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Supplementary Information11

Supplementary Table 1: The six single model initial-condition large ensembles (SMILEs) used in this paper [1]
SMILE name ensembles reference

MPI-GE 100 [2]
CESM-LE 40 [3]
CanESM2 50 [4]

GFDL-ESM2M 30 [5]
GFDL-CM3 20 [6]

CSIRO-Mk3-6-0 30 [7]
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Supplementary Table 2: CMIP5 models used in this study and the number of ensemble members.
Modelling Centre Models ensembles r1i1p1

CSIRO-BOM ACCESS1-0 1 Y
CSIRO-BOM ACCESS1-3 1 Y

BCC bcc-csm1-1 1 Y
BCC bcc-csm1-1-m 1 Y

CCCma CanESM2 5 Y
NCAR CCSM4 6 Y
NCAR CESM1-BGC 1 Y

NSF-DOE-NCAR CESM1-CAM5-1-FV2 1 Y
NSF-DOE-NCAR CESM1-CAM5 3 Y

CMCC CMCC-CESM 1 Y
CMCC CMCC-CM 1 Y
CMCC CMCC-CMS 1 Y

CNRM-CERFACS CNRM-CM5 5 Y
CSIRO-QCCCE CSIRO-Mk3-6-0 10 Y

ICHEC EC-EARTH 1 N
IAP FGOALS-g2 1 Y
FIO FIO-ESM 3 Y

GFDL GFDL-CM3 1 Y
GFDL GFDL-ESM2G 1 Y
GFDL GFDL-ESM2M 1 Y
GISS GISS-E2-H-CC 1 Y
GISS GISS-E2-H 5 Y
GISS GISS-E2-R-CC 1 Y
GISS GISS-E2-R 5 Y

MOCH HadGEM2-ES 4 Y
NIMR HadGEM2-AO 1 Y
INM inmcm4 1 Y
IPSL IPSL-CM5A-LR 4 Y
IPSL IPSL-CM5A-MR 1 Y
IPSL IPSL-CM5B-LR 1 Y

MIROC MIROC5 3 Y
MIROC MIROC-ESM-CHEM 1 Y
MIRCO MIROC-ESM 1 Y

MPI MPI-ESM-LR 3 Y
MPI MPI-ESM-MR 1 Y
MRI MRI-CGCM3 1 Y
MRI MRI-ESM1 1 Y
NCC NorESM1-M 1 Y
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Supplementary Table 3: CMIP5 models grouped into sub-ensembles which share the atmosphere component. The
number of ensemble members for each sub-ensemble is shown in brackets next to the group number. The sub-
ensembles are created using information from Boé [8].

Group Models
1 (7) ACCESS1-0

ACCESS1-3
HadGEM2-AO
HadGEM2-ES

2 (2) bcc-csm1-1-m
bcc-csm1-1

3 (15) FIO-ESM
CCSM4

CESM1-BGC
CESM1-CAM5-1-FV2

CESM1-CAM5
NorESM1-M

4 (5) CanESM2
5 (7) CMCC-CESM

CMCC-CMS
CMCC-CM

MPI-ESM-LR
MPI-ESM-MR

6 (10) CSIRO-Mk3-6-0
7 (1) EC-EARTH
8 (3) GFDL-CM3

GFDL-ESM2G
GFDL-ESM2M

9 (12) GISS-E2-H-CC
GISS-E2-H

GISS-E2-R-CC
GISS-E2-R

10 (1) inmcm4
11 (6) IPSL-CM5A-LR

IPSL-CM5A-MR
IPSL-CM5B-LR

12 (5) MIROC-ESM-CHEM
MIROC-ESM

MIROC5
13 (2) MRI-CGCM3

MRI-ESM1
14 (5) CNRM-CM5
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Supplementary Table 4: CMIP5 models grouped into sub-ensembles which share the ocean component. The number
of ensemble members for each sub-ensemble is shown in brackets next to the group number. The sub-ensembles are
created using information from Boé [8].

