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We calculate the spin flip rates for an electron in a homogeneous magnetic field for low excitations
(N ≤ 5). Our results apply for all field strengths including those beyond the critical field strength at
which the spin contributes as much to the electron’s energy as its rest mass. Existing approximations
either assume that the electron is in a sufficiently highly excited state such that its orbit can be
assumed to be classical or the magnetic field be weak compared to the critical field. The regime of
high magnetic field strength and low excitations is therefore poorly covered by them. By comparing
our calculations to different approximations, we find that in the high field, low excitation regime
the spin flip rates are lower and the equilibrium spin polarization is less pure then one would get by
naively applying existing approximations in this regime.

I. INTRODUCTION

A relativistic electron in a homogeneous magnetic
fields is one of the oldest solved problems in relativistic
quantum mechanics. Mere months after Dirac presented
his equation, Rabi found an incomplete solution allowing
only for one spin orientation relative to the magnetic field
[1]. Landau studied the problem extensively to explain
diamagnetism and introduced a set of energy levels asso-
ciated with the total angular momentum of the electron
[2, 3] and Sokolov & Ternov (S&T) used a complete set
of relativistic solutions extensively to study quantum ef-
fects in synchrotron radiation emission [4]. Recently the
similarity to free space electron vortex beams [5–7] led to
a renewed interest in Landau states [8–12]

The S&T calculations for the spin flip rates in a mag-
netic field predict that the equilibrium spin polariza-
tion of an electron in a highly excited quantum state
is (n↓ − n↑)/(n↓ + n↑) = 8

√
3/15 ≈ 0.924 [3, 4]. S&T

approximated the Laguerre-Gauß wave functions of the
electrons by Bessel functions, an approximation which
breaks down at low Landau levels where the finite widths
of the electron wave functions become important.

Ternov, Bagrov & Dorofejev (TB&D) computed the
spin flip rates for low excitations assuming a magnetic
field which is weak compared to the critical field strength
Bcr = m2

e/|e| ≈ 4.4 GT which yields an equilibrium spin
polarization of

n↓ − n↑
n↓ + n↑

=
(me + 2B|e|N)2 − 4aB2|e|2N2

(me + 2B|e|N)2 + 4aB2|e|2N2
(1)

with B the magnetic field strength, me the electron mass,
N the principal quantum number of the state in question
and e the electron’s charge. The dimensionless parameter
a is introduced by TB&D with the explanation ‘where the
numerical factor a does not exceed unity’ [13]. Because
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they give no further indication about the magnitude of
a, we will treat it as a free parameter to be fitted.

For typical experiments in a Penning trap [14] the mag-
netic field strength does not exceed 10 T and the TB&D-
approximation works well. In storage rings, which use
similar magnetic fields but much higher kinetic energies
for the electrons, one can assume that the electrons can
transition into a continuum of states, instead of a dis-
crete spectrum, yielding the S&T-approximation[3, 4].
New proposals for generating short-lived magnetic fields
in plasmas created by ultrashort laser pulses allow for
field strengths of 0.1-1 MT[15, 16], which is three to
four orders of magnitude beyond the field strengths that
are available from non-destructive magnets [17]. Even
stronger magnetic fields, up to 1011 T can be found on
the surface of neutron stars [18–21].

For such strong fields, the spacing between Landau
levels is larger than the electron’s rest mass and excit-
ing an electron to a high enough Landau level such that
the S&T-limit is reached requires an excessive amount
of energy. The TB&D approximation explicitly assumes
a magnetic field weak compared to the critical field and
does therefore not apply at these field strengths either
[13]. Thus full nonperturbative QED techniques are re-
quired [22, 23], making no additional assumptions. A
suitable non-perturbative QED theory can be described
in the Furry picture [24] through replacing the vacuum
electron states by solutions of the Dirac equation in a
magnetic field [4, 11, 25]. The Furry picture has been ap-
plied to the electron in a magnetic field to study vacuum
birefringence [26, 27], energy corrections to the Landau
levels [27–29], Compton scattering [30] and synchrotron
radiation emission [31–35]. Analogous studies of radia-
tion emission in this nonlinear QED regimes were previ-
ously conducted in the interaction of relativistic electrons
with ultra-intense laser fields [36], a regime which is com-
plementary to the pure magnetic field case studied here.
In the absence of strong fields, the scattering theory of
non-plane wave states has been explored [37–39] using
techniques which are useful in strong-field situations too.

