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ABSTRACT

Decadal fluctuations in the climate of the North Atlantic–European region may be influenced by interactions
between the atmosphere and the Atlantic Ocean, possibly as part of a coupled ocean–atmosphere mode of
variability. For such a mode to exist, a consistent atmospheric response to fluctuations in North Atlantic sea
surface temperatures (SST) is required. Furthermore, this response must provide feedbacks to the ocean. Whether
a consistent response exists, and whether it yields the required feedbacks, are issues that remain controversial.
Here, these issues are addressed using a novel approach to analyze an ensemble of six integrations of the Hadley
Centre atmospheric general circulation model HadAM1, all forced with observed global SSTs and sea-ice extents
for the period 1949–93.

Characterizing the forced atmospheric response is complicated by the presence of internal variability. A generalization
of principal component analysis is used to estimate the common forced response given the knowledge of internal
variability provided by the ensemble. In the North Atlantic region a remote atmospheric response to El Niño–Southern
Oscillation and a further response related to a tripole pattern in North Atlantic SST are identified. The latter, which
is most consistent in spring, involves atmospheric circulation changes over the entire region, including a dipole pattern
in sea level pressure often associated with the North Atlantic oscillation. Only over the tropical/subtropical Atlantic,
however, does it account for a substantial fraction of the total variance. How the atmospheric response could feed
back to affect the ocean, and in particular the SST tripole, is investigated. Several potential feedbacks are identified
but it has to be concluded that, because of their marginal consistency between ensemble members, a coupled mode
that relied on these feedbacks would be susceptible to disruption by internal atmospheric variability. Notwithstanding
this conclusion, the authors’ results suggest that predictions of SST evolution could be exploited to predict some
aspects of atmospheric variability over the North Atlantic, including fluctuations in spring of the subtropical trade
winds and the higher latitude westerlies.

1. Introduction

There has been much recent interest in the nature and
mechanisms of long-term climate variability in the
North Atlantic region. This interest has largely been
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stimulated by the belief that fluctuations on seasonal to
decadal timescales might be predictable. Such predict-
ability could arise from the influence of ocean dynamics
on sea surface temperatures (SST) and the subsequent
influence of SST changes on the atmosphere. However,
the mechanisms giving rise to decadal climate variations
are poorly understood.

Studies of the observed characteristics of decadal cli-
mate variability in the North Atlantic region have iden-
tified a weak fluctuation with a period of 12–14 yr iden-
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tifiable in both oceanic and atmospheric variables (Deser
and Blackmon 1993; Hansen and Bezdek 1996; Sutton
and Allen 1997). The existence of slowly propagating
SST anomalies suggests a significant role for ocean dy-
namics, while local correlations between surface at-
mospheric variables and SST suggest that ocean mixed-
layer processes are also involved. The key issues that
remain unclear are whether the changes in SST are hav-
ing any significant effect on the atmosphere, and what
is determining the timescale of the observed fluctua-
tions.

The impact of external forcing due to solar variability,
volcanic activity, and anthropogenic emissions has been
discussed in several publications (e.g., White et al. 1997;
Lean et al. 1995; Robock and Mao 1995) as a possible
source of long-term climate fluctuations. Interannual
variations of tropical Pacific SSTs associated with the
El Niño–Southern Oscillation (ENSO) phenomenon
were also found to have a remote effect on the atmo-
spheric circulation over the Atlantic region (e.g., Davies
et al. 1997). While these external influences no doubt
have some role, much of the character of decadal climate
fluctuations is likely to be determined by the Atlantic
ocean–atmosphere system itself. There are two general
scenarios for this internal variability.

In the first, which may loosely be termed ‘‘uncou-
pled,’’ the atmospheric variability is viewed as essen-
tially stochastic (possessing a ‘‘white’’ spectrum) and
is insensitive to changes in SST. Frankingoul et al.
(1997) have recently generalized Hasselmann’s sto-
chastic climate model (Hasselmann 1976) by incorpo-
rating ocean dynamics as well as mixed-layer processes.
Saravanan and McWilliams (1998) have furthermore de-
scribed how the ocean dynamics can provide a velocity
scale, which, in concert with a spatial scale set by the
atmospheric forcing, could lead to a prefered timescale
for decadal fluctuations in the ocean. There could be a
weak feedback onto the atmosphere but this is not nec-
essary to sustain an oscillation in the ocean. One should
also note in this context that the atmosphere might also
be able to create some low-frequency variability on its
own by internal nonlinear processes (James and James
1989) or through interactions with the land cryosphere.
Whether such variability can survive external forcing
by the seasonal cycle remains open to question (Lorenz
1990).

In the second, coupled, scenario a consistent atmo-
spheric response to Atlantic SST anomalies is a re-
quirement. Latif and Barnett (1994) proposed a mech-
anism for decadal variability in the North Pacific in
which the atmospheric response involved: first, surface
heat flux anomalies producing a positive feedback on
SST anomalies, and second, anomalies in wind stress
curl producing a delayed negative feedback via adjust-
ment of the subtropical gyre circulation, with the delay
time set by the propagation of baroclinic Rossby waves
across the ocean basin. Grötzner et al. (1998), studying
the Atlantic with the same coupled model integration

as Latif and Barnett (1994), interpreted their results in
terms of this mechanism. In so doing, they noted that
advection in the ocean could be as important as Rossby
wave propagation in providing the delayed negative
feedback.

The decisive factor that can discriminate between the
uncoupled and coupled scenarios is the nature of the
atmospheric response to Atlantic SST anomalies. The
coupled scenario places stringent requirements on the
characteristics of the response. First, it must be suffi-
ciently strong that its influence on the ocean is not dom-
inated by the influence of internal atmospheric vari-
ability. Second, it must involve changes in surface wind
stress and/or heat flux that have an appropriate form to
provide a feedback that will modulate, with a lag, the
SST features to which the atmosphere is responding.

The nature of the atmospheric response to various
idealized extratropical SST anomalies has already been
investigated in several model studies (Palmer and Sun
1985; Pitcher et al. 1988; Kushnir and Held 1996; Peng
et al. 1997). The results from these studies are not con-
sistent in all respects, but tend to suggest that the re-
sponse is rather weak relative to internal variability. This
fact immediately presents a signal-to-noise problem: to
identify the atmospheric response reliably we need in-
formation about the internal variability. Such informa-
tion is available from an ensemble of model integrations.

An analysis of signal-to-noise in the ensemble of
model integrations that we analyze was carried out by
Davies et al. (1997). Their approach allows regions
where a forced response may exist to be identified, but
does not directly allow the delineation of the spatio-
temporal characteristics of the forced response. Allen
and Smith (1997) recently presented a generalization of
principal component (or singular spectrum) analysis
(PCA or SSA), which yields an optimal multivariate
filter to discriminate between a signal and some arbitrary
colored noise. Their ideas are related to those of ‘‘op-
timal fingerprinting’’ (Hasselmann 1979, 1997) and a
similar method was presented by Thacker and Lewan-
dowicz (1996) for pattern detection in the presence of
correlated analysis errors.

In this paper we use an ensemble of multidecadal
atmospheric GCM runs, forced with observed SSTs, in
conjunction with this optimal detection algorithm, to
study the atmospheric response to observed decadal SST
changes. In section 2 we document the model, the ex-
perimental design, and the data treatment. Section 3
contains the derivation of the statistical method used.
In section 4 we isolate the effect of North Atlantic SST
anomalies, discuss the characteristics of the obtained
reponse, compare it with observations, and report the
sensitivity of the statistical method used. We conclude
the paper with a summary of our major findings and
their implications in section 5.

2. Experimental design and data treatment
The GCM used in this paper is known as HadAM1,

the version of the Hadley Centre Atmosphere Model
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that was submitted to the Atmospheric Model Intercom-
parison Project (Gates 1992). It is a gridpoint model
with a horizontal resolution of 2.58 lat 3 3.758 long and
19 hybrid levels in the vertical. Physical parameteri-
zations include: a gravity wave drag scheme; a radiation
scheme that computes fluxes in four longwave bands
and six shortwave bands and responds to prognostic
cloud variables; a penetrative convection scheme with
stability-dependent closure; and a land surface scheme.
Further details about the model development and the
physics and dynamics of the precise version used here
are given by Cullen (1993) and Phillips (1994), re-
spectively.

