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Sharks and stingrays have a distinct skeletal system, which is predominantly made up of 

unmineralized cartilage, a material that is several orders of magnitude less stiff than the 

bone forming most vertebrate skeletons. The cartilage skeleton of sharks and rays is 

wrapped in a surface tessellation composed of minute polygonal tiles called tesserae, 

which are linked to each other by unmineralized collagenous fibers. The distinct 

combination of hard and soft tissues —and particularly the arrangements and structure 

of the tiled layer— is hypothesized to enhance the mechanical properties of this 

cartilage (which performs many of the same functional roles as bone) by providing 

either stiffness or flexibility, depending on the nature of the applied load.  

This dissertation examines the effect of tesseral shape, ultrastructure and material 

properties on the mechanics of tessellated cartilage. In a first project phase, two-

dimensional analytical models of arrays of different tile shapes (triangle, square and 

hexagon) surrounded by soft, fibrous joints were developed to evaluate the mechanical 

performance (effective modulus) of tessellations, as a function of their material and 

structural parameters. The two dimensional (2D) tiled composites were constructed 

from simple geometric shapes, and the overall composite effective modulus calculated 

by making a modification to the traditional Rule of Mixtures. The structural and material 

properties of joints (thickness, Young’s modulus) and tiles (shape, area and Young’s 

modulus) were altered to determine their effect on the mechanical performance of the 

whole composite. It was observed that for all shapes the effective modulus increases 

with decrease in joint thickness or increase of tile stiffness. Square tessellations were 

mechanically least sensitive and hexagons were most sensitive to changes in the 

modeled parameters. These observations indicate that mechanical performance (e.g. 

stiffness) of tessellated cartilage (and tiled composites in general) can be tuned and 

optimized through changes in joint and tile geometry and materials properties.  

In a second project phase, three-dimensional (3D) tesserae were modeled with the 

ultrastructural features described in natural tessellated cartilage incorporated, and their 

mechanics evaluated using finite element analysis (FEA). Geometric aspects of these 

ultrastructural features were varied parametrically, and effective modulus of the whole 
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tessera was calculated. Some structural changes had no effect on tesseral stiffness, 

whereas an increase in contact surface area of two adjacent tesserae increased the 

effective stiffness of tesserae by 6%. It was observed that distinct hypermineralized 

features in tesserae (so-called ‘spokes’) experience maximum stress, but that their 

lamellated structure likely helps dissipate crack energy, making tesserae more damage-

tolerant. Additionally, my models show that the tesseral center experiences high strain 

energy densities, suggesting that cells in this region in natural tesserae may be sensors 

of mechanical information. Building on my model of individual tesserae, modeled stress-

strain curves of whole tesseral arrays show that changes in tesserae / joint shape and 

material properties can have pronounced effects on the mechanical behavior of the 

whole tiled composite. Maximum stresses in tension and compression occur in joints or 

within tesserae, respectively, supporting hypotheses of multi-functional properties of 

shark and ray tessellated cartilage.  

The combined results of the two project phases are useful drivers of hypotheses 

regarding tesseral growth, mechanics, load management, prevention and ‘directing’ of 

cracks  and tesseral contribution to cartilage mechanics. Further, these results lay a 

foundation for deriving guidelines and design principles for developing tunable tiled 

materials inspired from the tessellations found in shark and stingray skeletons. 
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Haie und Stachelrochen haben ein besonderes Skelett das überwiegend aus nicht 

mineralisiertem Knorpel besteht, einem Material, dass um mehrere Größenordnungen weniger 

steif ist als Knochen im Skelett aller anderen Wirbeltiere. Dieses Knorpelskelett ist nur 

oberflächlich mineralisiert, eingehüllt in ein Mosaik aus winzigen polygonalen Kacheln, den 

sogenannten ‚Tesserae’, die untereinander durch unmineralisierte Kollagenfasern miteinander 

verbunden sind. Erstaunlicher Weise erfüllt das so ‚gepanzerte Knorpelskelett’, dieselbe 

Funktion wie sein viel härteres, knöchernes Pendant. Es wird angenommen, dass die spezifische 

Kombination von Hart- und Weichgewebe –insbesondere die Anordnung und Struktur von 

Tesserae– die mechanischen Eigenschaften des Knorpelskeletts verbessern indem je nach Art 

der Belastung (Druck oder Zug) entweder Steifigkeit oder Flexibilität erreicht wird.  

In dieser Dissertation wird der Einfluss von Form, Ultrastruktur und Materialeigenschaften der 

Tesserae auf die Mechanik der oberflächlich gekachelten Skelettelemente untersucht. In einer 

ersten Projektphase wurden zweidimensionale (2D) analytische Modelle von Anordnungen 

unterschiedlicher Kachelformen (Dreieck, Quadrat und Sechseck) entwickelt, bei denen die 

einzelnen Kacheln durch flexible Gelenke miteinanderverbunden sind. Im Anschluss wurde das 

mechanische Verhalten (zB. Young’s Modulus) der verschiedenen Verbundwerkstoffe in 

Abhängigkeit von ihren Material- und Strukturparametern bewertet. Der Elastizitätsmodul des 

Verbundwerkstoffs wurde dabei mit Hilfe einer Abwandlung der traditionellen ‚Rule of 

Mixtures’ aberechnet. In den Experimenten wurden die Struktur- und Materialeigenschaften der 

Gelenke (zB. Dicke und Elastizitätsmodul) und der Kacheln (zB. Form, Fläche und 

Elastizitätsmodul) geändert, um deren Einfluss auf die mechanische Leistung des gesamten 

Verbundwerkstoffs zu bestimmen. In allen Modellen, unabhängig der Kachelform, nahm der 

effektive Elastizitätsmodul bei abnehmender Gelenkdicke oder zunehmender Steifigkeit der 

Kacheln zu. Jedoch im Vergleich der mechanischen Leistung waren Mosaike bestehend aus 

quadratischen am wenigsten bzw. sechseckigen Kacheln am meisten empfindlich gegenüber 

Veränderungen der modellierten Parameter. Diese Beobachtungen deuten darauf hin, dass die 

Steifigkeit von gekachelten Verbundwerkstoffen durch Änderungen der Kachel- und Gelenkform 

und deren Materialeigenschaften abgestimmt bzw. optimiert werden kann.  

In der zweiten Projektphase wurden dreidimensionale (3D) Mosaiksteine mit ultrastrukturellen 

Merkmalen (abgeleitet von den Beschreibungen der natürlichen Tesserae) modelliert und ihr 

mechanisches Verhalten mittels Finite-Elemente-Analyse (FEA) analysiert. Zu den inneren 

Merkmalen der Tessserae zählen hochmineralisierte ‚Spokes’ [ähnlich den Speichen eines 

Zusammenfassung 
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Rades] aufgebaut aus Lamellen, und ein homogenes Zentrum dessen Radius variiert. 

Geometrische Aspekte dieser ultrastrukturellen Merkmale (Lamellenanzahl und –dicke, Radius 

des homogenen Zentrums, und Gelenkkontaktfläche) wurden variiert (durch parametrisches 

Modellieren) und der effektive Elastizitätsmodul des Verbundwerkstoffes berechnet. Die 

Änderung der ‚Spoke’-Lamellenzahl und des Radius des homogenen Zentrums hatte keinen 

Einfluss auf die Steifigkeit der Tesserae, während eine Vergrößerung der Kontaktfläche von zwei 

benachbarten Tesserae deren effektive Steifigkeit um 6% erhöhte. Die maximale Spannung 

wurde innerhalb der Spokes beobachtet, in Form eines oszillierenden Spannungsmusters, 

aufgrund des periodisch variierenden Moduls der Lamellen. Ebenso nahm die Wellenlänge der 

modellierten Spannungsschwankungen mit zunehmender Lamellendicke ab. Letzteres 

unterstützt gängige Theorien, dass periodische Schwankungen der Materialeigenschaften in 

natürlichen Materialien dazu führen können die Ausbreitung von Rissen zu beeinflussen oder 

gar zu verhindern. Meine Modelle zeigen weiterhin, dass das Zentrum von Tesserae eine hohe 

Dehnungsenergiedichte aufweist, was darauf hindeuten könnte, dass die Zellen in dieser Region 

in den natürlichen Tesserae als Sensoren für mechanische Informationen fungieren. Aufbauend 

auf meinen individuellen Tessera-Modellen, zeigen modellierte Spannungs-Dehnungskurven 

zusammengesetzter Mosaike, dass Veränderungen der Größe von Tesserae und deren Gelenken 

sowie ihren Materialeigenschaften signifikante? Auswirkungen auf das mechanische Verhalten 

des Verbundwerkstoffs (des Mosaiks) haben. Maximale Zug- und Druckspannungen treten 

jeweils in den Gelenken bzw. in Mosaiksteinen auf und stützen somit Hypothesen über die 

multifunktionalen Eigenschaften des Mosaikknorpels von Haien und Rochen. Die kombinierten 

Ergebnisse der beiden Projektphasen bieten nützliche Daten für die Erstellung von Hypothesen 

über das Wachstum, dem mechanischen Verhalten unter Last, sowie der Prävention und 

Regulierung von Brüchen in Tesserae und ihrem Beitrag zum mechanischen Verhalten von 

oberflächlich gekachelten, knorpeligen Skelettelementen. Die hier gezeigten Ergebnisse bilden 

darüber hinaus die Grundlage für die Ableitung von Gestaltungsprinzipien für die Entwicklung 

artifizieller Kachellungen von 3D Objekten, die sich an den Tesserae-Netzwerken in Haifisch- 

und Rochenskeletten orientieren. 
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Man has continually looked to nature for inspiration, in disciplines as diverse as art, 

medicine, architecture, and engineering. Nature holds particular promise for 

engineering, having evolved mechanically- and energy-efficient structures, which can 

handle the complex mechanical functions posed by the organism(Barthelat and Zhu, 

2011). For example, several natural structures such as honeycomb, trabecular bone, 

cuttle fish bone uses minimal material density yet the exhibit exemplary mechanical 

behavior, capable of absorbing high-energy impacts without failing (Yamashita and 

Gotoh, 2005). The ability of nature to produce such efficient composites with enhanced 

mechanical behavior lies in the combination of material and structural properties.  

The skeletal system of vast majority of the vertebrates are made up of stiff bones, which 

provides rigid frame work for the organism, also they support in high load bearing 

activities of the animal such as locomotion and feeding. However the skeletal system of 

sharks and rays (elasmobranch fishes) consists predominantly of unmineralized 

cartilage (Dean et al., 2009b; Kemp and Westrin, 1979b; Seidel et al., 2016a), a skeletal 

tissue which is far less stiff than bone (Wegst and Ashby, 2004b), yet these cartilaginous 

skeletons are involved in high load-bearing activities, such as swimming, benthic 

locomotion along the seafloor, and feeding, even on very hard foods (Wilga and Motta, 

2000). It is hypothesized that the distinct outer mineralized layer of the skeleton —

comprised of a composite mix of soft fibrous material and minute, mineralized, 

polygonal tiles called tesserae (Dean and Schaefer, 2005; Dean et al., 2016; Kemp and 

Westrin, 1979b; Seidel et al., 2016a)— enhances the mechanical properties of the 

cartilage, (Fratzl et al., 2016a). In particular, the tessellation is believed to help manage 

loads (1) through the ultrastructural architectures and geometries of individual tesserae 

[Seidel, Knoetel] and (2) through the interaction of tesserae on a larger scale, allowing 

the skeleton to be either flexible or rigid, depending on the nature of the applied load 

(Liu et al., 2010a; Liu et al., 2014a). These mechanisms, however, had never been 

demonstrated explicitly in the actual tissue, nor in bio-accurate models. 

The several previous studies, which explored the mechanics of tessellated cartilage, fell 

into one of two types, each with different limitations. On the one hand, there were 
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computational studies that assumed tesserae to be homogeneous blocks (Ferrara et al., 

2011a; Wilga et al., 2016a), largely ignoring their natural variation in geometry, 

ultrastructure and material (Seidel et al., 2016a). On the other hand, several mechanics 

studies focused largely on the mechanics of whole skeletal elements (either through 

mechanical testing or finite element modeling) without considering the role of the 

tessellation. These limitations were likely due to two factors: (1) the intricate structure 

and minute size of tesserae (Seidel et al., 2016a), which make in situ tesserae-focused 

mechanical experiments very difficult to perform; and (2) the previous lack of 

information on tesserae ultrastructure and geometry, making the construction of 

accurate computational models difficult. As a result, the effect of tesserae shape and role 

played by the tesserae ultrastructure on cartilage mechanics were never investigated. 

 

Figure 1: Visual summary of introduction and project phases of the dissertation.  
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Introduction panel: The tessellated cartilage of sharks and rays - moving from top to bottom, the 

magnification increases, showing the tesseral mat tiling the outside of the skeleton and then 

horizontal/vertical sections of tesserae, showing the intricate ultrastructure present in them (images 1.a 

to 1.c: microCT; d: scanning electron microscopy (SEM) and e: microCT). Phase-1: 2.a. Effect of tile shapes 

on the effective modulus of the composite. 2. b. The partitions are created on the tiled composites and 

subjected to the modified rule of mixtures. 2. c. The relationship between structure, material, and stiffness 

of the composite is derived using contour plots. Phase-2: 3. a. Stepwise parametric modeling of tesserae 

incorporating all the ultrastructural and material information. 3. b. By subjecting these models to finite 

element analysis, the stress information can be obtained to analyze the role of ultrastructure in tesserae 

and cartilage mechanics. (Images are reproduced with permission from (Jayasankar et al., 2017a; Seidel et 

al., 2016a) 

 

This dissertation addresses, in two project phases, the role played by tesserae in 

contribution towards cartilage mechanics using mathematical modeling, parametric 

CAD modeling and computational structural mechanics. In the first project phase, two-

dimensional analytical models of tesserae are developed, inspired from the tessellated 

cartilage of round stingray (Urobatis halleri), to observe the effects of tesserae shape, 

joint/tesserae size, and material properties on the mechanical behavior of the composite 

material. In the second project phase, the ultrastructural features of tesserae are 

incorporated into models, their features varied using parametric digital modeling 

techniques, and the simulated tissue responses to biologically-relevant loads quantified 

using computational structural mechanics. This second study, therefore will allow us to 

understand the effect of tesserae ultrastructure on the global mechanics of the 

tessellated cartilage.   

The combined results of these studies will help in understanding the functional 

importance of the materials and morphologies observed in the tesserae of sharks and 

stingrays. Furthermore, they help in deriving hypothesis regarding the growth and 

development of this tissue, and the strategies evolved to prevent skeletal damage, while 

framing guidelines for the successful development of bio-inspired composites.  
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2.1 Introduction to tilings  

Tilings are surfaces subdivided into a continuous field of smaller elements that are 

geometrically congruent to their neighbors and with which they may interact to varying 

degrees (Oxman, 2010). Tilings are available everywhere around us, in natural systems 

like the patterns and scales of animal skin and manmade architectures like pavement on 

the streets. Tiling patterns from nature —and tessellations, a specific case where no 

gaps or overlaps exist in the tiling— have led many architects, artists and 

mathematicians to derive inspirations for their work (Schattschneider and Emmer, 

2003). The use of architectural tiling patterns dates back to ancient civilizations in 

Egypt, Rome and Persia. Ancient Romans used tessellated mosaics to decorate their 

floors and also used square stones to pave their roads (Chang, 2018a; Chang, 2018b; 

Charbonnier and Cammas, 2016; Khaira, 2009). Tessellation patterns observed in nature 

inspired the Dutch graphic artist, M.C. Escher, to frequently use tessellations in his 

artwork (e.g. Fig. 1d) (Schattschneider and Emmer, 2003). Similarly, tessellations have 

intrigued many mathematicians, interested in understanding the role played by the 

geometry of shapes in tessellating a surface (Chang, 2018b; Deger et al., 2012). Thus 

tessellations are found widely in various art forms and engineering structures. 

Apart from the aesthetic purpose of tessellations, they often play functional and 

mechanical roles as well. For example, the ancient Romans recognized that stone-paved 

roads had a functional advantage over roads with continuous surfaces. Whereas the 

latter tended to crack in extreme weather conditions and allowed cracks to propagate 

easily (Charbonnier and Cammas, 2016), the former would prevent crack propagation, 

due to cracks losing energy when they encountered a gap between two stone tiles in the 

road’s discontinuous surface (Fratzl et al., 2007a; Fratzl et al., 2016a). Since Roman 

times the strategy of paving roads with stone tiles has been followed and can still be 

found in many countries in the world where they experience extreme weather 

conditions. As such, there are entire sub-disciplines in mathematics, topology and 

 State of the art 
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architecture devoted to understanding the properties of tessellations and their ability to 

cover surfaces. 

 

Figure 2: Classification of tessellations based on their symmetry. 

a. Regular/periodic tessellations: triangle, square and hexagon where each polygon is surrounded 

identical polygon meeting at a vertex to vertex. b. Example to irregular/aperiodic tessellations in 

architecture where stone tiles are used to cover a street surface in an archeological site at Pompei, Italy. 

Reproduced with permission from (Charbonnier and Cammas, 2016). c. Penrose tessellation, an example 

of semi-regular/aperiodic tessellation where two or more polygons are combined to tessellate a surface. 

Reproduced with permission from (Soto, 2009). d. Example of M.C. Escher’s artwork irregular/periodic 

tessellations in art. Reproduced with permission from (Schattschneider and Emmer, 2003). 

 

Tessellations can be classified in a variety of ways, for example, based on their 

dimensions (either two- or three-dimensional tessellations) or their tile shapes (regular, 

semi-regular or irregular tessellations) or their tiling symmetry (periodic and aperiodic 

tessellations) (Chang, 2018b; Oxman, 2010). Regular tessellations are entirely made up 
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of identical regular polygons where all the polygons meet at vertex to vertex (Chang, 

2018b). An example of regular tessellations patterns can be found in the square tilings 

on the bathroom floors (Chang, 2018a). The regular tessellations are shown in Fig. 1a. 

There are only three shapes, which can be used for regular tessellations and they are 

triangle, square and hexagon and they can tessellate in a periodic fashion. Based on the 

tiling symmetry the regular tessellations can be classified as periodic tessellations 

(Boots et al., 1999; Grunbaum and Shephard, 1977). Whereas the semi-regular 

tessellations are formed by two or more convex regular polygons are used and polygons 

of the same order surround each polygonal vertex. Semi-regular tessellations are 

aperiodic in nature and an example of aperiodic tessellation would be a Penrose tiling (it 

is an example of non-periodic tiling generated by an aperiodic set of prototiles)(Boots et 

al., 1999; Grunbaum and Shephard, 1977; Khaira, 2009; Oxman, 2010). The next 

classification by shape is irregular tessellation where any kind of geometrical shapes can 

be used to cover a surface (Boots et al., 1999). An ideal example would be Roman tiles in 

Pompeii as shown in fig. 1b. Even though there are further classifications of tessellations 

based on their symmetry, they are not discussed because they lie beyond the scope of 

this dissertation.  

In this thesis, in order to make more intuitive the modelling of tessellations found in a 

natural system, I focus on the construction and mechanics of idealized tessellations that 

are regular and periodic. 

2.2 Introduction to natural tilings 

Natural tessellations and tilings are often associated with biological armors against 

predation and body damage or related to the locomotory mechanics of the animal (Chen 

et al., 2015a; Hosseini et al., 2018; Porter et al., 2017; Yang et al., 2013b; Yang et al., 

2012). In this way, natural tilings offer interesting systems for exploring form-function 

relationships. The tessellations and tilings found in biology offer a mechanical advantage 

to organisms by combining protection/stiffness with flexibility, typically mutually 

exclusive properties (Achrai and Wagner, 2013a; Chen et al., 2015a; Liu et al., 2014a; 

Wang et al., 2016b; Yang et al., 2015). There are many examples of natural tilings in a 

variety of size scales from the micron-scale plates in the layers of nacre in mollusk shells 
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(Barthelat and Zhu, 2011), to the sub-millimeter mineralized tiles (tesserae) sheathing 

the cartilages of sharks and rays (Seidel et al., 2016a), to the macroscopic plates in the 

body armors of boxfish (Hosseini et al., 2018; Marcroft, 2015; Porter et al., 2017; Yang et 

al., 2015) and turtle shells (Chen et al., 2015a; Damiens et al., 2012; Krauss et al., 2009a; 

Rhee et al., 2009; Rivera and Stayton, 2011).  

Most natural tessellations have not been classified in terms of the mathematical 

definitions for tessellations stated above (i.e. based on symmetry and dimensions). As a 

result, in this dissertation I build a new classification for natural tessellations and tilings 

with respect to common variation in structure and arrangement of tiles in organisms 

(Table 1). Relevant variables relate to the size of tiles, their arrangement and interaction 

(e.g. whether tiles overlap, interlock or are stacked on top of each other), the stiffness 

(Young’s modulus) of the tiles, and the nature and modulus of the softer connections 

that anchor or link tiles (e.g. skin, collagen fibers) (Chen et al., 2015a; Gao and Li, 2019; 

Vernerey et al., 2014; Yang et al., 2015; Zhu et al., 2012). The hard and soft phase 

components present in the tiling architecture are listed along with the specific tile 

interface mechanism (e.g. in turtle shell the tile/hard phase is an osteoderm, the soft 

phase is comprised of collagen fibers, and the interaction between tile interface is called 

a suture interfaces (Chen et al., 2015a). Since there is not much data available for the 

soft phase component in these tilings but, because this phase often contains an 

appreciable amount of collagen, the Young’s modulus of the soft component was 

assumed to be 0.05 GPa, similar to the modulus of boxfish collagen fibers in tension 

(Yang et al., 2015).  

