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SUMMARY

Stabilizing gaze and position within an environment
constitutes an important task for the nervous system
ofmany animals. The optomotor response (OMR) is a
reflexive behavior, present across many species, in
which animals move in the direction of perceived
whole-field visual motion, therefore stabilizing them-
selves with respect to the visual environment.
Although the OMR has been extensively used to
probe visuomotor neuronal circuitry, the exact visual
cues that elicit the behavior remain unidentified. In
this study, we use larval zebrafish to identify spatio-
temporal visual features that robustly elicit forward
OMR swimming. These cues consist of a local,
forward-moving, off edge together with on/off sym-
metric, similarly directed, global motion. Imaging
experiments reveal neural units specifically activated
by the forward-moving light-dark transition. We
conclude that the OMR is driven not just by whole-
field motion but by the interplay between global
and local visual stimuli, where the latter exhibits a
strong light-dark asymmetry.

INTRODUCTION

A behavior essential for survival is the ability of animals to position

themselves stably in their environment. In the case of the visual

environment, an often-used strategy is to move in order to cancel

any relativemotion between the animal and the visual motion, i.e.,

to minimize visual motion or retinal slip. In response to global,

translational,whole-fieldmotion, larval zebrafishwill swim in thedi-

rection of perceivedmotionbygenerating swimming events called

bouts. This reflex is known as the optomotor response (OMR) and

canbeelicited inboth freely swimmingandhead-restrained zebra-

fish (Clark, 1981; Orger et al., 2000; Portugues and Engert, 2011),

flies (Borst et al., 2010), mice (Matsuo et al., 2018; Shi et al., 2018),

and many other species (Dieringer et al., 1982).

Under experimental conditions, the OMR has typically been

elicited using simple synthetic stimuli, such as sinusoidal or

square gratings (Naumann et al., 2016; Neuhauss et al., 1999;
Cell
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Orger et al., 2000, 2008), and functional imaging experiments

have shown that a large number of neurons throughout the

brain are activated during this behavior (Ahrens et al., 2012;

Kubo et al., 2014; Naumann et al., 2016; Portugues et al.,

2014). Nevertheless, from a visual processing perspective,

both the precise visual features that trigger this behavior and

the circuitry that processes these features remain largely un-

known. Behaviorally, OMR swimming has been shown to be

driven by green and red cones (Orger and Baier, 2005) and

Fourier and non-Fourier visual motion (Orger et al., 2000). The

OMR further depend on the speed of fixed period square grat-

ings (Portugues et al., 2015; Severi et al., 2014) and on the

visual reafference perceived during swimming (Ahrens et al.,

2012; Portugues and Engert, 2011). In terms of neuronal pro-

cessing, despite a number of elegant studies characterizing

the projection of retinal ganglion cells (RGCs) to the ten ret-

ino-recipient areas in the zebrafish brain (Burrill and Easter,

1994; Robles et al., 2014), the functional involvement of these

RGC arborization fields (AFs) in the OMR remains unclear

(Burgess et al., 2010; Muto et al., 2005; Nikolaou et al., 2012;

Roeser and Baier, 2003; Temizer et al., 2015). In addition,

several studies have signaled the pretectum as an important

hub where OMR sensory drive is represented (Chen et al.,

2018; Kubo et al., 2014; Naumann et al., 2016).

In this study, we investigate the precise visual features that

drive OMR swimming in larval zebrafish. We extend the concept

of a receptive field, as usually defined in neurophysiological re-

cordings, to behavior to compute a behavioral receptive field.

In neurophysiology, the optimal stimulus, called the spike-trig-

gered average (STA), that makes a neuron fire can be computed

using reverse correlation between the neuronal firing and the

changing stimulus that was presented (DeCharms and Merze-

nich, 1998; Marmarelis and Marmarelis, 1978; Ringach et al.,

1997; Schwartz et al., 2006; see Figure 1A). The STA can subse-

quently be used as a linear filter in a linear-nonlinear-Poisson

(LNP) cascade model (Figure 1B) to, for example, describe firing

patterns of neurons in the visual pathway (Pillow et al., 2008).

This approach has been used previously in Drosophila larvae

to understand sensorimotor integration (Gepner et al., 2015,

2018; Klein et al., 2015; Salazar-Gatzimas et al., 2016) and in

zebrafish to investigate the response to fluctuations in heat

(Haesemeyer et al., 2015) or to understand the involvement of

the hypothalamus in prey capture (Muto et al., 2017).
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Figure 1. Methodology of Study

(A) We utilize the spike-triggered average commonly used in describing receptive fields of neurons. In our case, we use a binary stimulus that moves forward in

time and reacts to fish behavior (moving back briefly during fish swimming).We not only look at the history leading to a bout (blue outline; this yields a linear filter as

shown in B) but also at the future to determine whether some structure is persistent during behavior.

(B) The linear filter gained from (A) (the behavioral triggered average [BTA]) can be used in a linear-nonlinear-Poisson (LNP) model to describe the stimulus-

behavior relationship.
In a similar way, we present visual stimuli consisting of black

and white bars of randomly varying widths moving at different

speeds in a caudal to rostral direction and define a behavioral

triggered average (BTA) as the average of the visual stimuli

that resulted in the head-restrained larva performing an OMR

swimming bout (Figure 1A, right panel). We show that the optimal

stimulus that evokes the OMR consists of two features: whole-

field, global forward motion and a caudal to rostral light to dark

luminance transition crossing the larva’s head, which has not

been previously described in the literature. In addition, we

perform whole-brain imaging experiments and identify neural

populations, downstream of retinal ganglion cells, that react to

the BTA and may play a role in driving the OMR.