The simulations used here are the same six-member
ensemble employed by Rowell (1998) and Davies et al.
(1997). Each member was integrated from 1 October
1948 to 1 December 1993 with lower boundary forcing
supplied by version 1.1 of the specifically designed
Global Sea-Ice and Sea Surface Temperature (GISST)
dataset, described by Parker et al. (1995). The initial
atmospheric state and surface temperatures were taken
from U.K. Meteorological Office analyses for six dif-
ferent dates, arbitarily chosen, but all close to 1 October.
Soil moisture and snow depth were initialized from an
adaption of the Willmott et al. (1985) climatology. Due
to likely spinup effects, the first two months of each
integration were discarded, leaving a set of six integra-
tions, each 45-yr long (1 December 1948–30 November
1993), giving a total of 270 yr of model data.

Whether the model’s response to SST is realistic or
not depends in part on the accuracy of various aspects
of its climatology. The climatologies of model variables
of interest in this paper were computed for each month
by averaging that month over all 270 model years. As
shown by Davies et al. (1997), the seasonal ensemble
mean climatology of mean sea level pressure (MSLP)
over the North Atlantic–European area compared very
well with that inferred from the observational dataset
of Basnett and Parker (1997).

Monthly anomalies were obtained by subtracting the
climatology from the monthly data. Standard seasonal
means [December–February (DJF), March–May
(MAM), June–August (JJA), September–November
(SON)] were constructed by averaging over 3-month
periods, and each season was analyzed separately. Since
we focus in this study on low-frequency atmospheric
changes, we emphasized this timescale by removing any
linear trend and smoothing each set of seasonal means
with a three-point (i.e., 3-yr) running mean filter.

In this paper we will focus on results for winter (DJF)
and spring (MAM) data over the North Atlantic. Most
studies of coupled air–sea modes in midlatitudes restrict
their analyses to wintertime when the oceanic mixed
layer is deepest and SST anomalies are most likely to
express deeper subsurface anomalies (e.g., Deser and
Blackmon 1993; Grötzner et al. 1998; Sutton and Allen
1997; Latif and Barnett 1994). Studies of seasonal pre-
dictability over the North Atlantic and European region

by Davies et al. (1997) as well as Palmer and Anderson
(1994), however, have suggested that the MSLP pre-
dictability over Europe may be higher in spring (MAM)
than in winter (DJF).

3. Detection of SST-forced atmospheric variability

In this section we present a technique for character-
izing the time-varying response to a time-varying ex-
ternal forcing in a system that is subject to internal
chaotic variability, making use of the fact that we have
an ensemble of realizations with identical external forc-
ing (SST and sea ice) at our disposal. The definition of
the time-mean response to a constant external forcing
is relatively straightforward, but the definition of the
time-varying response is somewhat more problematic.
For the sake of simplicity, we assume an estimate of
the 45-yr-mean has been subtracted from all the quan-
tities considered, and confine our attention to the ‘‘first-
order’’ time-varying forced response, referred to here-
after as simply ‘‘the forced response.’’ This we define
as the component of the evolution of the system that is
determined by the external forcing, independent of the
initial conditions, and would therefore be common to
all members of a hypothetical infinite ensemble. If we
had such an infinite ensemble available, the forced re-
sponse would simply be the time-varying component of
the ensemble mean: the objective of this section is to
estimate this response making the most efficient use
possible of the information provided by a relatively
small (six member) ensemble that displays substantial
intermember variability.

Since we are dealing with seasonal means, sampled
annually, the ‘‘atmospheric noise’’ (internal variability
that is independent of SST and sea ice forcing) is un-
correlated in time: each season is effectively indepen-
dent of the same season the following year. This noise
is, however, highly correlated in space—that is, certain
spatial patterns [such as that associated with the North
Atlantic Oscillation (NAO; Hurrell 1995)] contain much
more internal variability than others. Assuming that
some forced response exists [already established by
Davies et al. (1997)], we require three diagnostics to
describe its basic spatio-temporal characteristics: (i) the
spatial pattern, which provides an optimal filter to dis-
criminate between the forced response and internal var-
iability (required to compute the other diagnostics); (ii)
the time series characterizing the temporal evolution of
the dominant mode of the forced response (obtained by
projecting the data onto this optimal spatial filter); and
(iii) the pattern characterizing the spatial characteristics
of the dominant mode of the forced response (obtained
by projecting the data onto this time series).

We stress that not all possible atmospheric responses
to SST and sea-ice forcing would be captured by our
definition of the forced response. We assume that, on
the timescales of interest, the data may be treated as a
linear superposition of a deterministic and predictable
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forced response with additive internal variability. This
picture is clearly incomplete, since in a nonlinear system
the internal variability and forced response will interact.
For example, the response to a particular pattern of SST
anomalies could be enhanced variability in the storm
track accompanied by little change in the mean flow.
This kind of higher-order response would not system-
atically influence a diagnostic based on ensemble means.
Focusing on the first-order response seems a logical
starting point, and because we are working with aver-
ages over timescales, which are long relative to those
of the components of the system which are known to
be highly chaotic, the linearity approximation may be
acceptable (Allen et al. 1997).

In the language of weather regimes (e.g., Lorenz
1963; Robertson et al. 1999, manuscript submitted to J.
Atmos. Sci.; Renshaw et al. 1998), the first-order forced
response corresponds to either (a) changes in the char-
acteristics of the regimes themselves, or perhaps more
likely (b) changes in the fraction of time the system
spends in particular regimes, in response to changes in
the state (or ‘‘phase’’) of the external forcing. A higher-
order response would correspond to changes in the forc-
ing introducing systematic changes in the frequency of
regime transitions. Note that our definition of the forced
response is applicable regardless of whether the re-
sponse consists in the excitation of a preexisting mode
of internal variability or the generation of a new mode.

An important assumption in our approach is that all
distributions are Gaussian. Other approaches (e.g., clus-
ter analysis) might be more effective for highly non-
Gaussian systems, but since none of the quantities con-
sidered here show significant departures from Gaussian
behavior on the timescales of interest (Rowell 1998),
we believe our procedure is appropriate.

Readers who feel they now have a sufficient grasp of
the principle and are uninterested in the estimation pro-
cedure itself may wish to proceed directly to our results
in section 4.

a. Summary of the analysis procedure

The analysis procedure we use is detailed in Allen
and Smith (1997) and is based on the optimal finger-
printing algorithm of Hasselmann (1979), generalized
to the situation in which we do not know the spatio-
temporal characteristics of the response pattern we are
looking for. Similar ideas for different applications may
be found in Zhang et al. (1994) and Thacker and Lew-
andowicz (1996).

We represent the data in the kth ensemble member as
the matrix Xk, where Xijk is the DJF or MAM seasonal
mean at spatial location i (i 5 1, l) in year j (j 5 1, m)
from ensemble member k (k 5 1, n). The seasons are
analyzed independently, so m is the number of years in
the series. The best estimate of the 45-yr-mean com-
ponent of the response, obtained by averaging over time
and over the ensemble, is subtracted from the data at

each spatial location prior to the analysis. This needs
to be taken into account in the formulation of statistical
tests, but for brevity we shall not mention it again in
the discussion.

To estimate the true forced response, XF, from the
finite ensemble, we decompose Xk into an ensemble
mean component XM and the departures from that mean,
XNk:

Xk 5 XM 1 XNk. (1)

By definition, the forced response discussed above, XF

5 E (XM), where the expectation operator refers to an
average taken over an hypothetical infinite ensemble,
not over time. Here XF is therefore time dependent, hav-
ing the same dimensions as the Xk. The ensemble mean,
XM, is the best estimate we have of the full spatio-tem-
poral evolution of the forced response, but it will be
heavily contaminated by noise due to the small size of
the ensemble. The aim is to identify the dominant char-
acteristics of XF despite this contamination. Our pro-
cedure may be summarized as follows.

First, we append the six fields XNk to a set of 6 3 45
5 270 fields (XN) and perform a singular value decom-
position (SVD) on this set, that is:

XN 5 ENLN ,TPN (2)

ranking the elements of LN, as conventional, in de-
creasing order.

