ARTICLE

https://doi.org/10.1038/s41467-019-10836-3 OPEN

Learning cellular morphology with neural networks
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Reconstruction and annotation of volume electron microscopy data sets of brain tissue is
challenging but can reveal invaluable information about neuronal circuits. Significant progress
has recently been made in automated neuron reconstruction as well as automated detection
of synapses. However, methods for automating the morphological analysis of nanometer-
resolution reconstructions are less established, despite the diversity of possible applications.
Here, we introduce cellular morphology neural networks (CMNs), based on multi-view
projections sampled from automatically reconstructed cellular fragments of arbitrary size and
shape. Using unsupervised training, we infer morphology embeddings (Neuron2vec) of
neuron reconstructions and train CMNs to identify glia cells in a supervised classification
paradigm, which are then used to resolve neuron reconstruction errors. Finally, we demon-
strate that CMNs can be used to identify subcellular compartments and the cell types of

neuron reconstructions.
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dvances in volume electron microscopy (VEM) have led
to increasingly large three-dimensional (3D) images of
brain tissue, making manual analysis infeasible!. Multi-
beam scanning electron microscopes? and transmission electron
microscopes equipped with fast camera arrays can now generate
data sets exceeding 100 TB3, a development that was fortunately
accompanied by substantial progress in neuron reconstruction-?
and the automatic analysis of synapses!9-13. These advances have
enabled automatic morphology analyses on the neuron (frag-
ment) scale, which were previously restricted to direct segmen-
tation error detection™!# or the use of manual skeletons with
data-specific hand-crafted features!1>1>16, Cell types and other
biological properties that can be inferred from the morphology of
a neuron are required for the interpretation of a connectome!!
and can also constrain automatic neuron reconstruction itself!”.
Outside of the field of connectomics, many approaches have
been developed for automated 3D shape analysis, including
multi-view two-dimensional (2D) projection-based neural net-
work models'®1? as well as voxel- and point cloud-occupancy-
based 3D networks202l. Interestingly, projection-based models
often appear to outperform 3D architectures, possibly because of
higher-resolution input due to decreased model complexity!8.
Here we present cellular morphology neural networks (CMNs),
which use multi-view projections to enable the supervised and
unsupervised analysis of cell fragments of arbitrary size while
retaining high resolution. First, we demonstrate that CMNs can
be used to automate morphology feature extraction itself by
inferring low-dimensional embeddings, dubbed Neuron2vec,
through unsupervised triplet-loss training?2-23. Second, we apply
CMN:ss to the supervised classification of glia cells and use these
data to demonstrate the feasibility and effectiveness of a simple
top—down false merger resolution strategy. Third, we identify
neuronal cell types and compartments, outperforming methods
with hand-crafted features based on skeleton representations on
the same data, and finally perform high-resolution cell surface
segmentation to identify dendritic spines.

Results

Cellular morphology learning networks. CMNs are convolu-
tional neural networks (CNNs) optimized for the analysis of
multi-channel 2D projections of cell reconstructions, inspired by
multi-view CNNs for the classification of objects fitting into
projections from one rendering site!81°,

Su et al.!8 rendered views of an entire object, potentially
sacrificing crucial detail when applied to reconstructions of entire
neurons (or very large objects in general), which can have
processes as thin as 50 nm extending over millimeters?4. To
address this problem, we used a sampling algorithm that
homogeneously probes an entire cell at many locations
(“Methods”; Fig. 1a, b) that are then analyzed either individually
or in combination by a CMN. The neuron reconstructions were
taken from a songbird basal ganglia data set and consisted of
flood-filling network (FFN)-created supervoxels?®> (SVs), which
were agglomerated to sets of super-SVs (SSVs)8, each corre-
sponding to a single neuron. A rectangular field of view (FoV)
was chosen for the projection to capture the elongated shape of
most neuronal arbors more effectively. Additionally, we incorpo-
rated image channels beyond the cell shape (here represented
through depth-map projections) of the same rendering perspec-
tive. This extension allows the CMN to analyze the geometry and
density of objects contained in a cell, such as mitochondria and
other organelles (Fig. 1c, d).

We implemented the view rendering engine with OpenGL
and the neural network models using the ElektroNN neural
network library (www.elektronn.org) and adapted the SyConn

pipeline (https://github.com/StructuralNeurobiologyLab/SyConn/;
see Supplementary Table 1 for a timing overview). The models
were trained using standard loss optimization procedures (Adam
or stochastic gradient descent) on various supervised and
unsupervised tasks (see Fig. le for an application overview),
which are described in the following to demonstrate the versatility
of the approach.

Neuron2vec embedding. Supervised models often require hard-
to-obtain manual ground truth, making alternative objective
functions and models based on intuitive isomorphisms of the
underlying data desirable. We trained a CMN using triplet loss?3
to learn a latent space (embedding; dimension d, = 10) of single
renderings based on the similarity of three inputs x,.p x, and x_.
At every location, two renderings (see above; ¢ =50°) were
generated that served as a similar pair (x.fand x. ). In contrast, a
single rendering at a different, randomly sampled location was
used as the dissimilar example x_ (“Methods”). During training,
the views were sampled from 372 cell or cell fragment recon-
structions (181.02 mm; 19.95 giga voxel (GV); 32,324 um?).

We explored the information content of the embedding
through inspection of clusters in a 2D t-SNE2 projection (Fig. 2a)
of an example cell reconstruction (Fig. 2b; colors as in Fig. 2a; see
“Methods”) and by fitting a k-nearest neighbor classifier (kNN;
k =5; uniform weights) to the Neuron2vec encoding extracted
from a set of neurites with cellular compartment ground truth
annotations (same as in “Cellular compartment identification”;
total path length: 30.16 mm; 3.05 GV; 4947 pm3).