RESULTS

The Optomotor Response Is Preferentially Elicited after
a Light-Dark Transition
To determine the spatiotemporal luminance features that induce

forward-swimming behavior, we presented head-restrained

larval zebrafish with a forward-moving whole-field visual stim-

ulus consisting of black and white bars from below (Figure 2A).

Explicitly, the visual scene was divided into a number of strips

that extended from left to right orthogonally to the axis of the

fish, and each strip was randomly chosen to be black or white

(see STAR Methods). The strips moved forward, i.e., in a caudal

to rostral direction, and as the forward-most disappeared, a new

randomly colored strip appears in the caudal visual field, such

that the average visual stimulus across the field was gray. Using

real-time behavioral tail tracking, we provided the fish visual

feedback by changing the visual stimulus speed in proportion

to the swimming strength of the fish (Figures 2A and 2B; Video

S1; Portugues and Engert, 2011). We chose a closed-loop
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setting, because fish show a higher variation in behavior in an

open-loop setting (Mu et al., 2019; Portugues and Engert,

2011). For every fish, we computed the reverse correlation of

the presented visual stimulus with behavioral onset to obtain

the average stimulus that leads to swimming, which we call the

behavior-triggered stimulus average or BTA (see STARMethods

and Figures 1A and 2B). The BTA consists of a spatiotemporal

filter (the 2 s preceding bout start in Figure 2C) that is stereotyp-

ical across individuals (Figure S1A).

The BTA filter is globally largely unstructured 1 to 2 s before

bout start. The structure that strongly emerges around 500 ms

before bout start comprises a local light and dark luminance

bandmoving forward with respect to the fish. Bout start coincides

with the border between the light and dark area reaching the head

of the fish (Figures 2C, 2D, and S1B). The fish experiences this

light-dark transition (Figures 2E and 2G)with a peak-to-peakdura-

tion of around 500 ms. These luminance changes are very local,

roughly ±5 mm away from the head of the fish (Figure 2F), which

is roughly the length of a larva. The results shown in Figures 2D

and 2F further indicate that fish do not start swimming at the local

luminance minimum but rather on the light-dark transition itself.

Half a second after bout onset, the average luminance levels of

the filter are not different from the luminance levels during the un-

structured period before bout onset (Figures 2E and 2G). To verify

that the BTA can be interpreted as in an STA-based LNP model,

we computed the nonlinearity (see STAR Methods and Schwartz

et al., 2006) and found an asymmetric point nonlinearity (Fig-

ure S1C), which indicates the validity of our approach.

In order to confirm these results, we repeated these experi-

ments with higher spatial and temporal resolution to overcome

technical limitations and to better extract the exact stimulus pre-

sented in the near visual field of the fish (see STAR Methods).

These findings confirmed that the filter indeed shows that fish



Figure 2. The Optomotor Response Is Preferentially Elicited after a Light-Dark Transition

(A) Schematic of the behavioral setup. A forward-moving binary grating is presented from below to a head-restrained, tail-freed zebrafish larva. The grating is

generated in 1D (x, blue rectangle) and stretched in y.

(B) Spacetime diagram showing how the stimulus reacts to the fish swimming in closed loop, where the 2D stimulus is represented in just 1D (blue rectangle as in

A). The tail trace is extracted in real time. The BTA is generated by averaging all these spacetime diagrams extending 2 s before and after bout start.

(C) The BTA resulting fromaveraging the individual BTAs of 52 fish. The position of the fish’s head is indicated by the red line, and positive Y values denote positions in

front of the fish. The larva on the right, indicated by the black arrowhead, is drawn to scale. The z-scale denotes luminance intensity variations from baseline.

(D) The average visual stimulus in 500-ms steps leading to bout start. As in (C), the fish’s position is indicated with a red line and black arrowhead.

(E) The average luminance profile over time on fish head across fish (black) with averages for individual fish (light gray).

(F) Average luminance intensity across fish (black) relative to fish’s position with averages for individual fish (light gray).

(G) Average luminance across fish on fish head at 1 s and 500 ms before bout onset, on bout onset, and 500 ms after bout onset. Note that luminance levels 1 s

before and 500 ms after the bout onset do not differ. Error bars indicate SEM.

See also Figures S1 and S2.
swim at a local light-dark transition (Figure S1D). Grayscale stim-

uli, such as square-wave and sinusoid gratings, have been often

used in the literature, but the preference to swim exactly at the

interface between a light to dark transition has not beenpreviously

described. We therefore investigated whether fish prefer a light-

dark transition (off edge) in contrast to a dark-light transition

(on edge). We found across different luminance settings that

swimming does indeed occur preferentially at a light-dark transi-

tion (Figure S1E). This effect is dependent on the spatial

frequency. Higher spatial frequencies promote bout onsets at
the light-dark transition. With very low spatial frequencies, the

stimulus essentially reduces to on and off edges, with almost no

whole-field motion. Here, the behavior is well balanced across

on and off edges, though there is still a small preference for off

edges (Figure S1F).

As we observed structure in the average stimulus that triggers

behavior, we next asked whether there was a similar structure in

the stimulus ending the bouts: is the immediate goal of a swim

bout to obtain a given visual scene? We therefore performed a

similar analysis for bout ends. In contrast to bout starts, we found
Cell Reports 29, 659–670, October 15, 2019 661



Figure 3. The Behavioral Receptive Field Filter Is Independent of Grating Properties

(A) Mean luminance intensity profiles at bout start for different bar sizes (0.5 mm, 2.5 mm, 5 mm, and 10 mm; shown from light to dark green).

(B) Mean luminance intensity profiles for different grating speeds (5, 10, 15, and 20 mm/s shown in light to dark magenta).

(C) Mean bout and interbout duration for different bar sizes (i) and grating speeds (ii), respectively, for 16 fish. Error bars indicate SEM. ANOVA test to find

differences of group means revealed no significance (p R 0.078).

