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Abstract 

Coiled coils are often found as a structural motif in proteins with mechanical function, such as 

myosin or α-keratin. They are made up of two to seven α-helices, which are wound around 

each other, forming a superhelix. In the field of bioinspired materials, naturally occurring and 

de novo synthesized coiled coils with high binding specificity have become versatile material 

building blocks, especially as crosslinkers for hydrogels that find application as extra cellular 

matrix mimics in cell culture and tissue engineering. Little is currently known about the 

mechanical properties of the coiled coil crosslinkers. This information is needed, however, to 

control the bulk material properties and to understand how cells interact with their 

surrounding material mechanically. In the present work, mechanically calibrated and tunable 

coiled coils were developed that have the potential to be used as mechanosensitive 

crosslinkers. Towards this goal, metal coordination sites were engineered into a coiled coil. 

Protein-metal coordination bonds are strong, non-covalent interactions mediated by amino 

acid ligands, such as histidine (His) and cysteine. Specifically, two His residues were 

introduced into a well-characterized heterodimeric coiled coil from the literature with the goal 

of stabilizing helical turns.  

Using Infrared, Raman and Circular Dichroism (CD) spectroscopy it was shown that the His- 

modified peptides maintain their α-helical structure and that they are able to coordinate the 

transition metal ions Ni
2+

, Cu
2+

 and Zn
2+

. Most importantly, His-metal coordination increases 

the thermodynamic and mechanical stability of the coiled coil. The thermodynamic stability 

increases by 6.0°C as determined from thermal unfolding experiments (CD). At the same 

time, the mechanical stability increases by 13 pN, when measured with single molecule force 

spectroscopy at a fixed pulling speed of 1000 nm/s. These results clearly validate the 

experimental approach of stabilizing helical turns using bioengineered Ni
2+

-His coordination 

sites. The coordination sites are functional and the increased stability of helical turns directly 

affects the overall stability of the coiled coil, thermodynamically and mechanically. Thus, the 

current work does not only show new routes towards tuning coiled coil mechanics but also 

provides crucial information about the failure mechanism of coiled coils under load. 

Future work will focus on the tunability of the His-modified coiled coils by changing the 

metal ion, the His-metal ratios or the position of His-residues. These strategies will allow for 

fully exploiting the potential of metal-coordinating coiled coils as tunable mechanosensitive, 

self-healing crosslinkers in hybrid hydrogels.  
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Zusammenfassung 

Das Coiled Coil kommt als Faltungsmotiv in vielen Proteinen mit mechanischer Funktion, 

z.B. in α-Kreatin oder Myosin, vor. Ein Coiled Coil besteht aus zwei bis sieben α-Helices, die 

umeinander gewickelt sind und eine Superhelix bilden. Im Bereich der bio-inspirierten 

Materialforschung werden natürlich vorkommende und de novo synthetisierte Coiled Coils 

als vielseitige Bausteine für Materialien genutzt. Insbesondere werden Coiled Coils als 

Crosslinker in Hydrogelen eingesetzt, die Anwendung als extrazelluläre Matrix-Imitate in der 

Zellkultur und der Geweberegeneration finden. Über die mechanischen Eigenschaften der 

Coiled Coil Crosslinker ist bisher nur wenig bekannt. Die Erforschung dieser ist jedoch von 

hoher Wichtigkeit, um Materialeigenschaften zu kontrollieren und ein besseres Verständnis 

über die Wechselwirkungen von Zellen mit der Matrix, die sie umgibt, zu erlangen. In dieser 

Arbeit wurden mechanisch kalibrierte Coiled Coils entwickelt, die potentiell als 

mechanosensitive Crosslinker eingesetzt werden können. Um dies zu erreichen, wurden 

Histidin-Koordinierungsstellen in ein Coiled Coil eingefügt. Protein-Metall 

Koordinierungsbindungen sind starke nicht-kovalente Wechselwirkungen, die durch 

Aminosäuren, wie Histidin (His) oder Cystein als Liganden vermittelt werden. Mit dem Ziel 

die Helices zu stabilisieren, wurden in dieser Arbeit zwei Histidine in ein gut charakterisiertes 

Coiled Coil Heterodimer eingefügt. 

Mit Infrarot, Raman und Circular Dichroismus Spektroskopie wurde gezeigt, dass die 

Sekundärstruktur der His-modifizierten Coiled Coils erhalten bleibt und Übergangs-

metallionen, wie Ni
2+

, Cu
2+

 und Zn
2+

 durch die Histidine koordiniert werden können. Zudem 

zeigt diese Arbeit, dass die Coiled Coils durch His-Metallionen Koordination 

thermodynamisch und mechanisch stabilisiert werden. Mittels thermischer Entfaltung im CD 

Spektrometer wurde ein Anstieg der Schmelztemperatur um 6°C ermittelt. Des Weiteren, 

wurde ein Anstieg der mechanischen Stabilität um 13 pN mittels Einzelmolekülkraft-

spektroskopie bei einer konstanten Zuggeschwindigkeit von 1000 nm/s gemessen. Diese 

Ergebnisse zeigen deutlich, dass His-Metallionen Koordination als ein geeigneter 

experimenteller Ansatz zur Helix-Stabilisierung ist. Die Koordinationsstellen sind funktional 

und erhöhen nicht nur die Stabilität des betroffenen Helix-Abschnittes, sondern auch die 

mechanische und thermodynamische Stabilität des ganzen Coiled Coils. Daher ist diese 

Arbeit wegweisend hinsichtlich der gezielten Veränderung von Coiled Coils und liefert 
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wichtige Informationen über den Entfaltungsmechanismus von Coiled Coils unter 

mechanischer Belastung. 

Zukünftige Studien werden sich mit der Untersuchung des Einflusses von verschiedenen 

Metallionen, vom Histidin-Metallionen Verhältnis und von der Position der Histidine, auf die 

Stabilität der modifizierten Coiled Coils beschäftigen. Diese Strategien können die Nutzung 

von Metallionen-koordinierenden Coiled Coils als potentielle gezielt veränderbare, 

mechanosensitive und selbstheilende Crosslinker in Hydrogelen ermöglichen. 
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1 Introduction 

The development of mechano-responsive materials is a major focus of current materials 

research. The general aim is to engineer smart materials, which report mechanical 

manipulation or damage using an optical readout [1]. Examples of materials, which respond to 

mechanical loading, include polymeric materials tuned with spiropyran (Figure 1) [2] or the 

rod-like molecule oligo(p-phylene vinylene) [1]. For example, when a mechanical load is 

applied on the polymer, the colorless spiropyran undergoes isomerization to the red 

merocyanine; thus, self-reporting the mechanical manipulation. Moreover, materials, which 

self-report their mechanical loading, can also be engineered by the insertion of FRET pairs 

into polymers [3]. Mechano-responsive materials have potential application as molecular 

machines in nanomaterials and microdevices, while self-reporting materials are useful to 

detect damage on the micron scale, thereby reducing the risk of failure in load-bearing 

materials (e.g. in aerospace engineering). However, most of these materials undergo 

irreversible damage and information about the structural changes on the molecular level is 

hard to obtain. Moreover, many of these materials are not suitable for biological and 

biomedical applications, such as cell culture.  

 

Figure 1: A mechano-responsive polymer containing spiropyran. When a mechanical load (stretching) is applied, the 

colorless spiropyran undergoes an isomerization. The resulting merocyanine, has a red color and can be converted back to 

spiropyran by light irradiation. 

 

Thus, there is a need for biocompatible materials comprised of mechanically well-

characterized and stimuli-responsive building blocks. A promising candidate for such a 

building block is the coiled coil folding motif in proteins. Coiled coils are often found in 

proteins, such as α-kreatin and myosin, which fulfill mechanical functions. In biomaterials 

research, the high binding specificity of natural or de novo designed α-helical peptides has 

been used to create coiled coil hydrogels and hybrid hydrogels comprised of a coiled coil 

crosslinked polymer [4]–[6]. Hydrogels crosslinked by coiled coils have the potential to serve 

as versatile extra cellular matrix (ECM) mimics for cell culture and tissue engineering [7], 
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because they are responsive to changes of the surrounding conditions, such as pH, ionic 

strength and mechanical loading. Thus, coiled coils could provide a dual function as 

crosslinkers and as tunable mechano-responsive building blocks, enabling the further 

investigation of the magnitude, geometry and duration of forces applied by cells on the ECM. 

It is known that the bulk mechanical properties of a material affect many cellular processes, 

including cell growth and differentiation [8]–[10]. To understand and control the underlying 

signaling pathways, materials with well-defined and tunable mechanical building blocks are 

required. Ultimately, the bulk properties of a material are determined by its molecular 

building blocks, such as reversible material crosslinkers. 

Hence, there is a need for engineering and characterizing bio-compatible and tunable 

crosslinkers, e.g. based on coiled coils. Motivated by this need, the current work aims at 

bioengineering metal-chelating histidine side chains into coiled coil peptide sequences with 

the goal of increasing and tuning the stability of coiled coils via metal coordination. Here, 

metal coordination involves the formation of strong, yet labile bonds between amino acid 

ligands (e.g. Histidine) and transition metal ions (e.g. Ni
2+

, Cu
2+

, Zn
2+

). Metal coordination is 

a proven means of stabilizing protein structures, as observed in both biological materials, such 

as the mussel byssus and spider fangs [11], as well as in bioengineered proteins [12]. If this 

work is successful, it could lead to a new toolkit of mechano-responsive crosslinkers with a 

wide range of applications. 

1.1 Coiled coil peptides  

1.1.1 Coiled coils in biological systems 

Coiled coils are an abundant structural motif in proteins. In biological organisms coiled coils 

occur in proteins with very different functions. For example, α-keratin functions as an 

essential component of the cornified part of the skin, while tropomyosin can be found in 

muscle cells where it contributes to the regulation of muscle contraction [13]. Moreover, 

coiled coils are an important part of molecular motor proteins, such as myosin and 

dynein [14], [15]. A coiled coil consists of two to seven right-handed α-helices that are wound 

around each other to build up a left-handed superhelix [16]–[18]. Whereas dimeric coiled 

coils, such as myosin and dynein, are predominantly found in intracellular proteins, most of 

the extracellular coiled coils, such as fibrin, are trimeric [19]. The supercoil is characterized 

by the pitch, which is the distance of one complete turn, and the pitch angle, which describes 

the relative angle of each helix to the supercoil. In contrast to a single α-helix with 3.6 
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residues per turn, a dimeric supercoil is distorted with 3.5 per turn [14], [16]. Thus, the 

position of the side chain residues repeats every two turns or seven residues making up a so-

called heptad repeat with the residues designated as a, b, c, d, e, f, g (Figure 2). The number of 

heptad repeats in a coiled coil can reach from only two in artificial peptides to 200 repeats in 

naturally occurring proteins [20].  

 

Figure 2: Schematic representation of a dimeric coiled coil (A). Heptad repeats of a dimeric coiled coil (B). The 

positions in one heptad are a, b, c, d, e, f, g. The hydrophobic core is made up of the positions a and d (Val, Leu, Ile). At the e 

and g positions charged amino acids, such as Glu or Lys can be found. b, c and f are solvent exposed and mostly hydrophilic 

residues. The arrows indicate Van-der-Waals interaction; the dashed lines indicate ionic interactions. 

 

According to the “Peptide Velcro” hypothesis, every position of the repeat is occupied by a 

subset of amino acids with distinct properties in order to form a left-handed heterodimeric 

coiled coil [21]. At the a and d positions, which build up the interface between the helices, 

hydrophobic residues like valine (Val), leucine (Leu) or isoleucine (Ile) can be found. The 

Van-der-Waals interaction between the a and d residues of different helices results in a 

“knobs-into-holes” packing. The knob is represented by a hydrophobic side chain residue of 

one helix, while the hole is a cavity consisting of four side chain residues of the other 

helix [14]. The e and g positions are filled by charged amino acids like lysine (Lys) or 

glutamate (Glu), which enable specific electrostatic interaction of the helices in terms of 

orientation and pairing [16]. Specifically, the g residue of one helix forms a salt bridge with 

the e position of the next repeat of the other helix (i→ i´+5). The positions b, c and f are 

facing towards the solvent and are typically hydrophilic residues (e.g. glutamine, serine). 

Experimental studies revealed that there are certain rules to predict the oligomerization state 

and the orientation of a coiled coil depending on the amino acids at certain positions. For 

example, the charge pattern defines if parallel (N-termini at the same end of the supercoil) or 

antiparallel helices are formed and if homo- or heterodimeric supercoils are built up by the α-

helices [17]. To favor heterodimerisation and prevent homodimer formation, two helices 

should have opposite charges at the e and g positions. Furthermore, an asparagine (Asn) in 

d

e
b

f

c
g

a d

e
b

f

c
g

a

A B
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complementary a positions of the two α-helical peptides is known to guide the formation of a 

parallel, “in-register” coiled coil by hydrogen bonding [22]. If the e and g positions are 

occupied by more hydrophobic residues, the probability of oligomers consisting of more than 

two α-helices increases. Moreover, the interhelical salt bridges between g and e contribute to 

the formation and stability of the supercoil and can be influenced by pH and salt 

concentration [23], [24]. To improve the thermal and maybe also the mechanical stability of a 

coiled coil, the number of heptad repeats or the hydrophobicity of the residues at the a and d 

position can be increased [25], [26]. Furthermore, recent experiments suggest that the helix 

propensity of the solvent exposed residues may also contribute to the stability of coiled 

coils [22]. Alternatively, in the current work, bioengineered His-metal coordination sites will 

be utilized to enhance the stability of a coiled coil. Changing the amino acid sequence of 

coiled coil peptides may inhibit the formation of an α-helical structure and coiling, if the rules 

derived from the “Peptide Velcro” hypothesis are violated. Thus, the positions of 

bioengineered His-metal coordination sites in a coiled coil sequence have to be chosen 

carefully. If successful, this work will allow to obtain more detailed insights into how the 

stability of the individual helices contributes to the overall stability of the coiled coil. 

1.1.2 Coiled coil peptides as mechanical building blocks 

Biological organisms often use coiled coils as building blocks for constructing tissues, (e.g. 

α-keratin), or as mechanical linkers between protein domains (e.g. myosin and dynein). 

Depending on their function, coiled coils can be exposed to very different forces with regards 

to loading geometry, loading rate, duration and magnitude of the applied force. For example, 

rotation or sliding of helices in receptor proteins transports signals across membranes, such as 

in the dimeric HAMP domain, which connects the intra and extracellular part of about 7500 

different receptors in animals, plants, fungi and protists [27]. Furthermore, dimeric dynein 

undergoes a conformational change via sliding of the helices against each other, which leads 

to coupling of ATPase and microtubule binding [28]. Mechanical loading of coiled coils can 

also result in an α-helix to β-sheet transition, as observed in α-keratin [29], desmin [30], 

hagfish slime [29] or whelk egg capsule [31]. This transition can be linked to energy 

dissipation (e.g. in whelk egg capsule) and is most likely also responsible for the non-linear 

viscoelastic properties of these structures (e.g. strain-hardening), which prevents 

overstretching induced damage [31]. 

Possible applications of coiled coils for biological and biomedical purposes, such as protein 

purification and labeling, biosensing, drug delivery or stabilization of antibody fragments, are 
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based on the specificity between two α-helices [32]–[35]. This specificity has also been 

utilized in synthetic biomaterials research, where coiled coils have been implemented for the 

synthesis of responsive materials, such as hybrid hydrogels [5], [6], [32], [36].  

However, little attention has been paid to the mechanical properties of the coiled coils, such as 

the loading geometry (Figure 3). The energy barrier to unfold and dissociate a coiled coil 

mechanically depends on the geometry of the applied force and can be different from the 

thermodynamic energy barrier [37], [38]. For unzipping of coiled coils, forces of 9-15 pN 

were found depending on length and sequence [37]. In the stretching mode of a dimeric 

myosin coiled coil, forces of 20-25 pN were observed, which emphasizes the critical role of 

the loading geometry [39]. 

 

Figure 3: Tensile, bending and unzipping mode of a coiled coil. Stretching and Shearing are modes in the tensile 

geometry. 

 

Up to now, it is not known which intra- and intermolecular helical interactions contribute 

most to the stability of a coiled coil, depending on the geometry of the applied force. In order 

to engineer mechanosensitive coiled coil hybrid hydrogels, the contributions of the different 

interactions on the stability and the response mechanism of coiled coils to forces need to be 

well understood. Applying force in the shear geometry, it has been shown using Molecular 

Dynamics simulations that the coiled coil helices start to unravel at the terminus where the 

force is applied. In the present work, histidine-metal ion coordination bonds will be 

introduced into these mechanically loaded heptads with the goal of stabilizing the helical 

structure. This will allow the investigation of the possible helix-stabilizing effect of these 

metal-coordination bonds on the overall stability of the coiled coil.  

 

Tensile modes 

Shearing 

Stretching Bending 

Unzipping 
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1.2 The mechanical role of metal ions in biological systems 

About 40% of all known proteins interact with metal ions, which contribute to functions in 

catalysis, oxygen transport, photosynthesis, stabilization of proteins, nitrogen fixation and 

signal transduction [40], [41]. Metal ions can be coordinated by cofactors, such as the heme 

cofactor, or amino acids. The amino acid residue that is most often found in metal 

coordination spheres is histidine (His) followed by aspartate (Asp) and cysteine (Cys) [42]. 