The ratio of tile/hard phase modulus to joint/soft phase modulus is plotted versus tile 

size in Fig. 2, to provide a perspective on the broader construction and mechanics of 

natural tiled systems. From the plot shown in Fig. 3 one can observe that the 

combination of hard and soft phases in tiling architecture plays a huge role in adding 

stiffness to the composite. It should be noted that the organisms with smaller tile size 

(e.g. nacre and millet) have higher modulus ratio when compared to the organisms with 

higher tile size (e.g., Glyptodon, Alligator). The decrease in modulus ratio is either due to 

the composite material composition and the structural arrangement within the tiles or 

ratio of size with respect to tile and the soft interface, (e.g., alligator osteoderms are 

comprised of a mix of collagens and mineral and have porous structure). This plot helps 
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in getting a general idea about how the combination of hard and soft phase in the 

composite and the possible mechanical roles they could contribute to the composite. 
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Figure 3: Plot showing the relationship between material property and size. 

The plot shows the modulus ratios (hard modulus phase/soft phase) (y-axis) of various organisms and 

their corresponding size scale (x-axis) in microns. The organisms are classified as reptiles, fishes, 

mammals, and plants. 

 

In the next section specific examples of natural tilings (turtle, boxfish and armadillo) are 

discussed. The sections deal with findings from previous studies, which analyzed the 

role played by the hard/soft phase and tile interfaces in the mechanics of the natural 

composite found in these animals. This gives more understanding in the context of form-

function behavior of hard and soft components in these natural composites, while also 
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highlighting that natural tessellations often are characterized by interesting emergent 

properties (e.g. combinations of flexibility and stiffness). 

2.3 Examples of biological tilings 

2.3.1 Boxfish 

Boxfish (Lactoria cornuta) belong to a family of fishes called the Ostraciidae, which 

includes trunkfish and porcupinefish. Members of the Ostraciidae are characterized by 

their boxy appearance and their bodies are defined by a carapace of rigid, external 

scutes. The boxfish’s carapace exhibits a tessellation, which predominantly consists of 

hexagonal scutes (~78%) (Yang et al., 2015). The scutes interlock with each other at the 

triangular suture interfaces along their vertices and are tethered with each other using 

collagenous fibers as shown in Fig. 4 (Marcroft, 2015; Yang et al., 2015). The vertices 

push against each other and there by not allowing the scutes from sliding apart. The 

flexibility and resistance to predation (bite force of predators) of the boxfish scutes were 

tested by performing micromechanical tests involving tension and puncture. These tests 

are useful in observing failure of the scutes and it was observed that the failure 

primarily occurs in the collagen layers between scutes, rather than within the scutes 

themselves (Yang et al., 2015). Thus, scutes play a vital role in protecting the boxfish 

when it is subjected to sharp impact loads generated due to the bite forces of the 

predators.  

Sutured interfaces are observed widely in many plant and animal species (e.g. Table 1) 

and the suture geometry were varied widely from simple triangular shaped sutures to 

complex wavy designs (Gao and Li, 2019; Lin et al., 2014b). In order to understand the 

effect of suture morphology on the mechanics of the structure, several studies analyzed 

the effect of suture shape on failure mechanisms (Li et al., 2011, 2012; Lin et al., 2014a; 

Lin et al., 2014b). Several suture designs (triangular, trapezoidal, anti-trapezoidal and 

rectangular) were analyzed using analytical models and 3D printed physical prototypes 

(Lin et al., 2014a; Lin et al., 2014b). On subjecting 3D printed prototypes to mechanical 

tension tests, triangular shape sutures demonstrated uniform distribution of tensile and 

tangential shear stress in the interface. The tangential forces enable the scutes to 

interlock with each other as shown in Fig. 4. In the case of boxfish scutes, the triangular 
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sutures are believed to resist penetration and crushing forces by predator’s teeth (Li et 

al., 2011, 2012; Lin et al., 2014a; Lin et al., 2014b; Porter et al., 2017; Yang et al., 2015). 

 

Figure 4: Examples of biological tilings 

Boxfish: Triangular-sutured scutes on the carapace of boxfish. A theoretical comparison of forces acting on 

straight (left) and triangular suture interfaces (right) show that the latter leads to interlocking of scutes 

while the former leads to separation of scutes. Boxfish images are reproduced with permission form (Yang 

et al., 2015) Turtle: The schematic of turtle shell shows the architecture within the osteoderm and suture 

interface between these osteoderms. Images are reproduced with permission from (Achrai and Wagner, 

2013b). Pangolin: Orientation of scale and defense mechanism of the pangolin. Pangolin curl into a ball 

when in danger, shielding their body and projecting their scales, which prevent the penetration of the 

predator’s teeth. The schematic of the pangolin scale shows the orientation of lamellae distribution in the 

different regions within the scale. The fig. 4 shows orientations of dogbone samples in longitudinal and 

traverses orientations, which were used for mechanical testing. Pangolin images are reproduced with 

permission from (Liu et al., 2016; Wang et al., 2016b). 
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Thus the combination of hard tiles attached to each other using soft collagen creates a 

flexible armor that protects boxfish against predators and, aided by a triangular suture 

interface, the boxfish’s scutes has higher resistance to penetration forces (Yang et al., 

2015). 

A hydrodynamic analysis of boxfish carapace was performed by fabricating 3D printed 

models of carapace shape and subjecting them to flow tank measurements (drag: the 

forces which resist forward motion) and it was validated with computational fluid 

dynamics. It was observed that due to the boxy shape, the carapace experiences 

destabilizing forces which in turn increases the drag experienced by the fish. However 

these destabilizing forces enable the boxfish to have better maneuverability (Marcroft, 

2015; Porter et al., 2017; Van Wassenbergh et al., 2015). In this case, the tessellation of 

scutes not only adds protection but also, by forming a complex and boxy body form, 

enhances the maneuverability of the fish. The predominantly hexagonal scutes of the 

boxfish (Yang et al., 2015) suggest that scute geometry may play an important role in 

tessellation and mechanics of the surface. However, the effect of tile shape and the 

variation of material combinations on the mechanical performance of the biological 

composite were never investigated in this system. 

2.3.2 Turtle shell 

Turtle shells are tessellated by bony plates called osteoderms, which fit together to form 

a domed shield for the body. The shell protects the turtles from predatory attacks and a 

study performed on leatherback turtles showed that tessellations also provides a 

flexible surface for maneuverability (Chen et al., 2015a). The osteoderms comprise the 

dorsal side (carapace) and the ventral side (plastron) of the animal’s shell (Achrai and 

Wagner, 2013a; Chen et al., 2015a; Krauss et al., 2009a). Each osteoderm is composed of 

a bone-like tissue consisting of collagen helices and hydroxyapatite nanocrystals, and 

the osteoderms are connected to each other by fibrous joints called sutures (Fig. 4) 

(Chen et al., 2015a; Krauss et al., 2009a; Rhee et al., 2009; Rivera and Stayton, 2011). At 

the sutural interface, adjacent osteoderms interlock through complex, zig-zagging 

tongue-and-groove architectures (e.g. a conical projection from one osteoderm fits into a 

conical cavity in the other), with osteoderms tethered together by collagenous fibrous 

material.  
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Several studies demonstrated the various mechanisms employed by turtle carapace to 

resist damage, crack propagation and failure. They employed mechanical testing 

methods and computational approaches to effectively understand the contribution of 

this tiling (effect of material, shape and structure) to the mechanical behavior of the 

turtle shell. The structural features were examined using scanning electron microcopy 

and micro-computed tomography and nanoindentation tests were performed (Chen et 

al., 2015a) (Achrai and Wagner, 2013a; Damiens et al., 2012). Nanoindentation 

experiments typically involve pushing a very small, hard tip (e.g. with a tip radius of 

hundreds of nanometers) into a material to examine hardness and elastic modulus at 

very small scales. The estimated structural and mechanical characterization of turtle 

carapace from nano-indentation showed that they are able to resist impact loads, and 

also designed to withstand sharp and blunt impacts (Achrai and Wagner, 2013a).  

Suture morphology plays an important role in turtle’s shell mechanics and it is 

important to note that the triangular suture interface provides a balance between tensile 

strength of the osteoderm and the shear strength of the connecting collagen fibers. This 

provides more flexibility to the shell in spite of its rigid component (osteoderm) (Chen et 

al., 2015a; Krauss et al., 2009a; Rivera and Stayton, 2011). The soft collagenous suture 

interface acts as a crack arrester, preventing cracks from passing from one hard 

osteoderm to another (Chen et al., 2015a; Fratzl et al., 2007a). Another study, simulating 

the compressive behavior of turtle shells showed that they undergo non-linear 

deformation behavior. The results from the turtle shell indicate that they are able to 

withstand high impact loads and yet they provide flexibility (Damiens et al., 2012). 

These studies indicate the turtle shell can be used as an inspiration for deriving 

guidelines for bioinspired structures, combining maneuverability and stiffness. 

2.3.3 Pangolin scales 

Pangolins are mammals, which have overlapping scales covering the majority of their 

skin and they are predominantly found in tropical and subtropical regions of Asia and 

Africa. In contrast to tessellations found in turtles and boxfish, the pangolin achieves 

flexibility and stiffness in the protective armor in the form of overlapping keratinous 

scales. The keratinous scales are arranged in such a way that each scale is in the center 

of neighboring scales arranged in a hexagon pattern (Chon et al., 2017; Liu et al., 2016; 
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Wang et al., 2016b). The arrangements of the scales are shown in Fig. 4 where for each 

scale the internal surface partially covers three lower scales and the external surface is 

partially covered by upper three scales (Wang et al., 2016b). When predators, threaten 

pangolins,  as a defense mechanism pangolins curl up into a ball, protecting their bodies 

and projecting their hard- and sharp-edged scales outwards, thereby protect them 

against the sharp bites of predators’ teeth (Fig. 4) (Chon et al., 2017; Liu et al., 2016; 

Spearman, 1967; Wang et al., 2016b; Yang et al., 2013b).  

The material property and the arrangement of pangolin scales allow them to be both 

rigid and flexible. A scale of a pangolin can be divided into three different regions of 

lamellar arrangement throughout the scale’s thickness. The ventral, intermediate and 

dorsal layers. In the ventral (bottom) region of the scale, the lamellae are parallel to each 

other and they are stacked with a tight curvature. In the intermediate layer the lamellar 

structure are parallel near the ventral region and the lamella asymptote when they 

approach the dorsal region (Liu et al., 2016; Wang et al., 2016b). The schematic of a 

pangolin scale is shown in Fig. 4 (Chon et al., 2017). In order to understand the effect of 

lamellar organization, indentation tests were performed on orientations with respect to 

scale growth and scale thickness directions (transverse and longitudinal orientations, 

shown in Fig. 4). Small dogbone samples were cut out from the whole scale in transverse 

and longitudinal orientations and subjected to mechanical testing methods like 

microindentation and tensile/compression testing, to test the effect of loading 

orientation on scale mechanics. In both orientations, scales showed similar 

microhardness, indicating an isotropic nature of the scale. Similar isotropic behavior 

was found in the tensile and compression tests for different orientations, in spite of the 

varied keratinous lamellae structure (Chon et al., 2017). Additionally, due to the 

viscoelasticity of the keratinous scales, the materials are stiffer and stronger at high 

loading rates, while capable of absorbing high energy at low strain rates (Wang et al., 

2016b), thus making the pangolin scales a useful bio-inspiration for making armors 

against a variety of projectiles.  

2.4 Introduction to mechanical modeling of tilings 

The examples in the previous section demonstrated the tiling morphologies and 

mechanics in different organisms and the form-function relationships of natural tiled 
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composites. Many of these studies used analytical and computational models to 

understand the mechanics of the natural structures. The current section deals with 

analytical and computational modeling of natural systems and how they are used to 

interpret the mechanics and form-function relationships. 

2.4.1 Analytical modeling 

Analytical mathematical methods are valuable tools for testing form-function 

relationships in biology, particularly in their ability to simplify the complex structure of 

biological systems and estimate the effect of structural and material variables of the 

system on the overall mechanics. Such methods are also useful in choosing an optimal 

model for fabrication and further mechanical testing especially when the fabrication 

costs are high. Additionally, mathematical methods can be used to build hypotheses of 

mechanical performance even in the absence of detailed structural and material 

information, through the exploration of the effects of ranges of 

properties/morphologies.  

For example, the sutural interfaces in various seed coats of millet seed, turtle 

osteoderms, and boxfish scutes exhibit a wide degree of structural variations (Gao and 

Li, 2019). Mathematical models of the sutures were developed to understand their 

contribution to overall stiffness, strength and fracture toughness of the composite (Gao 

and Li, 2019; Hasseldine et al., 2017; Li et al., 2011, 2012), by introducing variations in 

sutural structure/morphology and its material property. For example, in an examination 

of turtle osteoderms, the suture’s morphology was varied and the performance of a 

hypothetical rectangular suture was compared to that of the natural triangular suture to 

understand their contributions to osteoderm mechanics (Chen et al., 2015a). It was 

found that the triangularly shaped sutures have maximum strength when compared to 

rectangular shaped suture teeth (Chen et al., 2015a).   

Similar triangular sutures are also found in the interfaces of boxfish scutes and they are 

dimensionally different when compared to the sutural structures found in turtles. The 

boxfish scutes have wavy sutures in larger wavelengths with smaller angles at the 

intersection of triangle sides at the suture interface. Wavy suture interfaces has higher 

resistance to the bite force of the predators when they were compared with the 
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hypothetical model with a straight interface (Porter et al., 2017; Yang et al., 2015). As 

observed in Fig. 4, when a sharp tooth enters a flat interface, the force exerted will 

separate the scutes whereas in the triangular suture interface, the force exerted will 

cause the scutes to interlock with each other. Thus scutes with triangular sutures can 

resist inter-scute penetration better than a straight interface (Yang et al., 2015). Thus 

the triangular suture interface plays an essential role in creating an interlocking 

mechanism between the scutes and preventing the failure of the composite (Yang et al., 

2015). 

Furthermore there are complex sutural structures in seed coats of common millet, 

where the hard epidermis cells are articulated with wavy intercellular sutures to form a 

compact layer to protect the kernel inside, as shown in Fig. 5 (Gao et al., 2018; Gao and 

Li, 2019; Li et al., 2011). In order to evaluate the mechanical properties of the seed coat, 

an analytical model was developed with a two-phase composite, involving a hard phase 

(epidermal cell) and soft intercellular suture layer (Gao et al., 2018; Gao and Li, 2019; 

Hasseldine et al., 2017). In this analytical model, structural dimensions were varied with 

respect to suture morphology (wavelength and amplitude of suture) and evaluated 

using constitutive equations, allowing easy variation of sutural morphology for 

hypothesis testing (Gao et al., 2018; Hasseldine et al., 2017). The constitutive equations 

also allow estimation of the material properties of the whole seed coat, which can be 

further used in computational analysis (Hasseldine et al., 2017). Analytical models 

predicted that the waviness of the sutural interface also plays an essential role in 

protecting the kernel by resisting the loads in different directions (Hasseldine et al., 

2017).  

Although analytical models allow us to perform quick estimation of mechanical 

behavior, however, they have their drawbacks. Analytical models cannot consider all the 

biotic (e.g., internal forces acting within the organism) or abiotic parameters (e.g., 

environmental pressure, temperature), which an organism experiences in nature. 

However analytical models provide useful estimates and validation for experimental 

testing and computational modeling. In many cases, however, experimental testing is 

challenging or impossible, especially if an organism or its tissues have complex 

structure. This is where computational structural mechanics like finite element analysis 

can be useful and this is discussed in the section below.  
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Figure 5: The Fig. shows examples of analytical modeling and finite element modeling. 

1. SEM image of a common millet (Panicum miliaceum) seed with seed coat. The analytical model of a 

millet seed coat developed with material and structural features. The zoomed-in region shows the 

structural orientations of sutures, epidermis cells and hard phase. The zoomed in area can be used to 

model the behavior of the seed coat using constitutive equations. Reproduced with permission from 

(Hasseldine et al., 2017; Yang et al., 2015). 2. The digital model of two different types of turtle shell 

(domed vs. flat shell) were subjected to finite element analysis with appropriate material properties and 

loading regime. The stress contours of the flat shell show it experiences more stress when compared to 

the domed shell. Reproduced with permission from (Rivera and Stayton, 2011).  

2.4.2 Finite Element Analysis 

Finite element analysis (FEA) is used extensively to mathematically model and 

numerically solve structural problems involving intricate and complex geometrical 

structures, to validate mechanical experiments and/or to test structures which 

otherwise cannot be tested using mechanical experiments. To model a biological object 

(e.g., a piece of the skeleton), the geometry is imported into FEA software (e.g., from CT 
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scan data), assigned appropriate material properties and loading conditions (e.g., 

tension, compression), and then divided into smaller parts called finite elements in a 

process called meshing. The mesh contains all the material and structural information 

about the model. By dividing a complex problem into simpler parts, meshing enables 

simulation of a composite structure’s reactions to forces, and visualization of 

parameters like stress and strain at very specific regions of interest. This enables one to 

simulate the behavior of complex biological geometries and test the effects of alternative 

morphologies. Additionally, the data from FEA can also provide visual estimates of stress 

distributions within a biological system (e.g. Fig. 5, turtle shell images).  

Because of these advantages, FEA has been used considerably to investigate the 

mechanical performance of biological systems and validate experimental data. In tiled 

biological systems, for example, FEA and mechanical testing of various turtle  species’ 

shells were compared to understand mechanical properties and the role shell shape 

plays in overall mechanics (Chen et al., 2015a; Damiens et al., 2012; Rivera and Stayton, 

2011) (Fig. 5). The turtle shells are multiphase composites arranged in a multiscale 

hierarchy (Rhee et al., 2009) making them interesting model systems for mechanical 

testing to understand their structural mechanics. The data obtained from mechanical 

tests estimated the strength and elastic modulus of various regions of the carapace 

(Achrai and Wagner, 2013a; Rhee et al., 2009; Rivera and Stayton, 2011) and were 

validated by comparing with results from finite element models (Damiens et al., 2012). 

FE models also provided insight into the regions of failure within the shell, which can be 

observed from the stress distribution contours provided by FE data (Damiens et al., 

2012; Rivera and Stayton, 2011). Finite element analysis was also useful in analyzing the 

hydrodynamic behavior of the turtle shell. Stress contours obtained from FE analysis 

showed that the morphological features of the turtle’s shell have a direct implication on 

the hydrodynamics of the animal. From the FE data, it was observed that shells having a 

flattened surface have higher hydrodynamic efficiency by reducing the drag forces (the 

force that resists forward movement of the animal when they swim) when compared to 

domed shell species (Rivera and Stayton, 2011). However, from the FE data, it was 

observed that the shell strength of the flattened shell is lower when compared to domed 

shell morphology (Rivera and Stayton, 2011), illustrating a trade-off between 

hydrodynamics and strength in the performance of different shell shapes. 
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A similar simulation approach was used to investigate the carapace of boxfish, where the 

role of carapace shape was analyzed using computational fluid dynamics (CFD), a similar 

technique to FEA, which is used to compute problems involving fluid flow and 

hydrodynamics. It was found that the boxy shape of the carapace generates destabilizing 

forces, which overall increase the drag experienced by the fish (Van Wassenbergh et al., 

2015). However, these destabilizing forces allow the fish to maneuver easily, where they 

can make a complete rotation of their body at an angle of 180° in a short area span. This 

allows the boxfish to navigate through coral reefs, which are often obstacle-rich (Porter 

et al., 2017; Van Wassenbergh et al., 2015), again illustrating a performance trade-off, in 

this case between maneuverability and hydrodynamics.  

Computational tools like FEA and CFD play an essential role in determining, 

understanding and validating the mechanical behavior of biological systems. As most 

biological systems are intricate, they cannot be validated using physical experiments. 

For instance, the development of cracks within a structure often cannot be visualized in 

real-time, due to the small scale of cracks and the rapid speed of their evolution. 

However, with FEA it is possible to build hypothesis regarding their failure and also 

predict the propagation of cracks within the structure. Similarly, hypotheses can be 

derived concerning the mechanobiology of an animal during growth, by analyzing and 

comparing natural changes in structural morphologies across age. Thus computational 

simulations are not only useful in testing these systems but also to develop hypotheses 

regarding biologically relevant factors (e.g. the growth, development, and failure of 

tissues). 

2.5 Shark and Ray Tessellated Cartilage 

This section (2.5) “Shark and Ray Tessellated Cartilage” is modified from the chapter 

“The Multiscale Architectures of Fish Bone and Tessellated Cartilage and Their 

Relation to Function” where I am an author, published in the book “Architectured 

Materials in Nature and Engineering” (Seidel et al., 2019a).  I contributed in writing 

the Mechanics section and proof reading the structure. The text and the figures are 

used with permission from the publishing company.  



  

 

 

 

22 
 

This section explores the state of knowledge of the structure and mechanics of 

tessellated shark and stingray cartilage before the work of my thesis. The following 

sections lay fundamental groundwork and identify unanswered questions with respect 

to shark and stingray cartilage structure-function and why they are important.  

