L¯̃
θn
f

)
. (A.38)

Next consider 〈JJ̄Φ1 . . .Φn〉, which is

(G+ F )(G̃+ F̃ )〈Φ1 . . .Φn〉
= (F + P )(F̃ + F̃ )〈Φ1 . . .Φn〉+Q(F̃ + P̃ )〈Φ1 . . .Φn〉/f + (F + P )Q̃〈Φ1 . . .Φn〉/f

+ (GQ̃)〈Φ1 . . .Φn〉/f + [G(P̃ + F̃ )]〈Φ1 . . .Φn〉,
(A.39)

where the last term should be dropped as discussed in previous sections. And the term

(GQ̃)〈Φ1 . . .Φn〉/f is very similar to the (1,1) case as discussed in eq. (A.16), which is not

a crossing term. Actually,

GQ̃=
∑
i,n

(
2θ0iθ̄0i

z0i
∂Rzi+

θ0i

Z0i
∂Rθi−

θ̄0i

Z0i
∂Rθ̄i

)(
2θ̃0n

¯̃
θ0n

z̄0n
∂Lz̄n+

θ̃0n

Z̃0n

∂L
θ̃n
−

¯̃
θ0n

Z̃0n

∂L¯̃
θn

)
f, (A.40)

thus

∫
dθdθ̄dθ̃d

¯̃
θGQ̃=

∑
i,n

(
2

z0i
∂Rzi+

θi
z2

0i

∂Rθi+
θ̄i
z2

0i

∂Rθ̄i

)(
2

z̄0n
∂Lz̄n+

θ̃n
z̃2

0n

∂L
θ̃n

+
¯̃
θn
z̃2

0n

∂L¯̃
θn

)
f. (A.41)
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Gathering all the results together, we then have

1

〈Φ1 . . .Φn〉

∫
d2zdθdθ̄dθ̃d

¯̃
θ〈JJ̄Φ1 . . .Φn〉

=

∫
d2z

[ ∑
i,k,i 6=k

(
− 2

z0k

∆ik

Zik
+

1

z2
0k

(θkθ̄i+θ̄kθi)∆ik

Zik
−2

1

z0k
Ajk

θjkθ̄jk
z2
jk

− θk
z2

0k

Akj
θ̄kj
Zkj

− θ̄k
z2

0k

Ajk
θjk
Zjk

)
+
∑
i

(
−2∆i

1

z2
0i

+2
Qiθ̄iθi
z3

0i

)]

×

[ ∑
i,k,i 6=k

(
− 2

z̄0k

∆̄ik

Z̃ik
+

1

z̄2
0k

(θ̃k
¯̃
θi+

¯̃
θkθ̃i)∆̄ik

Z̃ik
−2

1

z̄0k
Ājk

θ̃jk
¯̃
θjk
z̄2
jk

− θ̃k
z̄2

0k

Ākj

¯̃
θkj
Z̄kj

−
¯̃
θk
z̄2

0k

Ājk
θ̃jk
Z̄jk

)
+
∑
i

(
−2∆̄i

1

z̄2
0i

+2
Q̄i

¯̃
θiθ̃i
z̄3

0i

)]
+
∑
n

(
−2

z0n
∂Rznf−

θn
z2

0n

∂Rθnf−
θ̄n
z2

0n

∂Rθ̄nf

)
1

f

×

[ ∑
i,k,i 6=k

(
− 2

z̄0k

∆̄ik

Z̃ik
+

1

z̄2
0k

(θ̃k
¯̃
θi+

¯̃
θkθ̃i)∆̄ik

Z̃ik
−2

1

z̄0k
Ājk

θ̃jk
¯̃
θjk
z̄2
jk

− θ̃k
z̄2

0k

Ākj

¯̃
θkj
Z̄kj

−
¯̃
θk
z̄2

0k

Ājk
θ̃jk
Z̄jk

)
+
∑
i

(
−2∆̄i

1

z̄2
0i

+2
Q̄i

¯̃
θiθ̃i
z̄3

0i

)]

+

[ ∑
i,k,i 6=k

(
− 2

z0k

∆ik

Zik
+

1

z2
0k

(θkθ̄i+θ̄kθi)∆ik

Zik
−2

1

z0k
Ajk

θjkθ̄jk
z2
jk

− θk
z2

0k

Akj
θ̄kj
Zkj

− θ̄k
z2

0k

Ajk
θjk
Zjk

)
+
∑
i

(
−2∆i

1

z2
0i

+2
Qiθ̄iθi
z3

0i

)]
×
∑
n

(
−2

z̄0n
∂Lz̄nf−

θ̃n
z̄2

0n

∂L
θ̃n
f−

¯̃
θn
z̄2

0n

∂L¯̃
θn
f

)
1

f

+

∫
d2z

(∑
i,n

(
2

z0i
∂Rzi+

θi
z2

0i

∂Rθi+
θ̄i
z2

0i

∂Rθ̄i

)(
2

z̄0n
∂Lz̄n+

θ̃n
z̃2

0n

∂L
θ̃n

+
¯̃
θn
z̃2

0n

∂L¯̃
θn

)
f

)
1

f
(A.42)

Note that the first term of the integrand has the same form as 3-pt correlators in eq. (A.32)

except for the summation here runs from 1 to n instead of 3 in eq. (A.32).