The predictive performance of the kNN classifier on the triplet-
CMN (t-CMN) latent vectors of a cellular compartment test set
(same as in “Cellular compartment identification”; 20.75 mm;
1.31 GV; 2130 um3) was particularly low for dendrites (F1-score
for dendrite: 0.565, axon: 0.686, soma: 0.942; Supplementary
Fig. 1). We were able to increase the classification performance by
sampling the similar view x, from close-by rendering locations
during training as well (two and eight additional rendering
locations N, = 3 and 9), which had a smoothing effect across the
inferred latent vectors of adjacent rendering locations (Supple-
mentary Fig. 2; Fl-score for dendrite, axon, soma with N, =3:
0.751, 0.767, 0.951; N, =9: 0.804, 0.800, 0.951). Increasing the
latent space dimension to d, = 25 had little impact on the model’s
performance (Fl-score for dendrite, axon, soma with N,=3:
0.728, 0.756, 0.957; N, =9: 0.797, 0.808, 0.967).

Axons, or thin processes in general, and soma regions could be
readily identified based on a color projection of the embedding
using principal component analysis (PCA; Fig. 2 and Supple-
mentary Fig. 2), whereas, for example, spiny dendrites showed a
heterogeneous and less continuous spectrum (inset Fig. 2b).
Interestingly, views did not only group by compartment type but
also formed sub-clusters separating views with cell objects (such
as mitochondria and synaptic junctions) from those without (first
and second column in Fig. 2¢), providing an explanation for the
low kNN performance.

We next took a supervised end-to-end approach and examined
ground truth-based CMN models.

Glia detection and top-down segmentation error correction.
Owing to the dense heavy-metal staining used for VEM data, the
acquired images contain all cell types, including astrocytes and
other glia types, which are usually not considered for con-
nectomic analysis. Astrocytes have tight surface contacts with
neurons to supply them with nutrients and regulate the local
environment?’, making astrocyte-neurite mergers a problem in
automated reconstruction pipelines. While it can be difficult for
humans to determine from the raw EM data whether a process
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Fig. 1 Multi-view generation for a given neurite reconstruction and model architecture. a Flood-filling network reconstruction and agglomeration of a
dendrite, with supervoxels individually colored. b Sampled multi-view projection locations indicated as red spheres. ¢ Two-dimensional projection of the
whole neurite reconstruction with cell organelles (blue: mitochondria; red: synaptic junctions). d Each location was rendered from two different
perspectives, one orthogonal to the first and second principal component (p.c.), the other one rotated by ¢ around the first p.c., i.e., orthogonal to the first
and third p.c. (here: ¢ =90°). e Multi-view fingerprints were extracted from the neuron reconstruction and served as input for one unsupervised and three
supervised convolutional neural network-based applications, from left to right: Neuron2vec latent vector inference from single views to encode
morphology; (multi-) class probability from multi-views to infer cellular compartments and glia fragments; multi-class prediction of many multi-views (K-
views) for morphological cell-type identification; high-resolution semantic segmentation on single views to identify individual spines. Scale bars are 10 um
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belongs to a glia cell, it seemed straightforward to solve this
classification task using the established multi-view representation
due to their distinct shape (Fig. 3a, Supplementary Fig. 3). A
CMN was trained and validated on a set of manually annotated
SVs (from 34 neurite reconstructions and 118 glia SVs;

368.74 mm; 16.48 GV; 26,695 um?3), achieving an average Fl-
score of 0.979 (precision: 0.985; recall: 0.974; N: 9695 multi-views;
Supplementary Fig. 4). We then explored the effect of varying
data context and view resolution on classification performance
and found that, as expected, context is crucial (largest context
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Fig. 2 Neuron2vec embeddings learned by a triplet-convolutional neural network (d, =10; N, =1). a t-SNE-transformed latent space (top three p.c.s

covered 60.2% of the variance and were used as RGB values) of an example cell reconstruction, shown in b (coloring as in a). Insets show close-ups of an
axonal bouton and a spiny dendrite. ¢ The three nearest neighbor views of locations i-iv in a and b from left to right column: axonal segments, axonal
segments with mitochondria (blue) or synaptic junctions (red), spiny dendrite segments, and at the soma (green: vesicle clouds). Scale bars in b and ¢ are

10 and 2 um, respectively

tested: 8 x 4 x 4 um3; Fl-score of 0.900 upon 75% reduction;
Supplementary Fig. 4), while reduced resolution barely affects the
performance of CMNs (F1-score of 0.967 upon 75% reduction).
In agreement with the validation results, we evaluated a set of test
SVs (Npeuron: 845 Ngjia: 85; 27 um3) and found that SVs belonging
to larger automatic neurite reconstructions (SSV bounding box
diagonal (BBD) >8 um) showed a significantly better performance
(F1-score 0.964) in comparison to the set of all SVs, which
included many small and hard to classify fragments (F1-score
0.868; see Fig. 3b first histogram bin).

Can we exploit the excellent glia classification results to reduce
the rate of false mergers in a segmentation? The naive solution
would be the simple removal of all SVs classified as glia
fragments, but this approach could induce large-scale false splits
in the case of false positive classifications (Supplementary Fig. 6a).
We therefore developed a more sophisticated splitting heuristic,
ensuring that large neuron fragments remained connected in the
presence of small misclassifications.

The agglomeration of SVs can be represented as a graph,
connecting adjacent SVs (nodes) of the same SSV (neurite) with

edges. In this graph, glia predictions were used as node properties
to identify connected glia and neuron components with their
respective sizes. Sufficiently large (BBD >8.0 um) glia components
were removed and added to the glia graph, while small glia
components (BBD <8.0 um) remained in the original SSV graph.
The resulting connected components of the graph were stored as
individual glia and neuron SSVs, respectively (Fig. 3c, d; see
“Methods”).