2.5.1 Structure 

Sharks and rays are often referred to as the ‘cartilaginous fishes’ , indicating what sets 

the skeletons of these fishes apart from the bony skeletons of the vast majority of other 

vertebrates. Like most vertebrates, sharks and rays develop an embryonic 

unmineralized cartilage skeleton; however, this is never replaced by bone during 

ontogeny, and instead remains mostly cartilaginous throughout their lifetime (Fig. 6a–c). 

Bone and unmineralized cartilage are clearly quite different materials for building 

skeletons, exhibiting major differences in in: (1) tissue organization (bone and cartilage 

are patterned on type- I and type-2 collagen, respectively), collagen, respectively); (2) 

material properties (bone is about 10,000 times stiffer than cartilage in most 

physiological loading regimes); and (3) response to tissue damage (unlike bone, 

cartilage has a limited vascular and neural supply and can’t heal)  (Currey,  1999; 

Ashhurst,  2004; Hall,  2014). 
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Figure 6: General organization of mineralized skeletal tissues in shark and ray tessellated 

cartilage. 

A. Cleared and stained butterfly ray skeleton (Gymnura sp.). Specimen is young and not yet fully 

mineralized: blue color shows the cartilage of the skeleton, which will form a mineralized layer later in 

life. B, C. Structure of tessellated cartilage of sharks and rays, comprising mineralized tiles (tesserae) 

covering the skeletal cartilage. Abbr.: DL = disordered layer; coll = collagen; LB = layered bone; P = 

Perichondrium; T = Tesserae; TU = Tubules; UC = uncalcified cartilage.  

We believe the distinct structural patterning of shark and ray skeletons allows the 

cartilage to perform many of the same mechanical roles that bone performs in the other 

98% of vertebrates: each piece of the cartilaginous endoskeleton is covered in a thin 

layer of thousands of mineralized, polygonal tiles called tesserae, typically hundreds of 

microns wide and deep (Kemp & Westin,  1979; Dean et al.,  2009; Seidel et al.,  2016) 

(Fig. 7). This tessellated crust of mineralized tissue is sandwiched between the 

unmineralized cartilage core of the skeleton and an outer fibrous perichondrium 

wrapping each skeletal element, resulting in a layered fibro-mineral composite. This 

unique endoskeletal tiling typically occupies only 30% or less of each skeletal element 

by volume (Seidel et al.,  2017b), yet appears to be an important evolutionary innovation 

of elasmobranch fishes. Tesserae have characterized elasmobranch skeletons for more 

than 400 million years (Maisey,  2013) and are vital to shark and ray skeletal biology. 

Tesserae not only permit interstitial growth of the mineralized layer— via deposition of 

new mineral at the margins of tesserae (Dean et al.,  2009; Macesic & Summers,  2012; 

Seidel et al.,  2016), a growth mechanism impossible with a continuously mineralized 

crust that cannot remodel—but also afford stiffness to skeletal elements. The dogfish 

Scyliorhynus canicula and round stingray Urobatis halleri are the best-studied 

elasmobranch species as far as the general development and ultrastructure of the 

tessellated endoskeleton are concerned (e.g. Clement,  1992; Dean et al.,  2009; Enault et 

al.,  2015; Seidel et al.,  2016; 2017b; 2017a). During development, tesserae first appear 

in the embryonic skeleton as isolated platelets of cartilage calcification, embedded in 

and separated by unmineralized cartilage. The individual tiles grow by mineral accretion 

on their existing surfaces, a process reflected in periodic, concentric layers of varying 

mineral density (Liesegang lines ) in the mineralized tissue (Kemp & Westin,  1979; 

Seidel et al.,  2016; 2017b) (Fig. 7d–g). This accretionary growth eventually brings 

young tesserae into contact with one another at their lateral edges. Once this occurs, 

pronounced high mineral density features, known as ‘spokes’, develop at the regions of 
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direct contact of two adjacent tesserae (Fig. 7d, h, i). Spokes are laminated structures, 

comprised of densely packed layers of oscillating mineral density, stacked parallel to 

intertesseral contact surfaces. As the animal and its skeleton grows, tesserae continue to 

enlarge by accretion, spokes lengthen, radiating outward from tesseral centers like 

spokes on a wheel (Fig. 7c). The growth mechanisms behind the striking repeated 

structural pattern in spokes are unknown, but the association of spokes with zones of 

intertesseral contact argues that the mechanical interaction of tesserae may be a guiding 

factor. 

Both Liesegang lines and spokes illustrate that tesserae are more than simply 

homogeneous mineralized blocks, instead having local mineral density variation as 

heterogeneous as that seen in bone (Seidel et al.,  2016; Currey et al.,  2017). Unlike 

mammalian bone, however, there is no evidence of remodeling or repair in tesserae 

(Ashhurst,  2004; Seidel et al.,  2016; 2017b). If tessellated cartilage —which apparently 

performs many of the same functional roles as bone—truly is a deposition-only tissue 

with no healing capacity, it may also possess in-built strategies for avoiding catastrophic 

damage, similar to the neoteleost bone described in the previous section. This is an 

enticing suggestion of the potential for tessellated cartilage as an inspiration for 

manmade design, since the mechanical performance of the tissue might be reproducible 

by mimicking structural and material properties, rather than biological action (e.g. 

cellular involvement, tissue remodeling ). 
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Figure 7: Tessellated cartilage of elasmobranch fish (sharks and rays).  

Note icons showing section orientation, introduced in Fig. 6. a Cryo-electron microscopy image of an 

elasmobranch skeletal piece in cross-section showing the unmineralized cartilage core (UC) sheathed in a 

thin of mineralized tiles, called tesserae (T). b, c Planar and d vertical views of the tesseral layer, showing 

abutting tesserae from an adult specimen (b SEM; c, d backscatter SEM imaging, showing only mineralized 

tissue), revealing the variation in the shapes of tesserae and their intertesseral joints (comprised of 

regions of direct contact and gaps of fibrous connection between tesserae; see Fig. 8). Note the regional 

variation in cell lacunae shape and in gray value within tesserae in b, reflecting local differences in mineral 

density and showing regions of high mineralization associated with zones of intertesseral contact. The 

most prominent, diagnostic features of tesserae are magnified in e–i using backscatter and transmission 

electron microscopy, showing e filigree mineralization pattern surrounding a lacuna, f, g Liesegang lines of 

accretive growth and h, i the laminated, hypermineralized ‘spokes’ reinforcing intertesseral contact zones. 

All samples from the round stingray, Urobatis halleri.Abbr.: ICZ = intertesseral contact zone; IFZ = 

intertesseral fibrous zones; ITJ = intertesseral joint; LIL = Liesegang lines; LS = lacunar space; SP = spokes 

 

Our understanding of the features driving tessellated cartilage mechanical properties 

are in their infancy, but the tissue’s performance appears to hinge to a large degree on 

the interactions and spatial arrangements of softer and harder materials (Fig. 8). There 

is some evidence, for example, that the serial laminae in spokes, by possessing differing 

mineral densities, introduce interfaces to redirect cracks and dissipate their energy 
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(Seidel et al.,  2016). At a larger scale, the interactions between tesserae are also 

characterized by material heterogeneities: the sides of tesserae exhibit smooth patches 

where they come in direct contact with their neighbors, but these are surrounded by 

regions of densely aligned collagenous fibers, tethering the tesserae together (Seidel et 

al.,  2016; 2017b) (Fig. 8a–d). The bipartite nature of intertesseral joints is thought to 

impart an interesting mechanical anisotropy to the skeleton as a whole, providing 

stiffness or flexibility to the tessellated composite layer, depending on the loading 

conditions. However, these interactions have never been expressly visualized, largely 

due to technical constraints challenges of visualizing movements of small features in 3D, 

at adequate resolution and in hydrated conditions—issues that have been addressed 

with conditions. Recent high-resolution synchrotron micro-CT (Fig. 8e–g), e–g) and 

circumvented to some degree in modeling studies of tessellated cartilage (see below) 

are making headway overcoming these difficulties.  

 

Figure 8: Flexible linkage of tesserae—collagen fibers at the intertesseral joints. 

 a–d Backscatter  SEM, environmental SEM and TEM images showing the structural complexity of a joint of 

two abutting tesserae in planar section: a, b joints are comprised of regions where tesserae are in direct 

contact (ICZ) and gaps (IFZ) filled with cells and densely aligned fiber bundles (fb) linking adjacent 

tesserae. e–g High-resolution synchrotron μCT scans show no macroscopic tesseral overlapping or 

interdigitation, but fibrous and contact zones interact in complex ways as illustrated in g viewed from the 

perspective of the neighboring tessera. See abbreviations in the previous Figure. 
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The general structural features and tissue arrangements of tessellated cartilage 

described above appear to be largely universal for sharks and rays (Seidel et al.,  2016). 

Our high-resolution electron microscopy and synchrotron tomography data, however, 

indicate that the shape and structure of tesserae can vary, both within individuals (e.g., 

between different regions of the skeleton) and among species, in ways that further 

suggest that the interactions between tesserae are functionally important. For example, 

the tesserae of different shark and ray species have been shown to vary enormously in 

size (~100–500 μm (from <100 μm to nearly 1 mm in width and thickness) and shape, 

ranging from disc-like plates to cuboid blocks (Maisey,  2013; Seidel et al.,  2016). The 

shapes of tesserae also appear to vary according to their location on a skeletal element 

(e.g. depending on the skeleton's local surface curvature; Dean et al.,  2016; Seidel et al.,  

2016) and according to the skeletal element they cover (e.g. consistently cuboid in the 

rostral cartilages of some sharks and specific regions of the jaws of some rays; (Maisey, 

2013;) (Fig. 9a). These observations are strongly suggestive of a form-function 

relationship between the shape of tesserae, their joints and the effective mechanical 

behavior of the tesseral mat and whole skeletal elements, but these, links are only 

beginning to be established. 

 

Figure 9: Local variation in tesserae form and suggested relationship to function. 

 a. Microcomputed tomography of a stingray hyomandibula (Hyo; skeletal piece connecting the jaws with 

the skull), virtually sectioned in 4 different anatomical positions, showing thicker tesserae (T) in convex 
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regions. Abbr: UC = unmineralized cartilage. b Cross-sections of pelvic propterygia (skeletal piece 

supporting the pelvic fins) from different species, showing cross-sectional shape variation according to 

the species’ reliance on ‘punting’ behavior (use of pelvic fins to move along the sea floor).  

2.5.2 Mechanics 

In general, the study of tessellated cartilage mechanics lags far behind the study of 

skeletal anatomy and tesseral ultrastructure. However, the results of several works, 

taken together, begin to paint a picture of how the structural and mechanical properties 

of elasmobranch cartilage interrelate and how tesserae play an important role in 

tailoring skeletal properties to specific ecological roles and high load-bearing activities.  

An understanding of the global mechanical properties of tessellated cartilage—a 

composite with relatively discrete material phases—demands characterization of the 

properties of the primary tissue constituents: uncalcified cartilage, unmineralized joint 

fibers and mineralized tissue. Capturing in vivo properties, however, is complicated by 

the fine scale 3D structural arrangements of tessellated cartilage and the need for testing 

conditions that mimic physiological conditions (e.g. hydration and load rates). Available 

evidence indicates that elasmobranch uncalcified cartilage has a proteoglycan and 

collagen content similar to mammalian hyaline cartilage and suggests that it can be at 

least as stiff, if not several orders of magnitude stiffer for similar loading rates 

(mammalian: 0.45–19 MPa vs. elasmobranch: 2-775 MPa - Ferrara et al.,  2011; Porter et 

al.,  2013; Liu et al.,  2014). These properties depend apparently on the species and the 

skeletal element tested; more rigorous studies are required to understand the 

relationships between mechanical properties and composition, loading rate and 

phylogeny.  

Whereas covering a cartilage-like gel with a hard, continuous shell is expected to 

increase the stiffness but decrease the flexibility of a composite, there is some 

indication—from tessellated cartilage , but also fabricated arrays (e.g. Martini, Balit, & 

Barthelat,  2017)—that a tessellated shell with interacting tiles and soft joints can be a 

‘best of both worlds’ configuration, maximizing desirable properties of both tissue 

phases. (Fahle and Thomason, 2008) showed that compared with embryonic (non-

tessellated) small-spotted catsharks (S. canicula), adult individuals have jaw cartilage 

that has a higher ability to damp mechanical energy, but it is also stiffer. A large portion 
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of the stiffness is surely due to the tessellated layer in adult animals (Egerbacher et al.,  

2006; Dean et al.,  2009; Enault et al.,  2015; Seidel et al.,  2016). From the biological 

perspective, this change in properties permits adults to consume harder prey than 

newborns (Fahle & Thomason,  2008), but is also particularly intriguing for engineering 

considerations since stiffness and damping are typically negatively correlated in 

manmade materials. The arrangement of the tessellated layer relative to the direction of 

loading plays a considerable role in elasmobranch skeletal tissue mechanics. Tessellated 

cartilage cubes from blue sharks (Prionace glauca) loaded normal to the tesseral mat (in 

stress relaxation experiments) behaved similarly to non-tessellated cubes, being ~45 

times softer than tessellated cubes with the load applied in-plane with the tesseral mat 

(Liu et al.,  2014) (Fig. 10). These results are supported by indentation experiments 

performed on hydrated jaw samples from two large sharks (Carcharodon carcharias, 

Carcharias leucas) (Ferrara et al.,  2013). Nanoindentation experiments typically involve 

pushing a very small, hard tip (e.g. with a tip radius of hundreds of nanometers) into a 

material to examine hardness and elastic modulus at very small scales. However, as the 

indenter used by Ferrara et al. was very large (100 μm) and approached the dimensions 

of some tesserae (Applegate,  1967; Dean et al.,  2009; Seidel et al.,  2016), we believe 

their data are more representative of the properties of the composite material (e.g. 

tesserae and their surrounding soft tissues), in that they report values considerably 

softer than either the tesserae themselves (Wroe et al.,  2008; Liu et al.,  2014) or whole 

skeletal elements of the cartilage (Macesic & Summers,  2012). Deeper investigation into 

the relationship between local properties and emergent skeletal properties is required 

to untangle the contradictions in available data. 
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Figure 10: Contribution of the tesseral layer and its orientation to mechanical properties.  

Stress relaxation behavior of blue shark (Prionace glauca) cartilage was tested with tesserae (T) under 

normal (TC-NL) and parallel (TC-PL), or without tesserae (NTC). Stress relaxation behavior of 

nontessellated cartilage (NTC) and tessellated cartilage under normal loading (TC-NL) were similar, but 

the behavior of tessellated cartilage samples under parallel loading (TC-PL) was far stiffer, indicating that 

the performance of tessellated cartilage is strongly dependent on the orientation of loads relative to the 

tesseral layer.  

Variations around the generalized tessellated cartilage anatomy described above, when 

interpreted in the context of animal ecology, also provide perspectives on in vivo 

skeletal performance, as well as the functional limits of the tissues. For example, in 

addition to the outer tessellated layer, the jaws of many batoid fishes (rays and 

relatives) contain hollow tessellated struts (trabeculae) , typically hundreds of microns 

in diameter, spanning the uncalcified cartilage-filled lumen of the jaws (Summers,  2000; 

Summers & Ketcham,  2004; Dean & Summers,  2006) (Fig. 11). These appear to be 

arranged along lines of principal loading, often in narrow regions of the jaws or jaw 

joints (Dean, pers. obs.), and are therefore structurally and functionally convergent with 

the trabecular bone found in tetrapods. The importance of trabeculae to the 

reinforcement of tessellated cartilage is underlined by the high density of trabeculae in 
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the jaws of species that experience high skeletal loads during feeding, such as the lesser 

electric ray which uses explosive jaw protrusion to retrieve buried prey (Dean & 

Summers,  2006) or myliobatid stingrays which employ high bite forces to crush hard 

shelled mollusks (Summers,  2000; Summers & Ketcham,  2004; Kolmann:2015, see also 

Fig. 1 in Seidel et al.,  2017b). 

  

Figure 11: Methods of reinforcement of tessellated cartilage.  

Cross-section of a microCT of the jaws of the cownose ray (Rhinoptera bonasus), a hard prey specialist, 

showing mineralized trabeculae (struts) running through the jaw, reinforcing the primary biting direction. 

Alternatively, tessellated cartilage can be reinforced by multiple tesseral layers, as in the outer layers of 

the cownose ray jaw. Abbr: Tra = Trabeculae; 

Additional mechanisms described for reinforcing tessellated cartilage against bending 

involve either thickening of the skeleton’s hard, outer cortex (i.e. the tesseral layer) or 

modifications to the cross-sectional shape of skeletal elements. In the former, the 

tesseral layer is often locally thickened (e.g. the tesserae in skeletal cross-sections in Fig. 

2 of (Seidel et al.,  2016) vary up to 4× in thickness), particularly in regions in line with 

principal loading or in areas of high curvature  (Dean, Huber, & Nance,  2006; Balaban, 

Summers, & Wilga,  2014; Dean et al.,  2016; Dean et al, in press; Wilga et al.,  2016; 

Seidel et al.,  2016). The cortex can also be thickened via introduction of additional 

tesseral layers, particularly in the jaws of large carnivorous sharks (Dingerkus & Seret,  

1991), the “saws” of sawfish (Summers,  2000; Seidel et al.,  2017b), or the jaws of 

species with diets containing large proportions of hard shelled prey (Summers & 

Ketcham,  2004; Seidel et al.,  2017b; Dean et al, in press). Up to 10 supernumerary 

tesseral layers have been recorded in the jaws of some extant species (Dean et al, in 

500µm  

 



  

 

 

 

32 
 

press). High flexural stiffness in whole skeletal elements appears to result from either 

high mineral content (a proxy for the proportion of tesserae in an element or 

crosssection), skeletal cross-sectional shapes with high second moment of area or 

combinations of the two (Macesic & Summers,  2012; Balaban et al.,  2014; Wilga et al.,  

2016; Huang et al.,  2017). Skeletal element flexural stiffness has also been shown to be 

correlated with differences in ecology—for example, supporting specific locomotion 

(Macesic & Summers,  2012; Huang et al.,  2017) or feeding modes (Balaban et al.,  

2014)—but mineral content and cross-sectional shape/size do not always vary 

predictably (e.g. animals with large skeletal cross-sections can have either very high or 

very low mineral content Macesic & Summers,  2012; Balaban et al.,  2014; Wilga et al.,  

2016). This indicates that tessellated cartilage has evolved to be ‘modular’, where 

functionally and ecologically relevant skeletal mechanical properties can be achieved 

through a variety of structural mechanisms (e.g. cortical thickening, increased second 

moment of area, introduction of trabeculae), rather than compositional alterations to the 

apatite mineral in the tessellated layer (e.g. the introduction of heavier elements as can 

occur in invertebrate tissues Degtyar et al.,  2014). 

The mechanical influence of the tessellation itself—the tiling of the cortex and the 

varying patterns formed by tesserae —has yet to be investigated in situ, likely due to the 

experimental difficulties posed by the size of tesserae and their complex tissue 

connections. Several studies, however, have incorporated existing materials and/or 

structural data from the biological tissue in computational simulations and 

mathematical models of tessellated cartilage, helping to shape informed and testable 

hypotheses relating to tissue growth and mechanics. Empirical models of tessellated 

cartilage cross sections, for example, based on biological material and ultrastructural 

data, suggest that the tessellation plays a role in controlling the stress distribution 

within the skeletal tissue during bending (Liu et al.,  2010; Fratzl et al.,  2016). This is a 

function of the narrow joints between tesserae, the structure of which is hypothesized to 

result in strikingly different properties in tension than compression (Fig. 12). In a 

hypothetical laminated tessellated cartilage beam—a monolithic core of unmineralized 

cartilage sandwiched between two thin tessellated layers—subjected to bending, the 

tesserae on the side of the beam loaded in tension should pull apart from one another, 

whereas tesserae on the compressive side of the beam should readily collide. Such a 



  

 

 

 

33 
 

compression-tension asymmetry would impart a constrained flexibility in tessellated 

cartilage that could also play a role in the tissue’s ability to resist damage. In general, the 

combination of a stiff outer cortex and a soft inner core will tend to ensure that higher 

stresses are concentrated more safely in the stiffer cortical/mineralized tissue rather 

than the softer core/unmineralized tissue (Liu et al.,  2010; Ferrara et al.,  2011; Fratzl et 

al.,  2016). This is true, even if the cortex is continuous rather than tessellated, as was 

simulated in Finite Element models of the jaws of two large shark species subjected to 

biologically-relevant bite forces (Ferrara et al.,  2011).  

 

Figure 12: Proposed compression-tension asymmetry in tessellated cartilage. 

 a–c Micro-CT scan of the skeleton and hyomandibula (Hyo) of a stingray (Urobatis halleri) illustrating the 

composite nature of tessellated cartilage, formed by stiff mineralized tiles (T) separated by softer 

unmineralized joints. Abbr: UC: unmineralized cartilage. d Schematic of alternating soft and hard 

constituents in a tessellated system. e Schematic section of tessellated skeletal element in bending, with 

the top and bottom tessellated layers experiencing tension and compression, respectively. f Hypothetical 

stress-strain curves illustrating the proposed tension-compression asymmetry of a tessellation. In tension, 

the deformation will be dominated by the stretching of the soft joint interlayer (yellow line), whereas in 

compression, the behavior is stiffer (green line), dominated by the stiff tiles colliding once the thickness of 

the soft interlayer is exhausted [at a compressive strain of approximately d/(D + d)].  