B Integrals in 2-point correlators

There are nine terms in eq. (2.30), the first one have been considered in eq. (2.32). Below by

using the integrals in section 4 we list the remaining eight terms in the integral eq. (2.30).

The second term

T22 ≡
∫
d2zdθdθ̄

∆θ12

Z12

(
1

Z01
+

1

Z02

)
∆θ̄12

Z̄12

(
1

Z̄01
+

1

Z̄02

)
=

∆2θ12θ̄12

Z12Z̄12

∫
d2z

∫
dθ

(
1

Z01
+

1

Z02

)∫
dθ̄

(
1

Z̄01
+

1

Z̄02

)
=

∆2θ12θ̄12

Z12Z̄12

∫
d2z

(
θ1

z2
01

+
θ2

z2
02

)(
θ̄1

z̄2
01

+
θ̄2

z̄2
02

)
= −∆2θ1θ2θ̄1θ̄2

Z12Z̄12
(2I22(z1, z̄1) + I22(z1, z̄2) + I22(z2, z̄1)) = 0.

(B.1)
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The third term

T33 ≡ ∆2

∫
d2zdθdθ̄

(
θ01

Z2
01

+
θ02

Z2
02

)(
θ̄01

Z̄2
01

+
θ̄02

Z̄2
02

)
= −∆2

∫
d2z

(
1

z2
01

+
1

z2
02

)(
1

z̄2
01

+
1

z̄2
02

)
= −∆2(2I22(z1, z̄1) + I22(z1, z̄2) + I22(z2, z̄1)) = 0.

(B.2)

The fourth term

T12 ≡
∫
d2zdθdθ̄

2∆2

Z12

(
θ01

Z01
− θ02

Z02

)
θ̄12

Z̄12

(
1

Z̄01
+

1

Z̄02

)
=

2∆2θ̄1θ̄2

Z12Z̄12

∫
d2z

(
1

z01
− 1

z02

)(
1

z̄2
01

+
1

z̄2
02

)
=

2∆2θ̄1θ̄2

Z12Z̄12
(I12(z1, z̄1) + I12(z1, z̄2)− I12(z2, z̄1)− I12(z2, z̄2))

=
2∆2θ̄1θ̄2

Z12Z̄12
(I12(z1, z̄2)− I12(z2, z̄1)) =

2∆2θ̄1θ̄2

Z12Z̄12

2π

z̄12
.

(B.3)

The fifth term

T21 ≡
2∆2θ1θ2

Z12Z̄12
(I12(z̄1, z2)− I12(z̄2, z1)) =

2∆2θ1θ2

Z12Z̄12

2π

z12
. (B.4)

The sixth term

T13 ≡ −
∫
d2zdθdθ̄

2∆2

Z12

(
θ01

Z01
− θ02

Z02

)(
θ̄01

Z̄2
01

+
θ̄02

Z̄2
02

)
=

2∆2

Z12

∫
d2z

(
1

z01
− 1

z02

)(
1

z̄2
01

+
1

z̄2
02

)
=

2∆2

Z12
(I12(z1, z̄2)− I12(z2, z̄1)) =

2∆2

Z12

2π

z̄12
.

(B.5)

The seventh term

T31 ≡
2∆2

Z̄12
(I12(z̄1, z2)− I12(z̄2, z1)) =

2∆2

Z̄12

2π

z12
. (B.6)

The eighth term

T23 ≡ −
∫
d2zdθdθ̄

∆2θ12

Z12

(
1

Z01
+

1

Z02

)(
θ̄01

Z̄2
01

+
θ̄02

Z̄2
02

)
= −∆2θ1θ2

Z12

∫
d2z

(
1

z2
01

+
1

z2
02

)(
1

z̄2
01

+
1

z̄2
02

)
= −∆2θ1θ2

Z12
(2I22(z1, z̄1) + I22(z1, z̄2) + I22(z2, z̄1)) = 0.

(B.7)

The ninth term

T32 ≡−
∆2θ̄1θ̄2

Z̄12
(2I22(z1, z̄1) + I22(z1, z̄2) + I22(z2, z̄1)) = 0. (B.8)

Finally, the total contribution from the eight terms is

T12 + T21 + T13 + T23 =
8π∆2

Z12Z̄12
. (B.9)
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