Second, we project the ensemble mean XM onto the
k highest-ranked ‘‘EOFs’’ of the noise (i.e., the first k
columns of the matrix EN, being the left singular vectors
of XNk), weighting by the inverse of the corresponding
noise singular values:

5 FT XM 5 n1/2( )21 XM.(k) (k) TX9 L EM N N (3)

The effect of the ‘‘prewhitening operator’’ F is to give
all patterns of internal variability contaminating XM the
same expected variance, or weight, in . The factor ofX9M
n1/2 ensures that, in the absence of any true forced re-
sponse, will appear as unit-variance white noise.X9M

Third, we perform an SVD on the prewhitened en-
semble mean:

5 E9L9PT .X9M (4)

The convolution of E9 with the prewhitening operator, Ẽ
5 F E9, gives the set of optimal spatial filters we are look-
ing for. The highest ranked filter, ẽ1, is the spatial pattern
that maximizes the ratio of ensemble-mean to within-en-
semble variance, that is, XM ẽ1/ Sk XNk ẽ1: seeT T T Tẽ X ẽ X1 M 1 Nk

Eqs. (15) and (16) below. The time series obtained by
projecting XM onto ẽ1 and normalizing,

TX ẽM 1p 5 , (5)1 l91

which is also highest-ranked right singular vector of
, characterizes the temporal evolution of the dominantX9M

mode of the forced response.
Fourth, we characterize the spatial pattern associated
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with the dominant forced response by projecting XM onto
this ‘‘optimized: PC’’

X pM 1ê . . (6)1 l91

This last equality is only approximate, since the exact
definition of ê1 depends on k [see Eqs. (27)–(30) below].
A detailed explanation and application to the HadAM1
ensemble is given in the following subsections.

b. Limitations of principal component analysis and
analysis of variance

The simplest way of understanding how this optimal
filtering procedure works, and why it is necessary, is in
the context of the conventional method of analyzing
spatio-temporal datasets of this nature, principal com-
ponent analysis (PCA), which we discuss first. The basic
assumption of PCA is that XM may be represented by a
small number of spatial patterns, or EOFs (empirical
orthogonal functions; Lorenz 1956), modulated by cor-
responding time series of pattern amplitudes, or PCs.
We focus on mean sea level pressure (MSLP) in this
section (see section 4 for the application to other at-
mospheric variables).

Figures 1a,b show the leading EOFs and associated
normalized PCs of the ensemble mean MSLP over the
North Atlantic for winter and spring. They account for
40% and 50% of the total variance in each season, re-
spectively. The PCs suggest variations on a decadal
timescale (but recall we are dealing with temporally
smoothed data), while the EOF patterns display the di-
pole structure of the atmospheric part of the decadal
mode described by Deser and Blackmon (1993) and
Grötzner et al. (1998), which is often associated with
the NAO. The seasonal difference between the patterns
is similar to that observed by Rogers (1990) and Davies
et al. (1997). Differences in detail between the patterns
shown here and those of Davies et al. (1997) are due
to our use of ensemble means, temporal smoothing to
focus on low-frequency variability and a different anal-
ysis domain.

These EOF–PC pairs, by construction, account for
the maximum possible variance in the ensemble-mean
(MSLP), XM. However, they also account for a substan-
tial fraction of the internal atmospheric variability,
whose characteristics may be estimated from the devi-
ations from the ensemble mean, XNk. As a result, pro-
jections of the individual ensemble members onto these
EOFs, shown as thin lines in Fig. 1b, display a large
spread, raising the question of whether the true forced
response in this pattern might be zero, and the ensemble-
mean variability, which we observe (thick line in Fig.
1b), is simply due to sampling noise in a finite ensemble.

This question can be addressed straightforwardly, us-
ing the analysis of variance (ANOVA) approach of Dav-
ies et al. (1997) and Rowell (1998). If the true forced
response in this pattern is zero and the ensemble mem-

bers are independent and normally distributed,1 then the
expected variance of the ensemble mean time series

would be 1/n times the expected variance of the2s M

internal variability . This can be couched in terms of2s N

a statistical test, as follows: if xk is the time series of
amplitude coefficients of a normalized pattern e (the
first EOF of the ensemble mean in this case) in the kth
ensemble member, so xk 5 e, thenTXk

1
TX XM M2ŝ m 2 1Mn [ n ; F , (7)m921,m9(n21)2ŝ 1N TX XO Nk Nkm(n 2 1) k

where Fm921,m9(n21) is the standard F-distribution with m9
5 m/3 to take into account the 3-yr running mean
smoothing, and and are unbiased estimates of2 2ŝ ŝM N

and , respectively [the factors of m 2 1 and n 22 2s sM N

1 in their definitions take into account the fact that
Sj (XM) ij [ 0 and Sk (XN) ijk [ 0 for all i and ij, respec-
tively (see Rowell 1998)].

There is some room for ambiguity in m9 on the rhs
of Eq. (7) because of our use of temporally smoothed
data. We have used a conservative (small) estimate, but
none of our conclusions are sensitive to increasing it by
up to a factor of two. The top two lines of results in
Table 1 show and , their ratio, and n times their2 2ŝ ŝM N

ratio for the projection of the ensemble members onto
the first EOF of the ensemble mean as shown in Fig.
1b. Since / exceeds the 95% critical value of the2 2nŝ ŝM N

F-distribution, F0.05, we can conclude at this confidence
level that there is a nonzero forced response in this
pattern (or ‘‘state space direction’’).

The spread of the thin lines in Fig. 1b, however, in-
dicates that even though this response is nonzero, it is
far from robust. It helps to recall at this point what a
significant result from such an ANOVA implies in phys-
ical terms: it means that the signal-to-noise ratio is such
that the time series of the amplitude of the pattern e in
the ensemble mean is likely (.95% chance) to be pos-
itively correlated with the time series of this pattern
amplitude in the true (infinite ensemble) forced response
(we shall refer to this condition as the ‘‘temporal evo-
lution’’ of this pattern being of the correct sign). This
only means there is a better than 95% chance that the
ensemble-mean response will be of the correct sign in
significantly over half the individual years (how much
over half depends on the temporal characteristics of the

1 The assumption that the ensemble members are independent in
the absence of any forced response to SST and sea ice is quite secure,
since the predictability horizon of the atmosphere model is such that
initial conditions are unlikely to have any significant influence on the
statistics of a 45-yr integration. Rowell (1998) finds no evidence of
departures from normality on the timescales of interest here. Evidence
of multimodal, nonnormal distributions of atmospheric variables
mainly arises on shorter timescales, when examining daily or 5-day
averages.
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FIG. 1. (a) First EOF of winter and spring MSLP (Pa) for the ensemble mean (explaining 40% and 50% of the total
variance, respectively—recall the data has been smoothed with a 3-yr running mean). (b) Projections of MSLP from ensemble
members (thin lines) and ensemble mean (thick line) onto patterns shown in (a). (c) Variance of projections of MSLP
ensemble mean (heavy line) and noise (thin lines) onto leading 20 EOFs of the MSLP ensemble means.
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TABLE 1. Estimated ensemble-mean and within-ensemble variances, and in selected diagnostics. The 5% cutoff value of the Fm9(n21)
2 2ŝ ŝM N

distribution, F0.05 5 1.83. Ratios, shown bold, in column 4, which exceed this cutoff value indicate a response in the corresponding diagnostic,
which is detectable at the 95% level. Bold ratios in column 3 indicate a response that is both detectable and consistent at this level. Proj.
[ projected. Ens. [ ensemble.

Diagnostic 2ŝM
2ŝN Ratio n3ratio

Proj. on ens. mean EOF-1 (DJF, detrended)
Proj. on ens. mean EOF-1 (MAM, detrended)
Proj. on S/N max EOF-1 (DJF, detrended)
Proj. on S/N max EOF-1 (MAM, detrended)
Proj. on ens. mean EOF-1 (DJF, no ENSO)
Proj. on ens. mean EOF-1 (MAM, no ENSO)
Proj. on S/N max EOF-1 (DJF, no ENSO)
Proj. on S/N max EOF-1 (MAM, no ENSO)

9.15 3 105

8.58 3 105

17.558
24.184
7.48 3 105

8.25 3 105

6.658
14.918

2.58 3 106

2.45 3 106

6.000
6.000
2.80 3 106

2.39 3 106

6.000
6.000

0.354
0.350
2.926
4.031
0.264
0.345
1.109
2.486

2.128
2.101

17.558
24.184

1.586
2.071
6.658

14.918

signal and noise). It does not even mean this much for
the individual ensemble members.