(D) Behavioral triggered average for all grating speeds and bar sizes across 52 fish.

(E) Relative intensity profiles aligned to the minimum for a local random binary grating experiment with varying white-to-black bar ratios for 1:3, 1:1, and 3:1,

respectively (N = 13).

See also Figure S3.
no apparent structure in the bout end-triggered average filter

(Figure S2A). As suggested by Figures 2E and S2B, we tested

whether the emergence of an unstructured gray stimulus once

a swimming bout is initiated is able to trigger the ending of the

bout. We performed an experiment where the whole visual field

turns gray after the detection of bout onset. In this paradigm, fish

swim for a significantly shorter time (367 ± 13 versus 328 ±

13 ms; p < 0.05; Student’s t test; Figure S2C), but this effect

was very small, indicating that the local luminance levels are

important to trigger swimming but that other factors may

contribute to controlling swim duration and active bout ending.

In summary, these experiments show that a forward-moving,

whole-field visual stimulus preferentially elicits swimming when

it coincides with a light-dark transition that is local, namely close

to the fish’s head.

Light-Dark Transition and Behavior Is Largely
Unaffected by Stimulus Parameters
To further understand the visual features that optimally drive

OMR swimming, we next investigated how the BTA filter de-

pends on the stimulus parameters, as it has been shown pre-
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viously that grating speeds influence behavior (Portugues

et al., 2015; Severi et al., 2014). Changing the bar width or

stimulus speed (defined as the stimulus speed without the

closed-loop effect from the fish’s behavior) did not affect the

most salient features of the filter (compare Figure 2F and Fig-

ures 3A and 3B), namely the light to dark transition centered

on the larva’s head. Small changes in filter features, such as

increased peak-to-peak magnitude can be accounted by the

different stimulus statistics (Figures 3A and S3A). With slow

stimulus speeds, the light-dark transition is pronounced, and

this fades with increasing speeds, suggesting that fish

behavior involves sensorimotor processing delays and that

faster speeds result in increased behavioral jitter (Figures 3B

and S3B). Behavioral parameters, such as the mean bout

duration and the mean interbout duration (i.e., time between

bouts), are not affected by these changes in stimulus param-

eters (Figure 3C; ANOVA across groups; p R 0.078). The BTA

across stimulus parameters (Figure 3D) is very similar to

the one shown in Figure 2C, though it reflects the variance

of the different stimulus parameters shown in Figures 3A

and 3B.



Wenext addressed the dependence of the BTA on the average

global luminance levels. We therefore varied the ratio of white to

black bars such that the temporal and spatial average was either

lighter or darker gray. A ratio of 3:1 of white:black bars indicates

that there are three times more white bars in the whole stimulus

than black bars. When determining the BTA filter for these

different white:black bar ratio stimuli, we observed a similar light

dark transition compared to the BTA shown in Figure 3D, indi-

cating that fish likely adapt to the average luminance level of

the stimulus (Figures 3E and S3C). We also verified that the

fish behavior and filter nonlinearities remained constant across

white:black bar ratios (Figures S3D and S3E).

In certain cases, reverse correlation may not reveal all the stim-

uli that drive a response. For example, if both a stimulus and its in-

verse are equally likely to elicit a behavior, then the average of

these stimuli would have little structure (Schwartz et al., 2006).

We therefore performed behavior-triggered covariance analysis

(Schwartz et al., 2006; STAR Methods) on our dataset, focusing

on the 2 s prior to bout start to look for evidence of symmetric

filters (Figure S4A). Using singular-value decomposition on the

covariance matrix, we computed the eigenvectors and eigen-

values of the stimulus covariance matrix. We performed the

sameanalysis on our dataset with shuffled bout start labels, which

gives a BTA of homogeneous gray. We sorted the eigenvalues in

descending order and found that eigenvalues in both the true and

shuffled datasets were very similar to each other, with those from

the shuffled dataset tending toward explaining slightly more vari-

ance than those from the true dataset (largest eigenvalue 8.1%

versus 7.1%of total variance; Figure S4B). When looking at the ei-

genvectors, we found that the eigenvectors were also very similar

across both datasets. The eigenvectors cover a whole-field,

global forward-moving sine-like stimulus that increases its fre-

quency with increasing eigenvectors (Figure S4C). Later eigen-

vectors do not show any structure compared to first eigenvectors

(Figure S4C). The covariance analysis returns filters (eigenvectors)

with symmetric nonlinearities (in contrast to the BTA), indicating

that the filters (shown in Figure S4C) and their inverse contribute

equally and result in gray as seen in the BTA periphery. However,

given the similarities between the true and the shuffled data (Fig-

ure S4C), our interpretation is that these symmetric filters capture

general forward whole-field motion and do not contribute acutely

to the bout start in the sameway that the light-dark transition does

in the BTA.

To summarize, we have shown that the BTA’s light-dark tran-

sition is stable across a variety of stimulus conditions, which

highlights the importance of the BTA in eliciting OMR swimming.

In addition, together with our covariance analysis, this suggests

that symmetric global whole-field motion accompanied by a

local light to dark transition close to the larva’s head is an integral

part of the OMR.

Luminance and Motion Cues Differentially Shape the
Timing and Frequency of the OMR
To precisely examine the importance of both global and local mo-

tion in eliciting OMR swimming, we presented larvae with visual

stimuli that differentially provide relevant global and local informa-

tion (Video S2). The first one, which we refer to as filter replay,

consisted of the BTA as shown in Figure 3D. It is replayed to
the fish as shown in Figure 2D for the full duration of 3 s before

and after the optimal visual trigger for the bout. The second,which

we term whole-field motion, consisted of the BTA’s luminance

profile at bout start (see Figures 2F and S5B) stretched in two di-

mensions andmoved over the fish in a caudal to rostral direction.