Moreover, serine (Ser), threonine (Thr), tyrosine (Tyr), methionine (Met) and glutamate (Glu) 

can take part in coordination processes [42], [43]. The present study will focus on 

bioengineering His residues as metal ion ligands into a coiled coil peptide. The His side chain 

consists of an imidazole moiety, which contains two nitrogen atoms. These nitrogen atoms 

can potentially donate a lone pair of electrons to form a coordination bond with a metal ion. 

Under acidic conditions both nitrogen atoms are protonated and unable to coordinate metal 

ions. However, His has a pKa of about 6.5 depending on the surrounding amino acids, 

indicating that at physiological pH one nitrogen will be deprotonated, facilitating the 

coordination of metal ions [44], [45]. In enzymes, His takes part in the coordination of Mn in 

Mn-superoxide dismutase of Thermus thermophilus, Cu in galactose oxidase, Fe in 

ribonucleotide reductase and Zn in carbonic anhydrase [40], [46].  

However, aside from their physiological roles, metal ion coordination facilitated by His has 

been shown to play an essential role in the performance of biogenic acellular materials, such 

as the mussel byssus, ragworm mandibles and spider fangs [11]. In particular, the mussel 

byssus is a well-studied example of a protein-based biogenic material in which His-Zn
2+

 

crosslinks have been implicated in increased mechanical stiffness, toughness and self-healing 

capacity [11], [47]. The crosslinks are associated with His-rich protein domains at the N- and 

C-terminal domains of the collagenous proteins called PreCol proteins, which comprise a 

significant portion of the threads by weight (Figure 4) [11], [48]. Peptides taken from the His-

rich domain of the PreCols show a strong reversible interaction in the presence of metal 

ions [49].  

Beyond functions in natural proteins and materials, the ability to rationally design protein 

sequences that are stabilized via metal coordination was demonstrated by Arnold and 

Haymore [50]. They showed that the insertion of a His-metal coordination site into an α-helix 

of cytochrome c, increases the thermodynamic stability of the protein by 4 kcal/mol in the 

presence of Cu
2+

.  
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Figure 4: Hierarchical structure and building blocks of a byssus thread core. A thread is made up of the core, the cuticle 

and the plaque. The core contains staggered PreCol proteins with flanking domains and His-rich domains at the N- and C-

terminus. The His residues are contributing to the self-healing ability through reversible metal ion coordination. 

Waite et al. [48] hypothesized that the His residues could bind reversibly to metal ions thereby the contributing to the 

stability and the self-healing properties of the mussel byssus threads after loading. 

 

Specifically, the authors determined that two His residues bioengineered into an α-helical 

region of the protein with a three-amino-acid spacing (i.e. HXXXH), resulted in a suitable 

geometric configuration for chelating a single metal ion [50]. Rationally designed metal 

coordination sites were further shown to mechanically stabilize the small β-sheet protein 

GB1. In this protein, Cao et al. [12] engineered a bi-histidine metal chelation complex was 

across two β-strands and demonstrated a threefold higher mechanical stability of the protein 

against unfolding, using single molecule force spectroscopy [12]. The unfolding force of this 

protein was further shown to be pH dependent, which can be explained with electrostatic 

repulsion of the protonated (positively charged) His residues at acidic pH [51]. These 

examples clearly demonstrate that the insertion of His residues as metal ion coordination sites 

is a promising means for tuning the thermodynamic and mechanical stability, which may hold 

potential for coiled coil peptide design, as well as for investigating the response mechanism of 

coiled coil peptides to an applied force. 
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1.3 Aim of this work 

The main aim of this thesis is to design coiled coil peptides, whose mechanical stability can 

be tuned via His-metal coordination bonds. If successful, these coiled coils will be 

implemented as tunable mechanosensitive crosslinkers in biomimetic hydrogel materials. 

Towards this goal, a thorough understanding of the mechanical response mechanism of coiled 

coils to an applied force is required. Molecular Dynamics simulations of the dimeric myosin 

coiled coil suggest the following response mechanism to shear forces: The α-helices unfold in 

the direction of the applied force and the unfolding starts at the point-of-origin of the 

force [52]. According to this prediction, stabilizing the heptad repeats closest to the point of 

force application will prevent α-helix and, consequently, coiled coil unfolding. Up to now, 

this predicted mechanism has not been studied experimentally.  

In order to test this prediction, a well-characterized heterodimeric coiled coil is modified such 

that metal coordination bonds can form in the heptads that are primarily loaded with the 

applied shear force (Figure 5). The four-heptad coiled coil introduced by Thomas et al. [53] is 

used as the template for the current work. To facilitate metal-coordination, two histidine 

residues are introduced at the solvent exposed positions in the corresponding heptads. As the 

exchange of these residues to histidine may affect the secondary structure of the peptides, it 

needs to be determined first if the His-modified peptides are still able form α-helices. For this 

purpose, Attenuated total reflectance-Fourier transformed Infrared spectroscopy (ATR-FTIR) 

as well as Circular Dichroism (CD) spectroscopy is used. 

 

Figure 5: A dimeric coiled coil tuned by Histidine-metal ion coordination. The structure was predicted by CC-

Builder [54]. The red peptide has two His in the first heptad and the blue peptide has two His in the fourth heptad repeat. 

In order to bioengineer tunable crosslinkers, it is of high interest to know which metal ions are 

chelated by the His-modified peptides. Distinct metal ions are known to favor different 

coordination geometries, which may lead to differential stabilization of the coiled coil. To test 

Me2+

Me2+
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whether transition metal ions, such as Ni
2+

, Cu
2+

 or Zn
2+

, are chelated by the peptides, Raman 

spectroscopy is used.  

As the ultimate proof of the design strategy, the effect of coordinated metal ions on the 

thermodynamic and mechanical stability of the coiled coils needs to be determined. Thermal 

unfolding of the coiled coils is monitored in the absence and presence of metal ions using CD 

spectroscopy. Single molecule force spectroscopy (SMFS) with an atomic force microscope 

(AFM) is used to investigate the effect of His-metal chelation on the mechanical stability. 

These measurements are expected to provide the molecular rupture forces of the coiled coil in 

the absence and presence of metal coordination. Thus, these experiments can yield the desired 

information about the mechanical stabilization of the loaded heptads and serve as the starting 

point for tuning the mechanical response of the coiled coil to shear forces. It is expected that 

metal-coordinating coiled coils will provide a new platform for the synthesis of tunable and 

mechanosensitive hydrogels. 
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2 Methods 

In order to characterize the secondary structure of His-modified peptides, spectroscopic 

techniques, such as ATR-FTIR, Raman and CD spectroscopy, were used. The thermodynamic 

stability of the coiled coil was studied using thermal unfolding monitored by CD 

spectroscopy. To determine the effect of metal ion coordination on the mechanical stability of 

the coiled coil, AFM based single molecule force spectroscopy was used. This section gives a 

short theoretical background about the techniques used in this thesis. 

2.1 FTIR and Raman spectroscopy 

Fourier-transformed (FT) IR and Raman spectroscopy are complementary vibrational 

spectroscopy techniques based on the interaction of light with matter. They are useful for 

studying the conformation and structure of protein molecules as well as more complex 

materials and biological tissues. Both techniques are non-destructive, require small amounts 

of sample and have a high reproducibility [55]. Moreover, the techniques are complementary 

to each other, since both use light to probe the vibrational modes of molecules in a given 

sample [56]. However, the two forms of spectroscopy are different in the manner in which 

light energy is transferred to the molecule, thus changing its vibrational state. While FTIR 

spectroscopy is used to observe transitions between molecular vibrational energy states, due 

to absorption of a broad range of IR radiation, Raman spectroscopy is based on an inelastic 

scattering process (Stokes Raman scattering), caused by the interaction of incident, 

monochromatic light with molecules and molecular groups (Figure 6). Here, the vibrational 

quantum energies of the discrete vibrational energy states of the molecule do not match the 

energy of the incident photon, which loses part of its energy distorting (polarizing) the 

electron cloud of the atoms. As a result the molecule gets into a virtual energy state and a 

photon with reduced energy is scattered by the molecule. 
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Figure 6: Infrared absorption and Raman scattering processes. The absorption of IR light elevates the molecule into a 

higher vibrational energy state. Rayleigh scattering is elastic. The initial energy (E0) to bring the molecule in a higher virtual 

energy state equals the scattering energy (Es). Stockes Raman scattering is inelastic and less probable than Rayleigh 

scattering. In anti-Stockes Raman scattering the initial energy is smaller than the energy of the scattering because the 

molecule possessed a higher ground vibrational state initially. The energy of the photons can be described by E= h*v, where 

h is the Planck´s constant and v is the wavenumber of the photon. 

In case of FTIR spectroscopy, the transition between the vibrational energy levels depends on 

the electric dipole of the molecules in the sample, while in Raman spectroscopy the 

interactions between the light and the sample involve the Raman polarizability of the 

molecules [56]. As a consequence of these differences, FTIR- spectroscopy is more suitable to 

detect asymmetric vibrations of polar groups, while Raman spectroscopy is more sensitive to 

symmetric vibrations of non-polar groups. However, there are also molecules, such as CO2, 

H2O or benzene, which are both Raman and IR active [56]. The resulting bands in the FTIR 

and Raman spectra are characterized by their frequency, intensity and the band shape, which 

depend on the environment of the molecular groups. The frequencies of the molecular 

vibrations change depending on the mass of the atoms, the bond strength and the geometric 

arrangement, thus, providing information on structure, environment and dynamics of 

molecules [56]. To obtain a clear picture of the molecular structure of a sample, it is advisable 

to combine FTIR and Raman spectroscopy, which are described in more detail below. 
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2.1.1 FTIR spectroscopy 

FTIR is based on the absorption of IR-light (e.g. mid-IR: υ = 4000-400 cm
-1

) by molecules, 

which leads to transition of the molecules into a higher vibrational energy state (Figure 6). In 

particular, all the IR frequencies are emitted simultaneously by the broad band light source 

and the different wavelengths are modulated by a Michelson-Interferometer at different rates, 

so that certain wavelengths are transmitted or blocked periodically by interference. The 

molecules absorb the modulated IR-light of a specific wavelength corresponding to distinct 

vibrational frequencies of IR active molecular structures and chemical bonds [55]. A molecule 

is IR active if its electric dipole changes when it is excited to a higher vibrational energy state. 

The detected signal is an interferogram containing the spectral information about the whole 

wavelength range used for the excitation. Fourier transformation is used to convert the 

interferogram into a whole spectrum. Typically, a FTIR spectrum is obtained by plotting the 

absorbance (or transmittance) versus the wavenumber [cm
-1

]. The absorbed wavelengths 

provide information about the type of bonds and therefore the molecules present in a sample. 

Important spectral regions giving information about the protein backbone conformation are 

the amide I/II bands (1500-1700 cm
-1

) and the amide III band (1180-1320 cm
-1

) [55], [57]. 

The secondary structure of proteins is most clearly reflected by the position of the amide I 

band [58], which is at 1650-1657 cm
-1 

for α-helical proteins, while for coiled coils the amide I 

band can even be shifted to lower wavenumbers (1637-1654 cm
-1

) [59]. In this work, the 

FTIR measurements are carried out using the ATR (attenuated total reflectance) mode, which 

is useful for investigating liquid and solid samples. The major advantage of the ATR mode 

compared to the more typical transmission mode, is that only little or no sample preparation is 

required [60]. In the ATR mode the samples are measured on a crystal with a high refractive 

index. In the present study, a crystal composed of a layer of Si on top of a ZnSe layer was 

used. The IR-light is directed in a 45° angle to the ZnSe-crystal and totally internally reflected 

in the Si-crystal (Figure 7). Only the evanescent wave created by internal reflectance extends 

beyond the crystal and can be absorbed by the molecules in the sample, which is in contact to 

the crystal. The intensity of the evanescent wave decreases exponentially with the distance 

from the crystal-sample interface; thus, only molecules in the distance of 0.5 to 5 µm can 

absorb energy from the evanescent wave [61]. The evanescent wave is altered or attenuated 

by the interaction with the molecules. Thus, the absorption processes also alter the IR beam.  
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Figure 7: ATR-FTIR measurement setup. The incident IR-beam is total internal reflected by the Si-crystal if the incident 

angle is 45°. Distinct Energies of the resulting evanescent wave are absorbed by the IR active molecules. Attenuation of the 

evanescent wave causes changes in the IR-beam, which are recorded by a detector. Since the intensity of the evanescent wave 

decreases exponentially with the distance to the crystal-sample interface, molecules near the interface have a higher 

probability of being exited to a higher vibrational energy state. 

 

One major drawback of FTIR is that water is highly IR active and has a characteristic peak 

that overlaps with the amide I band of proteins, which raises clear challenges for measuring 

samples in solution [55]. Thus, care must be taken for properly removing the water 

background if useful data about protein structure is to be extracted. 

2.1.2 Raman spectroscopy 

When photons interact with matter they are either absorbed or scattered. As mentioned, FTIR 

measures the frequencies (energies) of the IR-light, which are absorbed by molecules, 

corresponding to discrete transitions of molecular vibrations in the sample. In contrast, Raman 

spectroscopy measures the energy of the photons scattered by a sample. In this case the 

incident photon has a higher energy than the distinct vibrational energy states of a molecule, 

which is therefore not excited to a higher vibrational energy level, but the electron clouds of 

the atoms are distorted [56], [62]. This distortion or polarization of the electron cloud brings 

the molecule into a virtual energy state (Figure 6). The most probable scattering that occurs, 

when a Raman active molecule goes back from a virtual energy state to the vibrational ground 

state, is the elastic or Rayleigh scattering. Here, there is no energy difference between the 

incident and the scattered photon. The inelastic or Stokes Raman scattering results from the 

transition of a molecule from a virtual energy level to the first excited vibrational energy level 

and is, thus, far less probable than Rayleigh scattering [56]. In case of inelastic scattering, the 

frequency of scattered photon is shifted towards higher wavenumbers or lower energy 

compared to the incident photon. An even less probable scattering process is Anti-Stokes 

Raman scattering, where the molecule is initially in an excited vibrational energy state and 
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goes back from the virtual energy state to the vibrational ground state. Thus, the scattered 

photon has a higher energy than the incident photon. The basis for Raman spectroscopy is 

founded on the frequency (energy) difference between the incident photon and the scattered 

photon obtained by inelastic Stokes Raman scattering, which contains information about the 

energy of specific vibrational modes of the molecules in the sample. 

In practice, Raman spectra are obtained by exciting a sample with monochromatic laser light 

and using a sensitive detector to measure the intensity of the inelastically scattered light as a 

function of differences in the energy between the wavelength of the incident laser and those of 

the photons scattered by the molecules in the sample. This energy difference is termed the 

Raman shift and usually displayed in wavenumbers [cm
-1

], which are a measure of spatial 

frequency (i.e. number of cycles in a unit distance) [62]. Raman peaks are often associated 

with vibrations of specific functional groups of macromolecules, including the polypeptide 

backbone of proteins, making the technique useful for determining the secondary structure of 

proteins and peptides or measuring conformational changes of biomolecules under different 

conditions. For proteins and peptides the amide I band (1634-1676 cm
-1

), CH2-

bending/stretching (1450 cm
-1

), the amide III band (1100-1375 cm
-1

) and the bands for 

aromatic amino acids (e.g. Phe 1004 cm
-1

) give important information about structures and 

conformations [62]. In the case of an α-helical conformation the amide I band can be found 

between 1645 and 1658 cm
-1

, while the amide III band is typically between 1280-

1320 cm
-1 

[63]–[65].  

Relevant to the present study, Raman spectroscopy can also be used to investigate changes in 

the protonation and coordination state of the five-membered imidazole side chain of His. The 

distinctive peaks correspond to the C4=C5 double bond in the Histidine imidazole moiety and 

change according to the protonation and metal coordination state of the His residue as 

summarized in Figure 8. While His has two protonated nitrogen-atoms in the imidazole ring 

at acidic pH (< 6.5) (cationic imidazolium), the imidazole ring is deprotonated at neutral to 

basic pH [66]. In the latter case, there are two tautomers, where either the Nπ-atom or the Nτ-

atom has a bond to a hydrogen-atom. The deprotonated nitrogen-atom, which possesses a free 

electron pair, can function as a coordination site of transition metal ions. If a metal ion is 

coordinated by the Nτ-atom a band at 1594-1606 cm
-1

 is detected depending on the metal ion 

bound. Moreover, the fully deprotonated anionic imidazolate ring can bind to two metal ions 

(bridging) [66].  
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Figure 8: Histidine Protonation states after Takeuchi [66].The imidazole side chain of His is predominantly protonated if 

the pH is below 6.5. Increasing pH leads to an increase in deprotonated His which is able to coordinate metal ions (Me2+) at 

the Nπ or Nτ-atom. At basic pH and high Me2+ concentration also both nitrogen-atoms can take part in coordination. 

 

All the described states of the imidazole side chain of His can be observed in Raman spectra 

since they have a characteristic signature. To investigate changes in the state of His, it is 

beneficial if the sample does not contain aromatic amino acids (i.e. Trp, Tyr, Phe), which 

exhibit strong Raman peaks that overlap with the His peaks [66]. 