Results from ANOVA are critically dependent on
the size of the ensemble. With these signal-to-noise
ratios, had we used an ensemble of size 4 we would
not have detected a significant response in this NAO-
like dipole in either season. It will always be possible
to detect a nonzero but arbitrarily weak forced response
given a sufficiently large ensemble. Since the real
world represents an ensemble of size one, we need to
distinguish between a response that is strong enough
to be detectable only in an ensemble mean, and a re-
sponse that is strong enough that we would at least
expect with a certain confidence level that the sign of
the individual ensemble members will be the same. We
will therefore distinguish between a detectable re-
sponse, in which / . F 0.05, and a consistent2 2nŝ ŝM N

response, in which / . F 0.05. For simplicity, we2 2ŝ ŝM N

use the same (ANOVA-based) cutoff values for the
two criteria, although a case might be made for using
Fm921,m9 for the test of consistency—this would not af-
fect which numbers are highlighted as passing this test
in column three of Table 1.

The requirement of consistency is not satisfied by the
NAO-like dipole obtained by standard PCA. Thus we
should not expect (at the 95% level) to get even the
sign of the temporal evolution of this pattern correct in
an individual ensemble member. We would conclude,
therefore, that even though there is a detectable forced
response in this direction, this response is likely to be
too weak to play a significant role in any coupled mode
of variability.

c. Derivation of the optimal filter

The fact that the highest-ranked EOF/PCs from stan-
dard PCA fail to provide evidence for a consistent forced
response does not mean that no such response exists.
To understand how we can improve on standard PCA
to identify the most consistent aspects of the atmo-
spheric response in an ensemble experiment, it helps to
recall that the EOFs from PCA are the eigenvectors of
the estimated spatial covariance matrix,

1
TĈ [ X X . (8)M M Mm 2 1

Assuming that the ensemble members are independent
and normally distributed, we have

1ˆE (C ) 5 C 1 C , (9)M F Nn

where CF and CN are the true (unknown) spatial co-
variances of the forced response and internal variability,
respectively. In the limit of an infinite ensemble, n →
` and ĈM → CF, but with the ensemble sizes we are
considering here, the variance attributable to the forced
response may well be O(1/n) times the variance attrib-
utable to internal variability, so both terms on the rhs
of Eq. (9) will have comparable magnitude, and both
will contribute to the eigenvectors of ĈM.

The assumption (underlying PCA) that the forced re-
sponse consists of a small number of spatial patterns
implies that CF will be rank deficient. The eigenvectors
of ĈM, or EOFs, provide an estimate of the eigenvectors
of CF if and only if the internal variability is uncorrelated
in space, or CN 5 s 2I, since adding s 2I to any matrix
simply raises its eigenvalues by s 2 and does not change
its eigenvectors. But the internal variability is clearly
not uncorrelated in space: worse still, it contains high
variance in precisely the directions that a standard PCA
suggests we should be looking for a forced response.
The estimated variance of the projections of the XNk onto
the EOFs of XM are shown (multiplied by a factor of
1/n to indicate the variance we would expect in the
absence of any forced response) as thin lines in Fig. 1c.
EOFs that contain high variance in the ensemble mean
also contain high variance in the deviations from that
mean. Hence the EOFs of the ensemble mean are biased
toward the EOFs of the noise and therefore in general
will not be aligned, even approximately, with the EOFs
of the true forced response (Allen and Smith 1996).

Allen and Smith (1997) resolve this problem by in-
troducing a ‘‘prewhitening’’ transformation, F, such that
F T CNF . nI (i.e., F removes spatial correlations, making
the noise spatially white—it is already white in time).
The true covariance of internal variability, CN, is un-
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known, but an unbiased estimate can be obtained from
the deviations from the ensemble mean:

n1
TĈ [ X X . (10)ON Nk Nkm(n 2 1) k51

Note that this is simply the generalization of to a2ŝ N

multivariate process. If we define the columns of (k)EN

to be k highest-ranked normalized eigenvectors (EOFs)
of ĈN, and the corresponding diagonal matrix of(k)LN

singular values, we define the prewhitening transfor-
mation

F [ n1/2 ( )21,(k) (k)E LN N (11)

and its transposed pseudo-inverse as

F (21) [ n21/2 ,(k) (k)E LN N (12)

so F and F (21) are l 3 k matrices. We are obliged to
truncate because variance will generally be underesti-
mated in the low-ranked EOFs of internal variability,
so while F T ĈNF [ nI for all k by construction, we expect
F T CNF . nI only if we confine the analysis to well-
sampled directions in state space (meaning, EOFs that
contain a realistic level of variance).

To specify the truncation level, k, at which we avoid
unrealistically low-variance EOFs while still retaining
a high proportion of the expected signal, we compute
the ratio of the variance of XM and the XNk in the di-
rections defined by the columns of EN (Fig. 2a). The
cumulative average of this variance ratio, shown in Fig.
2b, stabilizes at about k 5 15 for winter data, and k 5
19 for spring. These are the truncations that we will use
in the following. The sensitivity of our results to the
choice of the truncation is discussed in section 4.

We apply the prewhitening transformation to ĈM, such
that

[ F T ĈMF . 1 IC9 C9M F (13)

and diagonalize

[ E9L92ET ,C9M (14)

arranging the columns of E9, as conventional, in order
of decreasing eigenvalue [note that this equivalent to
the SVD in Eq. (4)].

Since the transformed internal variability has equal
variance in all state-space directions, the highest-ranked
eigenvector of provides an estimate of the highest-e9 C91 M

ranked eigenvector of . The elements of , however,C9 e9F 1

correspond to EOF indices rather than spatial locations,
so it aids interpretation to convolve it with the prewhit-
ening transformation, F, giving Ẽ, 5 F E9. The vector
ẽ1 is the pattern that, for a given truncation, maximizes
the ratio of ensemble-mean variance to within-ensemble
variance:

2 T ˆŝ ẽ C ẽM 1 M 1 T ˆn 5 n 5 ê C ẽ (15)1 M 12 T ˆŝ ẽ C ẽN 1 N 1

T T T 2ˆ5 e9 F C Fe9 5 e9 C9 e9 5 l9 , (16)1 M 1 1 M 1 1

where and are defined as above but with respect2 2ŝ ŝM N

to ẽ1 instead of e. This vector ẽ1 is the optimal filter for
characterizing the forced response (common variabili-
ty), and is shown (after normalizing for display pur-
poses) for the winter and spring seasons in Fig. 3a.

The optimal filter patterns (Fig. 3a) reveal large-scale
coherent regions over the tropical and subtropical At-
lantic Ocean whereas in midlatitudes the patterns are
broken up into small-scale structures of lower ampli-
tude. Thus the time series of the amplitude of these
patterns in any dataset will be dominated by what occurs
at low latitudes. This is consistent with the picture pro-
vided by a local ANOVA (see Rowell 1998). The ad-
vantage of the method presented here over a local AN-
OVA is that it allows us to begin to delineate the spatio-
temporal characteristics of the dominant forced re-
sponse, in addition to identifying the regions where such
a response may exist.

d. Associated time series, or ‘‘optimized PCs’’

The normalized pattern-amplitude time series of ẽ1 in
the ensemble mean XM, that is, p1 5 ẽ1, is shown21 Tl9 X1 M

as the thick line in Fig. 3b. The thin lines in Fig. 3b
show the projections of the individual ensemble mem-
bers onto ẽ1, that is, pk 5 ẽ1. The algorithm has21 Tl9 X1 k

clearly been extremely successful in reducing the spread
between ensemble members: in the direction defined by
ẽ1, we have no problem at all detecting both a detectable
and a consistent response, in the sense defined above
(Table 1, line 3 and 4). The thick line in Fig. 3c shows
the eigenspectrum of , being n times the estimatedC9M
ratio of ensemble-mean to within-ensemble variance in
the directions defined by the ẽ i, [see Eq. (15)]. Note that
the ẽ i are not normalized in the conventional sense, so
projecting a dataset onto them provides information
about the ‘‘signal-to-noise ratio’’ (the variance relative
to the variance we would expect if the dataset is pure
noise), rather than the absolute variance in the relevant
state-space-direction. The thin lines show the corre-
sponding signal-to-noise ratio for the individual XNk, that
is, the diagonal elements of

1
2 T T˜ ˜L9 5 E X X E. (17)Nk Nk Nkmn(n 2 1)

The mean of these thin lines (the ‘‘noise-to-noise ratio’’)
is unity by construction (dotted line).