In this article, we analytically investigate and numer-
ically compute the spin flip rates of low lying Landau
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levels and compare and contrast these results with both
the S&T- and TB&D-approximations.

II. ANALYTICAL MODEL

We will take the magnetic field to be constant, homo-
geneous with field strength B and pointing in the posi-
tive z-direction, which is the quantization axis for angu-
lar momenta too. We use ηµν = diag(+ − −−) as our
metric, express energies in eV and use c = h̄ = 1 and

ε0 = µ−1
0 = 1/4π, which implies |e| =

√
α ≈ 1/

√
137.

For this geometry there exists a complete exact basis of
nondiffracting Laguerre-Gauß beam solutions with their
beam axes along the magnetic field [4, 11, 25]. We chose
the spin states to be eigenstates of the component of the

magnetic moment operator ~µ = me
~Σ− i~γ × (−i~∂ − eA)

along the beam axis [4, 25, 31]. Here ~Σ is a vector of
4 × 4 spin matrices and ~γ a vector of gamma matri-
ces. We define the Laguerre-Gauß functions LGln(r, φ) =

eilφr|l|e−
r2

2 L
|l|
n (r2), Lln is an associated Laguerre polyno-

mial and r̃ =
√
Be/2r to write the electron states as

Ψ =
ei(pz−Et)√
N




(E + E0)

√
E0 +mLGln(r̃, φ)

−ip
√
E0 −mLGl+1

n (r̃, φ)

p
√
E0 +mLGln(r̃, φ)

i(E + E0)
√
E0 −mLGl+1

n (r̃, φ)

 l ≥ 0, σ > 0


−ip
√
E0 −mLGl−1

n (r̃, φ)

(E + E0)
√
E0 +mLGln(r̃, φ)

−i(E + E0)
√
E0 −mLGl−1

n (r̃, φ)

−p
√
E0 +mLGln(r̃, φ)

 l > 0, σ < 0


(E + E0)

√
E0 +mLGln(r̃, φ)

ip
√
E0 −mLGl+1

n+1(r̃, φ)

p
√
E0 +mLGln(r̃, φ)

−i(E + E0)
√
E0 −mLGl+1

n+1(r̃, φ)

 l < 0, σ > 0


ip
√
E0 −mLGl−1

n−1(r̃, φ)

(E + E0)
√
E0 +mLGln(r̃, φ)

i(E + E0)
√
E0 −mLGl−1

n−1(r̃, φ)

−p
√
E0 +mLGln(r̃, φ)

 l ≤ 0, σ < 0.

(2)

They are specified by a momentum along the beam axis,
p, radial quantum number, n, orbital quantum num-
ber, l, and spin σ = ± 1

2 . Although spin-orbit mix-
ing makes it impossible to attribute an integer orbital
angular momentum and a half-integer spin to a given
state, the labeling with integer l and half integer σ re-
flects the limiting behavior B → 0. The total angular
momentum j = l + σ is always half-integer. The en-
ergy of the electron is E =

√
m2
e + p2 + 2B|e|N with

N = n + 1
2 (l + |l|) + σ + 1

2 . The electron states are
normalizable in the transverse plane with normalization
N = 4π × 4EE0(E + E0)/|e|B × (n + |l|)!/n!. Here

E0 =
√
m2
e + 2B|e|N .

The most effective way to keep track of angular mo-
mentum changes of the electron when it radiates is to

expand the photon field too in a basis of eigenstates of
angular momentum along the beam axis. These are the
photon Bessel modes with total angular momentum jγ ,
momentum along the beam axis k, transverse momentum
κ and energy ω =

√
k2 + κ2 . For the photon polarization

we use a basis of left- (−) and right- (+) handed helic-
ity. For a photon emitted in the positive z-direction posi-
tive helicity corresponds to a predominantly positive spin
whereas for a photon emitted backward it corresponds
to a predominantly negative spin, with the expectation
value for the photon spin along the beam axis continu-
ously decreasing with decreasing k. Using the Coulomb
gauge these photon modes are described by the vector
potential

Akκj± =
ei(kz−ωt)