2.2 Circular Dichroism (CD) spectroscopy 

2.2.1 CD spectroscopy for secondary structure determination 

One of the most frequently used spectroscopic methods to investigate the secondary structure 

of a protein or peptide is CD spectroscopy. It is based on the ability of chiral molecules, like 

peptides, to differentially absorb left- and right-handed circularly polarized light. The 

monochromatic light is polarized through a suitable filter or prism. The resulting sinusoidal 

oscillation of the electric field E in a single plane can be described by two vectors ER and 

EL [67]. While ER rotates clockwise, EL rotates counterclockwise. The resulting vector traces 

describe a circle. When a chiral molecule interacts with circularly polarized light, it absorbs 

ER and EL to a different extend. This results in an elliptic polarization of the light. The CD 

spectrometer measures the ellipticity θobs in millidegree (mdeg). The mean residue molar 

ellipticity (θR) [deg cm
2
 dmol

-1
] can be calculated as  
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with respect to the concentration c [mol/l], the number of amino acids (n) and the path length 

d [mm] [67]. Different protein or peptide secondary structures show distinct signatures in 

their CD spectra (Figure 9). Proteins in the α-helical conformation exhibit two minima at 

222 nm and 208 nm as well as a maximum at 193 nm [67]. The formation of coiled coils can 

be estimated by calculating the ratio (r222/208) between the two minima [θ222]/[θ208] [25]. A 

ratio (r222/208) close to 1 or bigger than 1 indicates a well-defined coiled coil structure [22]. For 

proteins in β-sheet conformation, a minimum at 218 nm and a maximum at 195 nm can be 

observed and random coil proteins show a maximum of low intensity at 210 nm and a 

minimum at 195 nm.  

 

Figure 9: Scheme of characteristic CD signatures of different secondary structures. α-helix (black), β-strand (red), 

random coil (blue) [67]. 

 

2.2.2 Thermal unfolding 

The stability of proteins can be influenced by temperature, pH, ionic strength or the addition 

of chemical denaturants, such as guanidinium chloride (GdmCl). The thermal unfolding of 

proteins and peptides leads to a loss of the secondary structure, which can be monitored using 

CD spectroscopy coupled with a heating element [68]. For example, CD spectra of proteins, 

which are completely unfolded, have a spectrum similar to random coils (Figure 9), whereas 

proteins with a higher thermal stability partially maintain their secondary structure even at 
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high temperatures. Relevant to this study, CD spectroscopy can be used to monitor the 

process of unfolding for α-helical proteins or peptides by monitoring changes in the ellipticity 

at 222 nm over a suitable temperature range. For most of the dimeric coiled coils, such as the 

leucine zipper, studies showed that helix formation and dimerization of the monomers are 

cooperative processes, which can be described by a two state transition [69], [70]: 

𝑁2  2𝑈 

For coiled coils, the native state is a folded dimer (N2), which fully denatures to unfolded 

monomers (2U) during heating or chemical denaturation. The resulting unfolding curves have 

a sigmoidal shape (Figure 10) [71].  

 

Figure 10: Thermal unfolding curve of an α–helical protein. The ellipticity is measured at 222 nm over a temperature 

range. fraction folded (fN) and the fraction unfolded (fU) as well as the ellipticities of the folded and the unfolded state θN and 

θU at every temperature can be determined. 

 

For every temperature (T) the folded fraction fN and the unfolded fraction fU of the peptides 

can be calculated as  

 𝑓𝑁  
𝜃𝑇−𝜃𝑈

𝜃𝑁−𝜃𝑈
     𝑓𝑈  

𝜃𝑇−𝜃𝑁

𝜃𝑈−𝜃𝑁
         (2) 

with θN being the ellipticity of the folded peptides, θU being the ellipticity of the unfolded 

peptides and θT being the mean residue molar ellipticity of the peptide at any 

temperature [68]. Moreover, fN+fU equals 1. If the coiled coil peptides bind metal ions, there 

may be a change in the helicity and the helix stability, since the His-modified heptads should 

be stabilized in the presence of metal ions, as observed by Ghadiri and Choi [72]. These 
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effects can be investigated by determining the melting temperature Tm or the change in the 

unfolding constant KU of the coiled coils at different metal ion concentrations. Equation 3 

describes the relationship between the free energy ΔG of unfolding and KU [73]:  

∆𝐺  −𝑅𝑇 ln𝐾𝑈           (3) 

The Gibbs Helmholtz equation is  

∆𝐺  ∆𝐻 (𝑇 − 𝑇𝑚) ∆𝐶𝑝 − 𝑇(∆𝑆 +  ∆𝐶𝑝(ln (
𝑇

𝑇𝑚
))       (4) 

where ΔH is the free enthalpy, T is the absolute temperature, ΔS is the entropy and ΔCp in the 

change of the heat capacity of the peptides [73]. According to equation 2, the melting 

temperature Tm of the protein is defined as the temperature for that fN equals fU equals 0.5, so 

that ln K=1 and ΔG=0 and ΔS=ΔH/Tm. To describe the interaction between two different 

proteins or peptides, as in this work, the equation 4 has to be further modified. However, to 

study the effect of the His-metal chelation on the stability of the coiled coil peptides, the Tm 

can be determined by fitting the data to the equation 5 [74]: 

𝜃𝑅  
𝜃𝑢
𝑜−𝜃𝑛

𝑜+(𝑚𝑢−𝑚𝑛)𝑇

1+exp (
1

𝑅
(∆𝐶𝑝 ln(

𝑇

𝑇𝑚
)−(

1

𝑇
−

1

𝑇𝑚
)(∆𝐻𝑚−𝑇𝑚∆𝐶𝑝)))

+ 𝜃𝑛
  + 𝑚𝑛 𝑇    (5) 

The parameters θ
o
u and θ

o
n are the mean residue molar ellipticities of the unfolded and the 

folded coiled coil at T=0 K and mu and mn are the constant temperature dependencies (slopes 

of the baselines) of the unfolded and the folded peptides. The parameters θ
o
u, θ

o
n, mu and mn 

are required to represent the pre-and post-transition baselines depending on the temperature. 

The thermodynamic parameters are ΔHm, which is the molar change in the enthalpy of folding 

at Tm; Tm, which is the midpoint of the transition (melting temperature) and ΔCp, which is the 

molar isobaric heat capacity change. In the current work, the slope of the pre-transition curves 

was set to a constant value for the measurements with and without metal ions to guarantee the 

comparability of the obtained values. ΔCp was set to 0, since also Thomas et al. [53] assumed 

that the change in the heat capacity of the coiled coil peptides is so small that it can be 

neglected. 

2.3 Amino Acid Analysis 

To calculate the correct mean residue molar ellipticity and related thermodynamic parameters 

from the CD measurements, it is essential to know the exact concentrations of the peptides in 

the samples. Because there are no aromatic amino acids or Cys in the peptides used for CD 

spectroscopy, Amino Acid Analysis based on a post-column ninhydrin derivatization was 
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used to determine the concentration of the peptides. After acid hydrolysis of the peptides the 

single amino acids are separated using an amino acid analyzer based on high pressure liquid 

chromatography [75]. To separate the amino acids, gradients in pH and ionic strength are 

used. The reaction of the free amines of the amino acids with ninhydrin leads to the formation 

of Ruhemann`s purple, which can be quantified by measuring the absorbance at 440 nm and 

570 nm [75]. A standard solution with known amino acid concentrations is used to establish a 

linear correlation of the peak area of amino acids to the concentration in mol%. The absolute 

nanomoles of the amino acids in the sample volume can be summed up to reliably determine 

the peptide concentration in the stock solutions. 

2.4 Analytical Ultracentrifugation (AUC) 

AUC is a powerful tool to analyze the shape and size of macromolecules in solution. In 

general, there are two different measurement setups: the sedimentation velocity and the 

sedimentation equilibrium mode. In the sedimentation velocity mode, biomolecules move in 

the high centrifugal field according to their shape, size and interaction with other 

molecules [76]. The sedimentation equilibrium mode uses lower centrifugal fields to analyze 

equilibrium concentration gradients. Parameters obtained from this method are the molecular 

mass, association stoichiometry, association constants and solution nonideality [76]. In this 

work the sedimentation velocity setup was used. The net force acting on the molecules in a 

sedimentation velocity experiment is 

𝐹  (𝑀𝑃 −𝑀 ) 𝜔
2 𝑟           (6) 

MP is the mass of the molecule, MS is the mass of the solvent displaced by the molecule while 

it sediments, ω is the speed of the rotor (revolutions per second), and r is the distance to the 

center of the rotor. The MS is also described as  

𝑀𝑆  𝑀𝑃  ̅ 𝜌            (7) 

with the partial specific volume ῡ of the molecule and the density of the solvent ρ. Thus, the 

effective mass of a molecule is 

𝑀𝑒𝑓𝑓  𝑀𝑃(1 −   ̅𝜌)         (8) 

If also the frictional force (frictional coefficient f) acting on a molecule moving through the 

solvent with a velocity v is taken into account the sedimentation coefficient in Svedberg s [S] 

can be obtained: 

𝑠   
𝑣

𝜔2𝑟
 

𝑀𝑒𝑓𝑓

𝑓
          (9) 
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From a sedimentation velocity experiment the sedimentation coefficient distribution c can be 

calculated using the program SEDFIT by solution of equation 10: 

𝑐(𝑡, 𝑟)  ∫𝑔∗ (𝑠)𝑈(𝑠, 𝑟, 𝑡)𝑑𝑠        (10) 

with ls g*(s) being the apparent sedimentation coefficient distribution using the least square 

principles, and U(s,r,t) being the sedimentation profile of a non-diffusing species [77]. From 

the resulting data, conclusions about the mass and thus, the different oligomerization states of 

the peptides can be drawn. 

2.5 AFM-based single molecule force spectroscopy  

AFM-based single molecule force spectroscopy is a versatile, sensitive tool to investigate the 

mechanical stability as well as the force-induced unbinding kinetics of single molecular 

interactions. The basic kinetic model used in this work and the general working principle of 

the AFM are explained in the following two subchapters. 

2.5.1 Stability of molecular interactions under force 

A simple model for the transition of a molecule from a state A to a state B is the two state 

model.  

𝐴   
𝑘𝐵𝐴
←   

𝑘𝐴𝐵
→       𝐵 

For biomolecules, the two states can represent either the folded state N and the unfolded state 

U, or the bound and unbound state between two binding partners (e.g. in the coiled coil). The 

two states are separated by a transition state T (Figure 11 A). The potential width between the 

states is Δx. The rate constants for the reversible transitions are kAB and kBA, which show an 

exponential dependence on the height of the respective energy barrier ΔG [78]. 

𝑘𝐴𝐵   1 ∙ 𝑒
−∆𝐺1
𝑘𝐵𝑇            (11) 

𝑘𝐵𝐴   2 ∙ 𝑒
−∆𝐺2
𝑘𝐵𝑇            (12) 

According to the theory of Kramers [79],  1 and  2 are the attempt frequencies, kB is the 

Boltzmann constant and T is the absolute Temperature. The equilibrium constant K can be 

calculated according to the law of mass action: 

𝐾  
𝑘𝐴𝐵

𝑘𝐵𝐴
 

[𝐵]

[𝐴]
           (13) 
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Figure 11: The free energy landscape of a two state system is affected by an applied force. A: Potential energy landscape 

of a two state system in the absence of force. A and B are the two states of a molecule, which are separated by the transition 

state T. ΔG1 and ΔG2 are the differences in the free energy between A and B and the transition state, respectively. The 

potential width is Δx. B: An externally applied force (-Fx) changes the free energy landscape (dashed curve) by lowering the 

energy of the transition state and state B relative to A (red curve). This increases the probability that a molecule resides in the 

state B. The Free energy minima and maxima may shift along the reaction coordinate according to the local structure of the 

free energy landscape. 

 

Equation 13 can be used to calculate the free energy difference between the states A and B:  

∆𝐺1 − ∆𝐺2  −𝑘𝐵𝑇 ∙ ln𝐾          (14) 

The energy landscape changes, if an external force is applied (Figure 11 B). Bell [80] first 

described these effects of an external force on a system and his model was further modified 

by Evans and Ritchie [81]. The Bell-Evans model is broadly used to analyze force 

measurements. It describes the tilting of the free energy landscape by an external force, which 

in effect a decreases the free energy of the transitions state. For deep potentials it can be 

assumed that the potential width ΔxAT is independent of the applied force. Thus, the rate 

constant for the A→B transition becomes: 

𝑘𝐴𝐵(𝐹)   1 ∙ 𝑒
−∆𝐺1−(𝐹 ∙∆𝑥𝐴𝑇)

𝑘𝐵 𝑇           (15) 

Guthold et al. [82] distinguished two different reactions of a two state system under applied 

force. The system is considered to be at equilibrium, if the transition occurs on the timescale 

of the experiment, whereas non-equilibrium transitions occur if the time scale of the 

experiment is faster than the transitions between the states. In the latter case, the rupture force 

measured with the AFM depends on the loading rate Ḟ [N/s], which is defined as 

�̇�  
𝑑𝐹

𝑑𝑡
            (16) 
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Considering the energy landscape at ambient temperature, the system fluctuates around the 

bound state A, which results in a distribution of binding forces. Using the Bell-Evans model 

the most probable rupture force FR can be described using the following equation, which also 

considers the influence of the loading rate 

𝐹𝑅(�̇�)  
𝑘𝐵𝑇

∆𝑥𝐴𝑇
 ∙ ln

�̇� ∙∆𝑥𝐴𝑇

𝑘𝐵𝑇 ∙𝑘𝑜𝑓𝑓
          (17) 

This equation highlights that the rupture force is determined by both, the dissociation rate at 

zero force (equilibrium) koff = kAB(0) [s
-1

] and the potential width. These parameters can be 

obtained when plotting FR against ln Ḟ. If the Bell-Evans model is valid, the resulting graph is 

linear, where koff is the intercept with the x-axis at zero force and ΔxAT can be determined 

from the slope. 

2.5.2 Working principle of the AFM 

To be able to describe the free energy landscape of the coiled coils (i.e. to determine koff and 

ΔxAT), the rupture force and the loading rate need to be determined in a single molecule force 

spectroscopy experiment. The following section describes how these parameters are obtained 

from AFM measurements.  

 

Figure 12: Schematic setup of an Atomic Force Microscope (AFM). The peptide functionalized cantilever is in contact 

with the peptide functionalized surface (sample), which is mounted on a piezo table. The deflection of the laser beam focused 

on the back of the cantilever is measured using a segmented photodiode. 
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To characterize a biomolecular interaction, one biomolecule is bound to the cantilever via a 

flexible polymer spacer and its binding partner is immobilized on a surface the same 

way (Figure 12). First, the cantilever is brought into contact with the surface, allowing the 

molecular interaction to form. Then, the cantilever is retracted from the surface, thereby 

mechanically loading the molecule. The applied force pulls the cantilever towards the surface. 

The resulting deflection, which is proportional to the applied force, is detected with a laser 

focused on the back of the cantilever and a segmented photodiode, which records the position 

of the laser beam (Figure 12). The measured deflection of the cantilever is converted to a 

force (F) using Hooke`s law: 

𝐹  − 𝑘 ∙ 𝐷            (18) 

where ks is the spring constant and D is the deflection of the cantilever [83]. 

The steps to acquire a single-molecule force curve are illustrated in more detail in Figure 13. 

When the cantilever approaches the surface (1) it bends backwards upon contact (2). When 

withdrawing the tip from the surface, the molecular interactions stabilizing the coiled coil 

exert a force on the tip so that it deflects towards the surface (3). The coiled coil peptides start 

unfolding and dissociate as a result of the applied force. The adhesive force right before the 

jump-off-contact corresponds to the force needed to disrupt the coiled coil, i.e. its rupture 

force (4) [83]. The slope of the force curve directly before the rupture events is extracted to 

calculate the loading rate by multiplying the slope [pN/nm] with the pulling velocity [nm/s]. 

This approach and retract cycle is then repeated until a sufficient number of force curves have 

been collected. Statistically, only 5-20% of the measured force curves originate from a single 

interaction that formed between the tip and the surface (“single pulls”). In many cases, no 

interaction has formed at all and in some rare cases also multiple interactions may have 

formed. For data analysis, only force curves representing a specific single molecular 

interaction are considered. To unambiguously identify the corresponding force curves, each 

individual curve is fitted with the Wormlike Chain model (WLC) [84], [85]. This model 

describes the stretching of the polymeric spacers that are used for immobilizing the peptides 

to the tip and the surface. For a specific interaction, both spacers should be stretched together 

with the coiled coil and this distance information can be used to discriminate specific from 

non-specific interactions. 
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Figure 13: Steps of a single molecule force measurement. 1. The functionalized cantilever approaches to the surface. 2. 

Upon contact with the surface, the cantilever bends away from the surface. 3. During retraction, an adhesive force builds up, 

resulting from the coiled coil interaction. 4. The coiled coil ruptures, which results in a sudden decrease of the force back to 

the baseline value. The difference in force between the last adhesion point and the baseline is the rupture force. 

 

Furthermore, the model describes the elasticity of the polymer spacer, which can be used to 

discriminate single pulls from multiple interactions. In more detail, the WLC model yields the 

contour length lc (length of the fully extended polymer) as well as the persistence length lp, 

which is a measure of the polymer elasticity. The WLC model describes polymers as thin 

homogenous rods with linear bending elasticity. The polymer is composed of N segments 

with the length l (lc = N*l) [86]. Using the WLC, the force acting on a polymer can be 

calculated as 

𝐹(𝑥)  
𝑘𝐵𝑇

𝑙𝑝
(

1

4[1−
𝑥

𝐿
]
2 −

1

4
+

𝑥

𝐿
)         (19) 

were x is the extension of the polymer, kB is the Boltzmann`s constant and T is the absolute 

temperature [87].  
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3 Materials and experimental procedures 

3.1 Chemicals  

All chemicals had per analysis purity and were purchased from Roth (Karlsruhe, Germany) or 

Sigma Aldrich (Steinheim, Germany). The Piperazine-1,4-bis(propanesulfonic acid) (PIPPS) 

buffer was purchased from Merck Millipore (Darmstadt, Germany). All solutions were 

prepared with distilled water (Ultra clear
TM 

Integra UV UF, Siemens, Germany) and filtered 

(pore size 0.2 µm). Additionally, solutions were degassed for thermal unfolding 

measurements in CD. For amino acid analysis, the standard solution was purchased from 

SYKAM GmbH (Eresing, Germany). The composition of the buffers used for the different 

measurements is summarized in Table 1.  