Note that, if we had reason to believe the noise (in-
ternal variability) was self-correlated in time, then we
could further improve the estimate of the forced response
by prewhitening in time. Since, however, the within-en-
semble variability is uncorrelated year-on-year, nothing
would be gained from this additional step: hence the
asymmetry between space and time in our analysis.

Figure 3d shows the estimated ensemble-mean vari-
ance and 1/n times the estimated within-ensemble var-
iance in the directions defined by the Ẽ. Comparison
with Fig. 1c indicates that while the variance of XM in
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FIG. 2. (a) Variance of projections of ensemble mean XM MSLP (dotted line) and deviations from the ensemble mean, XNk (solid line) onto
leading 30 EOFs of the within-ensemble variability, EN, in winter and spring. (b) Cumulative averaged ratio rk 5 (1/k) / , with kk 2 2S s si51 M N

5 rank of noise EOF, of ensemble-mean variance and within-ensemble variance shown in (a).

the direction of ẽ1 is a factor of 5.7 (DJF) and 6.8
(MAM) lower than in the direction of the first EOF of
XM, the corresponding variances of the XNk have been
reduced by about two orders of magnitude, resulting in
a significant enhancement of signal-to-noise.

e. Dominant spatial patterns of the forced response

The vector ẽ1 represents an optimal filter for extract-
ing the time evolution of the forced response, but it is
not itself an estimate of the leading eigenvector of CF,
so we still do not have an estimate of the spatial char-
acteristics of the leading mode(s) of the forced response.
This is given by Ê 5 F (21)E9, where F (21) is the pseudo-
inverse of the prewhitening operator. To understand why
this is the case suppose, for simplicity, that CF is of rank

one (i.e., the forced response consists of a single pattern
g). We can then write:

TC 5 gg (18)F

T TE (C9 ) 5 F gg F 1 I (19)M

T5 g9g9 1 I. (20)
Provided we have sufficient data that . E( ) thenC9 C9M M

because adding I to any matrix does not change its ei-
genvectors,

e9 5 ag9 (21)1

T5 aF g (22)
(21) Tê 5 aF F g (23)1

(k) (k)T5 aE E g, (24)N N
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where a is a normalization factor. The last equality fol-
lows from the definition of F and F (21). The vector ê1

therefore resembles g to the extent that g can be rep-
resented by the k highest-ranked EOFs of the noise.

The vector ê1 provides an estimate of the first EOF
of XF, the mean evolution of a hypothetical infinite en-
semble, in the case that XF consists only of a single
pattern. Since we only concern ourselves here with the
highest-ranked patterns, we could leave the discussion
at this point, but for completeness, we conclude by con-
sidering the case where XF consists of m spatial patterns,
where m K l. In this case, CF will have m nonzero
eigenvalues, and the m highest-ranked columns of Ê
provide an estimate of the subspace in which the cor-
responding eigenvectors lie. They will not provide an
estimate of the eigenvectors themselves, since Ê is not
an orthonormal basis in the conventional (Euclidean)
sense. Specifically,

Tˆ ˆ ˆEE 5 nC (25)N

T (21)ˆ ˆ ˆnE C E 5 I. (26)N

Similar orthogonality conditions apply to Ẽ, with ĈN

replaced by . In the notation of Hasselmann (1997),(21)ĈN

Ê and Ẽ represent co- and contravariant tensors under
the metric defined by : that is, Ẽ 5 F F T Ê 5(21)ĈN

Ê. Allen and Smith (1997) discuss how an ortho-(21)ĈN

normal basis may be extracted from the leading S/N-
maximizing EOFs, but since we will be considering only
a single pattern, this need not concern us here.

The contours of ê1 (Fig. 3e) can be interpreted phys-
ically because they represent the estimate of the dom-
inant eigenvector of CF. We discuss the implications of
these patterns in the next section. Before doing so, we
note that a more direct way of obtaining Ê is by com-
puting the patterns of regression coefficients of the orig-
inal ensemble mean, filtered by projection onto the first
k EOFs of internal variability, onto the optimized PCs.
Using the SVD of the prewhitened ensemble mean
F T XM 5 E9L9PT and the definition of Ẽ one can write

L9PT 5 ẼT XM. (27)
Pre- and postmultiplying by Ê and P yields

Tˆ ˆ ˜EL9 5 EE X P (28)M

(k) T (21) (k)T5 E L E9E9 L E X P (29)N N N N M

(k) (k)T5 E E X P, (30)N N M

which since P is orthonormal, is equivalent to regressing
the filtered mean, XM, onto the optimized PCs.(k) (k) TE EN N

We will subsequently be discussing patterns of regres-
sion coefficients of various variables onto these opti-
mized PCs, so it is helpful to bear this link in mind.

4. Atmospheric response to North Atlantic SST
changes

a. Removing remote effects of ENSO

The principal origin of the dominant signal identified
in the previous section is the remote response to El Niño.

The characteristic time series (Fig. 3b) contain strong
interannual fluctuations and the optimal filter patterns
(Fig. 3a), which extract these from the ensemble mean
MSLP are most pronounced over Central America
where the atmosphere is strongly influenced by the
Southern Oscillation. If we map the regression coeffi-
cients of SST anomalies on the time series obtained in
the previous section (Fig. 4a, contour lines) and the
fraction of total SST variance explained by the regres-
sion (shaded), the tropical Pacific origin of the signal
is clear.

In this study the focus of our interest is the atmo-
spheric response to changes in Atlantic Ocean SSTs, so
we reduced the component of atmospheric variability
that is due to the remote impact of tropical Pacific SST
anomalies (especially those that are associated with
ENSO) by individually computing the regression co-
efficients at each grid point of the seasonal mean MSLP,
wind stress, and heat flux anomalies from every ensem-
ble member with the Niño-3 SST index (58N–58S, 1508–
908W) and retaining only the residual part of the data
for our analysis. Repeating the signal-to-noise maxi-
mizing analysis of section 3 with the ‘‘ENSO removed’’
MSLP data, the characteristic time series (Fig. 5b)
change considerably. They contain much less interan-
nual and more pronounced decadal fluctuations than be-
fore. As can be inferred from Fig. 4b, the detected at-
mospheric response can now mainly be attributed to
Atlantic Ocean SST anomalies, which exhibit the tripole
structure reported in various other studies of model data
and observations (e.g., Deser and Blackmon 1993;
Grötzner et al. 1998; Sutton and Allen 1997). The re-
mote effect of ENSO-related SST anomalies in the trop-
ical Pacific Ocean was successfully removed. In so do-
ing a portion of the common signal was also removed
from the data, causing a slight decrease in the signal-
to-noise ratios (Fig. 5c). Figure 5d, however, shows that
the variance of XM in the direction of ẽ1 still is almost
one order of magnitude larger than the corresponding
variances of the XNk. The estimate of the dominant
MSLP response, ê1, (Fig. 5e) now has a dipole-structure
similar to that shown in Fig. 1. We now know, however,
that different parts of this pattern are associated with
very different ratios of signal-to-noise, indicating for
different regions different chances to successfully pre-
dict long-term MSLP changes from prescribed SSTs.
The most predictable variability is found over the trop-
ical and subtropical Atlantic, as shown by the optimal
filter pattern, ẽ1. The temporal evolution of ẽ1 is, in both
winter and spring, detectable at the 95% level. In spring,
in contrast to the estimated forced response from stan-
dard PCA, the evolution of this pattern is even consistent
between the individual ensemble members, in the sense
defined above (Table 1, lines 7 and 8).