Group Models
1 (5) HadGEM2-AO

HadGEM2-ES
2 (16) bcc-cesm1-1-m

bcc-csm1-1
CSIRO-Mk3-6-0

ACCESS1-0
ACCESS1-3
GFDL-CM3

GFDL-ESM2M
3 (6) GISS-E2-R-CC

GISS-E2-R
4 (14) CCSM4

CESM1-BGC
CESM1-CAM5-1-FV2

CESM1-CAM5
FIO-ESM

5 (6) GISS-E2-H-CC
GISS-E2-H

6 (15) CMCC-CESM
CMCC-CMS
CMCC-CM
CNRM-CM5
EC-EARTH

IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR

7 (5) CanESM2
8 (1) inmcm4
9 (5) MIROC-ESM-CHEM

MIROC-ESM
MIROC5

10 (1) FGOALS-g2
11 (4) MPI-ESM-LR

MPI-ESM-MR
12 (3) MRI-CGCM3

MRI-ESM1
NorESM1-M

13 (1) GFDL-ESM2G
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Supplementary Note 1: Uncertainty due to ensemble size To investigate the uncertainties due to the12

differing ensemble sizes of the SMILEs we use the largest ensemble (MPI-GE; 100 members) and investigate the13

range of results that could be obtained by sub-sampling the ensemble for smaller sizes. To do this we investigate14

the forced response (∆Ts,F) and the internal variability of the forced response (σ(∆Ts)), estimated for both T and15

Tσ. We first re-sample MPI-GE 100 times for ensemble sizes of 10, 20, 30, 50 and 75. We complete the re-sampling16

without replacement, however a test shows that re-sampling with replacement gives the same result (not shown).17

We then plot the 100-member estimate and the difference between the maximum and minimum result that could be18

obtained at each ensemble size as a percentage of the 100-member estimate for T (forced response; Supplementary19

Figure 1, internal variability; Supplementary Figure 2) and Tσ (forced response; Supplementary Figure 3, internal20

variability; Supplementary Figure 4). We find that for the forced response in T the differences between the maximum21

and minimum estimate are already fairly low with an ensemble of 10-members, showing that the ensemble size does22

not introduce large uncertainty in this case, although there are some larger differences in the Southern Ocean and23

North Atlantic that reduce with increasing ensemble size. For the internal variability of the forced response in T24

the percentage error is a similar size all around the globe. Here, we see that the uncertainty reduces with increasing25

ensemble size, but that there is still some uncertainty at even 75 members. For the forced response in Tσ the error26

reduces as the ensemble size increases, however it is still large at 75 members (note the change in colourbar from27

0-200% for this Figure). The large magnitude of the error in this case is likely because ∆Ts,F is relatively small28

compared to its mean value. For the internal variability of the forced response in Tσ, the result is very similar29

to the internal variability of the forced response in T . Again we find that while the error greatly reduces as the30

ensemble size increases, there is still error at 75 members. This analysis has shown that the ensemble size does indeed31

introduce uncertainty into our analysis, with larger ensembles giving a much more robust result. In all cases the32

uncertainty in the 20-member ensemble is reduced compared to the 10-member ensemble, however the 30-member33

ensemble again reduces the uncertainty as compared to the 20-member ensemble. We choose to keep the 20-member34

SMILE GFDL-CM3 in our analysis because having the extra data when only six SMILEs are available adds to our35

analysis of model-to-model agreement, but note that there is error in its estimates.36