Tessellating the cortex, however, serves additional functions, such as protecting the 

mineralized tissue from fracture on the tension side of the skeleton by localizing tensile 
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stresses in the intertesseral joint fibers rather than in tesserae. At the same time, the 

compressive stiffness of tesserae should shift the skeleton’s neutral axis of bending 

closer to the compressive side of the skeleton, concentrating potentially damaging 

compressive stresses in the tessellated layer rather than the unmineralized cartilage 

(Liu et al.,  2010; Fratzl et al.,  2016).  In this way, the tessellation can manage bending 

loads and increase resistance to damage by distributing the highest stresses to the 

tissues and loading regimes best able to bear them. Stresses may also be mitigated by 

the properties of the unmineralized cartilage itself, which Wroe et al. [49] showed would 

tend to result in considerably lower stresses and higher strains than simulated shark 

jaws made of bone and subjected to the same bite forces (Fig. 13). The hypothesized 

stress-management behavior of tessellated cartilage may therefore serve a protective 

function, in a skeletal tissue that apparently cannot heal (Ashhurst,  2004; Dean et al, in 

press ; Seidel et al.,  2016; Seidel et al., 2017c), although it is surely cyclically loaded a 

massive number of times over an animal’s lifetime during swimming and feeding 

behaviors. 

 

Figure 13: Simulation of feeding mechanics in white shark jaws with varying material properties. 

 a, c VonMises stress and b, d strain distributions for maximal bilateral bites in Finite Element simulations 

of jaws with tessellated cartilage properties (a, b) and cortical bone properties (c, d). Note that stress is 

much lower, but strain is much higher in the cartilaginous model.  



  

 

 

 

35 
 

Most models of tessellated cartilage have focused largely on the mechanical result of 

combining soft and hard tissues; the geometry of the tessellation —the distribution of 

shapes and sizes of tesserae —surely also plays an important role in the mechanics of 

the skeleton, yet this has hardly been investigated. Tesserae are typically polygonal in 

shape and apparently predominantly hexagonal, but have been observed to vary in the 

regularity of their form and range from squares to twelve sided polygons (Dean & 

Schaefer,  2005; Dean et al.,  2016; Seidel et al.,  2016; Dean, pers. obs.). But the effect of 

shape and the ultrastructure on tesserae mechanics were not studied before.  

In this dissertation, two project phases were developed. The first project phase analyses 

the effect of tiling shape, structure and material properties on the mechanical behavior 

(specifically, the effective stiffness) of the composite material. In the second project 

phase, the parametric CAD models of tesserae are developed with ultrastructural 

features incorporated in them. The ultrastructural features are parametrically varied in 

the CAD models and then subjected to finite element analysis. The results obtained from 

finite element analysis help in determining the effect of ultrastructural features on 

tesseral mechanics and their contribution to biological functions related to growth and 

load management within the tesserae, and both the project phases are discussed in the 

following sections. 
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The phase 1 project has been published as a paper titled “Mechanical behavior of 

idealized, stingray-skeleton-inspired tiled composites as a function of geometry and 

material properties” (Jayasankar et al., 2017a) where I am the first author. The text 

and the figures are used with permission from the journal. 

3.1 Introduction to phase 1 

The tiling of surfaces with repeated geometric elements is a common structural motif in 

biological tissues and one that transcends phylogeny. Structural tilings have evolved 

independently in multiple systems and at a variety of size scales: from the micron-scale 

plates in the layers of nacre in mollusc shells (Barthelat and Zhu, 2011), to the sub-

millimeter mineralized tiles (tesserae) sheathing the cartilages of sharks and rays 

(Seidel et al., 2016a), to the macroscopic plates in the body armors of boxfish (Chen et 

al., 2015a; Yang et al., 2015) and turtle shells (Chen et al., 2015a; Krauss et al., 2009b) as 

shown in Fig. 14a. The mechanical characteristics of tiled natural composites are 

typically impressive amalgamations of those of their mineralized and organic 

component parts, resulting in natural armors that can be both lightweight and puncture 

resistant, but also flexible and tough (Chen et al., 2013; Chen et al., 2014; Chen et al., 

2015a; Krauss et al., 2009b; Liu et al., 2010a; Liu et al., 2014a; Martini and Barthelat, 

2016; Rudykh et al., 2015; Yang et al., 2013a; Yang et al., 2013b; Yang et al., 2012). The 

shapes and materials of the tiling subunits, their spatial arrangement, and their physical 

interactions control composite functional properties, guiding deformation and hindering 

damage propagation (Chen et al., 2015a; Krauss et al., 2009b; Liu et al., 2010a; Vernerey 

and Barthelat, 2010; Yang et al., 2015). Analytical and experimental models of suture 

behavior, for instance, show that simple adjustments to the geometry and/or 

attachment areas of sutural teeth can be used to tune the mechanical properties (e.g. 

stiffness, strength, toughness), deformation or failure behaviors of a structured 

composite (Achrai and Wagner, 2013b; Atkins et al., 2014; Balaban et al., 2015; Cadman 

et al., 2013; Chen et al., 2013; Chen et al., 2014; Ferrara et al., 2013; Krauss et al., 2009b; 

Lin et al., 2014a; Lin et al., 2014b; Liu et al., 2014a; Seidel et al., 2014; Studart, 2012; Van 

 Phase 1 
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Wassenbergh et al., 2015; Yang et al., 2013a; Yang et al., 2013b; Zhang et al., 2013b; 

Zhang et al., 2014). 

 

Figure 14: Examples of natural tilings and stingray tessellations.  

a. Examples of natural tilings, none of which are true tessellations due to overlapping (mollusc nacre) or 

interdigitating (turtle shell, boxfish scute) morphologies. b. Polygonal and square tessellations found in 

stingray cartilage. Organism and tissue images are compiled from a variety of species: a. Turbo caniculatus 

(mollusc shell), Haliotis rufescens (nacre); Phrynops geoffroanus (turtle shell); Ostracion rhinorhynchos 

(boxfish and scute inset; MCZ4454), Lactoria cornuta (interdigitations). b. Myliobatis freminvillei (stingray; 

USNM204770), Myliobatis californica (jaws; MCZ886), Aetobatus narinari (square tessellation), Leucoraja 

erinacea (polygonal tessellation).  

The surface tiling of the skeleton of sharks and rays (elasmobranch fishes) has been 

recognized for over a century as a diagnostic character of all living members of this 

group, but the functional significance of this feature remains unclear. The tiled layer of 

elasmobranch cartilage, like most natural tilings, is comprised of hard inclusions/tiles 

(tesserae; Fig. 14b) joined by unmineralized collagen fibers (see also Fig. 2c;Seidel et al., 

2016a). However, elasmobranch tesserae lack the interdigitations found in many other 

biological tilings, such as those seen in turtle osteoderms or boxfish scutes (Fig. 14a) 

(Chen et al., 2015a; Krauss et al., 2009b; Yang et al., 2015). Furthermore, unlike the 
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dermal scales of fishes, armadillo and some mammals, arrays of tesserae lack 

appreciable gaps or overlaps, and so can be considered “true tessellations” (Bruet et al., 

2008; Chen et al., 2015a; Wang et al., 2016a; Yang et al., 2012). Elasmobranch tesserae 

also represent an intermediate size class of biological tiles, being typically hundreds of 

microns in size, an order of magnitude larger than mollusc nacre platelets and at least an 

order of magnitude smaller than most scales and osteoderms (Chen et al., 2015a; Olson 

et al., 2012). The tessellation of the elasmobranch skeleton is believed to manage stress 

distribution in a way that can minimize damage to the cartilage and also provide both 

flexibility and stiffness (Fratzl et al., 2016a; Liu et al., 2010a; Liu et al., 2014a), the latter 

being somewhat counterintuitive considering the lack of obvious interlocking features 

between tesserae. The correlation between the structural and material aspects of 

tesserae and the mechanical properties of the skeleton at a larger scale remain 

undemonstrated. In particular, although elasmobranch tessellation is apparently largely 

comprised of hexagonal tiles (Dean and Schaefer, 2005; Dean et al., 2005; Fratzl et al., 

2016a; Seidel et al., 2016a), other shapes are possible (Fig. 14b); however, the role of tile 

shape in the mechanics of the tessellated composite (i.e. at the level of the skeletal 

tissue) has never been investigated. 

In the current paper, our objectives are to analytically model biologically-inspired 

tessellated composites constructed with different tile types (triangle, square and 

hexagon) to observe the effects of (1) tile shape, (2) joint/tile size and (3) joint/tile 

material properties on the mechanical behavior (specifically, the effective stiffness) of 

the composite material (variables shown in Fig. 15c). Our results establish a baseline for 

future analyses of tessellations with more complicated (e.g. biologically relevant) 

morphologies (e.g. 3D tessellations) and loading conditions (e.g. bending, shear and 

multi-axial loading). The results presented in this study improve our understandings of 

the functional significance of the tesseral morphologies observed in elasmobranch 

skeletons, while also framing form-function laws for engineered tiled composites.  
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3.2 Methods: Phase 1 

3.2.1 Modified Rule of Mixtures model 

To estimate the mechanical characteristics of our tessellated composites, we modify 

traditional Rule of Mixtures methods, which allow calculation of the contributions of 

constituent phases to the net stiffness of a composite. These methods permit the 

modeling of different materials arranged either in parallel (Voigt iso-strain model) or in 

series (Reuss iso-stress model), taking into account their volume fractions (VF) and 

stiffnesses (E1 and E2) (Bayuk et al., 2008). Geometrical interpretations of the Voigt and 

Reuss models are shown in Fig. 15a. 
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Figure 15: Rule of mixtures and modified rule of mixtures.  

a. Rule of Mixtures: Reuss and Voigt models. b. Orientation of model with respect to direction of load and 

the effect on joint material Young’s modulus and composite effective modulus (modified Rule of Mixtures). 

c. Structural and material properties of tessellations varied in this study, including shape, tile/joint 

material, and tile area/joint width. d. Modelling of the composite with the inspiration derived from 

Urobatis halleri (see text for explanation); the partition of hexagonal tile composite. See the Appendix for 

full derivations for all three tile shapes.  

The classical Rule of Mixtures models assume monolithic constituent materials with no 

anisotropy of material properties, arranged either in series with or perpendicular to 

loading orientation. This assumption is reasonable for calculating the effective modulus 
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of a composite where materials are arranged in simple geometries and where loading 

orientation plays no role on a constituent material’s properties.  

The arrangement and morphology of joint material in tessellated cartilage, however, 

argue for a degree of orientation-dependent behavior. Intertesseral joints are comprised 

of linearly arrayed collagen fibers, oriented perpendicular to tesseral edges (Seidel et al., 

2016a) (Fig. 15d; see discussion of tesseral ultrastructure below), and given also that 

our investigated tile models possess edges where joint and tile material are neither in 

perfect series nor parallel arrangements relative to load (e.g. Section 1 in Fig. 15b), we 

employ the two following modifications to the traditional Rule of Mixtures models. 

In the first modification, to approximate the mechanical behavior of the intertesseral 

joint material of elasmobranch cartilage (for which no experimental data exist; see 

Section 2.3 below), we assume the material properties of the joint material to resemble 

those of other vertebrate fibrous materials. We assume the Young’s modulus of the joint 

material perpendicular to the tesseral edge (E20°, in line with the joint fiber directions) 

to be 1500 MPa (the tensile modulus of tendon; Shadwick, 1990), whereas we assume 

the modulus orthogonal to the direction of joint fibers (E290°) to be only 50 MPa (the 

compressive modulus of periodontal ligament; the compressive modulus of periodontal 

ligament; Rees and Jacobsen, 1997). The assumption of compressive modulus of 

periodontal ligament is done because the tendon’s compressive modulus is not studied 

as they don’t have compressive behavior. This modification is a matter of a simple 

substitution of E290° for E20° where Voigt (in-parallel) models are used in our 

calculations (Eq.1 below). 

In the second modification, we account for situations where the tile and joint interface is 

oblique to the loading direction (i.e. neither a pure in-series/Reuss nor parallel/Voigt 

arrangement), such as can be seen in the equations for triangle and hexagon composites 

in the Appendix. This is accomplished by the following equation, which exploits the 

Pythagorean trigonometric identity, cos2θ + sin2θ = 1, to scale the relative contributions 

of Voigt and Reuss models according to the angle of rotation (θ) of the composite 

relative to loading direction:   

Equation 1 

E=cos2θ * [Reuss model] + sin2θ * [Voigt model] 
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Equation 2 

E = cos2θ * [
E1 * E20°

E1*(1-AF ) +E20°*(AF ) 

] + sin2θ * [(E1 * AF + 

E290°* (1-AF )] 

The equation functions as a pure Reuss model with E20° joint modulus when in series 

with the load (θ = 0°: sin20°=0, cos290°=1; Fig. 15b, left image) and a Voigt model with 

joint modulus E290° when tissues phases are oriented in parallel with the load (θ = 90°: 

sin290°=1, cos290°=0; Fig. 15b, right image), with intermediate values of θ resulting in 

values of E that are proportional mixes of the pure models. This equation therefore 

accounts for the effects of both fiber orientation and oblique joint-tile interfaces (i.e. 

whole model orientation) relative to axial loads.  

Our equation is more suited to our modeling goals than Krenchel’s modified Rule of 

Mixtures model (Aspden, 1988; Krenchel, 1964), which modifies a Voigt model to 

formulate the effects of the orientation of stiff fibers within a softer matrix on a 

composite’s stiffness: 

Equation 3 

Ecomposite = cos4(θ) * Efiber * AF + Ematrix * (1 - AF) 

The limitation of Krenchel’s model is that it assumes only the effect of fiber material 

orientation with respect to the Voigt model and so for our purposes could only capture 

the effects of changing joint fiber orientation in an in-parallel loading scenario. 

3.2.2 Application to tessellation models 

To apply these models to tessellations constructed from arrays of triangular, square and 

hexagonal tiles, we divide each composite unit cell (the tile and half of its surrounding 

joint material) into simple geometric shapes containing tile and joint material for which 

effective modulus can be calculated using Equation 1. The subdivisions of the hexagonal 

tile are shown as an example in Fig. 15d. Although we focus on only one composite cell 

in our approach, this provides an estimate of the stiffness of a periodic array of tiles, 
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similar to what would be generated in a Finite Element (FE) model employing periodic 

boundary conditions (PBC; see Section 2.5 below). 

The effective modulus of each unit cell portion is then calculated using the modified Rule 

of Mixture equations provided above (Fig. 15b), as a function of tile side length (L), tile 

modulus (E1), joint thickness (t) and joint modulus (ranging from E20° to E290°, 

depending on the orientation to the loading direction). The effective modulus of the 

entire tile-joint composite (E) is then determined by combining the contributions of 

each of the unit cell portions, using traditional Voigt/Reuss models, according to their 

volume fractions relative to the whole and whether the subunits are arranged in parallel 

or series (e.g. Section 1 and 2 in Fig. 15d are arranged in series). The full calculations and 

assumptions of these models are provided in the Appendix. Using this approach, the 

effective modulus of the three tiled composites (comprised of triangle, square and 

hexagonal tiles) is evaluated. Alternate partitioning of unit cells (i.e. using other lines of 

division) had little effect on model results and only for the thickest joint morphologies 

for triangle and hexagon unit cells; this was a function of the different partitioning 

schemes altering whether the extreme corners of unit cell were assigned as oblique or 

in-series elements (data and partition schemes are provided in the Appendix). 

The basic Voigt and Reuss models are shown in Fig. 15a. When calculated using the same 

volume fractions of tile and joint materials as those in our composite models, these 

models act as upper and lower theoretical bounds, respectively, for our data. The 

mechanical behavior of the Voigt model (upper bound) is dictated by the properties of 

the stiffer material (tile = E1), given the assumption that the strains are uniform across 

the composite, due to the two phases of the composite being in parallel. In the Reuss 

model (lower bound), the properties are dominated by the softer material at 0° 

orientation to the load (joint = E20°), due to the in-series orientation of the phases, 

resulting in uniform stresses across the composite. 

3.2.3 Model constraints and biological relevance 

In terms of inputs for our models, information on the structural and material properties 

of tessellated cartilage is limited, with the most information available on tesseral 

ultrastructure. Tesserae in curved regions of shark and ray skeletal elements may have 
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more block-like, columnar or spherical morphologies (Fratzl et al., 2016a; Fig. 1 in Liu et 

al., 2014a; Fig. 2 in Seidel et al., 2016a), but as their interactions with neighboring 

tesserae are more 3-dimensional, we derive the following synthesis of tesseral 

morphology from flat regions of the skeleton, where tesserae are more plate-like (e.g. 

e.g. Fratzl et al., 2016a; see Fig. 10 in see Fig. 10 in Seidel et al., 2016a). Evidence from a 

variety of species indicates that tesserae can range from four- to twelve-sided, but are 

mostly hexagonal (Dean and Schaefer, 2005; Dean et al., 2005; Fratzl et al., 2016a; Seidel 

et al., 2016a) and that tesserae in adult animals are typically between ~200-500µm wide 

(within the plane of the tesseral mat), with little space between them (Clement, 1992a; 

Dean, 2009; Dean et al., 2017a; Dean et al., 2009b; Kemp and Westrin, 1979b; Seidel et 

al., 2016a). The intertesseral joint space (the region of interaction between two adjacent 

tesserae) has a complex morphology, comprised of regions where neighboring tesserae 

are in direct contact (intertesseral contact zones: ~1-5µm wide; Fig. 15d) and wider 

gaps filled with linearly arrayed collagen fibers (intertesseral fibrous zones: ~20-30µm 

wide; Fig. 15d) (Seidel et al., 2016a).  

Material property data for tesserae remain scarce and inconsistent. The Young’s 

modulus for intertesseral joint fibers is unexamined, but we will assume it to be 

similarly anisotropic to other vertebrate fibrous tissues (see Section 2.1 above). The 

Young’s modulus for hydrated shark and ray mineralized tissue, derived from 

nanoindentation, has been reported to span a massive range from 79 to 4000 MPa 

(Ferrara et al., 2013; Wroe et al., 2008a). The reason for this measurement variation is 

unknown, but is likely due largely to methodology (sample preparation, indenter size), 

and also perhaps interspecies differences in tesseral shape/properties. Recent data have 

also shown extensive local variation in mineral density within tesserae (Seidel et al., 

2016a). Correlated measurements of mineral density from quantitative backscatter 

electron imaging and material property data from nanoindentation argue that some sub-

regions of tesserae may be up to an order of magnitude stiffer than the previously 

reported maximum (up to ~35GPa; R Seidel, pers. comm.). A tesseral Young’s modulus 

in the higher range of reported values (e.g. > 1 GPa) is further supported by the 

comparable properties of other mineralized skeletal tissues (e.g. Carter and Hayes, 

1977; Currey, 1988), the observations of extremely high mineral densities in tesserae (R. 

Seidel, pers. comm.; R. Seidel, pers. comm.; Seidel et al., 2016a) and the direct 
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relationship between mineral density and indentation modulus in calcified cartilage and 

bone (Gupta et al., 2005).  

3.2.4 Visualization and evaluation of data  

Our analytical models were evaluated for E1/E20° from 1.0 (equal tile and joint moduli) 

to 25.0 (tile modulus 25x that of joint modulus), and for t/√A, from 0.0 (no joints) to 

0.10 (e.g. 10% of the square’s side length). These values cover a biologically-relevant 

range of tesseral properties, from the softest to stiffest estimates of tesseral and fiber 

material properties and from the narrowest to widest measurements of intertesseral 

gaps and tesserae (Fig. 15c). For reference, we indicate with a red dot in Figs 16b and 17 

our best approximation of the properties of the tesserae of round stingray (Urobatis 

halleri), as this species is the most studied in terms of ultrastructure and material 

properties (e.g. e.g. Dean, 2009; e.g. e.g. Dean et al., 2017a; e.g. e.g. Dean et al., 2009b; 

Fratzl et al., 2016a; Seidel et al., 2016a; Wroe et al., 2008a). 

We generated 2D contour plots for each unit cell shape using compound non-

dimensional variables that take into account all elements of our effective moduli 

equations (Fig. 16). In these plots, the x-axis is the ratio of the stiffness of the tile 

material relative to the joint material (E1/E20°) and the y-axis is the ratio of the 

thickness of the joint relative to a linear measure of tile size (t/√A), with the 

“topography” (colored contours) of the graph representing the relative effective 

modulus (REM) of the composite (the stiffness of the composite relative to its joint 

stiffness, E/E20°). Therefore, moving in the positive x-direction corresponds to 

increasingly stiffer tiles (or softer joints) and moving in the positive y-direction, a 

thickening of the joints relative to tile dimensions. These unitless ratios allow 

comparison of the effects of both material properties (x-axis) and structural/shape 

parameters (y-axis) on composite mechanical performance (REM).  

The first order parameter controlling mechanical properties of a composite is the 

volume fraction of the components (Hull and Clyne, 1996; Wang et al., 2011), or area 

fraction (AF) of joint and tile material, in the case of our 2D tilings. As we are interested 

in the role of shape and size of tiles with respect to a “biologically relevant” joint layer 

(i.e. one of a particular, measureable thickness) we chose to compare our predictions for 
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fixed values of t/√A rather than AF. For comparative purposes, however, we include in 

the Appendix our results (Fig. A.6) plotted with respect to area fraction. As expected the 

graphs plotted in terms of AF show little variation among the three unit shapes, 

underlining the lesser effect of unit cell shape compared with that of area fraction.  