Table 1: Composition of the buffers used in this work.  All Buffer components had per analysis grade and were prepared 

with distilled water and filtered. The pH was adjusted with 1 M NaOH. 

Name 
Molarity 

(mM) 
Components pH Technique 

PIPPS 
5 

PIPPS 8.1 

CD spectroscopy, 

Analytical 

Ultracentrifugation 

10 Raman spectroscopy 

NaP 10 Na2HPO4/NaH2PO4 8.1 
CD spectroscopy, 

Raman spectroscopy 

1xPBS 

10 Na2HPO4 

7.4 
AFM force 

spectroscopy 

2 KH2PO4 

137 NaCl 

2.7 KCl 

Sodium 

borate 

buffer 

50 H3BO3/Na2B4O7 8.5 
Surface 

functionalization 

Coupling 

buffer 

50 Na2HPO4 

7.2 
Surface 

functionalization 50 NaCl 

10 EDTA 

Sample 

dilution 

buffer 

(SYKAM, 

(Germany)) 

40 trisodium citrate dehydrate 

2.2 Amino acid analysis 
30 citric acid 

116 (12 ml) Thiodiglycol 

21 Phenol 
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The pH of the measurement buffers for Raman and CD spectroscopy was set to 8.1 because 

His is mostly deprotonated at this pH and able to bind metal ions. 

3.2 Peptides 

N-terminally acetylated and C-terminally amidated peptides were purchased from Centic 

Biotech (Heidelberg, Germany) with a purity higher than 95% (determined with HPLC). The 

lyophilized peptides were dissolved in distilled water to a concentration of 5 mg/ml 

(~1.5 mM) and sonicated for 1 min to dissolve larger peptide aggregates which may have 

formed during the lyophilization process. The peptide stock solutions were stored at 4°C for 

at least one day before use to allow full folding of the peptides. HA4 and HB4 as well as A4 

and B4 were mixed in a 1:1 ratio to yield the corresponding coiled coils HA4HB4 and A4B4. 

3.3 FTIR spectroscopy 

In this work, the FTIR measurements were performed with a Vertex 70 FTIR spectrometer 

(Bruker, USA) equipped with a HeNe-Laser (633 nm, power: 1 mW) in ATR-mode. Peptide 

solutions with a total concentration of 5 mg/ml (~1.5 mM) in distilled water were measured at 

RT on a Si-crystal, which is optically coupled to a ZnSe-crystal. To study the effect of metal 

ions, 2 mM NiCl2, CuCl2 (Alfa Aesar, USA) or ZnCl2 were added so that the His-metal ion 

ratio was 2:1. The OPUS software package 7.0 (Bruker, USA) was used to record and 

evaluate the spectra. First, the reference spectrum of water was measured and directly 

subtracted from the sample spectrum. The number of accumulations for one spectrum was 32. 

The spectra were baseline corrected with the rubberband method (linear, 1 iteration) and 

smoothed (5 points). 

3.4 Raman spectroscopy 

Peptides were investigated by Raman micro-spectroscopy in the solid state as films prepared 

on glass slides. The total concentration of the peptides was 1.5 mM. 2 mM ZnCl2 was added 

so that the His-metal ion ratio was 2:1. Dried films were washed with 10 mM PIPPS buffer or 

NaP buffer and measured. A Confocal Raman Microscope (alpha300, WITec, Germany) 

equipped with a piezo scanner (P-500, Physik Instrumente, Karlsruhe, Germany) and a 20x 

objective (Nikon, NA 0.4) was used. As laser source a linearly polarized laser (λ= 532 nm, 

Oxxius, Lannion, France) was focused on the sample with a polarization of 0° and no 

analyzer in the light path. The Raman scattered light was detected by a thermoelectrically 

cooled CCD detector (DU401A-BV, Andor, Belfast, North Ireland) with an integration time of 

1 s and 30 accumulations. Spectra from at least three different spots of the sample were 
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collected and averaged. The ScanCtrlSpectroscopyPlus (Version 1.38, WITec, Germany) and 

the Project FOUR software (Version 4.1 WITec, Germany) were used to measure and average 

the spectra. OPUS was used for baseline correction (rubberband method, linear, 1 pt), 

normalized (0,100) and smoothing (5 pt). 

3.5 CD spectroscopy 

CD spectra were recorded to investigate the secondary structure and the thermal stability of 

the peptides in the absence and presence of Ni
2+

. The peptide stock solutions were diluted in 

PIPPS buffer or NaP buffer (pH 8.1) to a final concentration of 50 µM. For measuring the CD 

spectrum a quartz glass cuvette (Hellma, Germany) with a path length 1 mm was used. The 

exact concentrations of the peptides were determined by amino acid analysis (chapter 2.3). 

For baseline correction, the buffer spectra were recorded using identical parameters and 

subtracted from the peptide spectra. The mean residue molar ellipticity θR [deg cm
2
 dmol

-1
] 

was calculated according to equation 1 (chapter 2.2). 

3.5.1 Single spectra 

The single spectra were recorded with a Jasco Spectropolarimeter J-715 (Tokio, Japan). If not 

stated otherwise, all spectra were recorded from 200 nm to 250 nm, with a step resolution of 

1 nm and a bandwidth of 1 nm at a temperature of 20°C. The scanning speed was 50 nm/min 

with an integration time of 2 s. To improve the signal-to-noise ratio, 10 scans were 

accumulated. NiCl2 was added in different ratios (5:1; 3:1; 2:1; 1:1 and 1:2 His:Ni
2+

) to the 

histidine residues of the peptides.  

3.5.2 Thermal unfolding curves 

Thermal unfolding of the peptides was performed with the Jasco Spectropolarimeter J-715 

(Tokio, Japan) equipped with a water bath (HAAKE DC3, Germany) and a custom built 

temperature control system (Klaus Bienert, MPIKG, Germany). Temperature ramps were set 

and monitored with the Multi Control Program (Version 1.6.1, Klaus Bienert, MPIKG, 

Germany). Before and after the heating process, complete spectra of the peptides were 

recorded as described to get information about the reversibility of peptide unfolding. The 

unfolding process was investigated using the Interval Scan mode at 222 nm (interval: 2 min, 

1 accumulation). The wavelength of 222 nm was used, since samples with high α-helical 

content have a minimum at this wavelength and the signal to noise ratio is higher at 222 nm 

compared to 208 nm [68]. Since some of the peptides were so stable that it was not possible to 

determine their melting temperature in PIPPS buffer, the thermal unfolding was performed in 
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presence of 2 M GdmCl. To study the stability change of the coiled coils in the presence 

metal ions, Ni
2+

 was added in a 2:1 His:Ni
2+

 ratio. All measurements were performed in 

triplicate as not stated otherwise. 

To validate the accuracy of the home-built temperature control system, the measurements for 

HA4HB4 were repeated with a Jasco Spectropolarimeter J-815-150S (Tokio, Japan) equipped 

with a Peltier element (JASCO PTC 423S/15) (University of Potsdam, Physical 

Biochemistry). The temperature ramp was set from 4 to 90°C with a heating rate of 1°C/ min. 

Before and after thermal unfolding single spectra were recorded at 20°C (5 accumulations, 4 s 

integration time). The temperature-wavelength scan measurements were performed at 222 nm 

in 1°C steps after at least 5 s with no temperature change bigger than 0.1°C. Additionally, 

single spectra with the same settings as described above were recorded at 4, 10, 25, 40, 55, 70 

and 85°C.  

3.6 Amino Acid Analysis 

To calculate a correct mean residue molar ellipticity for the CD measurements, the 

concentration of the peptides was determined using Amino Acid Analysis. For acid 

hydrolysis, 10 µl of the peptide stock solutions and 10 µl 6 N HCl were mixed and 

hydrolyzed two times for 15 min at 150 °C under anoxic conditions with the Microwave CEM 

Discover Protein Hydrolysis (CEM, USA). The hydrolyzed samples were washed with 50 µl 

water and dried two times. The amino acid standard was measured at the beginning of the 

measurements and again after the measurements of the samples to get the correct retention 

times of the amino acids. Dried standards were resolved in 200 µl and the samples in 150 µl 

Sample Dilution Buffer (SYKAM, Germany). Then 100 µl of the samples were analyzed with 

the SYKAM S433 amino acid analyzer. The Chromatograms were obtained and evaluated 

using the program Chromstar 7 (SCPA, Germany).  

3.7 Analytical Ultracentrifugation (AUC) 

The oligomerization state of the individual peptides (1mg/ml) in 5 mM PIPPS (pH 8.1) was 

investigated with analytical ultracentrifugation in the sedimentation velocity mode. The 

sedimentation experiments have been performed on an Optima XLI centrifuge (Beckman 

Coulter, Palo Alto CA) using titanium 12 mm double sector center pieces (Nanolytics, 

Potsdam, Germany) and Raileigh interference optics at 25°C and 60000 rpm. The 

sedimentation coefficient distributions have been evaluated with the evaluation software 

SEDFIT (version 13.0b beta P. Schuck 2012) [88]. 
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3.8 Surface functionalization for AFM force spectroscopy 

For single molecule force spectroscopy (SMFS) the cantilever tip as well as the surface need 

to be functionalized with the biomolecules of interest. In this work, one coiled coil peptide 

was coupled to the surface and the other coiled coil peptide was coupled to the tip using the 

protocol from Zimmermann et al. [89] (Figure 14). First, the pre-cleaned surface and tip were 

modified with monoalkoxy amino silane. In the second step a bifunctional, linear 10 kDa 

poly-ethylene glycol (PEG) spacer carrying a maleimide group and a N-hydroxy succinimide 

ester (NHS) [NHS-PEG-maleimide] was covalently coupled to the amino functionalized 

silane [89]. The maleimide group of the PEG linker is coupled to the TCEP-reduced thiol 

group of the Cys containing peptide by Michael addition.  

The peptides stock solutions were prepared as described in chapter 3.2, but dissolved in 

coupling buffer (pH 7.2). The 10 kDa NHS-PEG-maleimide was synthesized by Rapp 

Polymere (Tübingen, Germany).  

3.8.1 Preparation of cantilevers 

First, the cantilevers (MLCT, Bruker, USA) were placed into a glass petri dish and cleaned in 

an UV/Ozone Pro cleaner (BioForce Nanoscience, USA) for 20 min. For silanization, the 

cantilevers were submerged with 3-aminopropyl dimethyl ethoxysilane (abcr, Karlsruhe, 

Germany) for 10 min at RT. Afterwards, the cantilevers were washed with isopropanol and 

distilled water and dried under N2 flow. The cantilevers were cured for 30 min at 80°C and 

incubated for 1 h in a humidity chamber with 30 µl of 50 mM of NHS-PEG-maleimide solved 

in sodium borate buffer (pH 8.5). Then, the cantilevers were washed intensively with distilled 

water, dried under N2 flow and incubated for 1 h with 25 µl of 0.75 mM of peptide in the 

humidity chamber at 4°C. The functionalized cantilevers were washed intensively in PBS 

(pH 7.4) to remove unbound peptides. 
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Figure 14: Functionalization of surface and cantilever for AFM. A: Cleaned surfaces or cantilevers are incubated with 

monoalkoxy amino silanes and baked to remove water and form covalent bonds. B: Coupling of a heterobifunctional NHS-

PEG-maleimide spacer to the surface. C: TCEP reduced Cys-peptides are coupled through the reaction of the reduced thiol 

group with the maleimide. 
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3.8.2 Preparation of glass slides 

Aminosilanized glass slides (Schott Nexterion, Germany) were washed in a quadriperm dish 

with borate buffer for 1 h and dried with N2. A sandwich of two glass slides was incubated 

with 60 µl of NHS-PEG-maleimide or 1 h in a humidity chamber. After the removal of 

unbound NHS-PEG-maleimide with distilled water and drying under N2 flow, the peptide was 

coupled to the PEG. For this 30 µl peptide solution (0.75 mM) was incubated on the glass 

slides in a humidity chamber for 1 h at 4°C. After incubation, most of the solution was 

removed carefully and the glass slides were washed twice for 5 min with PBS (pH 7.4) while 

gently shaking. 

3.8.3 Measurement conditions  

The force measurements were performed with a ForceRobot 300 (JPK instruments, 

Germany). To avoid evaporation effects the Small Cell (JPK instruments, Germany), which is 

a closed measurement system, was used. Measurements were carried out in PBS (pH 7.4) at 

25°C with the following parameters: IGain 50 Hz, PGain 0.0048, relative setpoint 0.08 nN, 

z-length 0.4 µm. The pulling speed was varied (50, 200, 400, 1000, 2500, 5000 nm/s) to get 

information about the loading rate dependency of the system. To investigate the effect of 

metal ion coordination on the coiled coil stability, 2 mM NiCl2 was added. The tip was 

calibrated after the measurements to determine the sensitivity and the spring constant. The 

data were analyzed using the JKPSPM Data processing software (Version 5.0.68, JPK 

instruments, Germany). “Single-pull” force curves were baseline corrected, the adhesion point 

was determined, the x-offset was adjusted and the curves were fitted with the implemented 

Wormlike-Chain model. The analysis program yields the rupture force as well as the loading 

rate of every force curve. The most probable rupture force and the most probable loading rate 

were determined by fitting a Gaussian distribution curve to the corresponding histogram. The 

resulting most probable rupture forces were plotted against the corresponding most probable 

loading rates and fitted with the Bell-Evans model (equation 17) to determine koff and ΔxAT. 
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4 Results 

4.1 Peptide design 

The primary aim of this work was to modify an existing, well-characterized coiled coil from 

the literature with His-metal chelation sites to create tunable, mechano-responsive material 

building blocks. To reach this aim, the four heptad coiled coil sequences A4 and B4 published 

by Thomas et al. [53] were used. While the peptide A4 is acidic, containing Glu in the e and g 

positions, the B4 peptide is basic containing Lys at these positions (Table 2). It was shown, 

that these peptides reliably form stable, parallel heterodimeric α–helical coiled coils. 

Currently, the group Mechano(bio)chemistry at the MPIKG aims at characterizing the 

mechanical stability of this coiled coil in the shear geometry (Figure 3).  

It was challenging to choose the positions for introducing the His residues into the α-helices. 

They had to be positioned in strict accordance to the stability rules of coiled coils, in order to 

maintain the α-helical structure of the peptides. Moreover, it is known from other 

bioengineered His-metal coordination sites, that two coordinating ligands with a three amino 

acid spacing (HXXXH) are enough to stabilize or crosslink α-helices [72], [90], [91]. The two 

His residues were inserted at the first heptad repeat to yield HA4 and at the fourth heptad 

repeat to yield HB4 at the register positions b and f instead of Ala and Gln (Table 2). Thus, 

both requirements are fulfilled: the His residues are solvent-exposed and should not interfere 

with the hydrophobic interactions stabilizing the core and they have a three-amino-acid 

spacing favoring metal coordination. 

Table 2: Sequences of the peptides used in this work. The peptides are N-terminal acetylated and C-terminal amidated. 

The α-helix starts with the register position g. A Cys was added to the N-terminus of HA4 (CHA4) and the C-terminus of 

HB4 (CHB4) to enable the binding of the peptides to surfaces in order to perform single molecule force spectroscopy.  

Full Name Abbre-

viation  

Sequence (Register starts with g)  
      gabcdef gabcdef gabcdef gabcdef 

MW 

(Da) 

A4s-W21Q_noCys A4 Ac-GG EIAALEQ EIAALEK ENAALEQ EIAALEQ GG-NH2 3325 

B4-Y14Q_noCys B4 Ac-GG KIAALKQ KIAALKQ KNAALKK KIAALKQ GG-NH2 3294 

A4s-W21Q-H1_noCys HA4 Ac-GG EIHALEH EIAALEK ENAALEQ EIAALEQ GG-NH2 3324 

B4-Y14Q-H4_noCys HB4 Ac-GG KIAALKQ KIAALKQ KNAALKK KIHALKH GG-NH2 3316 

A4s-W21Q-H1 CHA4 Ac-CGG EIHALEH EIAALEK ENAALEQ EIAALEQ GG-NH2 3445 

B4-Y14Q-H14 CHB4 Ac-GG KIAALKQ KIAALKQ KNAALKK KIHALKH GGC-NH2 3437 
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For single molecule force spectroscopy (SMFS), a Cys was added at the N-terminal site of 

HA4 (CHA4) and the C-terminal site of HB4 (CHB4). The thiol group of the Cys was used to 

couple the peptides to the AFM cantilever or the glass surface. In this setup, the His residues 

should be able to stabilize the heptad repeat that is primarily experiencing the pulling force in 

shear geometry in the single molecule force spectroscopy experiments in the presence of 

metal ions. Thus, the SMFS experiments can reveal important information about the response 

mechanism of a coiled coil upon shearing.  

Another important part of this work was to study the ability of the His residues to chelate 

metal ions using Raman spectroscopy. Since aromatic residues overlap with His-metal 

coordination peaks in Raman Spectroscopy [66], the Trp residues in the third heptad of the 

acidic peptides and Tyr residues in the second heptad of the basic peptides were changed to 

Gln to yield the His-modified peptides (HA4 and HB4) and the control peptides without His 

(A4 and B4).  