2
√
N γ

 (
1± k

ω

)
Jjγ−1(κr)ei(jγ−1)φ +

(
1∓ k

ω

)
Jjγ+1(κr)ei(jγ+1)φ

i
((

1± k
ω

)
Jjγ−1(κr)ei(jγ−1)φ −

(
1∓ k

ω

)
Jjγ+1(κr)ei(jγ+1)φ

)
∓2i κωJjγ (κr)eijγφ

 . (3)
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With these states, one can compute the transition ma-

trix element M =
∫

Ψ̄f�A
∗ΨidV with Ψ̄f = Ψ†fγ0,

and slash denoting contraction with the Dirac matrices

�A
∗ = γµA∗µ. The explicit forms of M are given in the

appendix. Performing the integrations over the coordi-
nate along the beam axis, time and the azimuthal angle
will yield three delta functions which we will take out of
M. Then, only the radial integration remains. Unlike for
plane waves, there is no fourth delta function as there is
no fourth conserved quantity whose operator commutes
with the angular momentum operator and therefore the
electron and photon states cannot be simultaneous eigen-
states of four conserved quantities. To compute the decay

rate from the state N, j, σ to N ′, j′, σ′ with N > N ′, we
have to compute the squared transition matrix element
and integrate it over all outgoing coaxial electron mo-
menta, all coaxial and transverse photon momenta and
sum over the photon’s angular momentum and both pho-
ton polarizations. We take the initial coaxial momentum
of the electron p = 0 for definiteness. The decay rates
for an electron moving along the beam axis can be found
by a Lorentz transformation. Taking our wave functions
confined to a disc of thickness L and radius R (which we
will take to infinity), the outgoing electron’s density of
states is L/2π. The photon’s density of states (for a sin-
gle angular momentum and polarization) is L/2π×R/π.
Putting all these ingredients together, the decay rate is

ΓNjσ→N ′j′σ′ = (2π)4e2
∑
±

∑
jγ

∫∫∫
δ(E − E ′ − ω)δ(p− p′ − k)δj,jγ+j′L

|M|2

LNLN ′LNγ
Ldp′

2π

LRdkdκ

2π2
. (4)

Primes refer to the properties of the final electron state. Using the asymptotic form for r � κ−1 of the Bessel functions
Jj(κr) ≈

√
2/πκr cos(κr − (j + 1

2 )π2 ) and the normalization condition
∫
A ·A∗dV = 2π/ω, Nγ can be computed for

R � κ−1. We find Nγ ≈ Rω/πκ. Substituting the transverse normalization factors in eq. (4), L and R disappear
and the size of the disc can be taken to infinity, yielding

ΓNjσ→N ′j′σ′ = (2π)4e2
∑
±

∑
jγ

∫∫∫
δ(E − E ′ − ω)δ(p− p′ − k)δj,jγ+j′

|M|2

NN ′
dp′

2π

κdkdκ

2π
. (5)

The Kronecker delta of the angular momenta will be elim-
inated by summing over all photon angular momenta.
The delta function of the coaxial electron momentum
will be eliminated by integrating. To treat the delta
function of the energies, we rewrite the photon momen-
tum in polar coordinates, κ = ω sin θ, k = ω cos θ and
dκdk = ωdθdω. Using energy and momentum conser-
vation, we have E ′ =

√
me + 2B|e|N ′ + ω2 cos2 θ. Now

integrating over ω and eliminating the energy delta func-
tion gives an additional factor of

1∣∣dE−E′−ω
dω

∣∣ =
E ′

E ′ + ω cos2 θ
=

E − ω
E − ω sin2 θ

. (6)

the effect of this factor has been pointed out before
[4, 31] and it will be especially important in the strong
field regime where we expect the S&T- and TB&D-
approximations to break down. Including this factor, the
phase space integral is

ΓNjσ→N ′j′σ′ = (2π)2e2
∑
±

∫ π

0

|M|2

NN ′
(E − ω)ω sin θdθ

E − ω sin2 θ
.

(7)
The remaining integral has to be integrated numerically.

III. NUMERICAL RESULTS

We numerically computed all transition rates for elec-
tron states in a magnetic field with N ≤ 5 and j ≥ −9/2
to final states with N ′ ≤ 4 and j′ ≥ −17/2. The highest
allowable j for a given N is always j = N − 1/2. The
reason to choose a lower j cutoff for the final state is that
the electron tends to lose angular momentum when it de-
cays more often than it gains it. To compute the spin flip
rate we take the sum Γσσ′ =

∑
N ′j′ ΓNjσ→N ′j′σ′ over all

energetically allowed final states in this data set. This
yields two spin flip rates for a given initial N and j from
which we compute an approximation for the equilibrium
spin polarization according to the model in Appendix B.
As the electrons radiate, a constant input of energy is
needed to keep them on the same energy level. We make
no assumption about the mechanism by which the elec-
trons are reenergized, except that it does not cause spin
flips, as is customary [4, 13]. Because we obtain an equi-
librium spin polarization fairly close to one, we plot for
readability 2n↑/(n↑ + n↓), which is the deviation of the
equilibrium spin polarization from unity.