The third stimulus consisted of the BTA shuffled in space (i.e., at

every instance in time, the spatial profile of the BTAwas shuffled),

to avoid motion inducing two-point correlations and maintain the

global temporal luminance values. Different visual stimuli proper-

ties are shown for comparison in Figure S5.

By construction, the BTA should correspond to the close-to-

ideal stimulus that evokes the behavior. Note, however, that the

BTA, as opposed to the binary gratings thatwere used to compute

it, contains mostly local and not global motion and is largely un-

structured (Figure 2D). We found that the filter replay was indeed

capable of evoking swimming (Figures 4A and 4B). However, we

were surprised to observe that the whole-field motion stimulus

was more effective than the filter replay in eliciting swims. This

suggests that whole-field motion is an important feature for trig-

gering OMR swimming, even though its structure seems to be un-

important (see Figure 2C). In addition, swims in response to the

whole-field motion stimulus occurred closer to the predicted

time of bout start (defined as the time when the stimulus with

respect to the fish resembles that last panel in Figure 2D), whereas

filter replay-elicited bouts occurred earlier than expected (Figures

4A and 4B).We therefore hypothesized that it was the difference in

the stimulus presented in the far visual field that was responsible

for the different behavioral profiles observed between the filter

replay and the whole-field motion stimulus.

To test this hypothesis, we presented fish with the filter replay

locally, in a ±8-mmwindow surrounding the larva, and combined

this with different stimuli in the far caudal visual field (see Figures

4C and S5A and STAR Methods). As a control, we included in

this experiment the whole-field motion stimulus as presented

in Figures 4A and 4B. The results show that this whole-field mo-

tion stimulus again elicited the most swimming (Figure 4D). All

other conditions exhibited similar behavioral profiles with fewer

bouts elicited andwith early timing (Figure 4D). Notably, the stim-

ulus with a local light-dark transition and whole-field motion in

the caudal field (Figure 4D, yellow) showed the same early timing

as the filter replay. It did elicit, however, more bout starts, sug-

gesting that the timing might be dependent on the light-dark

transition and the number of bouts on the whole-field motion

(Figure 4D).

We analyzed these local luminance transitions for the stimuli

we presented and noticed that the luminance gradient of the

whole-field motion stimulus was more pronounced than that of

the filter replay. Interestingly, the onset of bouts was mostly

concentrated during this light-dark gradient, with a steeper

gradient resulting in a shorter time window over which swimming

would start (Figure 4E). To probe the role of the gradient on the

behavioral profile, we introduced a version of the filter replay,

which we call temporally squeezed filter replay (filter replay*),

which consists of the filter replay squeezed in time to yield a

steeper temporal luminance gradient as similar as possible to

thewhole-fieldmotion stimulus (Figures S5B–S5E). This stimulus

elicited a behavioral profile with similar total number of bouts as

the filter replay, but their onset was aligned to the expected bout
Cell Reports 29, 659–670, October 15, 2019 663



Figure 4. Whole-Field Filter, but Not Filter Replay, Evokes Predicted Behavior

(A) Mean number of bout starts at given time points relative to predicted bout start. Blue lines represent when the grating was shuffled, green filter replay, and red

whole-field motion of average trigger (N = 28).

(B) Cumulative distribution of bout starts (shuffled = 1,414; filter replay = 13,699; whole-field motion = 20,380) as shown in (A). The midpoint for filter replay is

�4.1 s before predicted bout start; for whole-field motion, it is �0.15 s. The shuffled bouts are distributed equally across the trial. Colors are as in (A).

(C) Schematic of experimental design. Filter replay is shown locally, close to the fish in an ±8-mm window (rostral to caudal; complete stimulus window lateral to

the fish), and in the periphery, the stimulus is altered (global).

(D) Cumulative sum of bouts in time depending on stimulus. Either filter replay (green), filter replay with gray in the periphery (turquoise), filter replay with noise

(orange), filter replay with whole-field motion (yellow), or the whole-field motion filter (red) as shown in (B) were presented to the fish. Peak number of bouts and

half maximum location of cumulative sum are derived from sigmoid fits of the data (see STAR Methods). Shaded area indicates SEM.

(E) Luminance profiles on fish head color-coded with bout start probability. Filter replay with an asterisk was adjusted such that the light-dark gradient matches

the gradient of the whole-field motion stimulus.

(F) Cumulative sum of mean bout starts across 35 fish. Note that the half maximum as shown above the plot is shifted closer to 0 by squeezing the filter replay

gradient in time. Shaded area indicates SEM.

See also Figure S5.
start time just aswas the case for thewhole-fieldmotion stimulus

(Figures 4E and 4F). This confirms the importance of the light-

dark luminance gradient in shaping the timing of the behavioral

profile and suggests that themissing whole-field motion features

lead to reduced number of swimming events as compared to the

whole-field motion stimulus.

To confirm the relationship between this luminance gradient

and whole-field motion, we presented larvae with visual stimuli
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that incorporated whole-field motion (similar to the whole field-

motion stimulus) and differed only in the local luminance

gradient (Figures 5A and S5E). As expected, swim bouts

occurred throughout the light-dark transition. Steeper gradi-

ents resulted in sharper behavioral profiles, although surpris-

ingly, stimuli with steeper gradients also elicited more bouts

despite the fact that whole-field motion was still present

(Figure 5B).



Figure 5. Light-Dark Gradient Is Shaping Behavioral Response

(A) Luminance profiles as in Figure 4E for different gradients. The squares indicate the color of the respective trace in (B).

(B) Cumulative sums of mean bout starts across 35 fish, color-coded depending on gradient slope (light colors shallow; dark colors steep gradient; see squares in

A). Shaded area indicates SEM. Right panel shows the half maximum of cumulative sums against steepness of gradient (higher numbers produce shallower

gradient).