4.2 Secondary structure of the coiled coil peptides is depending on the buffer 

Before characterizing the His-modified peptides thermodynamically and mechanically, it is 

important to address the question whether the modified peptides are still able to form an 

α-helix. The sequences of the α-helical peptides published by Thomas et al. [53] were 

modified at three positions: two His were introduced instead of Ala and Gln in one heptad and 

the aromatic amino acids were changed to Gln. Since already small changes in the sequence 

can lead to large alterations in the secondary structure of a protein [92], it was investigated 

whether the His-modified peptides are still α-helical and able to form coiled coils. For that 

purpose, ATR-FTIR and CD spectroscopy were used. 

Figure 15 shows the ATR-FTIR spectra of the control and the His containing peptides. The 

amide I peak of the individual peptides was centered at 1650/51 cm
-1

, which can be assigned 

to an α–helical conformation [93]. In A4B4, the amide I peak was slightly shifted to 

1649 cm
-1

. Usually the amide I band for α–helical proteins is assigned to 1655-1650 cm
-1

 and 

a peak at 1649 cm
-1

 is assigned to random coil [55], [58], [94]. However, for distorted helices 

and short helical segments, like the four heptad repeat α-helical peptides, a shift to lower 

wavenumbers is common [59]. Table 3 gives an overview about the peaks and their 

assignments. B4, A4B4 and the His-modified peptides all showed an additionally shoulder in 

the amide I region at 1674/75 cm
-1

. This shoulder is typically assigned to β-turns and was 

especially strong in B4 and HB4 [95], suggesting that these two peptides may adopt a 
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partially different structure. The shoulder at 1712 cm
-1

 arises from the Glu in the A peptide, 

but was only visible in the A4 and not in the HA4 peptide [96]. The amide II of all the 

peptides was at 1547/49 cm
-1

 and the amide III band was at 1204 cm
-1

 for all peptides. Both 

bands are caused by C-N stretching and N-H in plane bending of the peptide backbone and 

are relatively similar in the different peptides [55].  

 

Figure 15: ATR-FTIR spectra of the single peptides and the coiled coils in water. A: Control peptides A4 (black), B4 

(red) and A4B4 (green). B: His-modified peptides HA4 (black), HB4 (red) and HA4HB4 (green). The peptides were 

measured in the ATR-mode on a Si-crystal. The concentration was 1.5 mM, 32 scans were accumulated. The spectra were 

smoothed (5 point) and baseline corrected (rubberband method, linear, 1 iteration) with OPUS 7.0. 
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Table 3: Assignments of the ATR-FTIR peaks of the peptides in Figure 15.  The peaks were assigned using the 

references in brackets. 

Peptide(s) Peak position [cm
-1

] Assignment 

A4B4 1649 
Amide I, α-helical structure 

[59], [93] 
HA4, HB4, HA4HB4 1650 

A4, B4 1651 

HA4, HB4, HA4HB4 1547 Amide II ( N-H bending,  

C-N stretching) [55]  A4, B4, A4B4 1549 

A4, B4, A4B4 1147 

Amide III (N-H bending,  

C-N stretching) [55] 

HA4, HB4, HA4HB4 1149 

A4, B4, A4B4, 

HA4, HB4, HA4HB4 
1204 

A4 1712 C=O of Gln [96] 

HA4 1085 
C-N, C-C stretching mode of 

Gln [96] 

 

It is well known that buffers can have an effect on the conformation of a protein and also 

metal coordination [97]. For that reason CD spectroscopy was performed in water, NaP buffer 

and PIPPS buffer. PIPPS is a non-complexing tertiary amine buffer, which could be useful to 

investigate the ability of the His-modified peptides to coordinate metal ions [98]. Since the 

coiled coils will most likely be used in phosphate containing media for final biological or 

biomedical applications, also NaP buffer was tested. The results for the different buffers 

revealed that the secondary structure of the individual peptides is influenced by the buffer 

composition (Figure 16). In water at pH 8.5 (Figure 16 A) all individual peptides besides HA4 

show a minimum of low intensity at 224 nm and a minimum of higher intensity at 202 nm. 

Thus, the individual peptides are largely unfolded [53]. It has been demonstrated for several 

proteins, that unfolding can be initiated upon dilution, which may also happen in the case of 

the individual peptides tested here [99]. In contrast, the A4B4 showed an α-helical 

conformation with minima at 222 nm and 208 nm and r222/208=0.97 [25], [67]. In the literature, 

a r222/208 close or bigger than 1 is assigned to coiled coils [22]. Thus, A4 and B4 fold upon 

binding, forming a coiled coil. The spectrum of HA4HB4 had a minimum at 222 nm, but the 

second minimum was shifted to 206 nm in water. The r222/208 of 0.89 indicated that there may 

be a part of the peptides not fully folded, so that less coiled coils were formed. Moreover, also 

HA4 showed the minima typical for α-helical conformation and r222/208 was 1.00 in water.  
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Figure 16: CD Spectra of the coiled coil peptides in water pH 8.5 (A), 10 mM NaP, pH 8.1 (B) and 5 mM PIPPS, 

pH 8.1 (C). Control peptides: solid line, His-modified peptides: dashed line, A4, HA4: black; B4, HB4: red; A4B4, 

HA4HB4: green. The spectra were taken at 20°C with a step resolution of 1 nm, a bandwidth of 1 nm, a scanning speed of 

50 nm/min, an integration time of 2 s and 10 scans were accumulated. The mean residue molar ellipticity (MRE) was 

calculated using equation 1. 

Table 4: Positions of the minima in the CD spectra and r222/208 of the His-modified peptides and the control peptides in 

water, PIPPS and NaP buffer. 

Peptide water (pH 8.5) 5 mM PIPPS (pH 8.1) 10 mM NaP (pH 8.1) 

 
Minima  

[nm] 
r222/208 

Minima 

[nm] 
r222/208 

Minima 

[nm] 
r222/208 

HA4 208 222 1.00 208 222 0.95 208 222 0.97 

HB4 202 224 0.59 202 224 0.58 208 222 0.95 

HA4HB4 206 222 0.89 207 222 0.90 208 222 1.08 

A4 202 224 0.53 202 224 0.46 202 224 0.62 

B4 202 224 0.67 202 224 0.61 206 222 1.05 

A4B4 208 222 0.97 208 222 0.97 208 222 0.98 
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The positions of the minima in the CD spectra and the r222/208 of all peptides are summarized 

in Table 4. In PIPPS buffer (pH 8.1) the spectra of the peptides were very similar to the 

spectra in water, but the mean residue molar ellipticity (θR) of A4 decreased, while it 

increased for HA4HB4. The second minimum of HA4HB4 was also shifted to 207 nm. 

However, the conformation of the individual peptides HB4 and B4 changed if they were 

measured in NaP buffer (pH 8.1) (Figure 16 C). In this buffer, all spectra, except the spectrum 

of A4, showed an α-helix signature with minima at 222 nm and 208 nm. The second 

minimum of B4 was shifted to 206 nm. The θR-signal of HA4HB4 was more negative than in 

water and the r222/208 was bigger than 1 (1.08), which is characteristic for coiled coils. 

Based on these measurements, the individual peptides exhibit a predominantly α-helical 

conformation under high concentration conditions, measured with ATR-FTIR; however, at 

the lower concentrations used for CD spectroscopy, secondary structure is dependent on the 

buffer composition. A4B4 and HA4HB4 showed an α-helical conformation even at low 

concentration in water and the buffers used. Thus, although, the conformation of the 

individual peptides depends on the buffer, the changes made in the sequence do not seem to 

inhibit the formation of coiled coils.  

4.3 Histidine-modified peptides are able to coordinate transition metal ions 

It was shown that the His-residues introduced at the α-helical part of bovine somatotropin 

have the ability to coordinate transition metal ions, such as Cu
2+

 [90]. The main goal of this 

work was to stabilize coiled coil peptides with His-metal coordination. Raman spectroscopy is 

a suitable method to investigate whether there is an interaction of HA4 and HB4 with metal 

ions, since the distinctive peaks corresponding to the C4=C5 double bond in the histidine 

imidazole moiety depend on the protonation and metal coordination state of the imidazole 

side chain [66]. The Raman measurements were performed on thin peptide films (1.5 mM) 

with 2:1 His:Ni
2+

/Cu
2+

/Zn
2+

 on glass slides. The ratio of His:Me
2+

 was kept at 2:1, because 

the two His residues in a heptad could coordinate the metal ion together with water molecules 

in a tetrahedral or square planar geometry [100]. Since future applications as tunable metal-

chelating crosslinkers may be in phosphate containing systems, the measurements were 

performed using 10 mM NaP (pH 8.1). The pH was set to 8.1 because His is mostly 

deprotonated at this pH and able to bind metal ions. To compare the coordination behavior in 

NaP and the non-coordinating buffer PIPPS, measurements were performed in PIPPS as well.  
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Figure 17: Raman spectra for HA4 (A) HB4 (B) and HA4HB4 (C) in 10mM NaP pH 8.1. Metal ions were added in 2:1 

His:Me2+ ratio. No metal ions (black), Ni2+ (green), Cu2+ (blue) and Zn2+ (red). A 20x objective (Nikon, NA 0.4) was used 

with 0° polarization and no analyzer in the light path. Spectra from at least three points of the sample were measured 

(integration of 1 s and 30 accumulations) and averaged. The spectra are baseline corrected (rubberband method, linear,1 pt) 

and smoothed (5 pt) with OPUS 7.0. 
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The amide I band in the Raman spectra of all peptide films with NaP buffer is at 1656 cm
-1

 or 

1657 cm
-1

, which is typically assigned to α-helical proteins (Figure 17) [62]. The relatively 

sharp amide I peak indicates that there is only little contribution of more extended secondary 

structures, such as β-strands. The amide III region is a complex Raman band with 

contributions from the peptide backbone, which was shown to be particularly dependent on 

the dihedral angles making it especially useful for assigning secondary structure [101]. The 

peaks around 1300-1270 cm
-1

 in combination with the absence of a band around 1230 cm
-1

 in 

the spectra are a clear indication for α-helix [101]. Thus, both, the amide I as well as the 

amide III, show that the coiled coil peptides are in a predominantly α-helical conformation, 

which is completely consistent with the results obtained with ATR-FTIR. All peaks in the 

Raman spectra of the His-modified peptides together with their assignments can be found in 

Table 5. 

At basic pH, the coordination of metal ions by the Nτ-Atom of the imidazole side chain of His 

can be observed in the range of 1594-1606 cm
-1

 [66]. In NaP buffer the Raman spectra for 

HA4, HB4 (Figure 17 A, B) show a peak at 1604 cm
-1

 in presence of Ni
2+

 or Cu
2+

 which is 

partially overlapping with the amide I peak. For HA4HB4 the shoulder in the presence of Ni
2+

 

or Cu
2+ 

is shifted to 1608 cm
-1

. With Zn
2+

 or without metal ions, there is no shoulder at these 

wavenumbers. In principle, His should be able to coordinate Zn ions, as reported in the 

carbonic anhydrase or Zn-Finger proteins [46], [102]. However, the coordination of Zn
2+

 by 

His may be inhibited by the phosphate of the NaP buffer, which can also interact with Zn
2+

,
 

forming a complex with low solubility [103], [104]. 

To test the coordination of metals by the His-modified peptides in a non-coordinating buffer, 

PIPPS (pH 8.1) was used (Figure 18). The spectra obtained in PIPPS show slightly shifted 

CH2-bending/stretching bands (1400-1460 cm
-1

) and amide III peaks, but the amide I peak is 

always observed at 1656 cm
-1

, consistent with an α-helical structure. More importantly, the 

His-modified peptides show a shoulder for metal ion coordination at 1605 cm
-1

 when mixed 

with Ni
2+

, Cu
2+

 or Zn
2+

. In contrast to the His-modified peptides, the control peptides A4, B4 

and A4B4 show no metal coordination, but still maintain an α-helical structure (Figure A 3). 
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Figure 18: Raman spectra for HA4 (A) HB4 (B) and HA4HB4 (C) in 10mM PIPPS pH 8.1. Metal ions were added in 

2:1 His:Me2+ ratio. No metal ions (black), Ni2+ (green), Cu2+ (blue) and Zn2+ (red). A 20x objective (Nikon, NA 0.4) was used 

with 0° polarization and no analyzer in the light path. Spectra from at least three points of the sample were measured 

(integration of 1 s and 30 accumulations) and averaged. The spectra are baseline corrected (1 pt) and smoothed (5 pt) with 

OPUS 7.0. 
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Table 5: Assignments of the Raman peaks of the peptides in NaP buffer (pH 8.1), see Figure 16.  If not stated otherwise 

the peaks were the same in the samples without (w/o) metal ions, with Ni2+, Cu2+ and Zn2+. The peaks were assigned using 

the reference in brackets. 

Peptide(s) Peak position [cm
-1

] Assignment 

HA4  1657 
Amide I, α-helical 

structure[62] 
HB4  1655 

HA4HB4  1656 

HA4, HB4 (Ni
2+

, Cu
2+

) 1604 
Me-Nτ-coordination by 

Histidine [66] 

HA4HB4 (Ni
2+

, Cu
2+

) 1608 
Not assigned, maybe Me-His 

coordination 

HA4 1456 1441 
CH2- and CH3- 

deformations [62]  
HB4 1450 1438 

HA4HB4 1452 1440 

HA4 1341 1314 1276 Amide III, α-helix  

(N-H bending, C-N 

stretching) [55] 

HB4 1344 1323/1314 1282 

HA4HB4 1339 1316 1274 

 

4.4 Effect of Ni
2+

 on the secondary structure of the Histidine-modified peptides 

In Raman spectroscopy the His-modified peptides showed no change in the amide I peak for 

α-helical conformation. But the coordination of metal ions by His may cause a change in the 

secondary structure of the relatively low concentrated peptides used for the CD 

measurements. Since the change in the thermodynamic stability of the peptides in the 

presence of metal ions will be investigated, it is of special interest to determine if also the 

addition of metal ions to the peptides at a constant temperature would result in changes of the 

secondary structure. The Raman spectra in NaP showed that this buffer interferes with His-

metal coordination (chapter 4.3). Therefore, the experiments were performed in 5 mM PIPPS 

(pH 8.1) and NiCl2 was added to the peptides in ratios of 5:1, 3:1, 2:1, 1:1 and 1:2 His:Ni
2+

. 

Figure 19 shows, that Ni
2+

 has no effect on the structure of HB4 and HA4HB4 as well as the 

control peptides. However, HA4 (Figure 19 B), which has an α-helical signature without 

metal ions, showed a slight increase in θR at 222 nm already when Ni
2+

 was added in a ratio of 

5:1 His:Ni
2+

 (Figure 19 B, red curve). Furthermore, the r222/208 increases from 0.95 without 

Ni
2+

 to 1.05 with 1:2 His:Ni
2+

, indicating that HA4 could form a homomeric coiled coil in 

presence of metal ions. Additionally, ATR-FTIR measurements with a His:Me
2+

 ratio of 2:1 
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showed no conformational change in the presence of Ni
2+

, Cu
2+

 and Zn
2+

 for all peptides 

(Figure A 1, Figure A 2). 

 

 

Figure 19: Influence of Ni2+ on the secondary structure of the individual peptides and the coiled coils studied with CD 

spectroscopy. The His:Ni2+ ratios used are: without Ni2+ (black), 5:1 (red), 3:1 (green), 2:1 ( dark blue), 1:1 (light blue) and 

1:2 (magenta). The spectra were taken at 20°C with a step resolution of 1 nm, a bandwidth of 1 nm, a scanning speed of 

50 nm/min, an integration time of 2 s and 10 scans were accumulated.  The mean residue molar ellipticity (MRE) was 

calculated using equation 1. 

 

In summary, the His-modified peptides are able to coordinate transition metal ions, such as 

Ni
2+

 Cu
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 and Zn
2+

 (chapter 4.3); however, with exception of HA4, changes in the secondary 

structure in the presence of metal ions could not be detected with CD spectroscopy. 

Nevertheless, there might be a change in the thermodynamic stability of the His-modified 

peptides.  

200 210 220 230 240 250
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

200 210 220 230 240 250
-30

-20

-10

0

10

20

30

40

50

60

200 210 220 230 240 250

-16

-14

-12

-10

-8

-6

-4

-2

0

2

200 210 220 230 240 250

-16

-14

-12

-10

-8

-6

-4

-2

0

2

200 210 220 230 240 250
-30

-20

-10

0

10

20

30

40

200 210 220 230 240 250
-25

-20

-15

-10

-5

0

5

10

15

HB4B4

HA4A4

F
E

DC

B

M
R

E
 (

x
1
0

3
 [
d
e
g
 c

m
2
 d

m
o
l-1

])

Wavelength [nm]

A  no metal

 5:1 His:Ni
2+

 3:1 His:Ni
2+

 2:1 His:Ni
2+

 1:1 His:Ni
2+

 1:2 His:Ni
2+

M
R

E
 (

x
1
0

3
 [
d
e
g
 c

m
2
 d

m
o
l-1

])

Wavelength [nm]

M
R

E
 (

x
1
0

3
 [
d
e
g
 c

m
2
 d

m
o
l-1

])

Wavelength [nm]

HA4HB4A4B4

M
R

E
 (

x
1
0

3
 [
d
e
g
 c

m
2
 d

m
o
l-1

])

Wavelength [nm]

M
R

E
 (

x
1
0

3
 [
d
e
g
 c

m
2
 d

m
o
l-1

])

Wavelength [nm]

M
R

E
 (

x
1
0

3
 [
d
e
g
 c

m
2
 d

m
o
l-1

])

Wavelength [nm]



Results 

43 

 

4.5 Changes in the thermodynamic stability of coiled coil peptides due to metal 

ion coordination 

To use coiled coils as tunable crosslinkers, it is not only important to mechanically 

characterize them, but also to investigate the temperature-dependent stability of their 

secondary structure. In this work, the thermodynamic stability of the peptides was 

investigated using thermal unfolding monitored by CD spectroscopy. The change in ellipticity 

was studied at 222 nm from 8 to 90°C with a custom built heating system (Klaus Bienert, 

MPIKG). Since the CD spectra in NaP and PIPPS buffer showed, that different buffers can 

influence the secondary structure of the individual peptides and metal binding 

(see Figure 16, Figure 17), the unfolding experiments were carried out in both, PIPPS buffer 

(pH 8.1) and NaP buffer (pH 8.1).  