In the final panel of Supplementary Figures 1, 2, 3, 4 we plot the average of the 100 10-member ensembles37

subtracted from the 100-member estimate. The minimal differences shown indicate that the quantities plotted are38

not a function of ensemble size, but a model quantity. I.e. the estimate of internal variability does not increase with39

increasing ensemble size, and larger ensembles do not necessarily have a larger internal variability estimate.40
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Supplementary Figure 1: Role of ensemble size in causing uncertainty in the forced response in tem-
perature in a individual single model initial-condition large ensemble (SMILE) (∆Ts,F). Computed for
100 re-samples (no replacement) of MPI-GE. Shown is the difference between the maximum value of ∆Ts,F and the
minimum value for 10, 20, 30, 40, 50 and 75 members shown as a percentage of the 100-member estimate. The 100-
member estimate of the forced response is shown in the bottom left panel. The difference between the 100-member
estimate and the mean of 100 20-member estimates is shown in the bottom right panel.
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Supplementary Figure 2: Role of ensemble size in causing uncertainty in the internal variability of
projections of temperature in a individual single model initial-condition large ensemble (SMILE)
(σ(∆Ts)). Computed for 100 re-samples (no replacement) of MPI-GE. Shown is the difference between the maximum
value of σ(∆Ts) and the minimum value for 10, 20, 30, 40, 50 and 75 members shown as a percentage of the 100-
member estimate. The 100-member estimate of the forced response is shown in the bottom left panel. The difference
between the 100-member estimate and the mean of 100 20-member estimates is shown in the bottom right panel.

7



Supplementary Figure 3: Role of ensemble size in causing uncertainty in the forced response in temporal
temperature variability in a individual single model initial-condition large ensemble (SMILE) (∆Tσ,s,F)
Computed for 100 re-samples (no replacement) of MPI-GE. Shown is the difference between the maximum value of
∆Tσ,s,F and the minimum value for 10, 20, 30, 40, 50 and 75 members shown as a percentage of the absolute value
of the 100-member estimate. The 100-member estimate of the forced response is shown in the bottom left panel.
The difference between the 100-member estimate and the mean of 100 20-member estimates is shown in the bottom
right panel. 8



Supplementary Figure 4: Role of ensemble size in causing uncertainty in the internal variability of
projections of temporal temperature variability in a individual single model initial-condition large
ensemble (SMILE) (σ(∆Tσ,s)). Computed for 100 re-samples (no replacement) of MPI-GE. Shown is the difference
between the maximum value of σ(∆Tσ,s) and the minimum value for 10, 20, 30, 40, 50 and 75 members shown as
a percentage of the 100-member estimate. The 100-member estimate of the forced response is shown in the bottom
left panel. The difference between the 100-member estimate and the mean of 100 20-member estimates is shown in
the bottom right panel. 9