Our chosen y-axis size metric (t/√A) produced similar results to other descriptors of 

tile/joint geometry, such as ratios of joint thickness (t) to tile length (L) or perimeter (p) 

(data not shown). Given our interest in using a y-axis metric that contains a linear 

measure of joint thickness, we use t/√A because, among possible tile/joint geometry 

metrics (e.g. t/p, t/L), it is most comparable to the area fraction (an important element 

of the Voigt/Reuss equations). Also, as effective modulus calculations for the three unit 

shapes are most similar when tile areas (rather than side lengths or perimeters) are 

normalized (data not shown), the results reported below according to t/√A represent a 

more stringent series of comparisons.  

3.2.5 Simulation and experimental verification of models 

The three unit cell types can be partitioned in several different ways. To test for 

consistency between methods, we compare the results of two different partitioning 

schemes (see Appendix). 

To verify the efficacy of our analytical models, Finite Element (FE) models representing 

the three tilings were generated in ABAQUS from models built in Rhino computer-aided-

design (CAD) software with the Grasshopper plug-in. A 1% compressive strain and PBCs 

were applied and the models tested over a range of E1/E2 values for relatively thick 

joints (t/√A = ~0.07). The resultant stress-strain curves were used to calculate the 

models’ composite stiffness and those compared to the composite effective stiffnesses 

estimated by our analytical models using the same input parameters. A more detailed 

description of the methods can be found in the Appendix.  

3.3 Results and discussion 

FEA and analytical calculations showed general agreement in their estimates of 

composite model stiffness as a function of E1/E2 and a given t/√A value (Supplemental 
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Fig. A.10). This supports our conjecture that our analytical models of a single tile and its 

surrounding joint material can be used to approximate the behavior of a larger tiled 

array, in a manner similar to FE models employing periodic boundary conditions (see 

Appendix). Furthermore, our results were largely consistent, regardless of the unit cell 

partitioning scheme used (see Appendix, Figs A.4, and A.7). 

All data calculated from the analytical models fall within the range of values depicted in 

the lower bound (Reuss) and upper bound (Voigt) contour plots for their unit cell shape; 

the upper and lower bound contour plots exhibited similar form and magnitude for all 

unit cell shapes, therefore, we show only those plots for the square unit cell as an 

example in the first row of Fig. 16. For the lower bound, close to the x-axis, contour lines 

showed positive slopes that gradually decreased and leveled off to roughly horizontal 

lines at higher x-axis values. Such regions of more horizontal contour orientation (i.e. at 

higher x-axis values) indicate a more geometry-sensitive/material-insensitive system, 

where changes in joint thickness (y-axis) have an effect on REM, but changes in joint/tile 

material properties (x-axis) have little effect. In contrast, a more vertical arrangement of 

contours, like those fanning out from the y-axis in the upper bound plot, signify a more 

geometry-insensitive/material-sensitive system, where material property (x-axis) 

changes are important, but there is little effect of changes in joint thickness (y-axis) on 

the REM of the composite.  

In general, all models showed an increase of composite Relative Effective Modulus 

moving clockwise through the contour plot (i.e. towards thinner joints and stiffer tiles), 

however the relative widths of their contours became more evenly spaced from square 

to triangle to hexagon. The three unit cell shapes (triangle, square and hexagon) show a 

continuum in contour plot topography: starting with the square’s stacked, asymptoting 

contours (which resemble those of the lower bound), and moving from triangle to 

hexagon, contour slopes steepen, resulting in the hexagon’s contours being more similar 

in shape to those of the upper bound graph (Fig. 16A). This argues for the models, from 

square to triangle to hexagon, behaving increasingly as hybrid iso-stress/iso-strain 

composites and less as pure iso-stress models.  The relative effective modulus for 

parameters such as joint area, perimeter of the tile are calculated and found that there 

are similar patterns across shapes. The structural dimensions of the joint morphology 
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was chosen such that they are reflective of accurate biological system as joint area was 

not characterized in the biological system. 

The variation in shape and spacing of contour lines among the three unit cell shapes is 

indicative of differences among models in the degree to which structural and material 

property changes affect composite performance. For example, the lateral spacing of the 

contour steps reflects the relationship between x-axis and REM values: if REM values 

increase more slowly than x-axis values —as in the upper half of the square tiled array 

graph (Fig. 16A), where contours are comparatively broad— changes in tile modulus 

have limited effect on the composite’s REM (i.e. square is a more material-insensitive 

unit cell at large joint thicknesses). By contrast, when contour lines/REM values match 

x-axis values (i.e. contour lines are vertical and E/E20° = E1/E20°), changes in tile 

modulus have a direct and corresponding effect on the composite’s REM. The more 

vertically oriented contours of the hexagon array graph therefore illustrate that the 

mechanical behavior of the hexagonal array is, on average, controlled to a larger degree 

by the composite’s material properties.  

In contrast, the vertical spacing of contour steps reflects the relationship between 

structural properties (i.e. joint thickness) and REM values. The tighter vertical spacing of 

contours on the lower right-hand side of all graphs illustrates that arrays become more 

sensitive to changes in joint morphology as tile and joint moduli diverge (i.e. at higher x-

axis values). The square array’s graph shows the tightest and most horizontal 

arrangement of contours in this region. This indicates that, in comparison with the other 

unit cells, and for a given high tile stiffness (i.e. high x-axis value), changes in joint 

morphology (vertical movements parallel to the y-axis) result in large changes in 

composite modulus (i.e. the composite is very geometry-sensitive). By contrast, 

hexagons (and to a lesser degree, triangles) are more influenced by both changes in 

geometry and material, a function of their contours’ stable positive slopes. The 

narrowing of comparable graph contours (i.e. those representing the same z-value 

range) from square to triangle to hexagon also represents an increase in composite 

effective stiffness. Hexagons are therefore overall the most efficient shape in terms of 

the transfer of constituent material properties to composite modulus. 
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Figure 16: Relative Effective Modulus (REM) for all tile shapes, as a function of E1/E2 (x-axis) and 

t/√A (y-axis).  

The legend for terminology and scale for all graphs is shown in the upper left corner; with increasing x-

axis values, tiles become stiffer relative to joints, with increasing y-axis values, joints are thicker relative to 

tile size. The lower (Reuss iso-stress) and upper bounds (Voigt iso-strain) for the square tile are shown in 

the upper right corner; upper/lower bound graphs for triangle and hexagon tiles were similar. A. Contour 

plots for all shapes (y-axis scale: 0.0-0.1). B. A zoomed in view of the contour plot from Fig. 16A, to focus 

on more biologically relevant y-axis values (0.0 - 0.01). The biologically relevant x- and y-axis values —

calculated from the structural and material properties of round stingray (U. halleri) tesserae— are marked 

by a red marker. Note that whereas hexagon result in the stiffest composite behavior overall (i.e. the REM 

values are highest for any given x-value), all tile shapes have similar contour patterns for the biologically-

relevant range in B indicating little effect of unit cell shape on REM for thin joints (low y-axis values). 

The maximum y-axis value in Fig. 16A represents comparatively thick joints (e.g. up to 

10% of the square tile’s side length), whereas those of the natural tessellated cartilage 
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system are quite narrow (~1/500 width of the tile ~0.002L; ~1/500 width of the tile 

~0.002L; Seidel et al., 2016a). The contour plots in Fig. 16B present a more biologically 

relevant y-axis scale, from 0 to 0.01, indicated by the horizontal white bars in 3a; x- and 

y-values representing stingray (U. halleri) cartilage are marked with red dots in Figs. 

16B and 17. In Fig. 16B, all tile shapes exhibit a fanned series of nearly vertical lines that, 

with increasing x-axis values, gradually tilted away from the y-axis. These nearly vertical 

contours signify that, when joints are thin, all models are more geometry-

insensitive/material-sensitive systems, where material property (x-axis) changes are 

important, but there is little effect of changes in joint thickness (y-axis) on the REM of 

the composite. For very thin joints (i.e. Fig. 16B), the triangle model is slightly softer 

than the square model, a function of the shallower curves of its contours.  
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Figure 17: Comparison of the contour plots of all tile shapes from Fig. 16. 

 Contour lines originating from the same x-axis value (a contour line trio) correspond to the same z-axis 

value range (e.g. all lines in the first trio on the far left of 4A indicate REM = 2.5). The spread of contour 

line in a trio reflects the dissimilarity of the topography of the contour plots of the three tile shapes: in 

particular for the upper right portion of A, where joints are very thick and tiles are far stiffer than joints, 

the REM for hexagon is considerably higher than that of square. The narrower spread of contour lines in 

trios in biologically relevant range (B) indicates that unit cells exhibit more similar mechanical behavior at 

small y-axis values (e.g. narrow joints). A. Contour lines for all shapes (y-axis scale: 0.0-0.1); compare with 

Fig. 16A. B. A zoomed in view of the contour plot lines from Fig. 17A, to focus on more biologically relevant 
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y-axis values (0.0 - 0.01); compare with Fig. 16B. Values for the structural and material properties of 

round stingray (U. halleri) tesserae are marked by a black marker.  

The degree of “geometry insensitivity” varies to some degree by shape: moving from 

triangle to square to hexagon the contours gradually incline more towards the left, 

indicating decreased susceptibility to changes in joint thickness (Fig. 17). For values of 

joint morphology measured from stingrays, however, these effects are minimal: from 

triangle to square to hexagon, the REM values only increase 1.45% of their x-axis (i.e. tile 

stiffness) values, from 90.77% to 91.45% to 92.22%. This is further illustrated in Fig. 18 

in a two-dimensional graph of REM values for the biologically relevant morphologies 

(t/√A = 0.002). Overall, the similarity of the observed trends and the convergence of 

comparable contour lines near the x-axis of Fig. 17 indicate that the thinner an array’s 

joints, the less of a role tile shape plays in composite stiffness. 

 

Figure 18: Two dimensional plot of REM at biologically relevant value of tesserae size.  

Two-dimensional graphical representation of REM for all tile shapes when t/sqrt(A)= 0.002 (biologically 

relevant value, derived from U. halleri tessellated cartilage), showing the relationship between tile and 

composite modulus. The zoomed in pane shows the high correspondence of the three unit cells’ lines, 

indicating similar mechanical behavior at small y-axis values (e.g. narrow joints). All shapes fall within 

their respective upper and lower bounds; note that the upper bound lines are nearly overlapping and the 

lower bound for hexagon is hidden beneath the REM line for the triangle array. The region above the 
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upper bound lines represents an unrealistic scenario where the composite is stiffer than its stiffest 

constituent (E>E1). 

3.4 Conclusions 

All examined models show stiffening of the composite when joint widths are minimized 

and/or tile stiffness is maximized. On average, however, the effective modulus of the 

square array is least sensitive and that of the hexagon array most sensitive to changes in 

model parameters. This suggests that square arrays would be less sensitive to 

structural/material variation (e.g. a wide range of E1/E20° values results in the same 

effective modulus, particularly when joints are thick), whereas hexagon tiled arrays 

would be more “tunable”. Square tiled arrays also allow the least return on material 

investment in terms of stiffness, whereas hexagon arrays provide a more optimized 

solution by maximizing the contribution of the harder tile material to the stiffness of the 

whole composite, being at a minimum 70.8% as stiff as their stiffest material for the 

range of values investigated here (as compared with 66.7% for the square unit cell). 

These differences are even more pronounced when other variables of tile shape are held 

constant (e.g. tile length or perimeter, rather than area; data not shown), but global 

trends among unit cell shapes are consistent, with hexagons always out-performing the 

other shapes in terms of composite stiffness. In models of geometric sutural interfaces, 

where joint thickness and volume fraction were held constant, stiffness increased as the 

length of sutural tooth edges in contact with joint material was increased, via addition of 

extra joint material to bond tooth tips to their corresponding troughs or via increases in 

tooth tip angle for teeth with bonded tips (Atkins et al., 2014; Balaban et al., 2015; Chen 

et al., 2014; Lin et al., 2014a; Lin et al., 2014b; Liu et al., 2014a; Seidel et al., 2014; 

Studart, 2012; Van Wassenbergh et al., 2015; Zhang et al., 2014). In contrast, in our 

models, for a given thickness of joint, hexagons —the tile that minimizes perimeter 

length for a given tile area— maximized composite model stiffness, by minimizing joint 

attachment surface and therefore the overall amount of joint material in the tiled 

composite. These observations on the mechanical efficiency of tiled composites are 

relevant to the laws constraining structuring of tiled biological materials, but also to 

manufacturing perspectives, where specific composite mechanical properties are 

desired. 
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The variable behaviors observed for different tile shapes when joints are thick do not 

apply for thin-jointed tile arrays, which converge on similar mechanical behaviors for 

the uniaxial loading regime simulated here. However, based on data showing the 

mechanical anisotropy of cellular solids (Ashby et al., 1995) and co-continuous 

composites (Wang et al., 2011), and given the large angle between the sides of square 

tiles, we would expect that square arrays would be particularly sensitive to variations in 

loading direction and, in biological systems, would only be found in areas with restricted 

loading orientation. This is supported by our observation of square tesserae in specific 

areas of the jaws of myliobatid stingrays (Dean, pers. obs.; Fig. 14b), directly beneath the 

tooth plates used to crush hard shelled prey with high, uniaxial bite forces (Kolmann et 

al., 2015; Summers, 2000b; Summers et al., 1998).  

Square tesserae are, however, otherwise apparently not common in tessellated cartilage, 

with limited data on shark and ray cartilage tessellations suggesting that hexagons are 

the most common tiling elements (Dean and Schaefer, 2005; Dean et al., 2005; Fratzl et 

al., 2016a). Our data show that hexagonal tiles can, under some loading conditions, 

impart superior mechanical properties to composites, in comparison with square and 

triangle arrays. The effect of tile shape may be largely irrelevant in the biological system, 

however, considering that a recent survey of the tessellations of several shark and ray 

species suggested that intertesseral joints may, as a rule, be extremely narrow (Seidel et 

al., 2016a). The predominance of hexagonal tiles could also relate to factors besides 

mechanics, such as biological growth mechanisms. For instance, given that tesserae arise 

from seed mineralization centers and grow by mineral accretion at their margins (Dean, 

2009; Dean et al., 2017a; Dean et al., 2009b; Seidel et al., 2016a), tesseral shape could 

also be regulated by the initial packing of mineralization seeds and/or variation in the 

local rates and uniformity of mineral deposition as tesserae and skeletal elements 

increase in size. In the latter case, tesserae with more sides could represent more 

uniform radial growth, whereas square tesserae would suggest a simpler biaxial growth 

pattern.  

Our models provide theoretical groundwork for planned Finite Element simulations of 

more complex 3D tessellation models, but are currently only valid for in-plane, 

unidirectional loading (tension or compression), along the primary “vertical” axes of our 

unit cell shapes and for small resultant strains (see Appendix). Our results therefore give 
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only an estimation of the tensile/compressive properties of tiled composites under 

instantaneous loading without, for example, capturing non-linear effects of tile-tile 

contact on mechanics, which may play a fundamental role in the mechanics of 

tessellated cartilage (Fratzl et al., 2016a) and should also be very geometry dependent 

(Achrai and Wagner, 2013a; Achrai and Wagner, 2013b; Cadman et al., 2013; Chen et al., 

2013; Chen et al., 2014; Ferrara et al., 2013; Liu et al., 2014a; Liu et al., 2014b; Yang et 

al., 2013a; Yang et al., 2013b; Zhang et al., 2013b; Zhang et al., 2013a). Our future studies 

will incorporate more detailed investigation through FE simulations and mechanical 

testing of 3D printed models, as well as the effects of off-axis loading, including shear 

and Poisson’s ratio effects, to better approximate the features of the biological tilings 

under study and provide insight into tiled composite architectures in general.  
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The phase 2 project is currently under review as a paper titled “Hierarchical mechanical 

analysis of stingray inspired tessellations: Implications for skeletal mechanics and 

biomimetic design” where I am the first author. 

4.1              

The skeletal system of sharks and rays (elasmobranch fishes) consists predominantly of 

unmineralized cartilage (Dean et al., 2009a; Kemp and Westrin, 1979a; Seidel et al., 

2019b), a skeletal tissue far less stiff than bone (Wegst and Ashby, 2004a). Unlike 

mammalian cartilage, however, elasmobranch cartilage is wrapped with a layer of 

minute, mineralized, polygonal tiles called tesserae, forming a surface shell (Fig. 19A-D) 

(Clement, 1992b; Dean et al., 2015; Dean et al., 2009a; Kemp and Westrin, 1979a; Seidel 

et al., 2019b). The composite nature of tessellated cartilage is hypothesized to enhance 

the mechanical properties of the unmineralized cartilage, particularly through the 

combination of soft and hard tissues in distinct geometric configurations (Seidel et al., 

2019b), but this has never been demonstrated unequivocally. Tesserae are linked by 

unmineralized, collagenous joint fibers (Fig. 19F, H), which, when the skeleton is under 

tension, are predicted to allow tesserae to pull apart, loading the fibers primarily (Fratzl 

et al., 2016b; Seidel et al., 2017a). In contrast, under compression the hard tesserae are 

expected to come into contact, stiffening the skeleton locally (Fratzl et al., 2016b; Liu et 

al., 2010b; Liu et al., 2014b). In this way, tesserae and their tissue associations are 

believed to allow tessellated cartilage to be either flexible or rigid, depending on the 

nature of the applied loads (Fratzl et al., 2016b; Liu et al., 2010b; Liu et al., 2014b; Seidel 

et al., 2019b). 

 

The role of the distinct tessellation in load management in shark and ray cartilage has 

been explored using both physical and computational methods, typically at two 

disparate size scales: either investigations of whole skeletal elements that disregard the 

tessellated nature of the mineralized layer or investigations of the interactions of 

individual tesserae, largely ignoring the geometry of the skeleton. The larger-scale, 

physical experiments have used mechanical testing techniques like flexural bending,  
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tension and compression tests and small scale testing like nano-indentation confirm that 

tesserae add stiffness to the cartilage  (Balaban et al., 2014; Liu et al., 2014b; Macesic 

and Summers, 2012; Wilga et al., 2016b). This is further supported by morphological 

studies, which show tesserae tend to be thicker in regions where high stresses are 

predicted to occur (Balaban et al., 2014; Dean et al., 2017b; Seidel et al., 2016b; Wilga et 

al., 2016b), with some species exhibiting multiple layers of tesserae (Dingerkus and 

Seret, 1991; Seidel et al., 2017b; Summers, 2000a; Summers et al., 2004).  

In contrast, our understanding of the smaller scale, mechanical behaviors and 

interactions of tesserae is less developed, largely due to the inherent technical 

difficulties in subjecting tesserae to mechanical tests due to their small size (typically 

≤500 µm width and their joints ≤2 µm at their narrowest; Fig. 19 E, F), complex 

structure, and covering by a fibrous layer (perichondrium) (Dean et al., 2009a; Seidel et 

al., 2017a; Seidel et al., 2016b). As a result, computational/analytical models have been 

most helpful in predicting form-function relationships at smaller size scales in 

tessellated cartilage. For example, a simplified analytical model of the tessellated 

cartilage cross-section  predicted that during compression, stresses will tend to be 

concentrated in the tessellated layer rather than the unmineralized cartilage (Liu et al., 

2010b). This hypothesized ‘stress-sink’ behavior for tesserae was also supported by 

larger scale computational structural analyses performed on models derived from CT 

scans of shark jaws and simulating biological loading conditions (Ferrara et al., 2011b; 

Wroe et al., 2008b). One of these models also showed that stresses would tend to be 

lower in jaws composed of tessellated cartilage as compared to jaws modeled in bone, 

although tissue strains were predicted to be higher (Wroe et al., 2008b). Lastly, in the 

only study to examine the mechanical effects of tesserae properties on the mechanics of 

the tessellated cartilage composite, parametric, 2d analytical models of tesserae 

demonstrated that variations in tesserae geometry and material properties should 

translate into differences in effective stiffness of the composite at larger scales, 

suggesting that emergent skeletal properties can be tuned through local 

structural/material variations at the tesseral level (Jayasankar et al., 2017b).  

Computational studies have therefore been important in predicting the role of tesserae 

in the management of stresses, beyond simply providing stiffness to the underlying 

unmineralized cartilage. However, all smaller-scale studies of tessellated cartilage 

mechanics have relied on extremely simplified models of tesserae, which were only two-
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dimensional and assumed tesserae to have homogeneous material. However, a recent 

study showed that tesserae are not simply solid blocks, but rather exhibit complex 

three-dimensional ultrastructures and local material variations (Fig. 19E, F; see 

description in Methods below) (Seidel et al., 2016b). In order to better capture the fine 

scale mechanics of tessellated cartilage, the current work employs 3d models that 

incorporate the recent, high-resolution ultrastructural and material information 

obtained from the tessellated cartilage from the round stingray, Urobatis halleri (Seidel 

et al., 2016b). Through parametric CAD modeling, natural ultrastructure and material 

property variations were simulated and the resultant computational models subjected 

to finite element analysis (FEA). This allowed evaluation of stress patterns occurring 

within tesserae during loading, to determine the effects of various tesserae 

ultrastructural features on mechanics.  