Figure 20 shows the thermal unfolding curves at 222 nm of the His-modified peptides and the 

control peptides in PIPPS buffer in absence of metal ions. For HB4, A4 and B4, which are 

already unfolded at 20°C (see Figure 16), the θR has a small intensity and shows only minimal 

changes upon heating. Thus, the melting temperature Tm for HB4, A4 and B4 is < 8°C. The 

coiled coil peptides HA4HB4 and A4B4 as well as HA4, which have an α-helical signature in 

PIPPS buffer at 20°C, show a decrease in θR,222 nm of about 10,000 deg cm
2
 dmol

-1
 if they are 

heated to 90°C. However, the shape of the curves was not sigmoidal and the remaining 

θR,222 nm was still high. Hence, it is concluded, that the coiled coil peptides and HA4 are only 

partially unfolded at 90°C. Fletcher et al. reported a similarly high stability for trimeric coiled 

coils [105]. The high stability of HA4HB4, A4B4 and HA4 is further emphasized by their CD 

spectra at different temperatures in Figure 21. Although these spectra are noisier since just 

one accumulation could be acquired in this measurement setup, they clearly indicate an 

α-helical signature with two minima of lower intensity. Moreover, all the peptides returned to 

the initial state again after cooling down to 20°C and even showed a slight increase in θR 

(Figure 22). This could be due to evaporation of buffer during the experiment, which leads to 

a slightly higher concentration of the peptides in the cuvette.  

The stability of the peptides in PIPPS (pH 8.1) was compared with the stability in NaP 

buffer (Figure A 4). While HA4HB4, A4B4 as well as HA4 and A4 had a very similar 

unfolding curve also in NaP buffer, HB4 and B4 showed a sigmoidal unfolding curve in this 

buffer. The Tm of HB4 (33.9°C) and B4 (38.4°C) in NaP buffer was determined by fitting 

equation 5 to the curves (Figure A 5). 

 



Results 

44 

 

 

Figure 20: Thermal unfolding curves of the control peptides (A) and the His-modified peptides (B) at 222 nm from 

8°C-90°C. The heating rate was 1°C/min. Measurements were performed in 5 mM PIPPS pH 8.1 in the interval scan mode 

(interval: 2 min, 1 accumulation, 2 s response). The mean residue molar ellipticity (MRE) was calculated using equation 1. 

 

Since the NaP buffer is suspected to interact with the metal ions, thermal unfolding 

experiments with Ni
2+

 were also performed in the non-coordinating PIPPS buffer to study 

whether His-metal coordination has an effect on the stability of the peptides. In particular, 

measurements without and with Ni
2+

 in a ratio of 2:1 His:Ni
2+ 

were performed. This ratio 

favors the coordination of one metal ion by the two His residues in one heptad of the His-

modified peptides, which should be the optimal ratio for the stabilization of the α-helices. To 

obtain a mean melting temperature Tm, the measurements were performed in triplicate. Since 

the coiled coil peptides are highly stable in PIPPS buffer, 2 M GdmCl was added to the 

HA4HB4, HA4 and A4B4 samples. The addition of GdmCl is a standard procedure used to 

destabilize or denature proteins or peptides [106]. The presence of 2 M GdmCl shifts the 

0 20 40 60 80 100

-20

-15

-10

-5

0

0 20 40 60 80 100

-20

-15

-10

-5

0

 A4

 B4

 A4B4M
R

E
 (

x
1

0
3
 [

d
e

g
 c

m
2
 d

m
o

l-1
])

Temperature [°C]

 HA4

 HB4

 HA4HB4

B

A

His-modified peptides

M
R

E
 (

x
1

0
3
 [

d
e

g
 c

m
2
 d

m
o

l-1
])

Temperature [°C]

control  peptides



Results 

45 

 

melting temperature of HA4HB4, HA4 and A4B4 into a temperature range that can be 

accessed by the experimental setup. This approach was also used by Fletcher et al. [105] to 

destabilize trimeric coiled coils.  

 

 
 

Figure 21: CD spectra of A4B4 (A), HA4HB4 (B) and HA4 (C) at different temperatures during the unfolding 

experiment. The spectra were taken in 5 mM PIPPS (pH 8.1) with a step resolution of 1 nm, a bandwidth of 1 nm, a 

scanning speed of 50 nm/min, an integration time of 2 s and 1 scans was accumulated.  The mean residue molar ellipticity 

(MRE) was calculated using equation 1. 
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Figure 22: CD spectra for the peptides before (black) and after (red) the heating process at 20°C. The spectra were 

taken in 5 mM PIPPS (pH 8.1) with a step resolution of 1 nm, a bandwidth of 1 nm, a scanning speed of 50 nm/min, an 

integration time of 2 s and 10 scans were accumulated.  The mean residue molar ellipticity (MRE) was calculated using 

equation 1. 

 

The melting temperatures Tm of HA4HB4, A4B4 and HA4 in the presence and absence of 

Ni
2+

 were determined by nonlinear least-square fitting (chapter 2.2.2, equation 5) of the 

unfolding curves using the Excel Solver (MS Excel 14.0). Since the baseline before heating 

was not well defined, the slope mn of this baseline was held constant at 14 deg cm
2
/dmol K 

for all the fits, to obtain comparable data. Moreover, it was assumed that the ΔCp during the 

experiment was small and can be neglected, as described by Thomas et al. [53]. According to 

Kemmer and Keller [74], the melting temperature Tm is the kinetic parameter, which can be 

most reliably determined with equation 5. Thus, only Tm was used to evaluate the effect of 

metal ions on the stability of the peptides. A summary of all Tm values can be found in 

Table 6 and detailed results for all the parameters of the fits are summarized in Table A 2. The 
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sum of squared residuals (SSR) of the fits was still high. A reason for this could be the 

constrained measurement setup, which did not allow starting the measurement at lower 

temperatures. Hence, it was not possible to obtain a more defined baseline.  

 

Figure 23: Thermal unfolding curves of HA4 (A) in 2 M GdmCl and HB4 (B) without GdmCl at 222 nm in the 

presence or absence of Ni2+. The His:Ni2+ ratio was 2:1.The temperature range was 8-90°C with a heating rate of 1°C/min. 

Measurements were performed in 5 mM PIPPS pH 8.1 in the interval scan mode (interval: 2 min, 1 accumulation, 2 s 

response). The mean residue molar ellipticity (MRE) was calculated using equation 1 and the equation 5 was fitted to the 

HA4 curves to obtain the melting temperature. 
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The molar enthalpy change ΔHm at Tm in the fits of the HA4HB4 and HA4 in the presence 

and absence of Ni
2+

 is between 90 and 120 kJ/mol. There was no difference observed in ΔHm 

of the coiled coil peptides with and without Ni
2+ 

in the PIPPS buffer. The values obtained for 

ΔHm are comparable to the ΔH of about 140 kJ/mol published by Thompson et al. [107] for 

the coiled coil domain of the bZIP transcription factor GCN4.  

In general, the higher the Tm of a coiled coil, the more stable the structure is. Thus, significant 

shifts to higher Tm upon addition of Ni
2+

 are indicators for the stabilization or destabilization 

of the coiled coil peptides. First the effect of Ni
2+

 on the stability of the individual peptides 

was determined. The unfolding curves for HA4 with 2 M GdmCl had a sigmoidal shape and 

were also evaluated using nonlinear least-square fitting (equation 5) (Figure 23, A). The mean 

melting temperature Tm of HA4 without Ni
2+

 was 31.6 ± 1.2°C, while Tm in the presence of 

2:1 His:Ni
2+

 was 32.9 ± 0.5°C (replicate melting curves can be found in Figure A 6). Hence, 

the effect of Ni
2+

 on the thermodynamic stability of HA4 is quite small. The Tm with Ni
2+

 is in 

the range of the standard deviation (SD) of the Tm of HA4 without Ni
2+

 and a Student t-test 

(confidence interval 0.95, two-sided, unequal variance) confirmed that the difference in Tm 

for HA4 without and with Ni
2+

 is not significant (p > 0.05). HB4 was measured in PIPPS 

buffer without GdmCl, because it was already unfolded at 8°C (compare Figure 16). 

However, no change in the shape of the unfolding curve of HB4 was observed in the presence 

of Ni
2+

 (Figure 23, B). 

Thermal unfolding of the His-modified HA4HB4, on the other hand, revealed that in the 

presence of Ni
2+ 

the melting temperature Tm is about 6°C higher (35.8 ± 1.1°C) than without 

Ni
2+

 (29.7 ± 1.5°C). This change in Tm is significant (p < 0.05). The stabilizing effect of Ni
2+

 

on HA4HB4 is emphasized in Figure 24 A, where the curve with a 2:1 His:Ni
2+

 ratio is left 

shifted and has a higher initial mean residue molar ellipticity. The effect of Ni
2+

 on Tm was 

corroborated by repeating the experiment three times with the custom built setup (Figure A 

7; A, B). Furthermore, a control experiment was performed with a Jasco J-815 CD 

spectrometer equipped with a Peltier element (department Physical Biochemistry, University 

of Potsdam), which confirmed the results obtained with the custom build heating 

system (Figure A 7; C). Notably, the thermal unfolding process in 2 M GdmCl is fully 

reversible in the presence of Ni
2+

, whereas HA4HB4 only refolds partially in the absence of 

Ni
2+

 (Figure A 8). For the control coiled coil A4B4, no change in Tm was detected in the 

presence of Ni
2+

. A4B4 has a Tm of 37.9 ± 1.5°C in the presence of Ni
2+

, while Tm is 
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38.6 ± 0.9°C in the absence of Ni
2+

. Moreover, the unfolding curves of A4B4 with and 

without Ni
2+

 showed a very similar intensity and shape (Figure 24 B; Figure A 7; D, E).  

 

 

Figure 24: Thermal unfolding curves of HA4HB4 (A) and A4B4 (B) at 222 nm in 2 M GdmCl in the presence or 

absence of Ni2+. The His:Ni2+ ratio was 2:1.The temperature range was 8-90°C with a heating rate of 1°C/min. 

Measurements were performed in 5 mM PIPPS pH 8.1 in the interval scan mode (interval: 2 min, 1 accumulation, 2 s 

response).  The mean residue molar ellipticity (MRE) was calculated using equation 1 and the equation 5 was fitted to the 

curves to obtain the melting temperature. 
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Table 6: Melting temperatures Tm of the peptides in different buffers and conditions determined with CD 

spectroscopy. The melting temperatures were obtained by fitting the equation 5 to the unfolding curves. Detailed fitting 

results can be found in Table A 2. A dash means not determined.SD is the standard deviation. 

Peptide(s) 
10 mM NaP, 

pH 8.1 

5 mM PIPPS, 

pH 8.1 

5 mM PIPPS pH 8.1, 

2 M GdmCl 

5 mM PIPPS pH 8.1, 

2 M GdmCl, 

2:1 His:Ni
2+

 

 Tm [°C] Tm [°C] Tm [°C] 
Mean ± 

SD 
Tm [°C] 

Mean ± 

SD 

HA4 > 90 > 90.0 

33.1 

30.4 

31.4 

31.6 ±1.2 

32.8 

32.4 

33.6 

32.9 ±0.5 

HB4 33.9 < 8.0 - - - - 

HA4HB4 > 90.0 > 90.0 

27.6 

30.6 

30.8 

29.7 ±1.5 

34.3 

36.7 

36.4 

35.8 ±1.1 

A4 < 8.0 < 8.0 - - - - 

B4 38.4 < 8.0 - - - - 

A4B4 > 90.0 > 90.0 

39.8 

38.4 

37.7 

38.6 ±0.9 

39.4 

38.4 

35.8 

37.9 ±1.5 

 

The results of the thermal unfolding experiments show that the stability of HA4 is similarly 

high as the stability of the coiled coil HA4HB4 in the absence of Ni
2+

. This could be the result 

of a stabilizing effect of the acetylated N-terminus interacting with a His residue [108] or 

homo-oligomer formation of HA4. To test the last hypothesis, analytical ultracentrifugation in 

the sedimentation velocity mode was performed with the individual peptides. The apparent 

sedimentation coefficient distribution is visualized in Figure A 9. The obtained sedimentation 

coefficient distribution c(s) is presented in Figure 25. B4 and HB4 just have one peak at 

0.54 S and 0.56 S, which hints at a monodisperse distribution, while A4 and HA4 behave 

differently. Both of them have a big peak at low sedimentation coefficients of 0.12 S and 

0.02 S, respectively. This indicates that there are impurities or peptide fragments in these 

samples. Nevertheless, A4 shows one peak at 0.47 S, which is broader than the peaks for B4 

and HB4. In contrast, HA4 has two peaks of very low intensity at 0.47 S and 1.2 S 

(Figure 25 B). Thus, HA4 could also be forming oligomers, such as dimers. Experiments in 
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the sedimentation equilibrium mode with purified HA4 and A4 will be required to determine 

the exact oligomerization state of HA4. 

 

Figure 25: Sedimentation coefficient distribution of A4 (black), B4 (red), HA4 (green) and HB4 (blue). A: 

sedimentation coefficients of all peptides. B: Zoom-in to the dashed rectangle, distribution of HA4.The values were obtained 

with the interference detection at 60000 rpm and diffusion corrected.  

 

4.6 Mechanical stability of the coiled coil is tuned by metal ion coordination 

To create tunable hydrogels with metal coordinating coiled coils as mechano-sensitive 

crosslinkers, the mechanical response mechanism of the HA4HB4 system has to be well 

characterized. Figure 26 shows the His-modified coiled coil HA4HB4. The arrows indicate 

the point-of-origin of the shear force applied in single molecule force spectroscopy. The 

unfolding or dissociation process induced by the shear force should start at the terminus 
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where the peptide is coupled to the surface (N-terminus of CHA4) or the tip (C-terminus of 

CHB4), respectively. Thus, the His-metal coordination bonds introduced at these sites are 

exprected to increase the force nessesary to dissociate the coiled coil. In particular, the 

additional His-metal coordiantion bonds should decrease the free energy of the coiled coil in 

state A or increase the free energy of the transition state. In both cases, the free energy 

difference ΔG1 would increase and thus, the thermal off rate (koff) at zero force should 

decrease (see Figure 11). Stabilizing the coiled coil helices against deformation, His-metal 

coordination could also lead to a decrease of the potential width ΔxAT. 

 

Figure 26: The dimeric coiled coil HA4HB4 tuned by His-metal coordination. The structure was predicted by CC-

Builder [54]. Black arrows indicate the point-of-origin of the shear force in single molecule force spectroscopy. The A 

peptide (red) has two His in the first heptad and the B peptide (blue) has two His in the fourth heptad repeat. The coiled coil 

should be stabilized by the coordination of metal ions to the His residues. 

Determining the rupture force FR as a function of the loading rate of single molecule 

interactions reveals important information about the energy landscape of a system [109]. To 

obtain the most probably rupture force FR as a function of the loading rate Ḟ, different pulling 

speeds were used to probe the coiled coil interaction. Specifically, the cantilever was retracted 

from the surface at speeds of 50, 200, 400, 1000, 2500 and 5000 nm/s. Taking into account 

that HA4 could form oligomers, the concentration of HA4 was kept low on the surface. 

Moreover, it was shown for a heterotrimeric coiled coil, that heteromers are favored over 

homomers if the different coiled coil peptides were present in solution [110]. Thus, the 

formation of HA4HB4 should be favored over HA4 homomerization in the AFM experiment. 

To study the effect of metal ions, it is essential to avoid concentration effects due to 

evaporation of water. Thus, the SmallCell, which is a closed chamber, was used to study the 

influence of metal ions while preventing evaporation effects. To test the influence of metal 

ions on the HA4HB4 coiled coil, Ni
2+

 was used, since the Raman spectra showed that His is 

able to coordinate Ni
2+

 in a sodium phosphate buffer (see Figure 17). The concentration of 

Ni
2+

 used in the experiment was 2 mM and cannot be correlated to a certain His:Ni
2+

 ratio, 

Me2+

Me2+
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since the density or concentration of the peptides on the glass surface could not be accurately 

determined. After fitting the force curves with the WLC model and selecting the specific 

“single pulls”, the most probable values for FR and Ḟ were extracted from the data. This was 

done by fitting a Gaussian distribution to the FR histograms with IGOR Pro. To obtain the 

most probable Ḟ, a semi-logarithmic plot and a LogNormal-fit were used.  