We first evaluated the splitting procedure by assessing how
many SVs remained wrongfully assigned and manually labeled
the SVs of 12 neurite reconstructions as ground truth (Nsy: 616;
5161 um?3). As before, our approach showed a significantly higher
performance when classifying large SVs and after the splitting
procedure, almost the entire glia share of the original SSVs was
removed (average Fl-score with volume weights: 0.995, neuron:
0.997, glia: 0.981; unweighted, i.e., SV-level: 0.937, neuron: 0.939,
glia: 0.934; support for Nyeuron: 321 SV, 4534 pm3; Ngii,: 295 SV,
628 um3; Fig. 3e, Supplementary Fig. 6b, c). In the entire data set,
4,324,836 SVs were classified as neuron (606,922 um3) and
1,696,173 as glia (110,342 um3), yielding an astrocyte volume
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Fig. 3 Glia prediction and reconstruction splitting procedure. a Each supervoxel (SV) (unique coloring) of a neurite reconstruction was classified as glia
(red) or neuron (blue) based on the cellular morphology neural networks output. b Corresponding neurite length (bounding box diagonals (BBDs))

distribution for 169 randomly drawn SVs (light gray) vs. SVs with classification errors (dark gray). Arrows indicate errors of SVs with a BBD >10 um (see
Supplementary Fig. 5 for example renderings). ¢ Super-SV (SSV) graph representation (spring-layout) of a glia-predicted neurite reconstruction (SV

volume represented by node size), compared with Supplementary Fig. 6a. d Connected component (CC) meshes (left) and SSV graph (right) indicating
CCs after the splitting procedure. e Boxplot (box: median, first and third quartile (Q1 and Q3); whiskers extend to first and last data point within 1.5 times
the interquartile range (Q1-Q3) below Q1 and above Q3, respectively) of SV classification performance with unit weights (light gray) and volume weighted
(dark gray) splitting performance of 12 neurites (p value of Wilcoxon-Mann-Whitney two-sample rank-sum test: p = 0.028 < a = 0.05 with N =12). Scale

bars are 10 um for a, b and 20 um for d

fraction of about 0.154. It should be noted that the EM data set
was prepared so as to preserve the extracellular space, which may
change the morphology of the glial processes?s.

While this evaluation already showed that the splitting
heuristic successfully removes large volume fractions of glia from
neurite SSVs, it is necessary to assess whether it could do so

without introducing too many new false splits. Note that the
underlying FFN segmentation has already an exceptionally low
false merger rate, which was evaluated in depth in Januszewski
et al.8. Consistent with this, the splitting procedure created only
882 additional SSV's from the 181 affected SSVs in the entire data
set. We therefore inspected 180 SSVs (one very large SSV with
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600,924 SVs was evaluated separately by sampling, see “Meth-
0ds”) and their resulting connected components (470 SSVs) to
estimate how many false mergers were resolved at the cost of
introducing new false splits into neuron SSVs, which would
require manual fixing. About half (55%; 122 out of 222 neuron
SSVs) of the newly created neurite SSVs were affected by a new
false split, which severed them off of the originally correct
(regarding false splits) neurite. In 7% (16 out of 222 neuron
SSVs), the procedure removed only a small neuron component
(e.g., parts of the soma-internal Golgi falsely classified as glia
fragment). The other 38% (84) of neurite SSVs were correctly
recovered meaning that all their false mergers with glia, or with
other neurons bridged through a glia cell, were removed without
the introduction of a new false split (see Fig. 3d and
Supplementary Fig. 6f for examples). These numbers were
comparable on the sampled SSVs, which originated from the
very large SSV (58% affected by new false splits, 42% correct).
While we could not accurately measure the remaining
neuron-glia false merger rate after splitting due to the effort
involved in inspecting a large part of the data set to estimate the
rate of these rare events (inspection of a random sample of 100
SSVs revealed no glia merge errors), any remaining glia merge
error is expected to be small (volume F1-score 0.995, Fig. 3e).

We then attempted to reconstruct the 27 astrocytes identified
in the data set starting at their somata and assigning each glial
fragment to the closest astrocyte soma (see “Methods”), justified
by reports that astrocytes establish roughly spherical, largely non-
overlapping territories®®. While the CMN-based glia identifica-
tion appears promising in principle (see Supplementary Fig. 7 for
automatically extracted glia-blood vessel contacts), our approach
likely merged arbors from other glia cells because they reach into
the data set from the outside.

Neuron-type classification. Similar to glia cells, many neuronal
types can be identified based on their morphology!®, a feature
that was used well before connectivity-based methods3? and other
approaches (reviewed in ref. 31). We recently demonstrated on
the same songbird data set that a feature-based method with
random forest classifiers (RFCs) can be used to identify the four
main cell types, excitatory axons (EA), medium spiny neurons
(MSN), pallidal-like neurons (GP), and interneurons (INT)!L,
However, manual neurite skeletons and hand-designed feature
vectors were required as basis for this classification method.

In contrast to the classification of astrocytes, neuronal-type
classification is less successful when using only a local view (i.e.,
spatially focused) of a neurite (F1-scores for single views: 0.885
and after majority vote: 0.891; training set: 145.98 mm, 17.21 GV,
27,872 um3; test set: 65.04 mm, 7.31 GV, 11,843 um3). A simple
solution would be to increase the FoV for a single view, capturing
the entire extent of a neuron, similar to the proposed object
classification method by Su et al.!8. However, this approach
reduces the resolution for a given view size, obscuring potentially
important details. Alternatively, local views from different
locations can be sampled at random and combined to a global
representation (multi-views of size N, further called N-views;
Fig. 4a) by the neural network model. This approach does not
sacrifice resolution and increased the classification performance
substantially (N = 10 views: F1-score of 0.987, and 0.970 on SSV;
Fig. 4b). It should be noted that lower-resolution, zoomed out
views might still be beneficial or view location information
additionally fed into the network but we did not explore this
further. Interestingly, a greater number of sample locations did
not necessarily increase performance (F1-score for N = 60: 0.984,
SSV: 0.957; Fig. 4b), possibly due to increasing model complexity
and decreasing diversity of the training data through fewer

independent view samples per neuron. This result was consistent
with the observation that the N-view F1-scores throughout all Ns
were significantly lower without shuffling (views were analyzed in
the order they were created; Fig. 4c), which led to spatially
correlated N-view sets, i.e., they likely consisted of views from a
single compartment type only. For all N, additional models were
trained to predict sets of views without cell organelle channels,
which, in agreement with our previous results using RFCs!l,
reduced the Fl-score on SSV-level substantially (e.g., F1-score
reduction of 0.088 for N =20 with majority vote; Fig. 4b).