The main result to stress here is that we have extracted
a detectable, and in spring even consistent, response to
SST and sea-ice anomalies in the modeled North At-
lantic MSLP data. Regression analysis suggests this sig-
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FIG. 3. (a) Normalized optimal filter patterns, ẽ1, for winter and spring MSLP. (b) Projections of ensemble mean (heavy
line) and individual ensemble members (thin lines) MSLP onto the patterns shown in (a). (c) Signal-to-noise ratios of
leading 15 signal-to-noise maximizing EOFs (heavy line) and corresponding values for the individual noise realizations2L9Nk

XNk (thin lines). (d) Variance of ensemble mean (heavy line) and individual noise realizations (thin lines) in the directions
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FIG. 3. (continued ) defined by Ẽ. (e) Signal-to-noise maximizing dominant eigenvector, ê1, of CF, estimating the true
forced response. The time series are standardized to unit variance and the patterns are multiplied by the corresponding
singular value so that the pairs of patterns and time series retain the correct variance.

nal arises as a response to fluctuations in a tripole pattern
of North Atlantic SST. We will discuss the form of the
detected response and its implications for coupled mech-
anisms of decadal climate variability in detail in section
4d. Before that, we discuss how the identified model
response relates to observations and address the stability
of the statistical method used.

b. Comparison with observations

Does the MSLP response we have detected in our
model bear any resemblance to fluctuations in MSLP
seen in the real world? MSLP observations for the pe-
riod considered have been compiled in the COADS da-
taset (da Silva et al. 1994). Figure 6a shows the time
series obtained when we project these observations onto
the first EOFs of the ensemble mean from standard PCA,
and the time series obtained when we project the en-
semble mean and the ensemble members onto the same
EOFs. There is little agreement between the time series
derived from the observations and that derived from the

ensemble mean. Projections onto the optimal filter pat-
terns, however, yield time series that appear well cor-
related, both in the case of full MSLP fields (Fig. 6b)
and in the ‘‘ENSO removed’’ case (Fig. 6c). These re-
sults show that not only is there a detectable and con-
sistent response of the atmosphere model to oceanic
forcing but that this response is fairly well matched in
the observations.

The comparisons shown in Fig. 6 are influenced by
both the temporal and the spatial characteristics of our
model’s response. As a consequence of small systematic
errors in the model mean state it is possible that the
model responds to the same SST fluctuation as the real
atmosphere (so that the temporal evolution of the re-
sponse is correct), but produces a spatial pattern of
MSLP, which is somewhat in error. Such errors may be
a cause of some of the discrepancies between the pro-
jections of the observed data and the model data onto
the optimal filter patterns. Figure 7 shows a comparison
between the model and observations that is not influ-
enced by such errors. Here we compare the time series
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FIG. 4. (a) Regression coefficients (K; contour lines) and fraction of total variance explained (shaded contours with sign appropriate to
the sign of the regression coefficient, plotted only where significant at the 95% confidence level) by the regression of SST anomalies onto
time series shown in Fig. 3b (heavy line). (b) Same as (a) but for the regression onto time series shown in Fig. 5b.

associated with the most predictable mode of HadAM1
MSLP variability (p1 obtained from the optimal filter)
with the index time series of observed SST and MSLP
variations that were found by Sutton and Allen (1997)
to be characteristic of the propagation of temperature
anomalies across the North Atlantic. We stress that no
observational data (other than, indirectly, the SSTs used
to forced the model) have been used to derive the
HadAM1 MSLP optimized time series (in contrast, e.g.,
to a canonical correlation analysis). The agreement (sig-
nificant at the 95% confidence level) shows that the
common pattern obtained through the signal-to-noise
maximizing analysis of model MSLP exhibits a tem-
poral evolution that is characteristic of the underlying
ocean dynamics. It suggests that the observed correla-
tions between SST and MSLP fluctuations must reflect,
at least in part, an influence of the ocean on the at-
mosphere. The nature of this influence will be discussed
further in section 4d.

c. Sensitivity to truncation and variable used in
optimization

Since the method we used to specify a truncation
level was only heuristic, we must next address the sen-
sitivity of the detected atmospheric response to the
truncation k in the definition of F and F (21) [the same
problem arises when optimal fingerprints are used for
the detection of anthropogenic climate change (see,
e.g., Hegerl et al. 1996)]. The characteristic temporal
evolution that results from the signal-to-noise maxi-
mizing analysis shows only marginal sensitivity to var-
iations in the truncation level k as can be seen in Fig.
8a. This is reassuring because, as derived in section 3,
we estimate the spatial structure of the dominant forced
response by computing maps of the regression coef-
ficients of the different atmospheric fields regressed
onto this time series. Our key results, discussed in de-
tail in the next section, are therefore stable against the
choice of truncation.
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So far the analysis has been applied only to MSLP
data. We also applied the whole signal-to-noise maxi-
mizing algorithm to other atmospheric variables, in-
cluding wind stress and surface heat fluxes, and always
detected very similar characteristic time series (Fig. 8b).
The agreement between these series is remarkable and
supports the hypothesis that the algorithm has identified
a physically coherent signal. For consistency we will
henceforth always refer to the time series shown in Fig.
5b (thick lines) as the ‘‘characteristic temporal evolu-
tion’’ of the forced response.

d. Spatial characteristics of the response

We have established that our ensemble of atmosphere
model integrations exhibits common decadal fluctua-
tions in the subtropical North Atlantic region. The tem-
poral evolution of the common signal resembles a time
series that has been related to the slow propagation of
temperature anomalies across the North Atlantic. The
implication is that dynamical processes in the North
Atlantic ocean may be influencing decadal fluctuations
in the atmosphere above. We need to ask next how the
atmospheric fluctuations might feed back to affect the
ocean, and to consider in particular whether our results
support the possibility of a coupled ocean–atmosphere
mode of decadal variability. To address these questions
we examine the spatial characteristics of the response
in several different variables.

Figure 9 shows maps of the regression coefficients
(contour lines) of anomalous SSTs and ensemble means
of: MSLP, wind stress, net surface heat flux, and wind
stress curl onto the characteristic temporal evolution of
the forced response (Fig. 5b). The shading indicates the
fraction of total ensemble mean variance explained by
the regression. Corresponding regression maps were
also computed for the individual ensemble members.
Shaded areas indicate regions where regression coeffi-
cients of the ensemble mean were found to be signifi-
cantly different from zero (i.e., ‘‘detectable’’) at the 95%
confidence level based on a Student’s t-test. In line with
the findings of Grötzner et al. (1998), MSLP fluctuations
associated with the detected response are dominated by
a large-scale dipole structure (Fig. 5e and Fig. 9b). In
DJF the dipole is located in the northeastern part of the
Atlantic basin, while in MAM it is shifted southwest-
ward. The fraction of total MSLP variance explained
by the regression is largest over the tropical and sub-
tropical North Atlantic, in line with our expectations
from the optimal filter pattern (Fig. 5a) and also with
the observational analysis of Sutton and Allen (1997).
The higher level of internal variability at high latitudes
means that the atmospheric response is less strong here
and in many regions is not detectably different from
zero. We note that gridpoint-based analysis of variance,
ANOVA (Rowell et al. 1995; Davies et al. 1997; Rowell
1998), yields the same regions of significantly nonzero
MSLP response (not shown). An estimate of the spatial

characteristics and temporal evolution of the response,
however, cannot be inferred from this gridpoint statistic.

The spatial patterns that dominate the forced response
(Fig. 9b) closely resemble the spatial patterns that dom-
inate the internal variability (not shown). This result
suggests that the characteristics of the internal vari-
ability strongly influence the response of the system to
perturbations (specifically changes in SST). Such be-
havior is typical of systems that exhibit regime-like be-
havior (e.g., Lorenz 1963; Robertson et al. 1999, man-
uscript submitted to J. Atmos. Sci.; Renshaw et al. 1998).
We have not carried out an analysis of weather regimes
in our data, but a possible explanation for this result is
that the leading mode of internal variability is associated
with transitions between two regimes, and that the SST
influence the relative amount of time the system spends
in these two regimes. This said, the fact that the optimal
filter pattern differs from the leading pattern in the
forced response and the leading pattern in the internal
variability tells us that the influence of SST is not limited
to this effect alone.