Since the data for the A4B4 system of Melis Göktas were obtained with an open system 

(regular spring holder), a control measurement was performed with this setup to prove the 

comparability with the SmallCell data (Figure 27). At a pulling speed of 1000 nm/s in PBS 

(pH 7.4), the most probable FR of HA4HB4 with the open system was 43 ± 1 pN and the most 

probable Ḟ was 502 ± 4 pN/s (number of force curves n=543) (Figure 27 A, B). The most 

probable values obtained using the SmallCell (closed system) are FR= 42 ± 1 pN and 

Ḟ= 775 ± 19 pN/s (Figure 27 C, D) (n=184). The slight shifts of the values can result from the 

small number of curves obtained for the SmallCell and the systematic error originating from 

the different tips used for the experiments. Thus, the HA4HB4 system is comparable with the 

A4B4 system studied by Melis Göktas (Mechano(bio)chemistry), which has a FR of 45-48 pN 

at 1000 nm/s pulling speed (unpublished results).  

 

Figure 27: Comparison of the HA4HB4 system measured with a regular spring holder and the SmallCell. The rupture 

force (FR) histogram (A) and the loading rate (Ḟ) histogram (B) of HA4HB4 measured with an open system. C and D are the 

corresponding rupture force and loading rate histograms obtained with the SmallCell. CHA4 was coupled to the surface and 

CHB4 to the tip. Measurements were carried out in PBS at 1000 nm/s pulling speed. The most probable values were 

determined using a Gauss-fit, respectively a LogNormal-fit for Ḟ in IGOR Pro. n is the number of curves. 
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Figure 28: Force curves obtained for 1000 nm/s pulling speed in without metal ions (black) and with 2 mM Ni2+ 

(green) in PBS at 25°C. The WLC fits were performed with IGOR Pro (custom script) and are represented by the blue and 

red lines. The rupture force FR is the force magnitude between the last adhesion point and the baseline. In the presence of 

Ni2+ the rupture force is about 13 pN higher than without metal ions. The curves are off set to increase the visibility of the 

differences between them. 

 

In the presence of 2 mM Ni
2+

, there is a general trend towards higher FR compared to the 

measurements without metal. This is emphasized when comparing the force curves at 

1000 nm/s pulling speed (Figure 28): the rupture force is about 13 pN higher if 2 mM Ni
2+ 

is 

present, which corresponds to a 30 % increase. This is further confirmed by the histograms for 

FR of the HA4HB4 coiled coil at different loading rates in the absence and presence of 

2 mM Ni
2+

 (Figure 29, Figure 30). In PBS in the absence of Ni
2+

, force curves were obtained 

for a range of loading rates from 31-7754 pN/s. In the presence of 2 mM Ni
2+

 the loading rate 

values cover the range from 21-1326 pN/s. The data for the most probable values of FR and Ḟ 

are summarized in Table 7. The number of single molecule pulling events was almost always 

below 200, because of the low density of peptides and thus low probability of binding. Hence, 

the data does not exhibit an ideal Gaussian distribution. Moreover, the FR histograms at higher 

pulling speeds show a “tail” at higher rupture forces (Figure 29 D, F, Figure 30 D). The origin 

of this “tail” is currently unclear and requires further investigation. 
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Figure 29: Rupture force and loading rate histograms for the HA4HB4 system in the absence of Ni2+. Rupture force 

(FR) and loading rate (Ḟ) histograms for the pulling speeds v=50 (A), 200 (B), 400 (C), 1000 (D), 2500 (E) and 5000 nm/s 

(F). Data were obtained with the SmallCell in PBS (pH 7.4) at 25°C. CHA4 was coupled to the surface and CHB4 to the tip. 

The most probable values were determined using a Gauss-fit for the FR and LogNormal-fit for the loading rate histogram. n is 

the number of force curves for each pulling speed. 
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Figure 30: Rupture force and Loading rate histograms for the HA4HB4 system in the presence of 2 mM Ni2+. Rupture 

force (FR) and loading rate (Ḟ) for the pulling speeds v=50 (A), 200 (B), 400 (C), 1000 pN/s(D). Data were obtained with the 

SmallCell in PBS (pH 7.4) at 25°C. CHA4 was coupled to the surface and CHB4 to the tip. The most probable values were 

determined using a Gauss-fit for the FR and LogNormal-fit for the loading rate histogram. n is the number of force curves for 

each pulling speed.  
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Table 7: Loading rate (Ḟ) dependency of the rupture force (FR) of the HA4HB4 system without and with 2 mM Ni2+.  
The error is one standard deviation. A dash means no data could be obtained. 

 without metal with 2 mM Ni
2+

 

Pulling 

speed 

(nm/s) 

Number of 

curves 
FR (pN) Ḟ (pN/s) 

Number of 

curves 
FR (pN) Ḟ (pN/s)  

50 39 24± 1 31± 2 57 29± 1 21± 1 

200 227 37± 1 155± 2 127 37± 1 106± 2 

400 187 37± 1 249± 7 133 42± 1 317± 9 

1000 184 42± 1 775± 19 240 55± 2 1326±29 

2500 125 49± 1 2492± 32 - - - 

5000 122 61± 2 7754± 152 - - - 

 

Information about the response mechanism of the HA4HB4 system in the shear geometry can 

be obtained by having a closer look at the free energy landscape in the presence and absence 

of Ni
2+

. The distance between the native state A and the transition state T (ΔxAT) as well as 

the thermal off-rate koff of the HA4HB4 coiled coil were determined using the Bell-Evans 

model (equation 17). The Bell-Evans model is valid if there is a linear dependency of the most 

probable FR with the logarithm of the most probable Ḟ (Figure 31). As only one data set 

covering a range of different loading rates is currently available, the standard error of the 

kinetic parameters is high. For koff the error is in the same order of magnitude. The value for 

ΔxAT is 0.665 ± 0.087 nm in the presence of 2 mM Ni
2+

 and 0.671 ± 0.059 nm in the absence 

of Ni
2+

. Thus the transition state energy barrier is not changed. In contrast, there is a nearly 

2.5-fold decrease of the thermal off-rate koff if Ni
2+ 

is present (koff,Ni=0.038 ± 0.029 s
-1

) 

compared to the system without Ni
2+

 (koff,wo=0.092 ± 0.049 s
-1

). These results have to be 

reproduced to securely confirm the effect of the Ni
2+

, but the trend towards higher stability is 

promising in terms of creating mechanosensitive crosslinkers, which are tunable with metal 

ion coordination. 
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Figure 31: Loading rate dependency of the most probable rupture force. Black squares: HA4HB4 in PBS (pH7.4) 

without metal ions, green squares: HA4HB4 with 2 mM Ni2+. The Bell-Evans model was fitted to the data (lines) to obtain 

the potential width ΔxAT and the thermal off-rate at zero force koff.  
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5 Discussion 

The aim of this work was to characterize a coiled coil tuned with bi-histidine-metal chelation 

sites in order to address the need for tunable mechano-responsive crosslinks in hybrid 

hydrogels. Moreover, the effect of His-metal coordination on the mechanical response 

mechanism of coiled coils in the shear geometry was investigated. For this purpose, two His 

residues were introduced in the N-terminal heptad of A4 and the C-terminal heptad of B4. 

Spectroscopic techniques revealed that the His-modified peptides maintained an α-helical 

structure and were able to coordinate different transition metal ions. The chelation of metal 

ions by the engineered His residues was shown to increase the thermodynamic and the 

mechanical stability of the modified coiled coil.  

In order to characterize the HA4HB4 coiled coil mechanically and thermodynamically it was 

important to investigate if the introduced His residues affect the secondary structure of the 

peptides. The His residues were placed in the solvent exposed register positions b and f with a 

three-amino-acid spacing (HXXXH) so that each individual peptide is able to chelate one 

single metal ion [50]. ATR-FTIR, CD spectroscopy as well as Raman spectroscopy clearly 

showed that the modified coiled coil peptides maintained a predominantly α-helical 

conformation. Surprisingly, in ATR-FTIR, the amide I peaks for all peptides, but A4, had a 

shoulder at 1674/75 cm
-1

, usually assigned to β-turns [95]. However, in the α-helical protein 

hemoglobin, this shoulder corresponds to the short segments connecting the helices [58]. For 

the peptides used in this work, the shoulder could originate from the two Gly placed at the 

termini of the peptides, which should not be part of the α-helix due to their low helix 

propensity [111]. The reason for the absence of this shoulder in A4 is still unclear. A 

predominantly α–helical structure of the peptides is also confirmed by the amide III band in 

Raman spectroscopy, which is dependent on the dihedral angles of the peptide backbone. The 

amide III band shows peaks assigned to α-helix in the range of 1270-1350 cm
-1 

(Table 5), 

while there is no such band for more extended conformations (e.g. β–sheet) around 

1230 cm
-1

 [101].  

In the literature, it is reported that buffer components can have an effect on the structure and 

stability of proteins and peptides and that they can interfere with metal coordination [97]. This 

is also true for the coiled coil peptides used in this work. In NaP buffer, the secondary 

structure of the His-modified and the control peptides was very similar to the structure of the 

original peptides measured in PBS [53]. A4 was unordered, while all the other individual 
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peptides as well as the coiled coil peptides HA4HB4 and A4B4 had an α-helical 

conformation. In water and in the non-coordinating PIPPS buffer, HB4, A4 and B4 were 

unordered, while HA4, HA4HB4 and A4B4 were α-helical. This indicates that the individual 

peptides, except HA4, are unfolded in PIPPS buffer. However, if HA4 and HB4, as well as 

A4 and B4 are mixed, they fold into α–helices and maintain their α-helical structure, even at 

the low concentration (50 µM) used for the CD measurements. Thus, the folding and 

association of the coiled coil peptides is cooperative, which was also reported for other coiled 

coils [107], [112]. It was described by Ugwu and Apte [97], that the buffer and further 

components, such as salts, highly affect the activity and conformation of proteins. Thus, B4 

and HB4 might be stabilized by the Na
+
 and phosphate ions in the NaP buffer. Considering 

that the PIPPS buffer also contains Na
+
 (NaOH, was used to raise the pH to 8.1), it appears 

unlikely that Na
+
 affects the secondary structure of B4 and HB4. Most likely, the negative 

phosphate ions in the NaP buffer, interact with the positive Lys residues and stabilize the 

helical structure of B4 and HB4 in this buffer. To obtain further information about the 

structure of the coiled coils, NMR or X-ray diffraction experiments could be performed. In 

addition to buffer effects on the coiled coil structure, it was also observed using Raman 

spectroscopy that NaP buffer interfered with the ability of the coiled coil peptides to 

coordinate Zn
2+

, which may arise from the ability of phosphate to form complexes of low 

solubility with Zn
2+ 

[103], [104].  

Different metal ions can bind to His with different affinities and in different coordination 

geometries. For the development of tunable His-modified coiled coils as crosslinkers, it is 

important to know, which metal ions can be bound by the peptides. To get information about 

the ability of the His residues to coordinate divalent metal ions, Raman spectroscopy was 

used [66]. The spectra in the non-coordinating PIPPS buffer for HA4, HB4 and HA4HB4 

reveal that Ni
2+

, Cu
2+

 and Zn
2+

 are coordinated by the His, because there is a shoulder at 

1605 cm
-1

 (Figure 18) [66]. This is promising in terms of creating tunable materials, since the 

stability of His-metal complexes is dependent on the metal ion used and the compatibility of 

the α-helical structure of the coiled coil with the coordination geometry [72]. For example, 

Fullenkamp et al. [113] as well as Grindy et al. [114] observed that the rheological properties 

of a PEG hydrogel functionalized with His residues and crosslinked via His-metal 

coordination are dependent on the specific metal ion used for crosslinking. Furthermore, 

Ghadiri and Choi [72] showed that also the α-helicity of His containing peptides can be 

increased by adding metal ions. To investigate if Ni
2+

 has a similar effect on the secondary 
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structure of the peptides, CD spectroscopy was used. With exception of HA4, which exhibited 

an increased r222/208 (Figure 19), an effect of the metal ions on the structure of the peptides 

could not be observed. This shows that the Ni
2+

 ratios used are not able to induce a structural 

change of the individual peptides, which are unfolded at 20°C in PIPPS buffer. Moreover, the 

coiled coil HA4HB4 already shows an α-helical conformation in the absence of Ni
2+

 so that 

no increase in α-helicity in the presence of Ni
2+

 may be detectable anymore. However, this is 

contradictory to the increase in ellipticity of HA4HB4 in the presence of Ni
2+

, which was 

observed in the unfolding experiments. But in the unfolding experiments 2 M GdmCl was 

used, which leads to a destabilization of HA4HB4. In this setup, the stabilizing effect of Ni
2+

 

on the secondary structure of HA4HB4 may be enhanced and easier to detect with CD 

spectroscopy. 

The main focus of this work was to investigate if His-metal chelation can thermodynamically 

and mechanically stabilize the modified coiled coil peptides. It was shown, that two chelating 

His residues are able to thermodynamically stabilize protein conformations in the presence of 

metal ions [50], [72], [115]. To investigate if there is a thermodynamic stabilization effect of 

His-metal chelation on the coiled coils, thermal unfolding curves were acquired using CD 

spectroscopy. The original peptides published by Thomas et al. [53] have a Tm of <5°C for 

A4, 25.3± 0.6°C for B4 and 81.0± 0.5°C for A4B4. Compared with the Tm obtained in NaP 

buffer for HA4, HB4 and HA4HB4 as well as the control peptides, the original coiled coil 

peptides seem to be less stable (Table 6). However, Thomas et al. [53] used PBS (pH 7.4) 

instead of NaP buffer (pH 8.1). The lower ionic strength in the NaP buffer and the higher pH 

could lead to the slightly higher Tm of B4 and HB4 under the conditions used in the present 

work. In PIPPS buffer with 2 M GdmCl, A4B4 is approximately 9.0°C more stable than 

HA4HB4. Most likely, replacing the original Ala and the Gln residues with His destabilizes 

the coiled coil structure, since His has a lower helix propensity than the amino acids in the 

original peptides [111], [116]. In contrast, HA4 has a Tm > 90°C and is far more stable than 

the control peptide A4 (Tm < 8°C) and is α-helical independent of the buffer used for CD 

spectroscopy (Figure 16, Figure 19). A reason could be that, HA4 is stabilized by the 

interaction of the first His in the first heptad with the acetylated N-terminus of the peptide. 

The stabilization effect of His was also reported for His residues near the C-terminus, which 

also has a carboxylate group [45], [108]. The interaction of the carboxylate group with a His 

residue could also interfere with the ability of that His to chelate metal ions, which is 

supported by the low increase of Tm in the presence of Ni
2+

 compared to HA4HB4 (Table 6). 
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Alternatively, the formation of HA4 homo-oligomers could lead to the high stability of the 

peptide. This hypothesis is supported by the r222/208, which is close to 1 for HA4 in the buffers 

tested, indicating that HA4 could form a coiled coil. Potential formation of a parallel HA4 

homomer could also explain the small change of the Tm in the presence of Ni
2+

: In this 

conformation with all His residues on one site of the parallel homomeric coiled coil, the His-

metal coordination would just stabilize one end of the coiled coil, while the other end would 

not be stabilized and thus, the whole HA4 coiled coil would still unfold in a very similar way 

as without Ni
2+

. However, since the HA4 peptide has negatively charged residues at the e and 

g positions oligomerization of HA4 should be prevented by electrostatic repulsion [16]. 

Nevertheless, AUC in the sedimentation velocity mode was performed on all individual 

peptides to test if they are capable of forming higher oligomerization states, indicating that 

HA4 may be able to form oligomers (Figure 25). To further investigate this, a sedimentation 

equilibrium experiment is required. This experiment has not been performed yet, because of 

the impurities in A4 and HA4. An appropriate method to remove of the impurities could be 

HPLC. Regardless of the oligomerization state of HA4, the heterodimerization of HA4 and 

HB4 should be favored, if both peptides are present in solution. The full heterodimerization of 

HA4HB4 is supported by the fact that there is only one transition in the thermal unfolding 

experiments. A similar phenomenon was also observed for a trimeric coiled coil, where the 

heterotrimers were favored 100-fold about other oligomeric states [110]. 

The His-modified coiled coil HA4HB4 is stabilized by the addition of Ni
2+

 (2:1 His:Ni
2+

 

ratio) in PIPPS buffer (Figure 24, Table 6). The Tm of HA4HB4 in the presence of Ni
2+

 is 

6.0°C higher than without metals. This stabilizing effect was also observed for α-helical 

peptides with His residues in the presence of Cu
2+

 by Ghadiri and Choi [72] and for 

cytochrome c, tuned with two His in the presence of Cu
2+

 [50]. In the latter case, 

cytochrome c with 1 mM Cu
2+

-iminodiacetate was 4 kcal/mol more stable than in the absence 

of metal ions [50]. In contrast to HA4HB4, there is no change in the Tm for A4B4 in the 

presence of Ni
2+

, but the Tm of A4B4 is still 3.0°C higher than for HA4HB4 with Ni
2+

. A 

reason for this could be that His has a lower helix propensity than the original amino acids 

Ala and Gln. Thus, His is destabilizing the α-helix in the absence of metal ions [111]. A 

similar effect was also reported for a His-modified cytochrome c [116]. The effect of different 

His-metal ratios and different metal ions on the thermodynamic stability of the peptides 

remains to be investigated in further studies.  
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In addition to thermodynamic stability measurements, the mechanism of how coiled coils 

respond to mechanical loading in the shear geometry was studied in the current work. Root et 

al. [52] performed Molecular Dynamics simulations to study the response of the myosin 

coiled coil to shear forces. These simulations suggested that the coiled coil starts to unfold at 

the point-of-origin of the force. Thus, the shear forces would first cause unfolding of the 

terminal heptads, carrying the Cys for surface attachment in the single molecule force 

spectroscopy experiments. If this hypothesis is true, the HA4HB4 coiled coil should be more 

stable in the presence of Ni
2+

, because of the additional, stabilizing His-metal coordination 

bonds in these heptads. AFM force spectroscopy at the single molecule level was performed 

to test this hypothesis. It is shown in this work, that the rupture force FR of HA4HB4 in the 

presence of Ni
2+

 is higher than in the absence of Ni
2+

. Thus, stabilizing a terminal heptad 

repeat of the α-helices leads indeed to a higher stability of the whole coiled coil in the shear 

geometry. Furthermore, it supports the mechanism suggested by Root et al. [52] that the 

unfolding starts at that site of the α-helix, where the force is applied. A stabilizing effect of 

His-metal coordination was also reported by Cao et al. [12], who inserted two His into a 

β-sheet of the small protein GB1. In the presence of 4 mM Ni
2+

 the FR for the modified 

protein was doubled. Moreover, the His modification also resulted in a decrease of the rupture 

force (≈120 pN) compared with the wildtype protein (≈180 pN). This is also in accordance 

with the result of the thermal unfolding experiments in the absence of metal ions: HA4HB4 is 

less stable than the control peptides A4B4 (Table 6), but the stability of HA4HB4 increases, if 

Ni
2+

 is present. However, it is important to note, that the AFM results cannot be directly 

related to a certain His:Ni
2+

 ratio used for CD spectroscopy, because the density of the 

peptides on the glass slide cannot to be determined easily. A possible method to measure the 

density of the peptides on the surface is to fluorescently label the peptides.  