  

 

 

 

61 
 

 

Figure 19: Tessellated cartilage of stingray skeleton and biological translation. 

The skeleton of sharks and rays (A-B) is covered with mineralized tiles, called tesserae, roughly hexagonal 

in surface view (C) and rectangular in transverse cross-section of the skeleton (D). A planar section within 

the plane of the tesseral mat (E) and a vertical cross-section of a tessera (F), illustrate their diverse 

ultrastructural components and the joint fibers connecting adjacent tesserae. Corresponding translation 

sketches of planar and vertical cross-sections are shown in (G) and (H), respectively, with abbreviations 

(used in all Figures) listed at the bottom of the Fig. Note that the perichondral zone (PCZ) is removed in 

(G) so that the spokes (Sp) are visible. A-D: MicroCT images; E-F: Backscatter electron microscopy images. 

Note that these techniques only visualize hard tissues (tesserae) here and not fibrous tissues, such as the 

joint fibers between tesserae. Panels A-F obtained from  
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4.2 Methods: Phase 2 

 

Figure 20: Multiscale models of tesserae constructed in this study. 

A) Step-wise construction of tesseral ultrastructure, assigning biologically-relevant material properties; 

color-coding and abbreviations are the same as Fig. 19. B) Ultrastructural factors (lamina number, center 

radius and contact surface area) varied parametrically in the local model, to derive their effect on net 

effective stiffness of tesserae. C) Local model (single tessera, including ultrastructural features) - note that 

the perichondral zone (PCZ) has been removed, as in Fig. 19G. D) Global model (multi-tesserae array), 

where tesserae are assigned a homogeneous material property, derived using the local model (see text). 

The mineralized tessellated layer was modeled at two length scales (Fig. 20), described 

in detail below. In a “local” model (Fig. 20C), we investigated the effect of ultrastructural 

variation on stress distribution and effective stiffness (see below) of individual tesserae 

(i.e. not including joint material). In the larger scale "global model", we constructed a 

tessellated array, containing monolithic tesserae with material properties determined 

from the local model and also incorporating joint material between tesserae (Fig. 20D). 

This allowed investigation of how local, within-tesserae features relate to the material 

behavior of tessellations at a larger size scale. 

Both the local and global tesserae models were constructed in a commercial computer-

aided design (CAD) package, Rhinoceros 3D Version 5 (Robert McNeel & Associates, 
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Barcelona, Spain), coupled with Grasshopper 3D (0.9.0076), a plug-in for algorithmic 

programming that allowed ultrastructural features to be varied parametrically (see 

below).  

4.3 Local model: Parametric modeling of tesserae ultrastructure 

Natural ultrastructure 

Tesserae are polygonal, mineralized tiles that are predominantly six-sided (i.e. bordered 

by six neighboring tesserae) (Baum et al., 2019)and are typically wider than deep (Dean 

et al., 2009a; Jayasankar et al., 2017b; Seidel et al., 2016b). As such, they can be 

considered to be roughly hexagonal when sectioned in the plane of the tesseral mat 

(planar section: Fig. 19E, G) and rectangular in transverse cross-sections of the skeleton 

(vertical section: Fig. 19F, H). Tesserae comprise several distinct structural regions, the 

arrangements and structural features of which acted as guides for our model 

construction. The summary of tesserae ultrastructure in the paragraph below is 

synthesized from numerous works which focused predominantly on tesserae from the 

stingray Urobatis halleri (Dean et al., 2009a; Dean et al., 2010; Seidel et al., 2017a; Seidel 

et al., 2016b); however, these features of tesserae seem to be largely universal among 

different species. Anatomical terminology, abbreviated in italics below, is illustrated in 

Fig. 19 and used throughout the figures. 

The tesseral center region (C: Fig. 19E-H) occupies the approximate center of mass of 

the tessera. Extending outward from the center are the ‘spokes’ (Sp: Fig. 19E-H): high 

mineral density wedges, radiating from the center toward the joints with adjacent 

tesserae. Intervening between spokes are wedge-shaped ‘interspoke’ (between spoke) 

regions (IS: Fig. 19E, G); these are a lower mineral density than spokes and communicate 

to the pores (P: Fig. 19E, G) at the vertices of tesserae, rather than the joint surfaces at 

the tesseral sides. The alternating pattern of spoke and interspoke regions pinwheeling 

around the tesseral center resembles spokes on a wheel in planar sections (Fig. 19E, G). 

Spokes are characterized by thin plate-like lamellae (2-3 µm) arranged parallel to the 

tesseral joint surface. Spoke laminae (SpL) alternate between higher and lower mineral 

density lamellae (HMDL, LMDL), giving spokes a banded appearance. In vertical sections, 

spokes often enclose a pyramidal ‘intraspoke’ (within spoke) region (iS: Fig. 19F, H), 
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comprised of lower mineral density material (similar to interspoke regions) and also 

communicating to the joint space between tesserae. Between the center region and the 

outer fibrous perichondrium (PC: Fig. 19F) is the perichondral zone of the tessera (PCZ: 

Fig. 19F, H) and between the center and underlying unmineralized cartilage (UC: Fig. 

19F) is the chondral zone of the tessera (ChZ: Fig. 19F, H), both zones with mineral 

densities similar to inter- and intraspoke regions. All non-spoke regions within tesserae 

(i.e. center, interspoke, intraspoke, perichondral and chondral regions) are perforated 

by spheroidal cavities (Lac: lacunae, 15-20 µm long), which contain cells and 

unmineralized matrix.  

 

Figure 21: Biological structure (left) and corresponding model (right) of the complex tesseral joint 

face. 

The joint face comprises a flattened, raised region where neighboring tesserae are in contact (contact 

zone) and a recessed zone where fibrous tissue links neighbors (fibrous zone). The proportion of the joint 

face occupied by the contact and fibrous zones is reciprocal and in the constructed local model, this could 

be changed parametrically. Color coding is the same as Fig.s 19 and 20; compare with those figures and 

note that the contact zone is associated with spokes (Sp), whereas the fibrous zone is associated with the 

intraspoke region (iS). Both images show a lateral, ‘neighbor’s eye’ view of a tessera. Left image is a 

pseudo-colored microCT image.  

The joints between tesserae are anatomically complex (Fig. 21) and deserve careful 

consideration from a modeling perspective. The edges of tesserae which border the joint 

space are comprised of two anatomical regions with distinct morphologies and tissue 

associations (Figs. 19E-H, Fig. 21A). Where neighboring tesserae come into physical 

contact, there is a largely flat “contact zone” (CZ: Fig. 19E-H), always associated with and 

flanked by spokes in the tessera. In contrast, the “fibrous zones” (FZ: Fig. 19E-H), where 
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collagen joint fibers (FB) tether neighboring tesserae to one another, are recessed and 

flanked by intraspoke tissue in the tessera. The morphologies and interactions of these 

two zones on the joint face of a tessera are elaborate, with fibrous and contact zones 

interweaving considerably (Fig. 21). However, the flanking of contact zones by spoke 

material and fibrous zones by non-spoke material appears to be a diagnostic feature of 

tesserae (Seidel et al, 2016).  

4.4 Local model construction 

In the local model, a tesserae was modeled as a hexagonal block, with the geometries 

and dimensions of tesseral ultrastructures modeled according to those observed in 

tesserae from the stingray Urobatis halleri (Table 1) (Dean et al., 2009a; Seidel et al., 

2016b). The different ultrastructural regions (e.g. spoke, interspoke regions) were 

modeled as separate pieces and then assembled together to form the complete, 

integrated tessera (Fig. 20A). This assembly process facilitated the parametric variation 

of the dimensions and properties of individual ultrastructural features. We describe the 

arrangement of features and their assembly below, including the same anatomical 

abbreviations listed in the paragraph above.  

The tesseral center (C) was modeled as a polygon at the geometric center of the tessera, 

with wedge-like spoke (Sp) and interspoke (IS) regions radiating from its vertices 

towards the outer edges of the tesserae (Fig. 20A). To accommodate the intraspoke (iS) 

region (described below), spokes were modeled with an internal, pyramid-shaped 

cavity, with the base at the tesseral edge and the tip extending toward the tesseral 

center. Spokes were divided into laminae of equal thickness parallel to the joint face. 

Laminae were assigned high or low moduli (HMDL, LMDL; see below) in alternating 

order to mimic the banding pattern of alternating high/low mineral density and material 

properties observed in Urobatis tesserae (Fig. 19F) (Seidel et al., 2019c). Both the first 

lamina near the center and the last lamina at the joint face were assigned a low modulus. 

This mimicked the biological condition where newly deposited material at tesseral 

edges has a lower mineral content and material stiffness (Seidel et al., 2019c). Semi-

circular cavities were hollowed out at the tesseral vertices (i.e. the distal ends of the 

interspoke regions) to mimic the pores (P) often observed at the intersection points of 

multiple tesserae in natural tessellations (Fig. 19E, G) (Maisey, 2013a; Roth, 1911; Seidel 
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et al., 2016b). The tessera model was completed by adding the perichondral and 

chondral zones (PCZ, ChZ) on the top and bottom of the tessera, respectively. The 

addition of these regions creates the planar surfaces of the top and bottom of the model 

(compare the 3rd and 4th images in Fig. 20A). The lacunar cavities (Fig. 19F), typically 

present in all non-spoke regions in tesserae, were not modeled, as the 3D structure and 

material properties of these cavities and their tissues have not yet been described. 

The distal end of the intraspoke region was recessed relative to that of the spoke region 

in order to create a simplified joint surface that captured the primary structural 

characteristics of the joint face (Fig. 21), while facilitating efficient finite element 

analysis. In our local model, the distal end of the spoke (i.e. the lamina at the 

intertesseral joint-end of the spoke) served as the contact zone surface (CZ: orange 

region in Figs. 20A, 21), whereas the distal end of the intraspoke region served as the 

recessed and rectangular fibrous zone (FZ: yellow region in Fig. 20A, 3). In this way, as 

in the biological system, the contact and fibrous zones were modeled as distinct, but 

closely associated regions, flanked by different materials. In the ‘global model’ described 

below, which models a full tessellation, fibrous joint material is fully bonded to the 

intraspoke regions to connect tesserae to their neighbors.  

4.5 Ultrastructural variations in tesserae 

To investigate the effects of ultrastructure on performance (tesserae stiffness and 

intratesseral stress distribution), three key ultrastructural features were varied in our 

parametric models (Fig. 20B): 1) the number of laminae in a spoke, 2) the size of the 

center region (center radius) and 3) the area of the contact zone surface in proportion to 

the fibrous zone surface. These three ultrastructural variables were chosen to represent 

the natural variation in tesseral ultrastructure observed among different species of 

elasmobranch (Fig. 22) (Seidel et al., 2016b). The morphologies of the selected 

ultrastructural features were varied through a wide range that included morphologies 

previously observed for tesserae of the stingray U. halleri (Table 1; natural character 

states are marked in red in Fig. 23).  
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4.5.1 Varying lamina number 

Tesserae increase in size as the animal grows, via deposition of new material at their 

margins (Dean et al., 2009a; Seidel et al., 2016b). As a result, spokes also increase in 

length with age via the addition of new laminae and therefore the thickness of laminae 

relative to spoke length varies. In our model, the lamina number was changed by 

subdividing the spoke along its long axis into different numbers of laminae of equal 

thickness. The wedge-like shape of spokes, however, meant that laminae decreased in 

volume from edge to center.  

The lamina number was varied from 5, 11, 15, 21, 51 to 151. The chosen values for 

lamina number were all odd in order to maintain the presence of soft laminae at the 

outer rim and adjacent to the center. In U. halleri tesserae, spoke laminae are 2.52 ± 1.0 

µm thick (Seidel et al., 2019c) and therefore the 151-laminae condition (with each 

lamina having a thickness of ~1 µm) is the most biologically relevant model. 

 

Fig. 22:  Natural variation of tesseral ultrastructural features in two species of shark and a skate. 

Note the variation in the size of the center region (C; outlined in red), the predominance of spokes (Sp), 

and cellularity (the black holes in tesserae are lacunar spaces, where cells are housed in life). 

4.5.2 Varying center size 

In the natural system, across species and across age, the proportion of tesseral diameter 

occupied by the center region is variable (Fig. 22) (Seidel et al., 2016b). In our model, 

because interspoke and spoke regions are linked to the center region, changes in center 

diameter result in concomitant inverse changes in the length/volume of interspoke and 



  

 

 

 

68 
 

spoke regions (i.e. a larger center results in shorter spokes). To investigate the 

mechanical effect of different center sizes, the diameter of the center was varied from 

90, 25, 20 to 15 microns (~40%, 10%, 8% and 6% of tesseral diameter). Tiles with 

centers 20 µm in diameter (~8% of tesserae diameter) were  the most biologically 

relevant models (Seidel & Dean, pers. obs.).  

4.5.3 Varying contact zone area 

 The complex physical interactions of adjacent tesserae at their joints are expected to 

play an important role in tessellated cartilage mechanics (Baum et al., 2019; Fratzl et al., 

2016b; Seidel et al., 2016b). In our models, each joint face is comprised of a reciprocal 

combination of contact zone and fibrous zone area. To investigate the effect of this 

interaction on tesserae stiffness, the contact zone area was varied in proportion to the 

fibrous zone area, from 25%, 50% to 75%. A contact zone proportion of 50% was the 

most biologically relevant (Seidel & Dean, unpublished data). As spoke and intraspoke 

regions are associated in our models with the contact and fibrous zones, respectively, 

increase in contact zone area resulted in a concomitant increase in spoke volume, 

decrease in fibrous zone area and decrease in intraspoke volume. 

Tesserae (T) width: 448 μm height: 200µm 

Fibrous zone (FZ) width: 180 μm | 40% height:121 μm | 60.5% 

Contact zone (CZ)  width: 218 μm | 48%  height:200 μm | 100% 

Center (C) radius : 20 μm | 4% height : 155 μm | 77% 

Spoke (Sp) height at center: 155 μm | 77% height at edge: 200 μm | 100% 

 

Table 2: Ultrastructural features, their dimensions, and their proportions with respect to tesserae 

dimensions. Ultrastructural dimensions are derived from previous anatomical descriptions of tesserae 

from the stingray Urobatis halleri (see text). 
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4.6 Finite Element Analysis 

Two versions of the local model were used to address the contribution of individual 

structural and compositional features to tesserae mechanics (Table 2). The model 

versions differed only slightly: the “bio-model” exhibited ultrastructural features most 

similar to U. halleri tesserae (151 laminae, 20µm center, 50% contact area), whereas the 

“base model” was a simplified version of the bio-model, with the same dimensions and 

features, but only 51 laminae. The base model required considerably less computational 

power as a result of its fewer laminae; this time-saving modification was used where 

possible, because lamina number was shown to have little effect on tesserae properties 

(see Results). Table 2 outlines which model version was used in which experiment: The 

bio-model was used to investigate stress distribution and overall performance of 

tesseral ultrastructures during loading, whereas the base model was used to study the 

effects of ultrastructural feature variation on tesserae stiffness (e.g. variation in lamina 

number, center radius or contact surface area).  
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Structural features Base model Bio model 

No. of laminae 51 151 

Center radius 20 µm 

Contact surface area 50% 

 

Variables tested Base model Bio model 

Lamina number 

(Fig. 23) 
5, 11, 15, 21, 51, 151 

Center radius 

(Fig. 23) 
90, 25, 20,15 µm - 

Contact surface area 

(Fig. 23) 
75%, 50%, 25% - 

Maximum Stress 

(Fig. 24) 
- ✔ 

Strain energy density 

(Fig. 25) 
- ✔ 

Stress transect 

(Fig. 26) 
0, 5, 21, 151 

 

Table 3: Variations on the local model used for finite element analysis (FEA). 

The base and bio-models are defined in the top rows of the table; these models differed only in lamina 

number. The base model was used when possible to reduce analysis time. Each FEA experiment is placed 

in the column of the model used and figures where results are shown are listed. For experiments where 
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ultrastructure was varied parametrically, morphological iterations are listed. Relevant base and bio-model 

values are listed in green and red respectively. Since base and bio-models differed only in lamina number, 

experiments where lamina number was varied span both columns. 

The models listed in Table 2 (including all parametric iterations for each of the three 

chosen ultrastructural features) were constructed and exported from Rhinoceros in SAT 

file format into a finite element analysis package (ABAQUS Version 6.13 Dassault 

Systèmes, Waltham USA). All components shown in Fig. 20A were modeled as fully 

bonded with each other. The models were meshed with 10-node quadratic tetrahedral 

elements (C3D10). After a mesh sensitivity test, the global seeding size was set at 0.015 

µm, with each model having a degree of freedom from [3 x minimum node number] to [3 

x maximum node number] (see Appendix A.8).  

In the local model, each tessera ultrastructure was assigned linearly elastic properties 

and Poisson’s ratio of 0.3 (Zhang et al., 2013a). Mineralized tissue moduli were obtained 

from a nanoindentation study of stingray tesserae (Seidel et al., 2019c). All tesserae 

ultrastructures were assigned a modulus of 25 GPa except for the hard laminae in 

spokes, which were assigned a higher modulus of 35 GPa . The model was constrained at 

the bottom joint surface and a uniform displacement boundary condition was applied to 

the top of the model in the y-direction (along the top-bottom axis). The displacement 

boundary condition simulated an equivalent strain of 1.3%, compressing the tessera in 

the y-direction. 

4.7 Mechanical Performance Assessment  

To understand the mechanical role played by each ultrastructural component, the 

mechanical behavior of the local model was assessed using several metrics. The model’s 

volume-averaged stress (𝜎𝑦𝑦  ) in the loading direction was quantified, with 

Equation 4 

σ̅yy = 

∑ σyy
in

i=1 ∙ Vyy
i

∑ Vyy
in

i=1

 

where σ̅yy    is the stress in the y-y loading plane, Vyy
i  is the volume of each element and i 

represents the element number. As a representation of maximum stress ( σ  yy
Max ), the 
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average of the top 10% of stress values was calculated. This was used rather than the 

absolute maximum in order to have a volume-averaged significance rather than a single 

value and to avoid singularities, if present. 

Additionally, the average strain energy density was calculated for loaded tesserae 

models using the standard ABAQUS output variable identifier, SENER: 

Equation 5 

𝑺𝒕𝒓𝒂𝒊𝒏 𝒆𝒏𝒆𝒓𝒈𝒚 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 =
∑ 𝑺𝑬𝑵𝑬𝑹𝒏

𝒊=𝟏 ∙ 𝑽𝒚𝒚
𝒊

∑ 𝑽𝒚𝒚
𝒊𝒏

𝒊=𝟏

 

 

Strain energy density (strain energy normalized by volume) is a common measure of 

energy absorption, approximating also the relationship between stress and strain in a 

structure or material (Sih and Macdonald, 1974). Strain energy density is also a proxy 

for the extremes of material performance, predicting possible failure regions and areas 

of crack propagation in materials (Fratzl et al., 2007b).  

Additionally, to evaluate the contribution of ultrastructural variation to whole tessera 

mechanical behavior (and to facilitate construction of the global model, see Section 2.2), 

a single homogenized effective modulus (Eeff) for tesserae was calculated from the most 

biologically relevant, heterogeneous single tessera model (local model). This effective 

modulus captures in a single value the mechanical contributions of the complex 

heterogeneous features modeled within the tesserae, by assuming the heterogeneous 

tessera will bear the same energy as a tessera of Eeff under the same boundary 

conditions (Chen et al., 2017). With the linearly elastic materials used in our models, the 

ratio of strain energy density experienced by two tesserae of different material 

properties loading under the same testing/boundary conditions is proportional to the 

ratio of their moduli. We exploit this to calculate the homogenized effective modulus (an 

unknown) by comparing in ABAQUS the strain energy density of the heterogeneous local 

tessera model with that of a homogeneous tessera of arbitrary mechanical properties 

modeled: 

Equation 6 
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𝑬 =  
𝑾𝑩𝒂𝒔𝒆 𝒎𝒐𝒅𝒆𝒍

𝑾𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒐𝒖𝒔 𝒎𝒐𝒅𝒆𝒍
∗  𝑬𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒐𝒖𝒔 𝒎𝒐𝒅𝒆𝒍 

 

where WBase model is the elastic strain energy density of the local bio-model and 

WHomogeneous model is the elastic strain energy density of a tessera of equal volume 

composed of an arbitrary single material (EHomogeneous model = 35 GPa). To verify that the 

substitutive material (Eeff) accurately mimics the energy storage of the biological model, 

a tessera comprising only effective modulus material was modeled in ABAQUS and its 

strain energy density derived as in Equation 3.  

The effective modulus of whole tesserae was calculated for each of the 13 varied-

ultrastructure models. The homogenization method for calculating effective modulus is 

more relevant for the current work than the traditional Hashin-Strikman method, which 

calculates effective modulus using only the volume fraction of constituent materials, 

thereby ignoring any mechanical effect of ultrastructures formed by the different 

materials (Chen et al., 2017).  

Finally, to understand the mechanical role of spoke laminae, the stress at maximum 

strain was plotted along a path running through the tessera along the loading axis: 

starting from the loaded contact surface, traversing the spoke to the tesseral center and 

then exiting distally through the contralateral spoke (see Fig. 27). The stress values as a 

function of position along the path were plotted for four tesserae models: models with 5, 

21, and 151 laminae and a tessera with uniform material property of 25 GPa (i.e. a 

model with zero spoke laminae).  