See also Figure S5.
We investigated to what spatial extent these visual features

contribute to behavior. Figure S5F shows that the local environ-

ment is important: when providing neither motion nor light-dark

transitions, the behavioral response was significantly reduced

compared to whole-field sine gratings. When providing motion

and light-dark transitions only in the local vicinity, behavior was

robustly evoked. It is important to note that the light-dark transi-

tion has to be directed and carry motion: if this local edge is

substituted for a local homogeneous luminance decrease,

behavior was significantly reduced (Figure S5G). Likewise,

whole-field luminance changes do not evoke a stereotyped

behavior compared to forward, i.e., caudal-to-rostral, moving

sine gratings (Figure S5H).

Overall, the results presented in Figures 4 and 5 show that

both the local luminance gradient and the presence of whole-

field motion contribute to shaping the behavioral profile. In

certain circumstances, whole-field motion is required to elicit a

stronger behavioral response (Figures 4A, 4B, 4D, and 4F). The

light-dark luminance gradient shapes the behavioral response

distribution and its peak onset (Figures 4B, 4F, and 5B).

However, this gradient may also affect the number of bouts

elicited (Figure 5B), suggesting a nuanced interplay between

the local and global motion percept.

Neural Responses Are Tuned to Behaviorally Relevant
BTA Whole-Field Motion
Having defined a visual filter that drives the OMR, we were inter-

ested in investigating whether there were any neuronal

responses specific to this filter. We therefore performed two-

photon, whole-brain functional imaging in larvae pan-neuronally

expressing the genetically encoded calcium indicator GCaMP6s

(Kim et al., 2017). We presented the fish with five stimuli that

incorporated whole-field motion and light-dark luminance transi-

tions in diverse ways: a sharp light-dark transition (commonly

known as off edge) moving forward across the visual scene;

a smooth dark-to-light whole-field luminance transition; a
forward-moving sine grating; and finally the whole-field filter, first

moving forward and then the reversed filter moving backward

(Figure 6A). This later stimulus was presented because it has

the opposite sign of motion, but it exhibits the same light-to-

dark transition. Only the sine grating and the forward-moving

whole-field filter are able to elicit reliable behavior (Figure 6B).

This is in line with our previous findings that low spatial fre-

quencies and whole-field luminance changes evoke only little

to no behavior (Figures S1F and S5H).

Using pixel-wise correlations (Portugues et al., 2014), we

found 440,736 active regions of interests (ROIs) from nine fish

that include cell somata and neuropil (see Figure S6A for

coverage). We grouped ROIs into clusters with distinct re-

sponses using unsupervised clustering (Figures S6B and S6C;

see also STAR Methods) and found five that were reliably and

selectively responsive to the filter or its reverse (Figure 6B). 3D

representations of the found clusters are shown in Video S3.

Clusters 1 and 5 showed luminance-dependent responses cor-

responding to luminance on and off, respectively. Cluster 1 in-

cludes the medial cerebellum, as well as several retinal ganglion

cell arborization fields (AFs), in particular AF9. Cluster 5 includes

active units in the pretectum, dorsal thalamus, and bilateral

strata of the tectal neuropil. Cluster 3 responded specifically to

the reversed filter that moves backward and thus comprises a

reverse motion cluster. ROIs in cluster 3 are mainly located in

rhombomere 1 of the hindbrain and the tectal stratum periventri-

culare. Cluster 4was active for all visual motion, regardless of the

direction (Figures 6B and 6C). It includes the tectal neuropil, as

well as other arborization fields and some cells ventral to the

tectum. Only cluster 2 had responses more specific to the for-

ward-moving filter. This cluster was also active when presented

with the forward-moving off edge, a feature shared with the for-

ward filter, but not when the reversed filter is shown, which has

the same luminance transition but with the opposite sign of mo-

tion (Figure 6B). These responses are spread out over the whole

brain (Figure 6C). They include the nucleus of the medial
Cell Reports 29, 659–670, October 15, 2019 665



Figure 6. Two-Photon Calcium Imaging Shows Neural Assemblies Preferentially Tuned to Filter Components
(A) Visual stimuli comprising different filter features were shown to larvae expressing pan-neuronally GCaMP6s in a two-photon setup.

(B) Black lines represent the mean fluorescence traces of ROIs in a given cluster compared to their baseline fluorescence (gray). Responses are shown as means

across stimulus repetitions; the shaded area indicates the SEM. The average behavior (measured by swimming vigor; see STAR Methods) for each stimulus is

shown in magenta below the fluorescent traces. Shaded area indicates the SEM.

(C) Z-projection maps of ROIs found in N = 9 fish corresponding to a given cluster (green) or ROIs that are highly correlated (r > 0.8) with swimming vigor (purple).

See also Figure S6.
longitudinal fasciculus (nMLF), the pretectum, the tectal neuropil

(AF10), and AF6.

When looking at units that are active during swimming epi-

sodes, we identified a single cluster related to swimming (Fig-

ure 6C). Notably, the cluster specific to the forward filter

(cluster 2) contained a very small overlap with this swimming

cluster, mainly surrounding the nMLF neurons, indicating that

the neurons in cluster 2 are either sensory or directly involved

in the sensorimotor transformation that leads to behavior.

Further, neurons in cluster 2 had only little correlation with

swimming.