If the HA4HB4 coiled coil is stabilized by His-Ni
2+

 coordination, there should also be an 

effect on the potential energy landscape of the system. In particular, the bound or native state 

“A” should be stabilized by lowering the thermal off-rate koff and eventually decreasing the 

potential width ΔxAT (see Figure 11). To investigate this effect, the loading rate dependency 

of FR was studied by obtaining force curves at different pulling speeds of HA4HB4 in the 

presence and absence of Ni
2+

. The resulting histograms of FR and Ḟ do not have an ideal 

Gaussian distribution, which would be expected if there is just variation around one mean 

value (Figure 29, Figure 30). A reason for that could be the low number of curves for each 

pulling speed. Future experiments should have at least 200-300 curves per condition. 
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Furthermore, the histograms for the rupture force at high speeds also show a “tail” of high 

rupture forces (Figure 29 D, F; Figure 30 D). Currently, the origin of the “tail” it is unclear 

and has to be further investigated. If Ni
2+ 

is present, the “tail” can be explained by an 

increased heterogeneity of the HA4HB4 system, because there will be a statistic distribution 

of coiled coils with no Ni
2+

 bound, 1 Ni
2+

 bound to one of the α–helices and Ni
2+

 bound to 

both α-helices. However, there is also a “tail” of high FR in PBS without Ni
2+

. 

The change of the kinetic parameters koff and ΔxAT, in the presence and absence of Ni
2+

, 

reveals valuable information about the response mechanism of HA4HB4 if a shear force is 

applied. To obtain the kinetic parameters, the loading rate Ḟ and the rupture force FR were 

determined and the most probable FR at every pulling speed was plotted against the logarithm 

of the most probable values of the corresponding Ḟ (Figure 31). The data were fitted with the 

Bell-Evans model, to obtain the dissociation constant koff at zero force as well as the distance 

ΔxAT between the bound or native state A and the transition T. In the presence of Ni
2+

, koff 

was 2.5-fold lower than without Ni
2+

, while the potential width ΔxAT remained unchanged. 

The possible effects of His-Ni
2+

 chelation on the shape of the free energy landscape of 

HA4HB4 are visualized in Figure 32.  

 

Figure 32: Possible shapes of the free energy landscape in the absence (black) and presence of Ni2+ (green). The arrows 

depicting the difference in the free energy between the bound/native state A and the transition state T are slightly shifted for 

better visualization. B is the unbound/unfolded state of the coiled coil peptides. The potential width between the state A and 

the state T is ΔxAT. In model A, the His-Ni2+ complex increases the free energy of the transition state T, whereas in model B 

the free energy of the bound state A of the coiled coil is decreased via His-Ni2+ coordination. Both models result in a higher 

energy barrier ΔG1 and thus, in a decrease in the thermal off-rate koff. The observed effect of Ni2+ on the coiled coil could 

also be the result of a combination of both models. The potential width ΔxAT remains unchanged according to the obtained 

data (Figure 31). 
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In model A, the additional His-metal coordination bonds increase the free energy of the 

transition state and, thus, the free energy ΔG1 the coiled coil needs to overcome to reach the 

transition state T (Figure 32). Another possible model explaining the stabilizing effect of Ni
2+ 

on the His-modified coiled coil structure is that the free energy of the bound state is 

decreased, while the free energy of the transition state remains unchanged, as depicted in 

Figure 32,B. However, also a combination of both effects is possible. Furthermore, since there 

was no detectable change of the potential width ΔxAT in the presence of His-Ni
2+

 chelation 

bonds, ΔxAT was assumed to be constant in the models. In both models, the predicted effect of 

the His-Ni
2+

 chelation is a higher energy barrier ΔG1, which results in the decrease of koff, 

between the bound state A and the transition state T. Thus, the stabilization of the His- 

modified coiled coil in the presence of Ni
2+

 promotes the mechanical unfolding mechanism of 

coiled coils in the shear geometry predicted by Molecular Dynamics simulations, where the 

helices starts to unravel at the terminus, where the force is applied [52]. In conclusion, using 

SMFS to study coiled coils tuned with His-metal chelation can provide valuable information 

about the mechanical response mechanism of coiled coils under load. Further measurements 

have to be done to confirm the results, however, to characterize the response of the HA4HB4 

system to different metal ions, like Ni
2+

, Cu
2+

 or Zn
2+

 and to study the effect of the 

concentration of those metal ions on the mechanical stability of HA4HB4. 
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6 Conclusion and Outlook 

Naturally occurring or de novo designed coiled coils can serve as crosslinkers in hybrid 

hydrogels with promising applications in cell culture or tissue engineering [6], [7]. 

Addressing the need for tunable, mechano-responsive hydrogel building blocks the current 

work shows that coiled coils can be stabilized with bioengineered His-metal coordination 

sites. The His-modified coiled coils studied in this work maintained an α-helical structure and 

were shown to coordinate transition metal ions, such a Ni
2+

, Cu
2+

 and Zn
2+

. More importantly, 

applying force in the shear geometry, the mechanical stability of the His-modified HA4HB4 

is enhanced in the presence of Ni
2+

. Thus, stabilizing the heptads where the pulling force is 

applied stabilizes the whole coiled coil (chapter 4.6). This result supports the response 

mechanism suggested by Root et al. [52] where the α-helices begin to unfold from the point-

of-origin of the shear force. Furthermore, the coordination of the transition metal ion Ni
2+

 by 

the His residues thermodynamically stabilizes the HA4HB4 coiled coil (chapter 4.5). 

Although, further work has to be done, this thesis is a proof of principle for the mechanical 

stabilization of coiled coils by His-metal coordination.  

Before HA4HB4 can be included into the toolkit of coiled coils usable as mechanosensitive 

material crosslinkers, several open questions need to be answered. The oligomerization state 

of HA4 needs to be determined and the influence of His-metal ion ratios on the mechanical 

stability of the HA4HB4 coiled coil needs to be investigated in more detail. Also the ability of 

the coiled coil to coordinate other metals, such as Co
2+

, should be tested. SMFS performed 

with other metal ions will provide essential information about the tunable force range of the 

coiled coil. Furthermore, the effect of His-metal chelation on the stability of HA4HB4 in the 

unzipping mode could be investigated with SMFS to obtain information about the effect of 

His-metal coordination on the free energy landscape in this geometry. Preliminary rheology 

results of the Mechano(bio)chemistry group (MPIKG) for A4B4 hydrogels, indicate a 

difference in the mechanical behavior of hydrogels crosslinked in the shear versus the 

unzipping geometry (unpublished results). Also the coordination geometry of the His-metal 

complexes could be investigated further, e.g. with XAFS [117], and the binding constants of 

metal ions to the His residues could be determined with ITC [118]. Coordination geometry 

data and binding constants of the HA4HB4 system with different metal ions will be important 

to choose the right metal ion for a hydrogel setup with certain tunable characteristics. Future 

work should not only be focused on the characterization of the peptides used in this work, but 
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also on the bioengineering of new coiled coil variants with His residues at other positions to 

further elucidate the response mechanism of coiled coils to shear forces. For example, His-

metal coordination sites could be inserted into a heptad in the middle of the α-helical peptides. 

In this case, the effect on the mechanical response of the coiled coil to the applied force 

should be smaller, because the distance between the heptad, on which the force is applied, and 

the metal-stabilization site is larger. Furthermore, the stabilizing effect could be enhanced by 

tuning more than one heptad with His-metal chelation sites. The final aim would be to create 

mechano-responsive hybrid hydrogels using a four-arm poly-ethylene glycol (star-PEG) 

framework crosslinked by metal coordinating coiled coils. These hydrogels may also exhibit 

self-healing capacity as observed in mussel byssus threads in which the His-metal 

coordination bonds are able to reform (when allowed to rest) after mechanical loading [11]. 

Along these lines, coiled coil hydrogels based on the His-modified peptides could be further 

characterized with rheological measurements to investigate the effect of metal ion 

coordination on the viscoelastic properties of the hydrogels. Moreover, the mechano-

responsive coiled coils could eventually be equipped with a FRET pair, which reports on the 

mechanical state of the coiled coil. Combined with a fluorescence readout, the coiled coils can 

potentially serve as force sensors in self-reporting hybrid hydrogels, which can be used to 

study cell-matrix interactions.  

In summary, coiled coils tuned with His-metal chelation sites are excellent candidates to 

address the necessity of bioengineering tunable crosslinkers to create mechano-responsive, 

materials. Metal-coordinating coiled coils could not only find application as self-reporting and 

self-healing hydrogels to study cell-matrix interaction but also be useful for protein 

purification and labeling, biosensing and antibody-fragment stabilization [7], [119].  
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Figure A 1: ATR-FTIR spectra for A4 (A), B4 (B) and A4B4 (C) in the presence of metal ions.  No metal ions (black), 

Ni2+ (green), Cu2+ (blue) and Zn2+ (red) were added in a ratio of 2:1 His:Me2+. The peptides (1.5 mM) were measured in water 

in the ATR-mode. Number of scans: 32, smoothing: 5 points, baseline correction: 1 iteration (rubberband method, linear).  
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Figure A 2: ATR-FTIR spectra for HA4 (A), HB4 (B) and HA4HB4 (C) in the presence of metal ions.  No metal ions 

(black), Ni2+ (green), Cu2+ (blue) and Zn2+ (red) were added in a ratio of 2:1 His:Me2+. The peptides (1.5 mM) were measured 

in water in the ATR-mode. Number of scans: 32, smoothing: 5 points, baseline correction: 1 iteration (rubberband method, 

linear). 
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Figure A 3: Raman spectra of A4 (A), B4 (B) and A4B4 (C) in 10 mM PIPPS pH 8.1. Metal ions were added in 2:1 

His:Me2+ ratio. No metal ions (black), Ni2+ (green), Cu2+ (blue) and Zn2+ (red). A 20x objective (Nikon, NA 0.4) was used 

with 0° polarization and no analyzer in the light path. Spectra from at least three point of the sample were measured 

(Integration of 1 s and 30 accumulations) and averaged. The spectra are baseline corrected (1 pt) and smoothed (5 pt). 
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Figure A 4: Thermal unfolding for the peptides in 10 mM NaP (pH 8.1) from 10-90°C in the time course measurement 

mode. The spectra were taken at 222 nm with a bandwidth of 2 nm, an integration time of 1 s and 2 s intervals.  

 

 

 

Table A 1: Concentration of peptide stock solution used for the CD measurements. The concentrations were determined 

with Amino Acid Analysis after acid hydrolysis of the peptides (chapter 3.6). Calculation of total amino acid concentration 

was based on the standard amino acid mixture with known concentration. 

Peptide Concentration [mM] 

A4 1.32 

B4 1.33 

HA4 0.73 

HB4 1.17 
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Table A 2: Parameters obtained by fitting the thermal unfolding curves with equation 5. The ΔCp was hold constant at 0 

J/(mol K) and the mn was hold constant at 14 deg cm2/(dmol K) for all the fits. SSR is the sum of squared residuals. 

 

Sample Tm [°C] 
ΔHm 

[kJ/mol] 

θu  

[x 10
3
 deg 

cm
2
/ dmol] 

θn  

[x 10
3
 deg 

cm
2
/ dmol] 

mu 

[deg cm
2
/dmol K] 

SSR 

(x10
5
)

 

B4 in NaP 38.3 -75.1 0.0 -20.2 -11.4 1939 

HB4 in NaP 33.8 -68.1 0.0 -21.5 -12.0 2560 

HA4 PIPPS, 

2 M GdmCl 

33.1 -112.7 0.0 -29.2 -9.2 169 

31.4 -109.3 0.0 -26.4 -9.9 134 

30.4 -111.9 0.0 -22.4 -8.7 84 

HA4 PIPPS, 

2 M GdmCl, 

Ni
2+

 

32.4 -110.3 0.0 -27.8 -12.0 327 

32.8 -103.4 0.0 -30.9 -9.9 219 

33.6 -113.2 0.0 -24.4 -8.1 157 

HA4HB4 

PIPPS, 

2 M GdmCl 

27.6 -115.8 0.0 -20.3 -8.8 103 

30.5 -110.3 0.0 -21.9 -8.3 45 

30.6 -106.8 0.0 -21.4 -7.8 53 

HA4HB4 

PIPPS, 

2 M GdmCl, 

Ni
2+

 

34.3 -105.7 0.0 -22.8 -8.7 161 

36.7 -112.6 0.0 -23.1 -7.9 81 

36.4 -113.4 0.0 -23.2 -8.6 103 

A4B4 PIPPS, 

2 M GdmCl 

39.8 -113.0 0.0 -19.7 -9.2 69 

38.1 -118.7 0.0 -20.0 -8.9 65 

37.7 -120.5 0.0 -18.4 -8.1 69 

A4B4 PIPPS, 

2 M GdmCl, 

Ni
2+

 

39.4 -116.9 0.0 -20.0 -9.1 75 

38.4 -114.5 0.0 -20.4 -8.8 853 

35.8 -117.3 0.0 -19.2 -9.1 29 

HA4HB4 

PIPPS, 

2 M GdmCl 

(university) 

31.2 -98.8 0.0 -22.2 -8.7 52 

HA4HB4 

PIPPS, 

2 M GdmCl, 

Ni
2+ 

(university) 

36.4 -92.8 0.0 -24.5 -8.4 163 
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Figure A 5: Thermal unfolding curves of B4 (A) and HB4 (B) in 10 mM NaP (pH 8.1) at 222 nm fitted to equation 5 to 

obtain Tm. The spectra were taken at 222 nm from 10 to 90°C with a bandwidth of 2 nm, an integration time of 1 s and 2 s 

intervals in the time course measurement mode.  
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Figure A 6: Replicates of the unfolding curves of HA4 (A, B) in 2 M GdmCl with and without Ni2+ at 222 nm.  The 

His:Ni2+ ratio was 2:1. The data were fitted with equation 5 to obtain the Tm. The unfolding curves were acquired with the 

following setup: The heating rate was 1°C/min. Measurements were performed in 5 mM PIPPS pH 8.1 in the interval scan 

mode (interval: 2 min, 1 accumulation, bandwidth: 1 nm, 2 s integration time). The mean residue molar ellipticity was 

calculated using equation 1. 
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Figure A 7: Replicates of the unfolding curves of HA4HB4 (A-C) and A4B4 (D,E) in 2 M GdmCl with and without 

Ni2+ at 222 nm.  The His:Ni2+ ratio was 2:1. The data were fitted with equation 5 to obtain the Tm.  

The unfolding curves in A, B, D, E were acquired with the following setup: The heating rate was 1°C/min. Measurements 

were performed in 5 mM PIPPS pH 8.1 in the interval scan mode (interval: 2 min, 1 accumulation, bandwidth:1 nm, 

integration time 2 s) The curves in graph C were taken at a Jasco J-815 CD Spectropolarimeter equipped with a Jasco PTC 

423s peltier element (University of Potsdam) in 5 mM PIPPS, 2 M GdmCl (pH 8.1) at 222 nm from 4 to 90°C (heating 

rate:1°C/min). The measurement mode was the temperature-wavelength scan with a step width of 1°C, a bandwidth of 2 nm, 

an integration time of 4 s after 5 s with a change smaller than 0.1°C. The mean residue molar ellipticity (MRE) was 

calculated using equation 1. 
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Figure A 8: CD spectra for HA4HB4 before (black) and after (red) the heating process without (A) and with 2:1 

His:Ni2+ ratio (B) at 20°C. The spectra were taken in 5 mM PIPPS, 2M GdmCl (pH 8.1) from 250 to 208 nm with a step 

resolution of 1 nm, a bandwidth of 1 nm, a scanning speed of 50 nm/min, an integration time of 2 s and 10 scans were 

accumulated. The mean residue molar ellipticity (MRE) was calculated using equation 1. 
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Figure A 9: Apparent sedimentation coefficient distribution (ls g*) of the individual peptides. The peptides (1 mg/ml) 

were measured in 5 mM PIPPS buffer (pH 8.1). Data were obtained using AUC in the sedimentation velocity mode 

(60000 rpm) with an interference detector.  
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