4.8 Global model: Integration of the local tesserae model into the 

tesseral matrix  

4.8.1 Construction of the global model 

A tesseral mat was created using Grasshopper and Rhino, by assembling tesserae with 

the same structural dimensions as the base model into a 3 by 3 array (Fig. 20D). 

Tesserae were 1µm apart from each other and connected to their neighbors using a soft, 
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fibrous joint material projecting from the fibrous zone surface of the intraspoke region 

(yellow region, Figs. 20A, 21). To facilitate computation, tesserae were modeled as 

homogeneous (i.e. lacking ultrastructure) and assigned the effective modulus material 

property (Eeff = 26.1 GPa, determined from the homogenization above; see Results) and 

the Poisson’s ratio was modeled as 0.3, common for models of biological tissues (Zhang 

et al., 2013a).  

The material property of the fibrous joint material in the biological tissue is unknown, 

but due to its construction from parallel-aligned collagen fibers (Clement, 1992b; Dean 

et al., 2009a; Seidel et al., 2017a) it is hypothesized to be very stiff under tension and 

soft under compression (Fratzl et al., 2016b; Seidel et al., 2019b) and therefore highly 

non-linear. To capture this behavior, we constructed a hypothetical material model 

using the ABAQUS material library, combining the stress-strain curves of tendon in 

tension (Maganaris and Paul, 1999) and mucosa under compression (Chen et al., 2015b). 

The 2nd order Ogden hyperelastic material model provided the closest fit to our 

composite curve and so was used as our intertesseral fiber material (see Appendix 

A.12). 

The tesseral mat was loaded in both tension and compression while constrained at the 

bottom surface (Fig. 20D). Similar to the local base model, a 1.3% uniaxial strain was 

applied within the plane of the tesseral mat. The stress in the tesseral mat was 

calculated using Equation 2 and stress-strain curves were plotted for both tension and 

compression. In addition, for comparative purposes and to demonstrate the role of 

material and structural properties in the mechanics of the tesseral array, three 

additional models were created where tesserae were modeled with (1) lower stiffness 

material (25 GPa), (2) higher stiffness material (35 GPa), or (3) with intertesseral joints 

that were twice as wide as those in the base global model. 

4.9 Results and Discussion 

4.9.1 Local model: Ultrastructural variations 

The hexagonal structure of the modeled tessera has a high tolerance to structural 

changes or defects, as demonstrated by the fact that not all modeled ultrastructural 
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variations produced demonstrable effects on tesseral mechanical properties. The 

variation in spoke lamina number and center radius had essentially marginal effect on 

the effective stiffness (Eeff) of the tessera, which varied less than 1% across models, 

remaining ~26.1 GPa (Fig. 23A-B). This lack of change is likely a function of the design 

constraints of the tesseral model (see 2.1 Local model). The majority of the tessera 

model is comprised of lower modulus material (LMM: 25 GPa); therefore, any increase 

in the proportion of higher modulus material (HMM: 35 GPa) will increase in tesseral 

effective stiffness. However, HMM in our model is found only in spokes, the structure of 

which is not greatly affected by our modeled changes in lamina number or center radius. 

For example, when the number of laminae was varied from 5 to 151, the volume fraction 

of hard material (VFhard: volume of HMM relative to whole tessera volume) only 

increased by 4% (VFhard 5 lamina = 15% vs. VFhard 151 lamina = 19%). The increase in 

VFhard, however, is not large enough to alter the effective stiffness of the tessera. The 

increase of VFhard with increasing lamina number (Fig. 23A) is due to the spokes being 

wedge-shaped structures (in both planar and vertical sections; Figs. 19-20). When there 

are few laminae, spokes are dominated by the material of the outermost lamina (LMM in 

our models). However, as the number of laminae increases (i.e. laminae became 

thinner), the volumetric proportion of higher and lower modulus material in spokes 

converges on 50%. 
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Figure 23: Effect of ultrastructure on tesserae mechanics. 

Effect of varied ultrastructure (lamina number, center radius and contact surface area) on the volume 

fraction of hard material relative to tesserae volume (VFhard : x-axis) and effective modulus (E: y-axis) A) 

The lamina number varied from 5-151 laminae. B) The radius of the center varied from 90μm to 15μm. C) 

The contact surface area varied from 25%-75% of the joint surface. Note that the modeled ultrastructural 

changes had little effect on the net effective stiffness of the tessera, except in the latter model, where 

stiffness increased by 6%. Green-filled points indicate the ‘Base model’ and red-outlined points represent 

the ‘Bio-model’. 
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Similarly, decreasing the center radius size from 40% to 6% of tesserae width had little 

effect on VFhard, which only increased from ~16% to 19% (Fig. 23B). Although the 

decrease in center radius increases the radial length of the spokes (which are bound in 

our model to the vertices of the center region), there is little change in the volume of 

hard material with respect to whole tesserae volume, and therefore negligible effect on 

tesserae stiffness. 

In contrast, change in the contact zone area had a considerable effect on VFhard and, as a 

result, also the effective stiffness of the tessera (Fig. 23C). The increase in the contact 

zone area (from 25% to 75%) resulted in VFhard increasing by 20% (0.09 to 0.29). This is 

also linked to the design constraints of the model, where joint surfaces of tesserae are 

comprised of reciprocal combinations of fibrous and contact zone areas (Figs. 20, 21). As 

a result, an increase in a tessera’s contact zone area concomitantly decreases the area of 

its fibrous zone. In our simulation, the increase of the contact zone area led to an 

increased volume of the higher mineral density spoke region (flanking the contact zone), 

and consequently reduced the volume of the lower mineral density intraspoke region 

(flanking the fibrous zone). Therefore, the overall volume of hard laminae was increased 

in the tessera model, resulting in an increase in the effective stiffness of the tessera by 

6% (from 25.1 to 26.6 GPa).  

Our modeled ultrastructural variations suggest that structural changes that result in 

increases in the proportion of spokes (i.e. increases in the proportion of hard material) 

in tesserae have the largest effect on tesseral stiffness. As such, the differences in the 

proportional thickness of spoke laminae and the size of the center region occurring 

across species and ages (Seidel et al., 2016b) are predicted to have little effect on whole 

tesseral stiffness. In contrast, alterations that result in changes to the contact zone area 

should have a pronounced effect on tesseral mechanics. Indeed, Seidel et al.’s (Seidel et 

al., 2016b) microCT and backscatter SEM survey of several elasmobranch species’ 

tesserae implies that the proportion of high mineral density material does vary by 

species (Fig. 22), suggesting that changes in spoke volume and contact surface area may 

be a pathway by which local stiffness is tuned in the tessellated cartilage skeleton. 
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4.9.2  Mechanics of the bio-relevant model and its ultrastructure 

 

Figure 24: Stress contours in tesseral ultrastructure. 

Stress in the loading direction in the local model. A) Plot of maximum 10% stress for each ultrastructural 

component in the loading direction (Syy) with respect to time. The spokes experience maximum stress 

while transferring the stresses across the tessera through the center. B) Vertical cross-section of the 

tessera showing the stress contours of stress (Syy) in the loading direction. Ultrastructural features are 

indicated by lines and abbreviations (see Fig. 19). Note that maximum stresses occur in the on-axis spoke 

and interspoke regions, radiating from the contact zone (CZ) across the tessera through the center (C). 

Individual tesseral ultrastructures exhibit distinct mechanical behaviors and their 

mechanical behaviors vary according to their relationship to the axis of loading. This is 

visible in plots (Fig. 24A) and FEA models (Fig. 24B) showing on-axis stress in the bio-

model as a function of time, and particularly when structures are divided into those 
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directly in line with load and those not (Fig. 24A). When load is applied to the contact 

surface of the tessera, stress builds up in the on-axis spokes (i.e. those flanking the 

loaded contact surfaces) and adjacent interspoke regions and radiates towards the 

center of the tessera (Fig. 24B). Reaching the end of a loading cycle, these stresses also 

radiate laterally outward from the center to some degree to the off-axis regions. 

Our models suggest that the ultrastructural features in line with load —and particularly 

spokes— will experience maximum stresses, while also acting as channels, ferrying 

mechanical stimulation to the tesseral center. As a result, the center has the highest 

strain energy density when compared to other ultrastructural features (from time 0.2s 

in Fig. 24). This is an important observation, considering that whereas spokes are 

acellular, the center is filled with cells, housed in lacunar spaces and connected by short 

canalicular passages (Figs. 19E-F, 25) (Dean et al., 2010; Seidel et al., 2017a; Seidel et al., 

2016b). As mammalian chondrocytes have been shown capable of sensing mechanical 

signals (Chen et al., 2013; Lammi, 2004; Wann et al., 2012; Wu and Chen, 2000), we 

hypothesize that the cells in the center region of tesserae may act sensors, collecting 

mechanical loading information within tessera. This particular role may explain the 

spherical appearance of chondrocytes in the center of tesserae, distinguishing them 

from the more ubiquitous, flattened spheroidal chondrocytes elsewhere and suggests a 

division of labor among the different shaped cells throughout tessellated cartilage (i.e. in 

unmineralized cartilage, joints and tesserae) (Dean et al., 2009a; Dean et al., 2010; Seidel 

et al., 2016b). Additionally, it should be noted that the stresses in non-spoke/non-center 

regions (interspoke, intraspoke, perichondral and chondral regions) are comparatively 

low during loading, suggesting that by ferrying stresses through the acellular spokes to 

the center region, spokes may protect cells in non-spoke/non-center regions (e.g. 

interspokes; Fig. 25).  
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Figure 25: Strain energy density in tesseral ultrastructure. 

Strain energy density in tesseral ultrastructural components with respect to loading time. The center 

experiences maximum strain energy density compared to other ultrastructures. As shown in the inset 

backscatter electron microscopy image, the center is filled with cells (shaded red), which may act as 

mechanosensors for stresses (indicated by red arrows) ferried through spokes (Sp). The interspoke (IS) 

region (colored blue) is also cell-rich, but is off-axis from predicted intertesseral stresses. 

We provide support for this hypothesis through an altered version of our CAD model, 

which simulated a tessera where non-spoke/non-center regions were assigned 

negligible mechanical properties, simulating a tessera lacking these regions. The 

resultant model exhibited nearly the same effective modulus as the complete bio-model 

(data for non-center tesserae are shown in Appendix A.9), arguing that non-spoke/non-

center regions may perform a non-mechanical role, perhaps acting as repositories for 

cells for tissue growth. This also explains the geometries of the recently described 

stellate (asterisk-shaped) ‘trabecular tesserae’ (Atake et al., 2019) (Fig. 26). Published 
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images from a variety of species (Atake et al., 2019; Knötel et al., 2017; Leydig, 1857; 

Seidel et al., 2016b) indicate that the stellate morphology of these tesserae is due to a 

reduction or lack of interspoke regions (Fig. 26B-C). The stellate morphology may 

represent tesserae stripped down to their mechanical necessities (i.e. just their spoke 

and center regions); the reason for this ‘reduced’ morphology requires investigation. 

In addition to the stresses observed in spokes, notably high stresses are also visible at 

the corners of the contact surfaces, adjacent to tesseral pores (Fig. 24B). We verified that 

these are largely artifacts of the sharp corners bordering pores in our models, by 

comparing the bio-model with a similar CAD model lacking pores, with such stress 

concentrations being considerably reduced in the latter model (data not shown). It 

should be noted, however, that tesseral pores are natural features (see Fig. 19E) 

(Maisey, 2013a; Roth, 1911; Seidel et al., 2016b) and that holes, edges and corners are 

common stress concentrators in tissues (Petrie and Williams, 2005). Therefore, it is 

possible that tesseral pores create a unique stress environment in tessellated cartilage 

that is perhaps stimulating for tissue growth.  
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Figure 26: Trabecular tesserae. 

A) MicroCT of the hyomandibula from Fig. 19B and B) a zoomed in region, showing a gradient in tesseral 

shape with two sets of three exemplar tesserae (T) marked in yellow: more typical polygonal tesserae on 

the left and stellate ‘trabecular’ tesserae on the right. C) Schematic of the structural differences between 

polygonal and stellate tesserae, showing the reduction of the interspoke region (IS) and the predominance 

of spokes (Sp) in stellate tesserae. Note that joints (J) are located approximately midway between the 

centers (C) of adjacent tesserae in the microCT image in B, although they are not always visible. D) 

Maximum stress in a finite element simulation, illustrating stresses passing predominantly through on-

axis spokes. This renders interspoke regions largely mechanically redundant, perhaps explaining the 

observed morphology of stellate tesserae. Abbreviations as in Fig. 19. 
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Figure 27: Comparison of stresses across tesserae with varied lamina number. 

Comparison of stresses through a measurement transect —from the loaded edge to the constrained edge, 

through the on-axis spokes and center— for models with increasing spoke lamina number (from bottom 

to top: 0, 5, 21, 151 laminae). The shape of the graphs is more telling than the absolute values, but the 

stress y-axis at the top right applies to all models: the absolute minimum is zero MPa, the stress in the 

center is approximately 200 MPa and the absolute maximum is 250 MPa. Note that with increase in lamina 

number, the stress oscillation wavelength decreases, suggesting thinner laminae may protect tesserae by 

causing crack to follow more circuitous paths when damage evolves. The measurement transect is 

illustrated by the red dashed line on the cross-sectioned tessera schematic at the bottom of the figure. 

The mechanical importance of on-axis spokes and their structure is also evident from 

stress traces plotted along measurement transects running through the tessera along 

the loading axis, from the loaded tesseral edge to the constrained edge (Fig. 27).  

Comparing models with 0, 5, 21 and 151 laminae per spoke, the stress behavior was 
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always similar in contralateral spokes (left and right sides of the graph) under the 

applied loading conditions, and therefore, all stress line maps were symmetrical around 

the center. Whereas in the homogeneous model (i.e. no laminae model) stress increased 

smoothly from the intertesseral contact zone along the spoke to the center, in 

heterogeneous models (i.e. models with laminated spokes), stress oscillated according to 

the periodicity of spoke laminations, with local maxima in high mineral density laminae 

(HMDL), local minima in low mineral density laminae (LMDL), and frequency increasing 

as the number of laminae increased. This indicates a potential protective advantage in 

having tesseral spoke laminae be very thin. Since spokes are the highest modulus 

features in tesserae (Seidel et al., 2019c) and are associated with contact zones (Seidel et 

al., 2016b), they will regularly experience high stresses, increasing their chance of 

material failure relative to adjacent, richly cellular ultrastructures. The high frequency of 

stress oscillations predicted for the biological model (151 laminae, Fig. 27), however, 

indicate that the laminar structure of spokes may function to contain any damage 

resulting from a load. Periodic material inhomogeneities (i.e. oscillating local variation in 

tissue structure and/or modulus) are common strategies in biological materials for 

reducing the driving force of cracks forming in tissue (Fratzl et al., 2007b; Fratzl et al., 

2016b). These function to dissipate the energy of fracture, often by deflecting growing 

cracks at points of a sudden change in material or structural properties (e.g. weak 

interfaces, modulus mismatches between tissue layers) (Fratzl et al., 2007b; Fratzl et al., 

2016b; Kolednik et al., 2011). The fine lamellar structure (i.e. small wavelength of 

modulus variation) of tesseral spokes should increase the toughness of tesserae by 

increasing the predicted path length for forming cracks, and thereby the rate by which 

they are robbed of energy. This is supported by the zig-zagging cracks that can form in 

spokes during dehydration in sample preparation (see Leucoraja image in Fig. 22), 

indicating that forming radial cracks were periodically re-routed to run parallel to and 

not through laminae. The natural fracture behavior of tesserae, however, remains to be 

investigated, as does the ultrastructure of spoke laminae (in particular in 3d), which 

may involve additional structural means of controlling fracture energy (e.g. via the 

architecture of underlying fibrous material). 



  

 

 

 

85 
 

4.9.3 Global behavior of tesserae 

Our global model indicates that the tesseral network could also respond flexibly to 

different loading scenarios at larger size scales. The stress-strain curves are plotted for 

tension and compression regimes of the tesseral mat in Fig. 28. In tension, the joint 

material accommodates stress as the tesserae are pulled apart from one another (Fig. 

28A). In compression, there are two phases in the material behaviour. Before tesserae 

coming into contact, they behave like rigid bodies squeezing the soft fibrous joints, 

which take all the load and undergo large deformations. Once in contact, however, the 

tesserae induce sharply increased stresses in themselves (inset, Fig. 28B). This supports 

hypotheses that tesseral mats will exhibit a tension-compression asymmetry in loading, 

being softer in tension and stiffer in compression (Fratzl et al., 2016b; Liu et al., 2010b; 

Liu et al., 2014b). In addition, our structural variations on the base model show that 

increasing the size of tesseral joints delays tesseral collision to higher strains (i.e. note 

the shift of the curve’s inflection point in Fig. 28B). Altering tesseral material properties 

changes the slope of the post-inflection curve (compare the 25 and 35 GPa models in Fig. 

28B).   
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Figure 28: Tensile and compressive stress vs. strain curves for a tessellated mat (global model). 

The biphasic properties of the mat —hard tiles and soft joints— result in strikingly different tensile and 

compressive behaviors. A) In tension, the tesserae are pulled apart and the joint material takes all the 

load. B) In contrast, in compression, the joint bears all the load until tesserae come into contact, inducing 

dramatically rising stresses. To demonstrate the tunability of the tesseral mat, three additional models are 

shown: with stiffer tesserae (35 GPa), with less stiff tesserae (25 GPa), and with joints 2x wider than in the 

base model. Note that changes in tesseral stiffness cause changes in the slope of the stress-strain curve 

after the tesserae-collision inflection point, whereas changes in the width of tesseral joints shifts the 

position of the inflection point along the x-axis. 
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4.10  Conclusions 

The parametric models designed here illustrate that the effective stiffness of the 

tesserae and the tesseral mat can be tuned at multiple size scales via changes to 

structural and/or material properties, allowing variable response to different loading 

conditions. At the size scale of the tessera (i.e. the local model), ultrastructural changes 

that cause an increase in the volume of spokes in a tessera stiffen the tessera. Since 

spokes and contact zones seem to be linked (Seidel et al., 2016b), this could suggest that 

the deposition of spoke laminae (and the concomitant effect on tesseral stiffness) is a 

direct response to a tessera’s loading environment. Tesseral structure being shaped by 

the loading environment is also suggested by the predicted stress-leading of spokes and 

the existence of stellate tesserae, where extraneous (non-load-bearing) regions are 

absent. Our global model suggests further tuning capability at the scale of the tesseral 

array, where the geometry (e.g. the distance between tesserae) and material properties 

(tesseral effective modulus) can control tessellation-level properties. This indicates that 

the species-level and anatomically local variations observed in tesseral shape and 

ultrastructure (Atake et al., 2019; Maisey, 2013a; Seidel et al., 2016b) may have 

important mechanical implications, properties that could be translated into guidelines 

for the bio-inspired design of tessellated materials. 

 

 

 

  



  

 

 

 

88 
 

The modeling and optimization of the tesserae model required several iterations of 

design and subjecting of the model to finite element analysis. Finite element analysis 

results were used to improve the design features in the tesserae CAD model, as they 

allowed visualization of abnormal stress contours. All models were constructed in the 

parametric CAD software Rhinoceros 3D Version 5 (Robert McNeel & Associates, 

Barcelona, Spain), coupled with Grasshopper 3D (0.9.0076), a plug-in for creating 

algorithms which allows parametric modelling of tesserae ultrastructure. The first 

version of the tessera CAD model acted as a prototype to observe and formulate further 

design rules for tesserae design. A simple two-dimensional sketch of tesserae 

(horizontal cross-section) was developed, all ultrastructural features were extruded 

according to their dimensional height, and joint material was filled in the gap between 

two tesserae. It was observed that due to the design process of this first model in Rhino-

Grasshopper, all the ultrastructural features that shared borders were linked to one 

other. In a sense, when the size of the center was decreased, the length of the spoke was 

also increased or when the size of the pore has increased the width of the spoke was 

decreased. This meant that ultrastructural features could not be changed independently 

of one another, a necessary feature for testing the functional role of individual variables. 

Additionally, in FEA, the tessera version 1 model exhibited high-stress concentrations at 

the edges of pores and lamina steps. In this model, the laminated structure of spokes 

was mimicked by stacking rectangular laminae that decreased in dimension from center 

to margin. This, however, resulted in the spoke having a jagged stepwise margin, where 

stress was concentrated in the model (Fig. 29). These artificial high-stress 

concentrations at the edges of spokes and pores were overcome by altering the design in 

version 2. 

 Evolution of tessera models 
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Figure 29: Evolution of tessera models used in this dissertation presented in perspective and 

vertical cross-sectional views. 