Cellular compartment identification. We next attempted to
analyze the FFN neuron segmentation by identifying subcellular
compartments (axon, dendrite, and soma) at single multi-view
locations (Fig. 5a).

Similar to the glia model, a reduction of the original FoV of 8 x
4x4 to 2x1x1pum3 reduced the performance (Fl-score on
validation set of 0.996 with original views vs. 0.913), while a four-
fold downsampling of the multi-views had almost no effect
(reduction of 0.014, Fig. 5b). Not surprisingly, the performance of
the soma class was barely affected by this or any other changes to
the input, whereas the discrimination between axons and
dendrites was strongly dependent on cell organelle information
(F1-score reduction by 0.08 with exclusion; Fig. 5a, b).

The performance of the CMN approaches were directly
compared with the skeleton-based RF classification developed
by us previously!! on a set of 28 manually annotated
reconstructions (20.75 mm; 1.31 GV; 2130 um3). Two different
FoVs (implemented as maximum skeleton traversal distances for
the RFC approach, RFC-4, with 4 pm and RFC-8 with 8 um) were
tested with morphology features extracted from these FoVs (see
“Methods”) and fitted to the same training data as the CMN (path
length 30.16 mm; 3.05 GV; 4947 um3). Although the CMN (2
views; Fig. 5b) was operating on much less context (multi-views
were based on a 8 x 4 x 4 um? subvolume vs. a maximum possible
subvolume of 16 x 16 x 16 um? for the RFC-8 model), it out-
performed both skeleton-based models and the Neuron2vec-kNN
classifier (t-CMN; Fig. 5c¢; average Fl-score values for t-CMN:
0.834; CMN: 0.955; RFC-4: 0.761; RFC-8: 0.779). Owing to the
low predictive performance of the skeleton-based RFC-4/8
models on the soma class (see Fig. 5¢c and Supplementary Fig. 8a
for an example skeletonization; a sliding window majority vote
could not account for the difference in performance, see
“Methods” and Supplementary Fig. 8b, c), we performed an
additional evaluation on test data of axons and dendrites only
(RFC*-4, RFC*-8). The performance values indeed increased
substantially (RFC*-4: 0.912; RFC*-8: 0.948), to almost compar-
able levels of the CMNs, at least on this narrower classification
problem.

High-resolution semantic segmentation of neurite surfaces.
The neuron classification described thus far is restricted in its
spatial resolution to the minimum size of at least one view ren-
dering (8 x 4 x 4 pm). This property makes the approach suitable
for the identification of neuronal compartments on a larger scale
(axons, dendrites, and somata), a situation in which additional
spatial context is helpful (Fig. 5b). However, this approach does
not allow the semantic segmentation of morphology smaller than
a single rendered view. Higher-resolution classification requires a
dense analysis of the rendered views. Similar to the approach
taken by Boulch et al.32, we solved the resulting image-to-surface
mapping problem by rendering the cell views with spatially
subdivided unique colors?3, thereby creating an efficient rever-
sible mapping between the 2D view space and the 3D surface
(Fig. 6a, b). We then trained a -FCN-VGG>?43> based model on
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Fig. 4 Cell-type inference using cellular morphology neural networks. a N-view fingerprint of a neuron reconstruction (red: synaptic junction; blue:

mitochondria; green: vesicle cloud). b Class-weighted Fl-scores of cell types with and without cell organelles (no c.0.). Light gray and light blue represent
performances evaluated on individual N-views (class support for N = 1: excitatory axons (EA): 16,774, medium spiny neurons (MSN): 90,662, pallidal-like
neurons (GP): 3958, interneurons (INT): 8806; N =10: EA: 1658, MSN: 9048, GP: 394, INT: 880; N = 20: EA: 812, MSN: 4514, GP: 196, INT: 440; N = 40:
EA: 388, MSN: 2245, GP: 97, INT: 220; N = 60: EA: 251, MSN 1489, GP: 65, INT: 146); dark tones represent performances on the SSV level after majority
voting on multiple N-views (class support EA: 60, MSN: 39, GP: 3, INT: 2). ¢ Class-weighted F1-score for shuffled (dark gray) and unshuffled (light gray) N-

view stacks (class support as in b). Scale bar is 10 um

the identification of dendritic spines (the training set contained
five MSN reconstructions; 12.59 mm; 1.01 GV; 1652 pum?), a
classification problem that was previously solved on manually
traced skeletons, which made the automated identification of
spines easy!1:36. Automatically generated skeletons or surface
meshes do not have the advantage that many skeleton endings are
dendritic spines, which is likely a result of the implicit knowledge
of human annotators. Instead of evaluating the classification
performance on sampled locations, as done by us previously!!
(vertex-based evaluation in Supplementary Note 1), we tested the
performance on a test set of 182 manually annotated synaptic
contacts that were morphologically classified (see “Methods”) as a
spinous synapse (N = 88) or dendritic shaft synapse (N = 94) and
obtained an F1-score of 0.978 (prec. 0.978, recall 0.978, F1-score
spine head only 0.977; 2 views per location and k = 20). Inter-
estingly, the classification performance did not improve further
with more views (F1-score for k=20 and 6 views: 0.978), likely
because the PCA view alignment along the dendritic process
already optimized the coverage. Note that the coverage saturates
below 1.0 due to non-surface triangles (see Fig. 6¢).