To compare our results for the relative spin flip rates
of electrons to the S&T results, we use the plane wave
approximation from [3]. Here the electron is considered
to be a plane wave with the time evolution e−iHt, with
H the Hamiltonian of the problem under consideration.
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FIG. 1. The numerically computed deviations from perfect
negative spin polarization compared to the S&T (dashed line)
and TB&D approximations (red curves, a = 0.032).

This approximation takes the recoil of the electron when
it emits a photon into account properly and is thus an im-
provement over classical electrodynamics if E >∼ m3

e/|e|B.
It reproduces the S&T spin flip rates exactly [3]. We
choose a plane wave momentum equal to the expected
tangential momentum of the highest l state for a given
N . This momentum can be written using Euler gamma
functions.

p⊥ =
√

2B|e|
Γ(N + 1

2 )

Γ(N)
. (8)

Interestingly, taking this expression for the tangential
momentum of the electron implies that in the weak field
limit the change of momentum the electron gets upon
decaying far exceeds the emitted photon’s momentum,
which is ∼ B|e|/2me. Thus upon emitting a photon,
the electron always gets a ‘superkick’ [40], caused by
the spatial extent of the photon mode being much larger
than the spatial extent of the electron’s wave function.
When angular momentum is transferred from one to the
other, the electron’s tangential momentum must change
by much more than the emitted photon’s tangential mo-
mentum. Because the electron’s tangential momentum
averaged over one orbit is zero, momentum is nonethe-
less conserved.

For comparison with the TB&D results we took their
expressions for the spin flip rates [13]

Γflip =
5

2

mece
2

h̄24πε0

(
B

Bcr

)3
{

1 σ < 0
4aB2|e|2N2

(me+2B|e|N)2 σ > 0
(9)

and fit them to our numerical spin flip rates for field
strengths up to 107 T to find the numerical value for a.
Because in the TB&D approximation, one can replace
B̃ = NB, one can fit the data of different Landau levels
to the same curve.

At low field strengths we find a good agreement with
the TB&D approximation for a = 0.032, where theN = 2

level spin polarizes a bit better than TB&D predict, as
is shown in FIG. 1. For the TB&D equilibrium spin po-
larization to converge to the S&T equilibrium spin po-
larization, one needs a = (1− 8

√
3/15)/2 ≈ 0.038, which

is close to the values we found by fitting the numerically
computed equilibrium spin polarizations for fields up to
107 T, that is, where the S&T and TB&D approximations
strongly disagree. The value we found is lower than the
one for which TB&D converges to S&T. This is mostly
due to the N = 2 level having a higher spin polarization
than the TB&D approximation predicts which reduces
the fitted value for a.

We checked these results against spin flip computations
performed in an Hermite-Gauß basis, where one does not
have to sum over angular momenta and thus can com-
pute up to higher quantum numbers efficiently. The re-
sults are summarized in FIG. 2. In the Hermite-Gauß
basis we took states up to N = 60 and found a = 0.042.
The slightly higher value for a is due to the N = 2 level
contributing less to the fitted value, as the number of
states included is much higher. We reran our analysis in
the Hermite-Gauß basis excluding the contributions from
transitions to the ground state, which is purely spin po-
larized against the magnetic field [11], to check if a dispro-
portional contribution from ground state transitions is
the cause of the discrepancy between the TB&D approx-
imation and our results. The results of this analysis are
summarized in FIG. 3. Fitting the data with transitions
to the ground state excluded again yielded a = 0.042 and
we found that excluding ground state transitions has lit-
tle effect on the equilibrium spin polarization at weak
magnetic fields. Beyond the critical field we found that
transitions to the ground state are almost solely respon-
sible for spin polarizing an electron, as has also been
noted in [41]. This can be explained because the domi-
nant and spin orbit mixing terms, which have a ratio of√
E0 +me/

√
E0 −me, become nearly equal for N ≥ 1 in

the strong field limit and thus the spin flip rates in both
directions should be roughly equal. Only for transitions
to the always perfectly spin polarized N = 0 level does
this argument not apply.

More pronounced differences between the numerical
computations and both approximations show up if one
looks at the spin flip rates instead of the equilibrium spin
polarization, as is shown in FIG 4. Both S&T and TB&D
overestimate the spin flip rates beyond the critical field.