The perichondral and chondral regions were removed to show the ultrastructural alterations within the 

tesserae model. In version 1, laminae in spokes are in steps (creating jagged margins) and the spokes are 

attached to the pores (meaning the two could not be altered independently). These features created high-

stress concentrations, and were eliminated. In version 2 the spokes were constructed as a smooth ramp, 

and the spoke edge was moved away from the pores to prevent the spokes from experiencing high stress 
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artifactually. The joint material in version 1 and 2 was included in the gap between the two tesserae and 

this lead to convergence error in FEA as the joint was constrained from expanding in compression. The 

center region (red) was merged with the perichondral and chondral regions to facilitate model assembly; 

in the end, this limited the ability to vary center morphology independently, and was abandoned in the 

final version. In version 3, the joint height was shortened to better match the localization of joint material 

in the biological system. This again led to convergence error, as joints were restricted in expansion in the 

plane normal to loading as they were squeezed between tesserae. The final tessera model incorporated all 

the rectifications and captured all the morphological information from biological data, introducing a 

recessed joint attachment surface, inspired by the biology and avoiding the joint material compression 

convergence issue. 

 

In the second version of the tessera CAD model, ultrastructural components were 

disconnected from each other such that altering one dimension of an ultrastructure did 

not affect the dimensions of others. Additionally, the steps in the laminae were 

converted into a smooth ramp such that high-stress concentrations were removed from 

spoke margins. The edges of the spokes width were moved away from the pores to 

better reflect the biological condition and to protect the spoke from high stresses 

occuring at the pores. Since the spokes were expected from biological data  to be regions 

which experience high stress due to channeling of loads (Seidel et al., 2016a), it was 

essential to reduce all artificial (i.e. design-linked) sources of stress, in order to make 

aspects of the natural load response more evident. Since the perichondral, chondral and 

center regions are assigned with the same material, the center was extruded the same 

height as the tessera to facilitate the modeling process. This, however, resulted in later 

issues regarding the ability to independently alter center morphology, and this design 

aspect was abandoned in the final model (Fig. 29) On subjecting the version 2 tesserae 

model to simulated load in FEA software, the FEA solver was not able to converge to an 

optimal solution. This was predominantly due to the structural design of the joint 

material: the joint material was modeled to be very soft in compression and, as there 

was no space into which the joint material could expand, when the compression load 

was applied on the tesserae it was squeezed between the flat edges of the tesserae, 

resulting in convergence errors. To facilitate accurate structural behavior in the FEA 

software, the joint structure was redesigned in version 3.  

In the third version of the tessera CAD model, the vertical height of the joint was 

decreased, to allow a sufficient gap for the joint material to expand under compression, 
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but also to account for the more localized arrangment of joint material in the biological 

system. This design, however, again led to a convergence error in the FEA software, due 

to the joint material not having space to expand once tesserae edges collide in 

compressive loading.  

To address the design complications recorded for version 3, I returned for further 

analysis of the morphological data (Seidel et al., 2016a), where several consistent 

anatomical features were observed that were pertinent to the design of the final CAD 

model. First, it was observed that, in addition to the lower mineral density “interspoke” 

regions bewteen adjacent spokes, lower mineral density regions also exist within the 

spokes, swaths of uniform (non-lamellated) tissue running through the center of spokes. 

Second, these “interspoke” regions extend to the joint edge of tesserae, where they 

connect to the surface where joint material attaches (the intertesseral fibrous zone, IFZ). 

Third, the IFZ zone is recessed relative to the surface wheere tesserae come into 

physical contact (the intertesseral contact zone, ICZ). Incorporating these features into 

the final version of the tessera model addressed the convergence issues  observed in 

version 3. The intraspoke region was created by making a pyramidical cavity within the 

spokes. A recessed, rectangular cavity was made on the face of the intraspoke region to 

attach the joint material (IFZ: yellow zone in Fig. 29), which ensured a sufficient gap for 

the joint material to expand. The face of the most distal spoke lamina then acted as a 

contact zone of the tesserae (ICZ: orange zone in Fig. 29), the dimensions of which could 

be altered dimensionally. On subjecting the final version tesserae model to FEA, it was 

observed that the stress concentrations were optimized when compared to previous 

models and convergence errors were eliminated. The final version of tesserae 

incorporates all appropriate morphological information from the biological model, and 

the structural features can be varied parametrically and largely independently for 

testing in FEA. 

 

 

 



  

 
  

  
 

This dissertation “Structural modeling and computational mechanics of stingray 

tesserae and bio-inspired tessellation” provides detailed biological hypotheses and 

mechanical insights into the tessellated shark and stingray cartilage and its 

ultrastructure, while also offering perspectives on principles of tessellation design and 

the challenges of modeling complex biological tissues. Previous studies of tessellated 

cartilage focused largely on entirely on whole skeletal elements, largely ignoring the 

ultrastructural information present in them (Seidel et al., 2016a). Tesserae are, however, 

the fundamental structural subunit of shark and ray skeletons and therefore a detailed 

perspective on their contribution to the tissue is vital to an understanding of skeletal 

mechanics and growth. 

The principal objective of this dissertation was to characterize the mechanical 

properties of tesseral structural and ultrastructural features and evaluate their 

mechanical performance in order to understand their contribution to the mechanics of 

the tessellated shark cartilage. Tesserae are visible in the skeletons of stem 

Chondrichthyes in the fossil record for millions of years (Long et al., 2015; Maisey, 

2013b), yet their functional importance has remained unknown. The results from the 

two phases of this dissertation project provide unique insights into the functional role of 

these ancient structures in the performance of shark and ray skeletons. 

In phase 1 of the dissertation, two-dimensional analytical models (triangle, square and 

hexagon) of tiles surrounded with soft joints allowed investigation of the effects of 

structural parameters (joint thickness, tile shape, joint/tile Young’s modulus) on the 

effective modulus of the tiled composite. These iterative models showed that by 

decreasing joint thickness and maximizing the difference in joint and tile modulus, the 

effective modulus of the tiled composite could be maximized. In this way, the structural 

and material ratios of the tile to joint can be used to optimize the overall stiffness of the 

skeletal element. The modulus could be further tuned by adjustments in tile shape. 

Among all the shapes, square tessellations were least sensitive to the changes in the 

structural parameters, whereas hexagons were the most sensitive. These results provide 

useful estimates of tensile and compressive properties of 2-dimensional tiled 

composites under uniaxial loading. These results paved groundwork for the more 

Summary 
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complex three-dimensional models of phase 2, which incorporated complex 

ultrastructural features within them. 

Phase 2 of this dissertation used parametric modeling and FEA approaches to vary the 

ultrastructural parameters of tesserae to evaluate the effect of ultrastructure on tesserae 

stiffness and stress distribution in loading. By incorporating biologically-relevant 

structural variables, from finite element analysis results. The stress contours generated 

by finite element analysis illustrated the importance of spokes in tesseral mechanics, 

through their consolidation and leading of maximum stress and, through their 

lamellated structure, the prevention of crack propagation. FEA results also 

demonstrated that the center likely experiences high strain energy density, an indicator 

that the center may play an essential role in sensing loading conditions within tesserae. 

Additionally, through generation of the first model of the global behavior of the tesseral 

mat, it was demonstrated that skeletal mechanics can also be controlled through ‘meso-

scale’ structural/material changes (e.g. in joint thickness, whole tile modulus). For 

example, increasing the gap between the tesserae delays their coming into contact 

during compression, resulting in a larger soft “toe” region in the composite’s stress-

strain curve. The results from phase 2 improve the understanding of the contribution of 

tesserae —at multiple size scales— to mechanics, growth and load management and 

help us build hypotheses regarding the same. 

The combined results of phase 1 and phase 2 of this dissertation provide insight into 

fine-scale details in the structural mechanics of tesserae, which was not provided by the 

previous studies. The results show that the tessellated cartilage is both flexible and stiff 

according to the specific loading regimes and the contribution of the ultrastructure is 

protecting the cartilage from damage. The engineering results of the tesseral 

ultrastructure mechanics combined with their morphological information will help us in 

building guidelines for engineering tiled composites with suitable materials according to 

the required function.  
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We apply modified Rule of Mixtures models to tessellations constructed from arrays of 

triangular, square and hexagonal tiles, by dividing each composite unit cell (the tile and 

its surrounding joint material) into simple geometric shapes containing tile and joint 

material. The justifications for these models are discussed in the Methods; we describe 

and illustrate the partitioning of each unit cell shape below. 

1. Triangle 

 

Figure A.1: Dimensions and partitions of triangle composite 

a. Dimensions and areas of the triangle composite 

Length of the tile = L 

Thickness of the joint = t 

Length of the composite = L+2*h1 

h1 = 
t

tan 30°
 

Area of the composite = 
√3

4
*(L+2h1)2 

Appendix 



  

 

 

 

95 
 

Area of the tile = 
√3

4
*(L) 2 

Orientation of the fiber material relative to load = θ 

b. Triangle partitions 

Section 1 is marked with red lines whereas Section 2 is marked with a green line. Section 

1L and Section 1R are mirror images of each other, therefore it is enough to solve the 

effective modulus of just Section 1L, which will have the same effective modulus as 

Section 1R and as the complete Section 1 (combination of Section 1L and Section 1R). 

c. Effective modulus of Section 1L (Esection1L) 

Area of tile region in Section 1L = 
1

2
∗

√3

4
*(L) 2 

Joint region in the Section 1L is trapezoid. 

Area of joint region marked in red in Section 1L = 
(L+L+2*h1)

2
*t 

Total Area of Section 1L = TA1 

TA1 =
1

2
∗

√3

4
*(L) 2 +  

(L+L+2*h1)

2
*t 

Area fraction of tile region in Section 1L = AF1  

AFsection1L  =
 
1
2 ∗

√3
4 ∗ (L) 2

1
2 ∗

√3
4 *(L) 2 + 

(L+L+2*h1)
2 *t

 

Esection1L=cos2θ *
E1 * E20°

 E1*(1-AFsection1L ) +E20° *(AFsection1L ) 
 + sin2θ * (E1*AFsection1L +𝐸290° *(1-AFsection1L))        
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d. Effective modulus of the triangle composite (Ecomposite) 

Total area of composite = TAcomposite  

TAcomposite =
√3

4
*[ L+2 (

t

tan 30°
)  ]

2

  

Total area of Section 1 (L and R combined) = 
√3

4
∗ (L)2 +  2 ∗ (

(L+L+2*h1)

2
∗ t) 

Area fraction of the composite= AF = 
Total area of Section 1 and 2

TAcomposite
   

AF = 

√3
4 ∗ (L)2 +  2 ∗ (

(L + L + 2*h1)
2 ∗ t)

√3
4 *[ L+2 (

t
tan 30°)  ]

2
 

 

Ecomposite=
Esection1 * E20°

Esection1 * (1-AF)+E20° * (AF)
 

2. Square 

 

Figure A.2: Dimensions and partitions of square composite 

 



  

 

 

 

97 
 

a. Dimensions and areas of the square composite 

Length of the tile = L 

Joint thickness = t 

Length of the composite = L+2*t 

Area of the composite =(L+2*t)2 

Area of the tile = (L)2 

b. Effective modulus for Section 1 

Area of Section 1 =(L+2*t)*L 

Area fraction of the Section 1 (AF1) =
Area of the tile

Area of composite
 

AFsection1 = 
L2

L*(L+2*t)
 

Effective modulus of Section 1= Esection1 

Esection1 = E1 ∗ AF1 +  E290° * (1 - AF1) 

 

c. Effective modulus of the square composite 

Area fraction (AF) = 
Total area of Section 1

Total area of composite
=  

L*(L+2*t)

(L+2*t)2 =  
L

L + 2 ∗ t
 

Since Section 1 and Section 2 are in series and since both Section 2 elements (top and 

bottom joints) are composed only of joint material at 0° orientation, the net effective 

modulus of the square composite is: 

Ecomposite=
Esection1 * E20°

Esection1 * (1-AF)+E20° * (AF)
 

 

 



  

 

 

 

98 
 

 

3. Hexagon 

 

Figure A.3: Dimensions and partitions of hexagonal composite 

a. Dimensions and areas of the hexagon composite  

Length of the tile = L 

Joint thickness = t 

Length of the composite = L+a 

a =
t

sin 60°
 

Area of the composite = 
3√3

2
*(L+a)2 

Area of tile = 
3√3

2
*(L)2 

θ = Orientation of the fiber material relative to load 

b. Hexagon partitions 

Section 1 is marked with red lines, whereas Section 2 is marked with a green line. 

Similar to triangle, Section 1 appears several times in the unit cell in mirrored, identical 

parts. It is enough to solve the effective modulus of the single Section 1 element shown 
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in Figure A.3, which equals the effective modulus of all three additional Section 1 

elements. 

c. Effective modulus of Section 1: 

Area of the tile in Section 1 = 
1

4
∗

3√3

2
*(L) 2 

Area of the joint in Section 1 = 
(2*L+a)

2
*t 

AFsection1 = 
(Area of tile in Section 1)

Area of tile in Section 1 + Area of joint in Section 1
= 

(
1

4
∗

3√3

2
*(L) 2)

(
1

4
∗

3√3

2
*(L) 2 + 

(2*L+a)

2
*t )

 

The effective modulus of the Section 1 is calculated below: 

Esection1=cos2θ*
E1 * E20°

E1*(1-AFsection1 ) +E20° *(AFsection1 ) 
 + sin2θ* (E1*AFsection1 + E290°*(1-AFsection1 ) 

 

d. Area fraction of Section 2: 

Area of the joint in Section 2 = 
(2*L+a)

2
*t 

Total area of all four Section 1 elements = (
3√3

2
*(L) 2 + 4*

(L+L+a)

2
*t) 

Area fraction of the composite = AF = 
Total area of Section 1 

Total area of composite 
=  

(
3√3

2
∗(L)2 + 4∗ 

(2∗L+a)

2
∗t)

3√3

2
*(L+a)2 

 

 

e. Effective modulus of the hexagon composite  

Ecomposite=
Esection1 * E20°

Esection1 * (1-AF)+E20° * (AF)
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4. Alternative partition schemes: 

The three unit cell types can be partitioned in several different ways. We present two 

schemes below, Schemes A and B, and compare their results in Figure A.5. We consider 

Scheme A to be the more intuitive and so use it to generate our datasets. 

 

Figure A.4: Partioning schemes. Regions colored in red indicate corner joint elements that are partitioned 

differently in the two schemes. As a result, some joint elements switch from in-series to oblique elements; 

since our analytical model adjusts the joint element modulus (E2) according to fiber orientation, some of 

these elements also experience changes in joint modulus.  
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a. Comparison of results between partition schemes 

 

Figure A.5: Comparison of REM contour lines for the two partition schemes shown in Fig. A.4. Overlap of red 

and blue lines represents strong agreement of the results of the two schemes; correspondence is particularly 

high in the biological region of interest (bottom row), where joints are very thin. 

The effective modulus calculations for Schemes A and B are compared with each other 

by overlaying both schemes’ contour lines (Figure A.5). The further apart two 

comparable contour lines are (i.e. when both blue and red lines are visible), the more 

different the results generated by the schemes. There is little difference between the two 

schemes with regard to REM, particularly for biologically relevant values (lower graphs, 

marked in red). Differences are most pronounced for very thick joints for hexagon and 

triangle tiles (upper graphs); this is due to the corner regions in the oblique elements 

(e.g. Section 1 of triangle and hexagon), marked in red in Figure A.4, which can be 

considered either as pure in-series elements (Reuss) or off-axis elements (hybrid Reuss-

Voigt; see 2. Methods). 
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6. Effect of area fraction on relative effective modulus of all shapes 

 

 

Figure A.6: Comparison of relative effective modulus for all shapes with respect to area fraction (y-axis). 

Differences in REM among unit cell shapes are less pronounced than when t/√A is held constant (compare 

with Figure 4). 

7. Verification and Experimental methods 

The verification procedure for the derived analytical equations was performed using 

finite element analysis (FEA). The tiling network is modeled in the CAD software Rhino, 
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using the Grasshopper plugin for parameterized modelling. Since the structure of the 

tiling network is complex (e.g. the joints are very thin compared tiles and would require 

a fine meshing to capture their performance), modeling a large tiled network would 

demand considerable computational power and time. We overcame this by using 

Periodic Boundary Conditions (PBC) (Li et al., 2013; Overvelde and Bertoldi, 2014), sets 

of equations to model large systems by breaking them into small parts (representative 

volume elements RVE; Fig. A.7) that can be repeated periodically over the space to 

approximate the larger network. Since RVEs are identical in terms of structural and 

material properties, their responses to the acting forces are the same.  

 

Figure A.7: Comparison of relative effective modulus (E/E2) between analytical calculations, FEA (using 

periodic boundary conditions) and FEA (tiled array) with E1/E2 on x-axis and E/E2 on y-axis, for t/√A ~0.07.  
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In our models, a 2-dimensional RVE (with biologically relevant morphology, t/√A = 

0.07) was modeled for hexagon, square and triangle tilings using Rhino and 

Grasshopper. RVEs were imported into ABAQUS (FEA) software and simulations 

performed for simple compression (1% strain) of the models, with PBCs applied via a 

readily available PYTHON code (Overvelde and Bertoldi, 2014). Models were tested over 

a range of E1/E2 values (Fig. A.7), from E1/E2 = 5.0 to 23.3, the biologically relevant tile 

to joint material stiffness ratio. Each composite model’s stiffness was measured as the 

ratio between the average stress (Total Reaction Force on the boundary / RVE side 

length) and the average strain (the 1% imposed to the RVE). A uniform joint material 

property (E20° = 1500 MPa) was used (i.e. with loading orientation having no effect on 

joint modulus), as orientation-dependent material properties are beyond the scope of 

the current paper.  
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8. Summary 

 

 

Triangle 

 

 

Square 

 

Hexagon 

 

Area of the composite 

 

√3

4
*(L+2*

t

0.57
)

2

 

 

 

Area of the composite 

 

(L+2*t)2 

 

Area of the composite 

 

3√3

2
*(L+

t

0.86
)

2

 

 

 

Area of the tile 

 

√3

4
*L2 

 

Area of the tile 

 

L2 

 

Area of the tile 

 

3√3

2
*L2 
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Area of the joint 

 

3*(2*L+
t

0.57
)*t

2
⁄  

 

 

Area of the joint 

 

(L+2*t)2- L2 

 

Area of the joint 

 

3*t*(2*L+
t

0.86
) 

 

Perimeter 

 

 

Tile 

 

3*L 

Composite 3*(L+2 ∗
t

0.57
) 

 

 

Perimeter 

 

 

Tile 

 

4*L 

Composite 
4*(L+

2 ∗ t) 

 

 

Perimeter 

 

Tile 
 

6*L 

Composite 6*(L+
t

0.86
) 

 

 

Area fraction: 

Area of tile 

Area of composite 

 

L2

(L+2*
t

0.57
)

2 

 

Area fraction: 

Area of tile 

Area of composite 

 

L2

(L+2*t)2 

 

Area fraction: 

Area of tile 

Area of composite 

 

L2

(L+
t

0.86 )
2 

Table A.1: Summary of structural parameters and their formulae for all tile shapes. 
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9. Mesh sensitivity analysis 

 

Figure A.8: The Syy stress values are plotted in y-axis against various seed size in x-axis. 

Mesh sensitivity analysis is performed to check the effect of seed size on average stress 

measured in the models. The volume average stress was calculated and it is explained in 

methods section. The plot of the volume averaged stress is shown below (Fig. A.1). When 

the seed size was decreased from 0.02 by an interval of 0.015 until 0.01 the stress values 

changed from -148.6 to -148.3. The decrease of stress by 0.2% is acceptable 

approximation and seed size of 0.015 is used such that the models use reasonable 

amount of computational time. 
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10. Absence of center  

 

Figure A.9: The stress contours are comparable in the model with center and no center. The 

center plays no mechanical significance in tesserae stiffness. 

To verify the effect of center on ultrastructural mechanics a 15 lamina model was used 

and the center region was assigned with a material property ~0 MPa. This enables us to 

simulate tessera without any center. The effective modulus of the whole tesserae was 

calculated and it was observed that the tesserae model with no center is 26.1 GPa.  From 

the stress contour values (Von Mises) one can observe that there are similar stress 

contours in the tessera. In the absence of the center in the tesserae the stresses are 

taken up by the perichondral and chondral region. So all the stresses are funneled by the 

spokes through the center, and it is being filled with cells may act as mechanical sensors 

for collecting the loading information within the tesserae. 
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11. Homogeneous model 

 

Figure A.10: Von Mises of 151 lamina model vs Homogeneous model. There are high 

stresses at the center in homogeneous model which may lead to damage of cells in the 

center. The laminas help in transferring stress through the center and prevent cracks in the 

spokes. 

The effective modulus calculated from the 151 lamina model (26.1 GPa) was assigned to 

all the ultrastructural regions and FEA was performed as discussed in the methods 

section. We can observe from the 151 lamina models helps in mitigating high stresses at 

the center region and protecting the cells from damage. The maximum stresses occur in 

spoke regions and homogeneous material aids in crack propagation. And the alternating 

laminas prevent crack propagation and also transfers stress through the center.  

And it is very evident from the homogeneous models that the laminas play a crucial role 

in funneling the stresses through the center and the alternating laminas prevent crack 

propagation. 

12. OGDEN coefficients 

The material coefficients used to model the joint material are listed in table below. The 

material model was built by combining the stress-strain values of tendon in tension 

(Maganaris and Paul, 1999) and mucosa in compression (Chen et al., 2015b). The 

ABAQUS material editor has a library of hyperelastic material models which can be used 

to generate the coefficients for the stress-strain data. 
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μ1 α1 μ2 α2 D1 D2 

0.497324729 7.40136068 -0.426810081 1.76390678 2.33119738 0 

 Table A.2: Coefficients of Ogden 2nd order hyperelastic material model. 
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