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ABSTRACT

On the basis of the latest greenhouse warming experiment performed with the Max-Planck Institut coupled
atmosphere/isopycnal ocean model (ECHAM4/OPYC) it is shown that not only the climate mean but also the
statistics of higher-order statistical moments respond sensitively to greenhouse warming. In particular the El
Niño–Southern Oscillation (ENSO) cycle obtains more energy, and a tendency toward cold events can be
observed. These statistical changes are superimposed on an overall warming trend.

It is suggested that this information can be used in order to refine climate change detection via the optimal
fingerprinting strategy. An optimal spectral fingerprint is developed on the basis of linear perturbation theory
of wavelet variances. In order to elucidate the potential of higher-order statistical moments in the climate change
detection context the optimal spectral fingerprint technique is applied to the ECHAM4/OPYC greenhouse warm-
ing simulation. The results provide a rough estimate of the timescale over which human-caused changes in the
statistics of ENSO can be expected to exceed the level of natural variability. These results reveal in particular
that recent observed changes of ENSO variability are consistent with the null hypothesis of natural climate
variability.

Furthermore, an information theoretical approach is adopted to investigate possible influences of global warm-
ing on ENSO predictability.

1. Introduction

Anthropogenic greenhouse gas emissions have in-
creased continuously since the beginning of the indus-
trial revolution. It became scientific consensus (IPCC
1996) that further enhancement of greenhouse gas emis-
sions will oppose humankind with a drastic global cli-
mate change. Therefore, it is an urgent demand to un-
equivocally identify the climate signature of human fos-
sil fuel burning on climate—the so-called anthropogenic
fingerprint. In order to guide political decisions con-
trolling future fossil fuel burning it is necessary to mon-
itor how much past greenhouse gas emissions have al-
ready contributed to global climate change.

Recent studies (Hegerl et al. 1996; Hegerl and North
1997) using the optimal fingerprint technique (Hassel-
mann 1993) have revealed that the detection of the an-
thropogenic fingerprint in the present climate record is
just emerging. But a serious caveat in detection studies
(Bell 1982, 1986; Barnett 1986; Hasselmann 1993; San-
ter et al. 1993; North and Kim 1995a,b) is the estimation
of the natural variability level, in particular of long-term
climate variability either by using observations or by
adopting climate model integrations. Furthermore, de-
tection studies have not yet explicitly considered the
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effect of possible interactions between the changing cli-
mate mean state and the higher-order statistical moments
such as the variance and the skewness.

In a recent study by Palmer (1997) a nonlinear per-
spective on climate prediction and climate variability is
formulated. The idea at the core of this investigation is
that the climate attractor can be described by quasi-
stationary regimes. The probability for the climate at-
tractor to stay in one of those regimes is strongly de-
pendent on the presence of external forcing factors such
as anthropogenic greenhouse gas forcing. Palmer (1997)
investigates the sensitivity of climate variability and the
potential for climate forecasts in the presence of an ex-
ternal forcing.

In our study a mathematical framework is formulated
in which changes of climate variability can be inves-
tigated. Section 2 shall introduce the reader to problems
of nonstationary climate statistics. It is demonstrated on
the basis of CGCM experiments that the climate sen-
sitivity of higher-order statistical moments is an im-
portant feature that has to be taken into account in cli-
mate diagnostic studies. Section 3 describes the math-
ematical framework of the optimal spectral fingerprint,
which enables the monitoring of changes of variability
in certain frequency bands. In addition, we give a brief
review of the optimal fingerprint technique. In order to
estimate the possibility of detecting changes of El Niño–
Southern Oscillation (ENSO) statistics, the optimal
spectral fingerprinting technique is applied to obser-
vations and to the CGCM control and greenhouse gas
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simulations. The results are discussed in section 4. Sec-
tion 5 investigates the question of whether global warm-
ing is capable of changing the characteristics of ENSO
predictability. A general information theoretical ap-
proach is formulated to account for the dynamics of
climate predictability. This paper concludes with a brief
discussion and summary of our main findings (section
6).

2. Climate statistics in the tropical Pacific region

In this section we illustrate that higher-order statistical
moments of the tropical climate system, namely, of the
El Niño–Southern Oscillation phenomenon, can be rath-
er sensitive to anthropogenic climate change.