The overestimation of the spin flip rates shows itself
too in the time scale over which an electron reaches its
equilibrium spin. In Appendix B we show this time scale
to be τeq = 1/(Γ↑↓ + Γ↓↑), the reciprocal of the sum of
the spin flip rates. In FIG. 5 we plot the spin equilibra-
tion times for several Landau levels. The equilibration
time depends little on the Landau level, but decreases
quadratically with B up to the critical field. At one
Tesla the spin equilibration time is on the order of a
millennium. The actual dynamics are more complicated,
with the electron being able to decay to different Landau
levels, both via spin-preserving and spin flip decays. At
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FIG. 2. The equilibrium deviations from perfect negative spin
polarization computed in the Hermite-Gauß basis. Only the
states N = 2 to N = 10 are shown for clarity, although states
up to N = 60 were used for fitting the TB&D approxima-
tion (red curves, a = 0.042). The N = 2 equilibrium spin
polarization is clearly better than what TB&D predict.

FIG. 3. The same as FIG. 2, but with transitions to the
ground state excluded.

low magnetic fields the time scales of spin preserving and
spin flip decays separate, as can be seen in FIG. 6. This
separation of time scales stems from the spin preserving
decays having higher decay rates than the spin flip de-
cays, as one can see in FIG. 4. For low magnetic field
strengths the electron decays first to an N = 1 spin up
state before undergoing spin flip to an N = 0 spin down
state much later. At high field strengths both processes
occur at similar rates and the electron can undergo spin
flip before decaying to an N = 1 spin up state, as is
signified by the lower occupation of these states at all
times.

IV. DISCUSSION

We have shown that in the high field, low excitation
limit, existing approximations do not give a good esti-
mate of the electron spin flip rate and its resulting spin

FIG. 4. Spin flip rates (continuous curves) compared to
the S&T- (dotted curves) and TB&D approximation (dashed
curves) for the initial quantum numbers N = 5 and j = 9/2.
For low magnetic fields, the transition rate from spin down to
spin up is suppressed by many orders of magnitude. Spin pre-
serving decay rates are shown for comparison (dots). Beyond
the critical field (gray area), the S&T- and TB&D- approx-
imations break down and the spin-flip rates obtained from
them diverge from the actual rates.

FIG. 5. Time scale at which spin equilibrium is reached. In-
terestingly, beyond the critical field (gray area), lower lying
states equilibrate faster. Note the diverging S&T rate beyond
the critical field strength, indicating that the S&T approxi-
mation is not applicable in that regime.

polarization. At field strengths beyond the critical field
the equilibrium spin polarization is less than the 8

√
3/15

calculated by S&T for states excited higher than the sec-
ond Landau level.

In our calculations we ignore level shifts due to higher
order perturbations, this includes the lifting of the spin-
degeneracy due to the electron’s anomalous magnetic mo-
ment. For the emitted photons we ignore the effects
of vacuum birefringence at strong background magnetic
fields. Even at the critical field strength the magnitude of
these effects is ∼ α/2π [27]. The main effect of the shift-
ing of the electron’s energy levels is that the available
phase space for the various decay channels change. The
decay rates should change proportionally to the available
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FIG. 6. Relative occupation of different states starting out
from a spin-depolarized N = 5, j = 9/2 state for different
magnetic field strengths. At low field strength the electron
first decays to the lowest state allowed for its spin, before
undergoing spin flip at much later times. At high fields the
spin flip and spin-preserving decay rates become comparable
and the lowest state for spin up (N = 1) is less occupied at
all times.

phase space. Therefore we expect the relative changes
in the decay rates to be on the order of α/2π, too. The
only qualitatively new feature that can occur due to level
shifts is that it allows decays between previously degen-
erate states, most importantly spin up and spin down
with the same N . Our method is unable to make pre-
dictions about decay rates between such near-degenerate
states, but from the small available phase space we ex-
pect them to be small even at the critical field strength
O
(
(αB/2πBcr)

2
)
. The vacuum birefringence primarily

affects the propagation of the emitted photons. The
changes it causes in the coupling of the photons to the
electron are of second order in α. Having considered these
effects we believe our calculations are still fairly reliable
at the critical field strength.

V. OUTLOOK

Our numerical integration over all outgoing photon
states assumed a homogeneous density of states, but it

can be adapted to inhomogeneous densities as well, mak-
ing it well suited for cavity QED problems in a strong
magnetic field.