Discussion

We demonstrated that CMNs are a versatile tool to analyze
reconstruction fragments or entire cell reconstructions. Our
approach adapts to the neurons’ sparse coverage of the 3D
volume by using distributed 2D multi-view projections instead of
dense 3D models that end up processing many empty
voxels>1418:20. While mainly developed for the analysis of neuron
reconstructions, our proposed view-sampling method seems
generally beneficial for the analysis of 3D objects that span large
distances but still require high-resolution representations, as
demonstrated by SnapNet which was developed independently
for the semantic labeling of point clouds2.

By combining the concept of CMNs with unsupervised triplet
loss training?2, we created Neuron2vec embeddings that could
serve as the basis for an unbiased morphological comparison
of cells and cell types without requiring hand-designed features
or allow neuron database queries using example neurites!°.
Additionally, the embedding can be used for visualization pur-
poses, e.g., through coloring (Fig. 2), making morphologically
different regions salient. The triplet-loss embedding could be
compared to alternative unsupervised training paradigms (e.g.,
autoencoders37-38 or generative query networks?®), to evaluate
whether the excellent supervised training results can be reached.
CMNs showed improved performance in cell compartment
classification in comparison to the previously used hand-designed
features!! and are likely more generalizable, since the morphology
does not need to be parameterized first.

Based on the classification results of the glia CMN, we built a
simple glia removal and merge error resolution algorithm, which
could split neuron—glia mergers, but introduced additional false
splits in about half of the newly created neurite components.
However, these errors are considered to be easier to correct®40
and more importantly, their location is known, making guided
proofreading possible. We would like to note that the other
inferred cell types and neuronal compartments could be used in a
similar manner or in combination as input to a more powerful
graph cut segmentation algorithm, as proposed by Krasowski
et al.l”.

Another application could be to directly evaluate the shape-
plausibility of neurite fragments to detect errors>!4 or to estimate
the probability that separate SVs should be combined*!. Appli-
cations requiring high-resolution segmentation (e.g., the locali-
zation of reconstruction errors) should especially benefit from the
cell surface analysis that we used here for the classification of
postsynaptic dendritic morphology with excellent performance
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Fig. 5 Cellular morphology neural network (CMN) prediction of subcellular compartments. a The 3909 rendering locations of the reconstruction were
predicted as axon, dendrite, or soma. Local errors are indicated as follows: Single asterisks (*) indicate locations where vesicle clouds were falsely mapped
to the cell (see inlay; red: synaptic junction, blue: mitochondria, green: vesicle cloud); Double asterisks (**) indicate branch points in axons where synaptic
junctions occurred without vesicle clouds; Triple asterisk (***) indicates false dendrite predictions at proximal neurites. b Performance on the validation set
(axon: 1078; dendrite: 1823; soma: 6139 multi-views) for different inputs. Left to right: Field of view (FoV) reduction of the two input views (with cell
organelle channels) by image cropping (3/8 on each side); FoV reduction by cropping (1/4); FoV reduction by cropping (1/8); FoV reduction by cropping
(1/16); resolution reduction by 4x downsampling; resolution reduction by 2x downsampling; single view perpendicular to the first and second p.c,
binarized input views; two views without cell organelle channels; two views at full resolution (256 x 128 pixels). ¢ Comparison of skeleton and multi-view-
based classifications measured on a skeleton node test set (color-code as in b) of 28 super-supervoxels (Nayon: 17,361; Ngendrite: 20,614; Nsoma: 12,959).
Asterisk (*) indicates that the RFC model was trained on binary label data (axon vs. dendrite) only. The CMN model was the two-view model evaluated in

b; the triplet-CMN had N, =9, d,=10 and k=5. Scale bars are 10 um

(F1-score 0.98). PointNets?! or PointCNNs*2, which can operate
directly on mesh vertex data, might be an alternative, but their
effectiveness for neuronal morphology classification remains to be
demonstrated and compared to the projection-based CMNs.

Methods

EM data and used segmentation. The analyzed EM data set (Area X, adult male
zebra finch, >120 days post hatching) was acquired by J.K. through serial block-face
scanning electron microscopy as reported previously®!! and had an extent of 96 x
98 x 114 pm?> with an xyz-resolution of 9 x 9 x 20 nm? (total of 664 GV; 10,664 x
10,914 x 5701 voxel). The animal experiment was approved by the Regierung-
sprisidium Karlsruhe and performed in accordance with the laws of the German
federal government. Meshes and skeletons were based on a FFN segmentation by
M.J. and V.J.8, including the over segmentation (all SVs) and the post-
agglomeration SV graph (defines SSVs) combined with manual reconnects of
orphan neurite fragments.

Local scene rendering. We used SV triangle meshes to efficiently render depth
maps with PyOpenGL (http://pyopengl.sourceforge.net/) and EGL (for off screen
rendering). For rendering, the model view matrix was rotated such that the first
axis of the view was parallel to the main principal component of the object and
clipped to an extent of 8 x 4 x 4 um3. The rendering had a throughput of about 58
and 25 multi-views/s without and with cell organelles (see Supplementary Table 1)
on a single CPU core with GPU acceleration, making it scalable in a cloud or high-
performance computing environment.

PCA was applied to a subset (0.125) of the vertices within the clipping box that
yielded the axes with highest variance (x, y, and z; decreasing variance) in good
approximation. In this system, xy and xz represent the planes with the highest
spatial variance, allowing alignment with the elongated neurite structure. By
rotating around the x axis, orthographic depth-map projections of size 256 x 128
pixels were rendered and stored as unsigned 8-bit integer. For every SV, rendering
locations were obtained by calculating its vertex density p in a grid of voxels with
size 2 x 2 x 2 um?>. In order to not oversample dense regions, the center coordinate
of every voxel with p >0 was used to calculate the mean of the vertices within a
radius of 1 pum. The resulting set of coordinates, effectively a downsampled point
cloud, was stored as the SVs rendering locations.