The wind stress response (Fig. 9c) shows the main
features one would anticipate from the MSLP response
assuming geostrophic balance. In spring, when the re-
sponse is most consistent, there is a tendency for in-
tensified westerlies (around 558N) and, more consis-
tently, for intensified trades (around 158N) in association
with anomalously warm SSTs off the U.S. coast and
anomously cold SSTs in the tropical–subtropical Atlan-
tic, and in the North Atlantic south of Greenland (Fig.
9a). Through their effects on surface heat fluxes and
Ekman fluxes we would expect these wind anomalies
to affect local SSTs. We show the heat fluxes (positive
into the ocean) associated with the common response
in Fig. 9d. In considering these, however, we need to
keep in mind that in our experiments the SST is pre-
scribed. This artificial constraint could lead to an over-
estimate of heat flux anomalies (see Barsugli and Battisti
1998; Saravanan and McWilliams 1998). It is also im-
portant to note that we cannot establish from our ex-
periments whether the atmospheric response is induced
by the whole SST tripole pattern or only by some part
of it. If the latter, then correlated SST fluctuations in
one part of the tripole could, in the real world, be forced
by the atmospheric response to SST fluctuations in the
other parts.

The enhanced westerlies around 558N in spring will
act to cool the local ocean surface through enhanced
extraction of heat by turbulent fluxes associated with
enhanced advection of cold air from the Labrador Sea
and Canada and enhanced wind speeds, and through
advection of the mean temperature field by anomalous
Ekman currents. Even though the SSTs in this region
are already (i.e., are prescribed to be) anomalously cold,
Fig. 9d shows that there is nonetheless an anomalous
heat flux out of the ocean in MAM. A breakdown of
the surface heat flux into its individual components (not
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FIG. 5. Same as Fig. 3 but for ‘‘ENSO removed’’ MSLP data.

shown) shows that the major contributions are from sen-
sible and latent heat fluxes, as we anticipated.

If this northern component of the SST tripole is play-
ing an active role in the forcing, then the atmospheric
response in this region seems to indicate a weak positive

feedback, as noted by Grötzner et al.(1998). Based on
the t-test, the ensemble-mean response in the shaded
area is readily detectable (significantly different from
zero at the 95% confidence level). The much more strin-
gent test of consistency indicates that, if we forced the
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FIG. 5. (Continued )

atmosphere model again with the same SSTs, we would
obtain zonal wind stress (net surface heat flux) anom-
alies in this region positively (negatively) correlated
with the characteristic temporal evolution shown in Fig.
5b in approximately 90% of cases. The fact that the
response would be of the wrong sign in over 10% of
cases even after filtering by projection onto the char-
acteristic time series indicates that any feedback cannot
be particularly robust.

If, on the other hand, the atmospheric response is
forced entirely by the more southerly components of the
SST tripole, then these results should not be interpreted
as evidence of an atmospheric feedback. Rather, they
would suggest that forced fluctuations in high-latitude
North Atlantic SST could arise as a remote response to
lower-latitude SST changes.

In phase with the enhanced westerlies around 558N,
enhanced trade winds are found over the tropical–sub-
tropical ocean, again especially in spring (Fig. 9c). In
contrast to the westerly belt, in this region even the sign
of the zonal and meridional wind stress regression co-
efficients is found in spring to be consistent at the 95%

confidence level. One would expect that stronger trades
bring cooler air from higher latitudes and enhance the
turbulent heat fluxes, leading to anomalous cooling of
the upper tropical–subtropical ocean. Even when con-
sidering that the rate of the upper-ocean cooling is in-
versely proportional to the depth of the mixed layer
(which is shallower in the Tropics than in midlatitudes),
there is little evidence in MAM of surface heat loss in
this region (Fig. 9d). This is presumably because the
anomalously cold SSTs offset the effect on the heat
fluxes of the enhanced trades. In the trade belt, therefore,
the heat flux fields suggest that the atmospheric response
does not generate a positive feedback on SST anomalies.
Neither, however, is there clear indication in MAM of
a negative feedback. Without the changes in atmospher-
ic circulation (i.e., the changes in the strength of the
trades) a negative feedback would be expected (as is
found in DJF). Therefore it appears that the atmospheric
circulation response has served to decrease, or even
eliminate, the damping of tropical Atlantic SST anom-
alies by anomalous surface heat fluxes. This effect
should, inturn, increase the persistence of SST anom-
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FIG. 6. Projections of winter (left panels) and spring (right panels) mean sea level pressure from individual ensemble
members (thin dotted lines), the ensemble mean (dashed line), and observations (COADS—solid line) onto (a) patterns
show in Fig. 1a, (b) patterns shown in Fig. 3a, and (c) after ‘‘ENSO removing’’ onto patterns shown in Fig. 5a. As the
COADS dataset contains only data over sea, all projections were computed over sea points only.
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FIG. 7. Characteristic time series of dominant MSLP response (solid line) in (a) winter and (b) spring together with index
time series (averaged over 158–258N; 408–608W) of low-pass filtered observed MSLP anomalies (dashed line) and index
time series (averaged over 258–358N; 708–808W) of observed SST anomalies (dotted line). The magnitude of the curves
has been scaled. The correlation coefficients between the detected signal and the observed SST as well as the detected
signal and the observed MSLP in spring are 0.48 and 0.62, respectively. In winter the corresponding correlation coefficients
are 0.61 and 0.51. These correlations are all significant within the 95% confidence limit.

FIG. 8. (a) First principal components of ‘‘ENSO removed’’ spring MAM MSLP obtained from the signal-to-noise
maximizing EOF analysis for truncation at k 5 14, 19, 24 noise EOFs (dotted, solid, dashed line, respectively). (b) First
principal components of ‘‘ENSO removed’’ spring MSLP (solid lines), zonal wind stress (dotted lines), and meridional
wind stress (dashed lines) obtained from the signal-to-noise maximizing EOF analysis.

alies in this region compared to their persistence in a
scenario where there is no atmospheric circulation re-
sponse. Finally, we note that, in addition to their influ-
ence on surface heat fluxes, the anomalous trades could
influence tropical Atlantic SSTs through other mecha-
nisms. A positive feedback could arise through the ten-
dency of the enhanced trades to cause enhanced mixing,
and hence cooling, of the ocean mixed layer. A negative
feedback could arise through the advection of the mean
SST field by anomalous Ekman currents.

In the final lobe of the SST tripole, the western At-
lantic around 308–408N, the wind fluctuations in the
atmospheric response are not reliably detectable either
in DJF or MAM. In line with the results of Grötzner et
al. (1998), the heat flux fields suggest a negative feed-
back. In winter, advection of cold air from the North

American continent over anomalously warm water leads
to enhanced latent and sensible heat loss.

An interesting feature in spring is found at around
508W, 308N. Here, surface heat flux anomalies arise that
are both detectable and consistent. These anomalies are
mainly due to reduced latent heat loss and enhanced
solar radiation. The location and sign suggests that these
heat flux anomalies might help to propagate SST anom-
alies from the Gulf Stream region eastward.

We summarize the local feedbacks of the atmospheric
response onto the SST tripole as follows: we have de-
tected a possible weak positive feedback in the North
Atlantic south of Greenland and a weak negative feed-
back in the western Atlantic off the U.S. coast. In the
tropical Atlantic we found a negative feedback in DJF,
but in MAM the anomalous heat fluxes are close to zero.



2580 VOLUME 12J O U R N A L O F C L I M A T E

FIG. 9. Regression coefficients (contour lines) and fraction of total variance explained by (shaded contours, plotted only where significant
at the 95% confidence level) regression of observed SST anomalies (K) onto time series shown in Fig. 5b (heavy line). Regression coeffi-
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FIG. 9. (Continued ) significant at the 95% confidence level) of ‘‘ENSO removed’’ (b) mean sea level pressure (Pa), (c) wind stress (Pa),
(d) net surface heat flux (Wm2) and (e) wind stress curl (1028 Pa m21) onto time series shown in Fig. 5b (heavy line).

The latter suggests that the atmospheric response acts
to enhance the persistence of SST anomalies in this
region. In all three regions the consistency of the feed-
backs is marginal at best. This tends to suggest that if
these feedbacks play a role in any coupled mode of
variability then such a mode would not be robust against
disruption by internal atmospheric variability. We also
note again that the very concept of a feedback requires
assumptions about exactly which regions in the SST
distribution are forcing the atmospheric response.