In summary, we show tuned responses to the forward-moving

filter that are located across the whole fish brain.
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AGeneralized Linear Model Can Capture More Variance
Than Chance
Our results demonstrate that OMR swimming is triggered both

by a light-dark transition and whole-field motion. We asked

whether a generalized linear model, a variant of the LNP model

(Figure 1B), can predict the fish’s behavior as previously shown

for heat-induced swimming in larval zebrafish (Haesemeyer

et al., 2015, 2018). At every instance in time, we fed the grating

history computed over a 1 s window together with the bout starts

as labels to the generalized linear model (GLM) fitting algorithm

that finds the ideal filter using log-likelihood (Figure S7A). In

agreement with our analysis, the GLM filter looks very similar

to the BTA (Figure S7A). The GLM returns rates that should



Figure 7. Optomotor Swimming Is Strongly Induced by Local Light-Dark Transition and Peripheral Whole-Field Motion

Our working model suggests that OMR is induced by peripheral whole-field motion, with no specific structure (outer, gray circle with motion-indicating arrows)

and local light-dark transitions (inner circle). The behavior is clustered at the local light-dark gradient, and the gradient’s steepness modulates the behavioral

response: the steeper the gradient, the higher the behavioral response (see two example boxes).
coincide with bouts (Figure S7B). We assessedmodel specificity

and sensitivity, as well as false-positive and false-negative rates

(Figure S7C). For every given threshold and model (Figure S7B),

we computed the percentage of peaks that are accompanied by

a bout (i.e., true predictive value; Figure S7D) and the percentage

of bouts that are accompanied by a peak (i.e., true positive rate;

Figure S7E). TheGLM is capable of explaining a higher amount of

variance compared to bootstrap controls. Up to 13.2% of the

detected peaks above threshold are accompanied by a bout,

whereas 48.0% of the bouts are accompanied by a peak

(compared to 8.6% and 21.0% in bootstrap controls, respec-

tively; Figures S7D and S7E). When determining the false-nega-

tive and false-positive rates for our model, we observe that the

model outperforms the bootstrap control (Figure S7F). Overall,

the simple GLM succeeds in explaining the data better than

chance, though we expect more complex models to be able to

improve this significantly.

DISCUSSION

In this study, we used a reverse-correlation approach to identify

the stimulus that is optimal in eliciting the forward optomotor

response. We found that this stimulus consists of two features:

spatially symmetric global whole-field motion and an asym-

metric, forward-moving, light-dark transition occurring locally

at the larva’s head. The luminance gradient of this transition in-

fluences the swimming rate and timing of the bouts, with steeper

gradients eliciting more bouts whose onsets are temporally

closer aligned with the stimulus. Although a contribution of

whole-field motion was expected from previous OMR studies,

the importance of a local light-dark transition has not been

described before.

Different features of whole-field motion that lead to behavioral

modulation have been probed before in the context of the OMR,
such as contrast, temporal, and spatial frequency in flies (Buch-

ner, 1976; Creamer et al., 2018; Fry et al., 2009; Haag et al., 2004;

Katsov and Clandinin, 2008; Silies et al., 2013; Theobald et al.,

2008) and speed in zebrafish larvae (Portugues et al., 2015; Se-

veri et al., 2014). Asymmetries in the processing of light and dark

stimuli have been shown to exist in zebrafish but always relating

to behaviors that involve local or object-related motion, such as

prey capture, looming stimuli, or visually evoked responses

(Bianco and Engert, 2015; Burgess and Granato, 2007; Burgess

et al., 2010; Dunn et al., 2016; Emran et al., 2007; Semmelhack

et al., 2014; Temizer et al., 2015). These studies show that lumi-

nance on and off responses are processed very differently in the

zebrafish brain, consistent with our results shown in Figure 6,

where the clusters 1 and 5 show very little overlap. In the context

of the OMR, experiments in flies, dragonflies, and primates

(Clark et al., 2014; Leonhardt et al., 2016; Nitzany et al., 2017)

have shown asymmetries in the processing of light and dark in

the on and off pathways using two- and three-point correlation

glider stimuli (Hu and Victor, 2010). Furthermore, the differential

contribution of the on-off symmetric whole-field motion in the

periphery and the local off edge is reminiscent of the figure-

ground distinctions that have been probed in flies (Aptekar

et al., 2015; Barnhart et al., 2018; Fox et al., 2014), although

the systematic analysis of local and global motion percepts or

object motion superimposed on a moving background has not

been investigated in larval zebrafish.

In zebrafish, axons from RGCs are known to project to ten AFs

(Burrill and Easter, 1994; Robles et al., 2014). It is likely that the two

features thatwedescribe in this study, namely on/off-independent

whole-field motion and the local forward-moving off edge, are

conveyed by different RGCs, possibly to different AFs.

Our simple generalized linear model showed moderate suc-

cess in explaining the observed behavior. As our visual stimulus

carries high temporal correlation, the calculated filter may be
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biased to the real underlying filter and thus lowers the estimation

quality of our model. The filter can also be stochastically biased

by the fact that swimming follows very likely a Poisson process

(Portugues et al., 2015). Further behavioral experiments accom-

panied by modeling studies need to be performed to understand

the interaction between the two visual features that contribute to

the OMR. If indeed different RGCs convey these features to

different AFs, these models could provide a means to create hy-

potheses about the convergence of different visual streams and

the neuronal mechanisms that could mediate this interaction,

such as neuromodulation, gating, or gain control.

Our preliminary imaging study was able to identify units tuned

specifically to visual stimuli known to drive the OMR. Interest-

ingly, we observe that units that respond to behavior-inducing

stimuli occur throughout the brain but are enriched in the pretec-

tum and AF6, areas that were recently suggested to contribute to

OMR and behavior (Kramer et al., 2019; Kubo et al., 2014; Nau-

mann et al., 2016). Here, we provide further evidence that these

areas are indeed important for the OMR, as they also respond to

the light-dark transition feature we describe.