The strongest natural interannual climate fluctuation
is the ENSO phenomenon, which occurs irregularly with
a period of about 2–8 yr. It can be regarded as a joint
atmosphere–ocean oscillation originating in the tropical
Pacific. The swings of the ENSO cycle change not only
the atmospheric conditions in the Tropics (typical im-
pacts are droughts in Indonesia and northeast Brazil,
anomalously wet conditions over Ecuador and Peru,
etc.) but also the position of the subtropical jet streams,
thereby also encompassing the Northern and Southern
Hemispheric climate conditions. The complex and sen-
sitive marine ecological system of the upwelling region
near Peru and Ecuador has to be quite flexible in order
to adjust to strong climate variations within a few years.
The same is true for the socioeconomic systems of those
countries that are strongly affected by ENSO. Thus, it
becomes an important question as to whether the sta-
tistics of interannual climate variability is going to
change under greenhouse warming conditions. Can we
expect critical ENSO impact regions to suffer from more
or less extreme situations in the future? Is there already
evidence for a changed level of climate variability in
observations? These are questions of great importance
that we aim to address below. Furthermore, dramatic
changes of climate variability have to be taken into ac-
count in the climate detection methodology as discussed
by Bell (1986). To put it the other way round, changes
of higher-order statistical moments of the climate system
can be regarded as part of the greenhouse warming sig-
nal and should be considered as an important contri-
bution for detecting human-caused climate change.

In order to study the greenhouse warming impact on
ENSO we analyze a control (present-day atmospheric
greenhouse concentrations) and a climate change ex-
periment conducted with the Max-Planck Institut cou-
pled atmosphere/isopycnal ocean model (ECHAM4/
OPYC3). The atmosphere model ECHAM4 is coupled
to the isopycnal ocean model OPYC3, adopting a soft
flux correction method (Bacher et al. 1997). The climate
change simulation follows the prescribed greenhouse
gas emission scenario IS92a (IPCC 1992) for the CO2

emissions only. In two recent investigations by Roeck-
ner et al. (1996) and Bacher et al. (1997) the ENSO

performance of the control integration is validated. It
emerges in their studies that the sea surface temperature
anomalies (SSTA) related to the El Niño phenomenon
have a realistic amplitude and show the typical irreg-
ularity of the ENSO signal. The corresponding corre-
lation (teleconnection) patterns of the winds, pressure,
and precipitation are very similar to those found in ob-
servations. However, the simulated ENSO cycle is too
short (period of about 2 yr) as compared to observations.

Using these CGCM experiments Timmermann et al.
(1999) discuss the characteristics of the simulated
ENSO response to greenhouse warming. Their findings
can be summarized as follows: greenhouse warming
changes the statistics of ENSO. Superimposed on an
overall warming trend that tends to reduce the zonal
equatorial SST gradient, ENSO variability increases and
a tendency toward stronger ‘‘cold’’ events becomes ap-
parent. Cold here denotes a cold event relative to a
warmer climate mean state. Furthermore, their study
suggests that abrupt changes between different climate
variability regimes take place. The ENSO period of 2
yr remains relatively stable during the greenhouse
warming simulation. Overall, their findings are consis-
tent with a nonlinear system perspective. This analysis
shall be continued here focusing more on the statistical
aspects of climate change in the tropical Pacific, rather
than on the associated physics.

Figure 1 displays the two dominant empirical or-
thogonal functions (EOFs) of annually averaged surface
temperature anomalies1 in the Tropics for the control
integration, accounting for 35% and 16% of the total
data variance, respectively. The first EOF shows the
typical El Niño structure with strong warming in the
eastern equatorial Pacific, whereas the second pattern is
associated with ocean cooling and land warming in the
Tropics.

These EOF patterns can be chosen as an orthogonal
phase space basis. We calculate the projections of
monthly control and scenario run SST anomalies onto
the EOF patterns shown in Fig. 1. Two-dimensional
frequency distributions are estimated to obtain the in-
dividual phase space densities (Fig. 2). The phase space
ellipsoid of the control integration (Fig. 2, upper panel)
characterizes the alternation of ENSO and the tropical
cold-ocean warm-land pattern (Fig. 1, lower panel). The
ENSO phase space portrait of the greenhouse warming
scenario exhibits an overall warming trend, which is
represented by the long 408 tail of the frequency dis-
tribution. Furthermore, one observes with increasing
values of the projections, and hence with increasing
time, a slight broadening of the tail. One way to char-
acterize this behavior is to introduce a skewness param-
eter that measures the deformation of the frequency dis-
tribution along an axis perpendicular to the main trend