Our results were obtained using transition matrix ele-
ments obtained without making any approximation apart
from ignoring higher order perturbative effects. To com-
plement our exact approach, for weak magnetic fields the
small spatial extent of the electron wave function com-
pared to the wavelength of the radiated photons allows
for constructing a simpler approximate model.
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Appendix A: explicit expressions for the transition
matrix elements

The transition matrix elements can be computed ex-
plicitly by substituting the wave functions for the elec-
tron and photon into the expression M =

∫
Ψ̄f�A

∗ΨidV .
Using cylindrical coordinates, the angular integration
gives a factor of 2π and fixes the angular momentum of
the photon. The radial integration can be be performed
using the rescaled coordinate r̃ =

√
Be/2r and a rescaled

transverse wave number κ̃ = κ/
√

2B|e|. Taking Lgln(r̃)

to be the radial part of LGln(r̃, φ), it is convenient to
define a shorthand for the radial integrals

I ll
′

nn′(κ̃) =
4π

B|e|

∫ ∞
0

Lgln(r̃)Jl−l′(2κ̃r̃)Lg
l′

n′(r̃)r̃dr̃. (A1)

These integrals can be evaluated to be series of Laguerre-
Gauß functions in κ̃-space [42]:

I ll
′

nn(κ̃) =
4π

B|e|
e−κ̃

2 κ̃|l−l
′|

2
(−1)

1
2 (−|l−l′|−(l−l′))

n+n′∑
h=0

(−1)h(h+ 1
2 (|l|+ |l′| − |l − l′|))!

h!
L
|l−l′|
h+ 1

2 (|l|+|l′|−|l−l′|)(κ̃
2)×

h∑
µ=0

(
h
µ

)(
n+ |l|
|l|+ µ

)(
n′ + |l′|
|l′|+ h− µ

)
(A2)

Using this shorthand and the symbol H for the photon helicity (H = 1 for right handed photons and H = −1 for left
handed photons) the matrix elements are
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l l′ σ σ′ MH
− − − − −iH κ

ω
(p(E ′0 + E ′) + p′(E0 + E))

(√
(E ′0 +m)(E0 +m)Ill

′
nn′(κ̃) +

√
(E ′0 −m)(E0 −m)Il−1l′−1

n−1n′−1(κ̃)
)

−i ((E ′0 + E ′)(E0 + E)− pp′)(
−
(
1−H k

ω

)√
(E ′0 −m)(E0 +m)Ill

′−1
nn′−1(κ̃) +

(
1 +H k

ω

)√
(E ′0 +m)(E0 −m)Il−1l′

n−1n′(κ̃)
)

− − − + H κ
ω

((E ′0 + E ′)(E0 + E) + pp′)
(√

(E ′0 +m)(E0 −m)Il−1l′

n−1n′(κ̃)−
√

(E ′0 −m)(E0 +m)Ill
′+1

nn′+1(κ̃)
)

+ (p(E ′0 + E ′)− p′(E0 + E))((
1−H k

ω

)√
(E ′0 +m)(E0 +m)Ill

′
nn′ +

(
1 +H k

ω

)√
(E ′0 −m)(E0 −m)Il−1l′+1

n−1n′+1

)
− − + − H κ

ω
((E ′0 + E ′)(E0 + E) + pp′)

(√
(E ′0 +m)(E0 −m)Il+1l′

n+1n′(κ̃)−
√

(E ′0 −m)(E0 +m)Ill
′−1

nn′−1(κ̃)
)

+ (p(E ′0 + E ′)− p′(E0 + E))(
−
(
1−H k

ω

)√
(E ′0 −m)(E0 −m)Il+1l′−1

n+1n′−1 −
(
1 +H k

ω

)√
(E ′0 +m)(E0 +m)Ill

′
nn′

)
− − + + −iH κ

ω
(p(E ′0 + E ′) + p′(E0 + E))

(√
(E ′0 +m)(E0 +m)Ill

′
nn′(κ̃) +

√
(E ′0 −m)(E0 −m)Il+1l′+1

n+1n′+1(κ̃)
)

−i ((E ′0 + E ′)(E0 + E)− pp′)(
−
(
1−H k

ω

)√
(E ′0 +m)(E0 −m)Il+1l′

n+1n′(κ̃) +
(
1 +H k

ω

)√
(E ′0 −m)(E0 +m)Ill

′+1
nn′+1(κ̃)

)
− + − − −iH κ

ω
(p(E ′0 + E ′) + p′(E0 + E))

(√
(E ′0 +m)(E0 +m)Ill

′
nn′(κ̃)−

√
(E ′0 −m)(E0 −m)Il−1l′−1

n−1n′ (κ̃)
)