To summarize, we propose aworkingmodel (Figure 7) in which

theOMR is strongly induced by awhole-fieldmotion percept that

is light-dark symmetric, together with a newly described, for-

ward-moving local light-dark transition. The behavioral response

to the OMR is further modulated by the steepness of the light-

dark gradient, which may explain the known dependence of

this behavior on visual features, such as contrast and temporal

and spatial frequency. This study shows that the OMR, a para-

digm that has been extensively used, is still not fully understood,

and its comprehensive characterization will undoubtedly reveal

further insights into the neuronal circuitry underlying behavior.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Zebrafish Wildtype T€upfel-Longfin (TL) N/A ZFIN: ZDB-GENO-990623-2

Zebrafish Tg(elavl3:GCaMP6s) Kim et al., 2017 N/A

Software and Algorithms

ImageJ/Fiji NIH https://fiji.sc

CMTK Rohlfing and Maurer, 2003 https://www.nitrc.org/projects/cmtk/

Python 3.6 Anaconda, Inc. https://www.anaconda.com/distribution

LabVIEW National Instruments http://www.ni.com/en-us/shop/labview.html

Stytra �Stih et al., 2019 http://portugueslab.com/stytra/

Other

Z-brain Atlas Randlett et al., 2015 https://engertlab.fas.harvard.edu/Z-Brain/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ruben

Portugues (rportugues@neuro.mpg.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Adult zebrafish (Danio Rerio) were bred in house at the Max Planck Institute of Neurobiology fish facility and kept at a 14/10 h day/

night cycle. 6-8 days post fertilization larvae were used for either behavioral or imaging experiments of as yet undetermined sex. For

behavioral experiments, we used T€upfel long-fin (TL) larvae. For imaging experiments, we used a transgenic line that expresses

GCaMP6s under the pan-neuronal HuC (elavl3) promoter (Kim et al., 2017). These fish were also homozygous for the Nacre mutation

(mitfa�/�) that interferes with melanophore pigment formation (Lister et al., 1999). All experiments were approved by the Regierung

von Oberbayern via TVA 55-2-1-54-2532-82-2016.

METHOD DETAILS

Behavioral Setup
Behavioral experiments were performed using custom-built behavioral setups as described previously (Portugues and Engert, 2011).

Stimuli were presented from below using an ASUS P1E or Asus P2E micro projector. The fish’s tail was tracked using a high-speed

camera (XIMEAMQ003MG-CM or XIMEAMQ022RG-CM), a Navitar tele-objective (TC.5028), an infrared illumination source (Osram

850 nm high power LED) and a 830 nm long-pass filter (Edmund Optics). To directly extract grating position from the camera image,

we removed the 830 nm long-pass filter and adjusted the IR LED intensity and exposure time of the camera to ensure both good

grating extraction and proper tail tracking. Larvae were embedded in 1.5% low melting point agarose (Thermo Scientific) in a

35 mm Petri dish (Corning) and is roughly 5 mm away from the presented visual stimulus (Severi et al., 2014). The tail was freed

to allow the fish tomove its tail voluntarily while keeping the head and tail base restrained. Stimuli presentation and online tail tracking

was performed using custom-written software in Python using the Anaconda distribution package. Libraries utilized, but not included

in Anaconda, were a custom built OpenCV library with enabled XIMEA camera support and pyqtgraph for fast online plotting. Stytra

(�Stih et al., 2019) was employed for a subset of behavioral experiments.

Stimulus Generation and Presentation
The visual stimulus consists of sequences of binary (i.e., black and white or black and red for functional imaging) bars of given sizes

(0.5 mm, 2.5 mm, 5 mm and 10 mm). The stimuli were generated by choosing white and black bars from a uniform distribution to

ensure the same average gray value across the whole field. For experiments that probed the filter dependence on white-to-black

bar ratio, we changed the proportion accordingly to have on average 25, 50 or 75% white bars. The stimulus presentation was up-

dated at 60 Hz (projector refresh rate). Behavioral experiments were performed in closed-loop, meaning that the fish’s behavior was
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fed back to the visual stimulus to provide the fish with visual feedback (similar to Portugues and Engert, 2011). Gray always indicates

medium gray (the center between black and white). The stimulus scene was a square window that was centered on the fish’s head

and spanned a field of total 60 3 60 mm.

Behavioral Triggered Average
We calculated the swimming vigor online as the standard deviation of a rolling buffer of 50 ms of the tail deflection angle. If vigor

exceeded a given threshold, the visual stimulus was updated in closed-loop. Vigor was also used to determine bout starts and

ends. Only bouts longer than 150 ms were included in the analysis, to avoid contamination with artifacts, struggles, and escapes.

The random binary grating for each fish was also saved during the experiment. Thus, we could afterward determine the projected

pattern before, on, and after bout onset (as shown in Figure 2B). We reduced the stimulus dimensionality to 1D, because the stimulus

is only unique in one dimension (rostral to caudal), and stretched in the other (left to right). The history-dependent spatio-temporal

stimulus has two dimensions: space (1D as described before) and time. We calculated the BTA by averaging all generated patterns

across bouts, and then across individual fish:

BTA =
1

N

XN
i

1

ni

Xni
j

sj
!

whereN is the number of fish, ni the number of bout starts within a fish and sj
!

the spatio-temporal stimulus with a history of one to two

seconds. To extract the grating directly from the camera image, we used a background image without presenting any stimulus. We

focused on a part where the fish is not confounding the grating extraction and subtracted the background image from every camera

image.We subsequently applied a threshold to this image to gain binary bars. The eyes of the fishwas always centered on the camera

chip for consistency across fish (XIMEA MG022RG-CM).

Nonlinearities were determined using the binned dot product of the BTA with the stimulus over time (Schwartz et al., 2006). The

nonlinearity is the ratio between stimuli in each bin at bout triggered events and occurrences of all stimuli in that bin.