Rendering cell organelles. Three additional channels were generated next to the
2D depth-map views of the cell shape which contained the rendering of mapped
cell organelles. Cell organelles (mitochondrion (MI); synaptic junction (S]); vesicle
cloud (VC)) with a relative overlap with SSVs above or within a certain threshold
range (MI: >0.5, VC: >0.5, SJ: 0.2-0.8) were mapped to the SSV. Only objects with a
minimum size (number of voxels) were considered during the overlap calculation
(SJ: 498; VC: 1584; MI: 2786). Cellular organelle predictions were generated using
3D CNNs with ground truth volume details provided in Supplementary Table 4 of
Dorkenwald et al.,, 201711 (see also Supplementary Note 2).

Meshes for the associated objects were extracted from a Gaussian-smoothed
(0=1), distance-transformed (https://ukoethe.github.io/vigra/) binary 3D mask
with marching cubes (contour value of 0; scikit-image http://scikit-image.org/).

The cell object meshes were rendered from the same perspective and resolution
(256 x 128 pixels) as the corresponding SV views. The location’s fingerprint finally
consisted of the rotated views, each with four channels.
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Fig. 6 Sub-micron resolution semantic segmentation of cellular surfaces. a Bottom left: Wire-frame rendering of an flood-filling network-reconstructed
mesh with mapped organelles. Top left: Depth map projection with organelle channels. Bottom right: Reversible two-dimensional-to-three-dimensional
(3D) mapping based on unique color rendering. Top right: Dense prediction of semantic pixel labels (here spine head (red), neck (gray), dendritic shaft
(black)) on rendered view. b Pixel labels are mapped back onto mesh faces through the unique colors, enabling a high-resolution 3D surface classification.
¢ Mean ratio of triangle faces covered by all reconstruction multi-views depending on the number of views rendered per location (N =4 cell
reconstructions; error bars: s.d.). Scale bars are 2um in a, 10 um in b, and 2 um in the inset

Automatic skeletonization of cell reconstructions. The skeletons of the SV
(provided by M.J. and V.J. and created using the TEASAR*3 algorithm) belonging
to an SSV were combined iteratively. Edges between the spatially closest pair of
nodes of all connected components were repeatedly added until only a single
connected component remained.

We decreased the average edge length in the skeleton representations to
approximately 150 nm by removing skeleton nodes (ignoring branch and end
nodes). Nodes of degree 2 were removed and replaced by a single edge if the
summed length A of the adjacent edges was below a threshold (A = 50 nm) or if the
dot product of their edges was >0.8 in combination with A =500 nm.

At every node, the cell radius was estimated by the median of the distance to the
ten nearest vertices of the mesh. Total path lengths were calculated as the sum of
all edges.

Multi-view models for type classification. Multi-views were sampled from the
joint set of SV meshes of an entire SSV, and renderings generated at locations as
described above.

To overcome RAM limitations, large SSVs (>10* SVs) were processed as
subgraphs, defined by a breadth-first-search (extending 40 nodes) on the SV graph
and starting at each SV. Multi-views were generated from the joint meshes of the
40 SVs at the sampled locations of the source SV.

The multi-view CNNs used seven (valid-mode) convolutional layers (number of
filters, filter size, max-pooling size), each followed by a max-pooling layer, three
fully connected layers, and a soft-max layer. For the glia prediction, e.g., the
following architecture was used:

conv. L1: (13, (1, 5, 5), (1, 2, 2))
conv. L2: (17, (1, 5, 5), (1, 2, 2))
conv. L3: (21, (1, 4, 4), (1, 2, 2))
conv. L4: (25, (1, 4, 4), (1, 2, 2))
conv. L5: (29, (1, 2, 2), (1, 2, 2))
conv. L6: (30, (1, 1, 1), (1, 2, 2))
conv. L7: (31, (1, 1, 1), (1, 1, 1))
f.c. L1: 50 neurons

f.c. L2: 30 neurons

f.c. L3 + softmax: 2 neurons

The input to a model contained multi-views of shape ((b, 20), (f, ¢), (z, 2), (x,
256), (y, 128)) with either one or four channels (c), batch size b, initial filter or
channels f, and spatial axes z, x, and y. Note the auxiliary z axis that was introduced
to share filters for all views (z-filter size of 1). Number of filters varied slightly for
different tasks. The models were trained using backpropagation with mini-batches
(samples were drawn uniformly). During training, the ordering of the two views
was inverted with probability p =0.5.

If not stated otherwise, hyper-parameters were chosen to be:

batch size: 20

dropout rate** : 0.1
activation function: ReLu
Adam optimizer#>
learning rate: 1x 1074
momentum f, ,: 0.9, 0.99
weight decay: 5x 104

A model with two output classes and one input channel had 35,770 trainable
parameters and a computational cost of 2.4 Giga Ops. In all, 350,000 training
iterations (with batch size of 20) on a GeForce GTX 980Ti took 20.1 h, which was
about 0.0103 s per sample. Inference of 2754 rendering locations took 45.04 s,
approximately 0.016 s per sample (see Supplementary Table 1).

Neuron2vec embedding. The architecture of the CMN encoder was used to learn
a projection from the single view space R296x128x4 to a Jower-dimensional latent
space (embedding) R4 (d dimensions) based on the triplet loss described in ref. 23,
Its architecture was identical to the one described in “Multi-view models for type
classification,” whereas max pooling was removed from conv. L2 and L6, dropout
was restricted to conv. L3-L5, the f.c. L2 and the softmax from layer f.c. L3 were
removed. The objective function was to keep the distance of the reference x,¢ to the
similar input x below the distance of x,f to the dissimilar input x_. For the two
similar views x,.r and x, we used the two views of the same rendering location
(rotated by ¢ = 50°), while the dissimilar view x_ was sampled randomly from a
different SSV. The clipping volume was set to 8 x 4 x 8 um?. In order to take strong
similarities of adjacent rendering locations into account, the view-sampling during
training was adapted to sample similar views also from close-by rendering locations
(k-nearest-neighbors with k = 2 and k = 8) instead of only using the rotated view at
the same rendering location (Supplementary Fig. 2).