−i ((E ′0 + E ′)(E0 + E)− pp′)((
1−H k

ω

)√
(E ′0 −m)(E0 +m)Ill

′−1
nn′ (κ̃) +

(
1 +H k

ω

)√
(E ′0 +m)(E0 −m)Il−1l′

n−1n′(κ̃)
)

− + − + H κ
ω

((E ′0 + E ′)(E0 + E) + pp′)
(√

(E ′0 +m)(E0 −m)Il−1l′

n−1n′(κ̃) +
√

(E ′0 −m)(E0 +m)Ill
′+1

nn′ (κ̃)
)

+ (p(E ′0 + E ′)− p′(E0 + E))((
1−H k

ω

)√
(E ′0 +m)(E0 +m)Ill

′

nn′ −
(
1 +H k

ω

)√
(E ′0 −m)(E0 −m)Il−1l′+1

n−1n′

)
− + + − H κ

ω
((E ′0 + E ′)(E0 + E) + pp′)

(√
(E ′0 +m)(E0 −m)Il+1l′

n+1n′(κ̃) +
√

(E ′0 −m)(E0 +m)Ill
′−1

nn′ (κ̃)
)

+ (p(E ′0 + E ′)− p′(E0 + E))((
1−H k

ω

)√
(E ′0 −m)(E0 −m)Il+1l′−1

n+1n′ −
(
1 +H k

ω

)√
(E ′0 +m)(E0 +m)Ill

′

nn′

)
− + + + −iH κ

ω
(p(E ′0 + E ′) + p′(E0 + E))

(√
(E ′0 +m)(E0 +m)Ill

′

nn′(κ̃)−
√

(E ′0 −m)(E0 −m)Il+1l′+1
n+1n′ (κ̃)

)
−i ((E ′0 + E ′)(E0 + E)− pp′)(
−
(
1−H k

ω

)√
(E ′0 +m)(E0 −m)Il+1l′

n+1n′(κ̃)−
(
1 +H k

ω

)√
(E ′0 −m)(E0 +m)Ill

′+1
nn′ (κ̃)

)
+ − − − −iH κ

ω
(p(E ′0 + E ′) + p′(E0 + E))

(√
(E ′0 +m)(E0 +m)Ill

′

nn′(κ̃)−
√

(E ′0 −m)(E0 −m)Il−1l′−1
nn′−1 (κ̃)

)
−i ((E ′0 + E ′)(E0 + E)− pp′)(
−
(
1−H k

ω

)√
(E ′0 −m)(E0 +m)Ill

′−1
nn′−1(κ̃)−

(
1 +H k

ω

)√
(E ′0 +m)(E0 −m)Il−1l′

nn′ (κ̃)
)

+ − − + H κ
ω

((E ′0 + E ′)(E0 + E) + pp′)
(
−
√

(E ′0 +m)(E0 −m)Il−1l′

nn′ (κ̃)−
√

(E ′0 −m)(E0 +m)Ill
′+1

nn′+1(κ̃)
)

+ (p(E ′0 + E ′)− p′(E0 + E))((
1−H k

ω

)√
(E ′0 +m)(E0 +m)Ill

′

nn′ −
(
1 +H k

ω

)√
(E ′0 −m)(E0 −m)Il−1l′+1

nn′+1

)
+ − + − H κ

ω
((E ′0 + E ′)(E0 + E) + pp′)

(
−
√

(E ′0 +m)(E0 −m)Il+1l′

nn′ (κ̃)−
√

(E ′0 −m)(E0 +m)Ill
′−1

nn′−1(κ̃)
)

+ (p(E ′0 + E ′)− p′(E0 + E))((
1−H k

ω

)√
(E ′0 −m)(E0 −m)Il+1l′−1

nn′−1 −
(
1 +H k

ω

)√
(E ′0 +m)(E0 +m)Ill

′
nn′

)
+ − + + −iH κ

ω
(p(E ′0 + E ′) + p′(E0 + E))

(√
(E ′0 +m)(E0 +m)Ill

′

nn′(κ̃)−
√

(E ′0 −m)(E0 −m)Il+1l′+1
nn′+1 (κ̃)

)
−i ((E ′0 + E ′)(E0 + E)− pp′)((

1−H k
ω

)√
(E ′0 +m)(E0 −m)Il+1l′

nn′ (κ̃) +
(
1 +H k

ω

)√
(E ′0 −m)(E0 +m)Ill

′+1
nn′+1(κ̃)

)
+ + − − −iH κ

ω
(p(E ′0 + E ′) + p′(E0 + E))