Behavioral Triggered Covariance Analysis
Similar to the spike triggered covariance, the behavioral triggered covariance is calculated using the following formula:

BTC =
1

nbouts � 1

Xn

i

�
si
! � BTA

��
si
! � BTA

�T

We pooled all bouts from all fish together (N = 28230) and subtracted the overall mean of the whole dataset. We retrieved the

eigenvalues and eigenvectors using singular-value decomposition of the BTCmatrix using the scipy’s implementation of the LAPACK

SVD solver.

Binary Grating Edge Detection
We performed experiments as described before with different spatial frequencies showing alternating white and black, white and

gray, and gray and black bars (see Figures S1E and S1F). We define spatial frequencies as such that we varied the rostro-caudal

width of a periodic component (i.e., two adjacent bars) to 10, 30, 50 or 100 mm. We calculated the bout probability at a given lumi-

nance distribution by correlating the local stimulus area with a reference stimulus (light to dark to light luminance).

Luminance Experiments
We tested if pure luminance changes (either periodic, 1 s long white-black-white saw-tooth transitions as shown in Figure S1G, or as

indicated in Figure S1H) are able to alter behavior or elicit swimming (Figures S1G and S1H, respectively). Luminance changes are

either shown locally in a ± 5 mm window, in the periphery (the visual scenery, but not the ± 5 mm window, both Figure S1G) or in the

whole visual scenery (Figure S1H).

Filter Replay
The filter as shown in Figure 3D was replayed to head-restrained larvae (the total six seconds in open-loop). As a control we shuffled

the pixel values to disrupt the spatial correlation by keeping the same overall luminance. We also used the intensity profile on bout

start of the filter, stretched this in 2D and then presented this in whole-field motion ensuring that filter replay and whole-field motion

filter were probed the same amount of times. The stimuli are shown in Video S2.

Functional Imaging
Two-photon imaging was performed as described previously (Knogler et al., 2017). Briefly, nacre (mitfa�/�) fish that express

GCaMP6s pan-neuronally were embedded in 2% lowmelting point agarose and tail freed. Stimuli were presented using a Telefunken

micro projector equippedwith a red filter (KodakWratten no.29). Fishwith no behavioral responses or significant drift were discarded.

We presented the stimuli as shown in Figure 5A, namely a forward moving off edge, a whole-field luminance increase from black to

maximum projector brightness, a sine grating moving forward, the whole-field filter moving forward and the reversed filter moving
e2 Cell Reports 29, 659–670.e1–e3, October 15, 2019



backward. Each stimulus was presented for 9.7 s. After each set of stimuli, the imaging plane wasmoved 2 mmventrally and the set of

stimuli was repeated. Imaging data were sampled at approximately 3 Hz using a Ti:Sapphire laser tuned to 905 nm. We imaged a

volume of approximately 468x468x240 mm per fish. Frames were aligned intra-plane and across planes. We then morphed the

anatomy of individual fish to a reference brain (Knogler et al., 2017) using CMTK (Rohlfing andMaurer, 2003). The sampling coverage

is shown in Figure S6. Behavior was recorded using a high-speed camera and custom-written software in Python, imaging data were

acquired using custom-written software in LabVIEW.

Image Analysis
We used custom-written software in Python to correct for motion artifacts and to extract ROIs based on voxel-wise correlations

(Portugues et al., 2014). We pooled the segmented ROIs across fish and clustered them into 20 groups using the scikit-learn imple-

mentation of k-means. Number of clusters was empirically determined. The anatomy of each fish was morphed to a reference brain

yielding a transformation. We applied this transformation to the ROIs. To identify brain regions, we used the annotations provided by

the Z-brain atlas (Randlett et al., 2015). First, wemorphed the Tg(elavl3:GCaMP5g) confocal stack provided by the Z-brain atlas to our

reference brain to compute a transformation. We used this transformation tomorph each annotation map to our reference brain. With

this, we have all experiments and all annotations in the same reference space. Then, we iterated over every voxel in our morphed

cluster map and determined if this voxel is contained in any annotatedmap. Annotations with high relative coverage were considered

being present in the cluster. For the swimming correlation map, we created a regressor mimicking an ideal fluorescence trace of a

neuron coding linearly for swimming power using the swimming vigor (see above). To take into account the calcium dynamics, we

convolved the regressor with the GCaMP6s kernel. ROIs that are correlated more than 0.8 were considered being swimming related

ROIs.

Generalized Linear Model
Wefitted amodel similar to the one described in Haesemeyer et al. (2015). We fitted the following equation byminimizing the negative

log likelihood. The input to the model is the grating history leading to a bout xi. Themodel tries to predict the labels given the features,

i.e., binary bout starts (0 no bout start, 1 bout start). We used 60 Hz as time basis.

min
b0 ; b

1

N

XN
i = 1

L
�
yi;b0 + bTxi

�
+ l

h
0:5 ð1�aÞkb k 2

2 + akb k 1

i

We set alpha = 0, thus neglecting L1 regularization. The model with best performance as determined by ROC analysis had a l=

0.088. We used the pyglmnet package for fitting the data. Data were fitted on a fraction of total bouts and model performance

was evaluated for the whole dataset of a given fish. To evaluate model performance we performed bootstrapping by shuffling the

labels and determine true and false positive and negative rates. We shuffled 100 times and present the average with standard

deviation across shuffles.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all statistical tests, we used their implementation in Python. Number of samples are indicated in either the main text or the figure

legend or both. Significance was tested using Student’s t test with a significance level of 0.05, corrected by Bonferroni correction for

multiple tests, if applicable. To determine if mean values of independent groups differ, we applied analysis of variance (ANOVA) with a

significance level of 0.05. All error bars represent standard error of the mean (SEM) unless otherwise stated. Shaded error indicates

either SEM or 5% to 95% percentile as stated in the panel caption.

DATA AND CODE AVAILABILITY

Custom-written code and acquired data are available upon request from the Lead Contact.
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