The loss was defined as L,y = a + A, and L,y = Ay, with a =7, —7r_ + 1,

r, = }icref — X_|;, and A; = 0.2 being a parameter to control the

- 56+ »p - = ‘Rref
margin between data points. ¥ C R? represents the latent space of the triplet net.
The second regularization term A, was the mean norm of the reference, similar, and

dissimilar view and acted as a counterpart to A, by restricting the latent vectors to
be small: 1, = 1/3 (\)?ref|2+|5c+ |, +1x_ |2) Our implementation was inspired by the
one from A. Veit (https://github.com/andreasveit/triplet-network-pytorch).

The PCA was performed on the triplet network latent vectors of the 372 cell or
cell fragment reconstructions, which were also used for querying the view-triplets
during training. By taking only the first three principal components, every multi-
view location was assigned an RGB value. The mesh was colored according to the
nearest view color of every vertex.
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Glia classification. For the glia classification model, only the depth maps of the SV
were given as input. The training set contained 88,022 multi-views (Npeuron: 69,068;
Nigiia: 18,954) and the validation set 9695 (Nyeuron: 7588; Ngia: 2107). Neuron views
from the subcellular compartment ground truth (see section “Subcellular compartment
classification”) were extended by two additional axon reconstructions and used as
samples for the negative class (31.29 mm 3.08 GV; 4989 um?). Glia views were gen-
erated from 118 manually annotated glia SV (path length: 337.45 mm; 13.40 GV;
21,706 um?). The performance was calculated based on multi-views and measured as
Fl-score. The classification threshold 6 was set to the optimal F1-score on the vali-
dation set. The best model was retrained on training and validation set and applied to
the whole data set. To remove background structures not connected to the central
object of interest, connected component analysis was performed on the 2D multi-view
images, followed by masking of the unconnected pixels.

The SVs were then classified by calculating the mean of all its multi-view
predictions and thresholding with 6. In addition, at least 70% of all multi-view
predictions of a SV had to be glia for the assignment of this label.

Classification performance was measured by manually annotating 169 SV (Ngar:
85; Nneuron: 845 NBBD < 8 um: 575 NBBD > 8 um? 112). These SV's were sampled from 20,000
randomly drawn SSVs (training and validation samples were excluded), weighted by
the number of views per SV. Only SSVs within the segmentation data set bounding
box [470, 730, 30]-[10200, 10200, 5670] were considered.

Top-down glia splitting. In order to split glia fragments from neurons, a con-
nected component analysis was applied to the SV graph of every SSV. Glia and
neuron connected components (CCs) in the SV graph were computed on sub-
graphs induced by the classification (glia or neuron) of each SV. The CC size was
estimated by calculating the BBD of its combined SVs. Glia CCs with a BBD =
8.0 um were separated from the SV graph first. The remaining, small glia CCs
(BBD < 8.0 um) were assigned to the neuron class and the BBD was re-evaluated.
Neuron CCs with a BBD < 8 um were removed and added to the glia graph. The
purpose of this was to bridge small false glia/neuron predictions and thereby avoid
false neuron splits.

The resulting class labels after the splitting procedure were evaluated on 12
randomly drawn SSV's with at least 1 introduced split. SVs were sorted by volume
and manually labeled by P.J.S. until a major fraction of the reconstruction volume
was covered. The average inspected volume coverage was 0.905 (proportion of
inspected SVs weighted by their volume).

To evaluate the splitting performance, 181 SSVs were manually inspected by
P.J.S. and J.K. The total number of neuron components and the number of neuron
components that were not split into several parts were identified, i.e., those in
which all splits preserved the neuron as a single component. Removing, for
example, a small fragment from an SSV (Supplementary Fig. 6d) was not
considered a split and the SSV therefore counted as a correct component.

In contrast, an axon passing through a falsely merged glia and being split into two
components was not added to the number of correct components, but its two
components were added to the total number of resulting neuron components. Note
that we also counted a component as incorrect in case the removed fragment
(predicted as glia) only virtually disconnected the neurite (Supplementary Fig. 6e),
e.g., at the data set boundary, when it could be reasonably assumed that it would
continue in a larger data set.

For the evaluation of the large SSV, which was split into 593 SSV (516 neuron
and 77 glia components predicted), we inspected a random subset of 50 neuron
components.

Reconstructing glial cells. SV graph edges were added between the sample
locations of the collection of all splitted glia SV by identifying the k-nearest
neighbors (k =15, maximum distance: 10 pm; weighted by Euclidean distance).

Twenty-seven somata of putative astrocytes were identified in the data set and
every glia SV was assigned to its closest soma (shortest path using Dijkstra’s
algorithm).

Bloodvessel prediction. The input data (zxy ordering) for the bloodvessel CNN
was downsampled by a factor of eight in all dimensions. A cube of size (256, 437,
287) was densely labeled using KNOSSOS to obtain training data. The used net-
work had the following architecture:

conv. L1: (24, (1, 6, 6), (1, 2, 2))
conv. L2: (27, (1, 5, 5), (1, 2, 2))
conv. L3: (30, (1, 5, 5), (1, 1, 1))
conv. L4: (33, (1, 4, 4), (2, 1, 1))
conv. L5: (36, (3, 4, 4), (1, 1, 1))
conv. L6: (39, (3, 4, 4), (1, 1, 1))
conv. L7: (42, (2, 4, 4), (1, 1, 1))
conv. L8: (45, (1, 4, 4), (1, 1, 1))

conv. L9: (48, (1, 4, 4), (1, 1, 1))

conv. L10: (48, (1, 1, 1), (1, 1, 1))

conv. L11 + softmax: (2, (1, 1, 1), (1, 1, 1))

The dense predictions of the data set were thresholded at 0.98. Meshes were
created as described above (“Rendering cell organelles”).