As well as providing local instantaneous feedbacks,
it has also been proposed (Latif and Barnett 1994; Grötz-
ner et al. 1998) that the atmospheric response could
influence the ocean in such a way as to give a delayed
nonlocal feedback onto SST and a prefered timescale
for a coupled ocean–atmosphere mode of variability. In
these theories it is argued that the atmosphere responds
especially to SST anomalies in the Gulf Stream region.
If there is a phase reversal of SSTs here, this could be

communicated to other regions of the North Atlantic
through the atmospheric response. The response that we
detected in spring, if it is primarily a response to SST
anomalies in the Gulf Stream region, does have features
that could provide such communication: the anomalous
westerlies and trades could force a phase reversal of
SST anomalies in the North Atlantic and in the tropical
Atlantic, respectively.

Grötzner et al. (1998) describe two possible mecha-
nisms for the delayed feedback to Gulf Stream SSTs.
In the first, temperature anomalies in the tropical ocean
are advected westward along the southern branch of the
subtropical gyre and feed into the western boundary
current. There they replace anomalies of the opposite
sign, giving a phase reversal. Because it relies on ad-
vection by the mean ocean circulation, our results cannot
be used to test this theory further. The second hypoth-
esis, by contrast, can be considered further. It requires
the atmospheric response to include anomalies in wind
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stress curl. After a lag associated with the propagation
of baroclinic Rossby waves, these anomalies force var-
iations in the strength of the subtropical gyre circulation,
which modulate SST especially in the Gulf Stream re-
gion. The regression pattern of the ensemble mean wind
stress curl (Fig. 9e) is characterized by small-scale struc-
tures. To generate Rossby waves that spin down the
subtropical gyre circulation (giving a negative feed-
back), positive wind stress curl anomalies are required
south of about 358N. There is a little evidence for anom-
alies of the right sign in Fig. 9e but these are of small
spatial extent, in general are not detectable, and are
nowhere consistent. Our results therefore do not support
the hypothesis of a delayed negative feedback supplied
by changes in wind stress curl.

5. Summary and conclusions

We have presented an algorithm to estimate the forced
response of the atmosphere to observed SST variations
using an ensemble of integrations of an atmospheric
general circulation model. Forcing the atmospheric
model with observed SSTs rather than idealized SST
anomalies allows direct comparison with observations
but leads to problems of signal-to-noise in a small en-
semble. We define the forced response to be estimated
as the hypothetical mean evolution of an infinite en-
semble of integrations, while recognizing that there are
responses (e.g., SST-induced changes in storm-track
variability) that would not be captured by this definition.

At the signal-to-noise levels typically encountered in
the extratropics, conventional principal component (or
EOF) analysis of the mean of a variable such as MSLP
from a relatively small (six-member) ensemble yields
only an estimate of the true forced response if the in-
ternal variability is uncorrelated in space (i.e., is spa-
tially white). This is never the case for atmospheric data.
Using a ‘‘prewhitening’’ transformation that includes
information about the structure of the noise into the EOF
analysis, an estimate of the true forced response can be
determined.

Our procedure may be summarized thus: (i) we pro-
ject the ensemble mean onto the EOFs of within-en-
semble variability (which provides an estimate of the
noise); (ii) we weight the projections to give the same
expected noise variance in each; (iii) we perform a stan-
dard PCA/EOF analysis of the weighted (prewhitened)
data; and (iv) we transform back to ordinary coordinates
to interpret the results.

We applied this method to North Atlantic low-pass-
filtered seasonal mean MSLP anomalies and detected a
common signal. A portion of the common signal was
attributed to oceanic changes associated with the El
Niño–Southern Oscillation. After suppressing this in-
fluence, a detectable response remained in both winter
(DJF) and spring (MAM) seasons, with the spring re-
sponse being not only detectable in the ensemble mean,
but also strong enough that the individual ensemble

members track the ensemble mean consistently through-
out the period considered. The characteristic temporal
evolution of this response is also obtained from applying
the same technique to other atmospheric variables and
from a projection of observed MSLP onto the ‘‘optimal
filter’’ spatial pattern estimated from the AGCM—in-
dicating it is a genuine signal and not an artefact of the
analysis technique or AGCM. This temporal evolution
is also well correlated with fluctuations in a tripole pat-
tern of SST anomalies in the North Atlantic, which Sut-
ton and Allen (1997) have identified as one phase of a
decadal fluctuation in which propagation of SST anom-
alies plays a role.

Our best estimate of the spatial pattern associated with
the dominant mode of the forced response (which, be-
cause of the need for prewhitening, is not the same as
the optimal filter) is dominated by a dipole pattern in
MSLP. This dipole resembles the NAO more in MAM
than in DJF. Only over the tropical–subtropical Atlantic,
however, does the forced response account for a sub-
stantial fraction of the total variance. Related to the
MSLP response there are fluctuations in wind stress,
particularly in the westerly belt around 558N and in the
trades. The fluctuations in the trades are more consistent
between ensemble members than the fluctuations in the
westerlies.

We considered how the atmospheric response might
feed back to affect the ocean, in particular the SST
tripole. The only region in which we found any evidence
of a positive heat flux feedback was the North Atlantic
south of Greenland. In the western Atlantic off the U.S.
coast the heat flux feedback is negative. In the tropical
Atlantic we found a negative heat flux feedback in DJF,
and a feedback close to zero in MAM. If the response
we detect is forced principally by SSTs in the Gulf
Stream region then the form of this response suggests
that a change in the sign of Gulf Stream SST anomalies
could be communicated in spring to both the North At-
lantic and the tropical Atlantic through the atmosphere.
This result offers some support for the idea of Grötzner
et al. (1998) that a delayed negative feedback to Gulf
Stream SSTs, perhaps providing a timescale for a cou-
pled ocean–atmosphere mode of variability, could arise
from oceanic advection of temperature anomalies from
the tropical Atlantic. Our results do not support the idea
that wind stress curl anomalies associated with the at-
mospheric response pattern could be involved in such
a feedback.

The marginal consistency of all the feedbacks we
have identified suggests that if they play a role in any
coupled ocean–atmosphere mode of variability, such a
mode would not be robust against disruption by internal
atmospheric variability. If there is an exception to this
statement, it is most likely to be associated with the
modulation of the trade winds, which we found to be a
consistent feature of the atmospheric response in spring.

While we cannot rule out a coupled ocean–atmo-
sphere mode of decadal variability, our results suggest
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that the principal features of decadal variability in the
North Atlantic Ocean will be explicable in terms of a
passive ocean response to internal, quasi-stochastic, at-
mospheric variability (i.e., the ‘‘uncoupled’’ scenario we
described in the introduction). We note again that this
response involves ocean dynamics (e.g., Frankignoul et
al. 1997) as well as ocean mixed-layer processes (Fran-
kignoul and Hasselmann 1977) and that the possibility
that a prefered timescale could develop in the ocean
remains (e.g., Saravanan and McWilliams, 1998).

The absence of a coupled ocean–atmosphere mode of
variability need not imply that there is no useful at-
mospheric predictability in the North Atlantic region
arising from the influence of North Atlantic SST anom-
alies. On the contrary, we have identified a predictable
atmospheric response that, at least in some regions and
especially in spring, accounts for a significant fraction
of the variance.2 Put together with the evidence pre-
sented by Sutton and Allen (1997) that there is pre-
dictability in decadal fluctuations of North Atlantic SST,
our results suggest that there may well be predictable
aspects of decadal variability in the atmosphere over the
North Atlantic. These aspects may include fluctuations
in both the subtropical trade winds and in the higher
latitude westerlies.

A key issue that requires further clarification is ex-
actly which features in the North Atlantic SST distri-
bution the atmosphere responds to. These, of course,
are the features we would like to forecast. Is the at-
mospheric response induced by the full SST tripole pat-
tern or merely a part of it? In particular, does the at-
mosphere respond especially to SST fluctuations in the
Gulf Stream region? To address these issues requires
further controlled experimentation with models, which
we have begun to perform. Because of the possibility
that experimentation with fixed SSTs may give a mis-
leading response, experimentation with coupled models
will be required as well.
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