Supplementary Figure 5: Forced response and internal variability of the forced response in temperature
(∆Ts,F & σ(∆Ts)) for each single model initial-condition large ensemble (SMILE). a,b) MPI-GE, c,d)
CESM-LE, e,f) CanESM2, g,h) GFDL-ESM2M, i,j) GFDL-CM3 and k,l) CSIRO-Mk3-6-0
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Supplementary Figure 6: Forced response and internal variability of the forced response in precipitation
(∆Ps,F & σ(∆Ps)) for each single model initial-condition large ensemble (SMILE). a,b) MPI-GE, c,d)
CESM-LE, e,f) CanESM2, g,h) GFDL-ESM2M, i,j) GFDL-CM3 and k,l) CSIRO-Mk3-6-0
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Supplementary Figure 7: Forced response and internal variability of the forced response in temporal
temperature variability (∆Tσ,s,F & σ(∆Tσ,s)) for each single model initial-condition large ensemble
(SMILE). a,b) MPI-GE, c,d) CESM-LE, e,f) CanESM2, g,h) GFDL-ESM2M, i,j) GFDL-CM3 and k,l) CSIRO-
Mk3-6-0
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Supplementary Figure 8: Forced response and internal variability of the forced response in temporal
precipitation variability (∆Pσ,s,F & σ(∆Pσ,s)) for each single model initial-condition large ensemble
(SMILE). a,b) MPI-GE, c,d) CESM-LE, e,f) CanESM2, g,h) GFDL-ESM2M, i,j) GFDL-CM3 and k,l) CSIRO-
Mk3-6-0
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Supplementary Figure 9: Long-term projections of the mean-state precipitation response to external
forcing (∆P ) and the contribution of the uncertainty due to internal variability (UIV) and model-to-
model differences (UMD). Shown for a,b,c) Six single model initial-condition large ensembles (SMILEs), d,e,f)
CMIP5 sub-ensembles that share the atmosphere component (A-CMIP5), g,h,i,) CMIP5 sub-ensembles that share
the ocean component (O-CMIP5), j,k,l) CMIP5 randomly subset into ensembles (Random-CMIP5), this random
sampling is completed 30 times and averaged.
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Supplementary Figure 10: Difference between the single model initial-condition large ensemble (SMILE)
and CMIP5 sub-ensemble methodologies. SMILE minus CMIP5 atmospheric sub-ensembles for left to right:
forced response (∆F), uncertainty due to internal variability (UIV), uncertainty due to model-to-model differences
(UMD), and UMD minus UIV. Shown for projections of a-d) temperature (∆T ), e-h) precipitation (∆P ), i-l) temporal
temperature variability (∆Tσ), and m-p) temporal precipitation variability (∆Pσ). Far right panels are red (temper-
ature) or green (precipitation) when the CMIP5 atmospheric sub-ensembles and SMILE analyses agree on whether
UIV or UMD is larger.
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Supplementary Figure 11: Ratio between the CMIP5 atmospheric sub-ensembles and single model initial-
condition large ensemble (SMILE) results Top row: uncertainty due to internal variability (UIV) for the CMIP5
atmospheric sub-ensembles divided by UIV from the SMILE analysis. Bottom row: uncertainty due to model-to-
model differences (UMD) for the CMIP5 atmospheric sub-ensembles divided by UMD from the SMILE analysis. Shown
for projections of a,e) temperature (∆T ), b,f) precipitation (∆P ), c,g) temporal temperature variability (∆Tσ), and
d,h) temporal precipitation variability (∆Pσ).

Supplementary Figure 12: Projections of externally forced responses in temporal variability (temper-
ature; Tσ & precipitation; Pσ) in the tropical Pacific in austral summer. Forced response over the full
(160oE−260oE), east (220oE−260oE), central (190oE−240oE), west (160oE−220oE) and far west (120oE−160oE
Pacific (all between 5oS − 5oN) in each individual single model initial-condition large ensemble (SMILE) (∆s,F;
coloured circles) and the SMILE mean (∆F; black circle) are shown for a) Tσ and b) Pσ. Calculations are completed
on the austral summer mean (December, January, February). Horizontal lines are shown between the east and west
Pacific to illustrate the proportional change in each variable. Errorbars are computed by bootstrapping 1000 times
with the matlab bootci function for the mean of equation 10 (see methods).
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Supplementary Figure 13: Model-to-model agreement on the sign of the forced response to external
forcing using the CMIP5 multi-model ensemble. a) mean-state temperature (∆TF), b) temporal temperature
variability (∆TσF), c) mean-state precipitation (∆PF) and d) temporal precipitation variability (∆PσF). The colours
show agreement for the CMIP5 atmospheric sub-ensembles. Red shows agreement in an increase in each quantity
while blue shows agreement in a decrease. White regions have less than 79% agreement on the sign of the change
(less than 11 of 14 sub-ensembles agree). Stippling shows where there is 68% agreement on the sign of the change
using CMIP5 r1i1p1 ensemble members (25 or more out of the 37 subsets agree), with crosses indicating an increase
and dots indicating a decrease. The measures of agreement correspond to a significance level of 0.01 using a binomial
distribution.
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Supplementary Figure 14: Relative magnitude of the terms E2 compared to σ2
FR from equation 6 of the

main paper. This term is used to correct the biased estimate of the uncertainty due to model-to-model differences
(UMD) due to the fact the the ensemble is not infinite in size [9]. Shown for projections of a) temperature (∆T ), b)
temporal temperature variability (∆Tσ), c) precipitation (∆P ), and d) temporal precipitation variability (∆Pσ)
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