Neuron-type classification. The 2-views generated at each rendering location
were re-used to construct a set of N-views for every SSV by the following proce-
dure: The collection of all M 2-views of an SSV was split into 2M/N random sets
(drawn without replacement) each of size N. If 2M < N, the set was filled by
randomly drawing from the existing views.

The model architecture was identical to the model used for glia classification,
except for a reduced batch size, a dropout rate of 0.08, and a learning rate schedule
defined as exponential decay, with decay rate of 0.98 per 1000 steps. The input
shape was (1, 4, N, 256, 128).

We used 402 manually traced (skeletonized) cells to identify their
corresponding SSV, which were split into training set (Niain: 3015 Nga: 177, Nysn:
114, Ngp: 6, Npnr: 6) and test set (Nt 1015 Nia: 60, Nygsn: 39, Nap: 3, Ninr: 2)
with labels, that corresponded to the broad biological classes found in the data set
(EA, MSN, GP, INT).

During batch creation while training, the N-views were generated by randomly
drawing from the corresponding SSV views. Every batch contained an equal
number of SSVs for each class. The classification was performed using argmax on
the output of the softmax layer and the majority vote of the corresponding N-view
classifications was used for SSV classification.

The support-weighted average F1-score of all classes was evaluated on N-views
and on a SSV level after majority vote (carried out on all its N-view predictions).

Subcellular compartment classification. The cellular compartments of 33 neur-
ites were manually annotated and axon, dendrite, and soma views were generated,
which were split into a training set (Nipin: 80,370 views; Ngendrite: 10,0045 Nayon:
41,424; Nyoma: 28,942) and a validation set (Nyaiidation: 9:040; Ngendrite: 1,078; Naxon:
1,823; Nyoma: 6139). During training, we applied class weights for loss computation
to address imbalances in their frequency (dendrite: 2, axon: 1, soma: 1). Perfor-
mance was measured with the F1-score of the multi-view classification using
argmax on the softmax output. The best model was again retrained on the whole
ground truth data for the data set prediction.

Classification of so far unclassified locations within neurons was performed by
assigning it the label of the closest classified location (Voronoi partitioning with
Euclidean distance).

All SSV skeleton nodes were manually labeled by P.J.S. using KNOSSOS. In
order to enable a direct comparison between the RFC and CMN model, the
skeleton-node locations were used for the extraction of the hand-designed features.
CMN and kNN predictions were mapped to the skeleton nodes using the nearest
neighbors on the multi-view locations. As in Dorkenwald et al.!l, hand-designed
features were computed for every skeleton node (context of 4 um and 8 um
maximal traversed path length from the source node). Only properties of nodes
visited during the traversal were considered for the source node statistics.

A total of 23 features were extracted from the collected properties at each node:
mean and standard deviation (s.d.) and histogram (10 bins) of the encountered
node diameters, mean of node degrees, node density within a box with edge length
of 2-times the context-range (either 4 or 8 pm) number of cell organelles and mean
and s.d. of their size for mitochondria, synaptic junctions, vesicle clouds. The REC
was trained on the same training data as the CMN to classify each node as axon,
dendrite, or soma using argmax on the resulting class probability.

The sliding window majority vote was performed on the cell reconstruction
skeletons. Every skeleton node was assigned the majority label found in a set of
adjacent node/multi-view predictions, which were collected within a maximum of
12.5 um traversal length along the skeleton.

High-resolution semantic segmentation of surfaces. The training data were
generated by rendering multi-views (5 different perspectives) from the rendering
locations of 5 reconstructions (training: 24,248 views; validation: 6062 views) with
label-dependent vertex colors. Skeleton nodes were manually annotated as neck,
head, shaft, or soma/axon, which were then mapped to the mesh vertices with
Voronoi partitioning (Euclidean distance). To smooth label boundaries, each vertex
was assigned the majority label of 40 vertices found by a breadth-first search on the
vertex graph of the reconstruction. Graph edges were added between vertices with a
distance of up to 120 nm. Only rendering locations with annotated skeleton nodes
within 2 um were considered.

We used a FCN-VGG architecture3> with 13 layers (adopted from https://
github.com/pochih/FCN-pytorch by P.-C. Huang) to perform pixel-wise multi-
class (neck, head, shaft, background, and axon/soma) classification on single views
with four channels (cell, mitochondria, synaptic junctions, and vesicle cloud
shapes). It was trained using backpropagation with mini-batches (images were
flipped in x or y with probability P = 0.5), Adam optimizer (f;,: 0.9, 0.999; weight
decay: 5 x 1074), initial learning rate of 4 x 10~3 (exponential decay with 0.99), and
Lovasz-Softmax loss*C.

To assign pixel labels back to the mesh vertices, an additional view of the faces
was rendered using color buffering with a unique ID per face. This allowed to
perform a majority vote of all collected labels corresponding to a single vertex as
classification. Subsequently, we applied a kNN classification to propagate predicted
labels to vertices, which were not covered by the rendered color map.

The synapse test set was generated as a random set of head and shaft synapses
collected from four different reconstructions, which were also used to calculate
the cell surface fraction captured by the multi-views. The dendritic tree for the
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per-vertex evaluation was manually annotated on skeleton node level and then
propagated to the mesh vertices as described above for the GT generation.

Computing infrastructure. The used parallel computing environment consisted of
18 nodes, each equipped with 20 cores (Intel Xeon CPU E5-2660 v3 @ 2.60GHz), 2
GeForce GTX 980Ti, and 256 GB of RAM. Compute jobs were managed using SGE
QSUB or SLURM.

Data availability
The data sets generated and analyzed during the current study are available from the
corresponding author on reasonable request.

Code availability

The used code, network architectures, classes for handling the inference, processing, and
storage of the segmentation data can be found in the open source SyConn repository on
GitHub (https://github.com/StructuralNeurobiologyLab/SyConn/).
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