(√
(E ′0 +m)(E0 +m)Ill

′

nn′(κ̃) +
√

(E ′0 −m)(E0 −m)Il−1l′−1
nn′ (κ̃)

)
−i ((E ′0 + E ′)(E0 + E)− pp′)((

1−H k
ω

)√
(E ′0 −m)(E0 +m)Ill

′−1
nn′ (κ̃)−

(
1 +H k

ω

)√
(E ′0 +m)(E0 −m)Il−1l′

nn′ (κ̃)
)

+ + − + H κ
ω

((E ′0 + E ′)(E0 + E) + pp′)
(
−
√

(E ′0 +m)(E0 −m)Il−1l′

nn′ (κ̃) +
√

(E ′0 −m)(E0 +m)Ill
′+1

nn′ (κ̃)
)

+ (p(E ′0 + E ′)− p′(E0 + E))((
1−H k

ω

)√
(E ′0 +m)(E0 +m)Ill

′
nn′ +

(
1 +H k

ω

)√
(E ′0 −m)(E0 −m)Il−1l′+1

nn′

)
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+ + + − H κ
ω

((E ′0 + E ′)(E0 + E) + pp′)
(√

(E ′0 −m)(E0 +m)Ill
′−1

nn′ (κ̃)−
√

(E ′0 +m)(E0 −m)Il+1l′

nn′ (κ̃)
)

+ (p(E ′0 + E ′)− p′(E0 + E))(
−
(
1−H k

ω

)√
(E ′0 −m)(E0 −m)Il+1l′−1

nn′ −
(
1 +H k

ω

)√
(E ′0 +m)(E0 +m)Ill

′
nn′

)
+ + + + −iH κ

ω
(p(E ′0 + E ′) + p′(E0 + E))

(√
(E ′0 +m)(E0 +m)Ill

′
nn′(κ̃) +

√
(E ′0 −m)(E0 −m)Il+1l′+1

nn′ (κ̃)
)

−i ((E ′0 + E ′)(E0 + E)− pp′)((
1−H k

ω

)√
(E ′0 +m)(E0 −m)Il+1l′

nn′ (κ̃)−
(
1 +H k

ω

)√
(E ′0 −m)(E0 +m)Ill

′+1
nn′ (κ̃)

)

Appendix B: Equilibrium spin and equilibration
time

To estimate the time scales over which an electron in
a magnetic field approaches its equilibrium spin polar-
ization, we use a simplified two-population model that
captures the essentials and is commonly used to derive
equlibrium spin polarisations [3, 4]. The only assumption
we require for this model is that each time after emitting
a photon, the electron will be returned to its initial energy
level without undergoing further spin changes. Consider
a population of N electrons that undergo random spin
flips at the rates Γ↑↓ from spin up to spin down and Γ↓↑
from spin down to spin up. We furthermore assume that
the times at which different electrons undergo spin flips
are uncorrelated as are the times at which one electron
undergoes a series of spin flips. The expected spin occu-
pation fractions of spin up electrons n↑ = N↑/N and spin
down electrons n↓ = N↓/N are then given by two coupled
first order differential equations (These equations are the

same as eq. (21.41) in [4]).

ṅ↑ = Γ↓↑n↓ − Γ↑↓n↑, ṅ↓ = Γ↑↓n↑ − Γ↓↑n↓. (B1)

Obviously the total number of electrons is conserved,
Ṅ = N(ṅ↑ + ṅ↓) = 0. By requiring that the right hand
sides of eqs. (B1) are zero one can find the equilibrium
values of the spin occupation fractions and the spin po-
larisation

n↑ =
Γ↓↑

Γ↑↓ + Γ↓↑
, n↓ =

Γ↑↓
Γ↑↓ + Γ↓↑

, n↓−n↑ =
Γ↑↓ − Γ↓↑
Γ↑↓ + Γ↓↑

(B2)
To find the rate at which the spin polarisation approaches
its equilibrium value, we introduce the quantity δneq
which is zero when the spin polarisation achieves its equi-
librium and is defined as

δneq =
Γ↓↑n↓ − Γ↑↓n↑

Γ↓↑ + Γ↑↓
=⇒ δṅeq = −(Γ↓↑ + Γ↑↓)δneq

=⇒ δneq ∝ e−(Γ↓↑+Γ↑↓)t. (B3)

One can write δneq in the form n0e
−t/τeq with τeq the

equilibration time which is in our case is 1/(Γ↓↑ + Γ↑↓).
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