1 SSTA over the oceans and 2-m temperature anomalies over land.
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FIG. 1. First (upper) and second (lower) EOF patterns obtained from the annual mean surface temperature anomalies simulated by the
ECHAM4/OPYC control integration.
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FIG. 2. Phase space portrait of the projections of monthly SST anomalies onto the EOF patterns of Fig. 1. Logarithmic
frequency distributions (11) of the individual projections are displayed for the control integration (upper) and the
scenario-A experiment (lower). The x axis represents the loading on EOF1 and the y axis the loading of the anomalies
on EOF2.
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axis. Another interpretation could be that the observed
diffusion of probability as a function of time is the ex-
pression of a bimodal structure. In this case a secondary
trend trajectory lying off the major trend direction in-
troduces a bimodal splitting, an increase of variance,
and changes of the skewness as a function of the control
parameter. A slight indication for such a splitting and
for a secondary trend component can be seen in Fig. 2
(lower panel).

As already mentioned, the broadening of the scenario
phase space trajectory of SST anomalies leads to an
increase of variance and is also characterized by a slight
asymmetry, leading to a change of the skewness. Skew-
ness is defined as the normalized third statistical moment
(see, e.g., Nakamura and Wallace 1991). Here we cal-
culate this quantity at each grid point for the simulated
scenario surface temperature anomaly and sea level
pressure anomaly (SLPA) fields. Figure 3 depicts the
skewness parameter field as obtained from the monthly
SSTA field of the first 30 integration years (1860–1890,
upper panel) and the last 30 integration years (2070–
2100, lower panel) of the global warming scenario (after
removing the quadratic trend). In order to assign sta-
tistical significance to the skewness parameter we use
the approximation formula for the 95% significance val-
ue of the skewness: S95% 5 2 6/N, where N representsÏ
the number of independent samples (White 1980). In
our case we analyze 360 months. Typical SST anomalies
have decorrelation times of a few (1–4) months. Thus
we end up with a significance level of not more than
0.5. Let us therefore interpret only changes in the skew-
ness parameter that exceed this value. It emerges from
Fig. 3 that for a rather large region between 208S and
208N the frequency distributions of the SSTA are bent
out of shape toward a preference of cold events. Since
the dynamics of SST anomalies in the tropical Pacific
are strongly related to changes in the atmospheric vari-
ables and vice versa, we expect that also the atmospheric
variables such as SLP exhibit a shift toward nonsym-
metric frequency distributions. We calculate the skew-
ness parameter field for the SLP anomalies from our
scenario-A integration in the same manner as described
for the SSTA. The result for the first 30 integration years
is displayed in the upper panel of Fig. 4 and the result
for the last 30 years of the greenhouse simulation is
depicted in the lower panel. Since the decorrelation time
of tropical atmospheric anomalies is smaller than for
oceanic variables (on the order of 1–2 months) we obtain
skewness values at the 95% significance level of about
0.35. Figure 4 illustrates that large changes of the skew-
ness parameter for the SLP anomalies occur in the east
and west equatorial Pacific. This is an expression of the
fact that due to the strong atmosphere–ocean feedbacks
in the Tropics a tendency toward stronger cold events
is associated with a tendency toward stronger trade wind
anomalies.

Skewness values significantly different from zero
might be regarded as a signature of an underlying non-

linearity. The indication of a bimodal phase space tra-
jectory and the temporal evolution of the skewness for
surface temperature and SLP anomalies in the Tropics
toward more asymmetry, both indicate that the dynam-
ics of El Niño–related climate variability is subject to
nonlinear interactions.

3. The optimal spectral fingerprint

In this section we intend to combine wavelet analysis
with the optimal fingerprint method. Crudely speaking,
a wavelet decomposition is an expansion of an arbitrary
function into smooth localized contributions labeled by
a scale and a position parameter. Wavelet analysis is a
good tool to resolve spectral characteristics as a function
of time. In contrast to Fourier analysis with a sliding
window, wavelet analysis does not suffer from the sta-
tionarity assumption (Kumar and Foufoula-Georgiou
1994). Wavelets resolve the phase space of time series
in an optimal way (Kumar and Foufoula-Georgiou
1994). Let us consider the climate variable xi(t) (e.g.,
the vector time series of the SST anomalies).2 This vari-
able shall be particularly sensitive to the anticipated
climate change expected from a global warming sce-
nario. It can be decomposed into its spectral contribu-
tions as a function of time using the wavelet decom-
position:

` t 2 t9
w (a, t) 5 c* x (t) dt9, (1)i E i1 2a

2`

where a denotes the timescale and c* the complex con-
jugate of the so-called mother wavelet c. Wavelets as
considered in this context belong to the quadratic Le-
besgue integrable functions on a compact support. We
do not want to go into mathematical details here and
refer the reader to standard textbooks on wavelets. The
family of wavelets is obtained by expanding and trans-
lating the mother wavelet by a and t9, respectively. In
order to obtain the total wavelet variance of the signal
in the spectral range A 5 [a1, a2] we calculate the ex-
pression

a2 da
A 2e (t) 5 |w (a, t)| . (2)i E i 2aa1

The spectral range index A 5 [a1, a2] can be chosen
either on account of some a priori information or in an
appropriate manner, for example, by maximizing the
climate signal to noise ratio.

The following part is a brief outline of the detection
strategy of Hasselmann (1993), which instead of being
applied to the normal climate signal xi(t) is applied to
the corresponding climate variability signal (t). Let usAei

consider the case A 5 [a1, a2] being fixed due to some

2 The index of xi(t) represents the site number i in a discretized
space (grid variables).
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FIG. 3. Skewness parameter of surface temperature anomalies obtained from the first (upper) and last (lower) 30 years of the scenario-A
experiment. Prior to the analysis all data were detrended quadratically.
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FIG. 4. Skewness parameter of sea level pressure anomalies obtained from the first (upper) and last (lower) 30 years of the scenario-A
experiment. Prior to the analysis all data were detrended quadratically.
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a priori information. For this case we omit the spectral
range index. In a climate change scenario we make the
following linear separation expression for the vector
time series of the wavelet energy

ei(t) 5 (t) 1 ẽi(t),sei (3)

where (t) is the climate change component (the signal),sei

which we plan to detect; and ẽi(t) represents the natural
variability component. In order to obtain a compact ten-
sor notation3 the covariance tensor of natural climate
variability

Cij 5 E[ẽi(t)ẽj(t)] (4)

is chosen as an appropriate metric. Here E denotes the
ensemble mean. A first guess of ei denoted by si can be
estimated, for example, as the leading EOF of ei(t) ob-
tained from a CGCM global warming simulation. Ro-
tating si away from the regions of high variance in ẽi(t)
by the so-called optimal fingerprint

si 5 sj21C ij (5)

yields an optimal squared signal to noise ratio,

i obs 2(s e )i2R 5 , (6)
i 2E [(s ẽ ) ]i

where is obtained from (1) and (2) by taking ob-obsei

servational data. Let us recall that ei(t) is a function of
the spectral range A 5 [a1, a2]. By changing A it is
possible to optimize the signal to noise ratio R even
further. One obtains the condition

i A,obs 2] (s e )i 5 0, j 5 1, 2. (7)
i A 21 2]a E [(s ẽ ) ]j i

The projections of the observations and the natural vari-
ability data (estimated, e.g., from a control simulation
of a CGCM) on the optimal fingerprint si—the so-called
detection variables—are subject to statistical tests. De-
tection at a prescribed significance level is achieved
when the hypothesis that the observed detection variable
can be explained by natural climate variability alone is
rejected at that statistical level.

4. Optimal wavelet fingerprinting of ENSO

In order to apply the optimal spectral fingerprint to
the simulated ENSO behavior it appears suitable (Hegerl
et al. 1997) to reduce the dimensionality of the problem.
Concentrating only on the dominant EOF modes yields

3 Covariant and contravariant tensor notation shall be used. The
summation convention over same indices is used. A covariant metric
tensor gik is introduced to account for the geometry of the problem.
Using the following relation gijgjk 5 dik (Kronecker symbol) it is
possible to switch from covariant to contravariant indices and vice
versa by means of the following equations 5 gij and. . . i . . . . . .X X. . . . . . j . . .

5 gij .. . . . . . j . . .X X. . . i . . . . . .

an appropriate representation. Here we calculated the
10 leading control run EOFs of the interannual (2–5 yr)
wavelet energy of tropical SST anomalies.4 Continental
grid points are masked. Figure 5 depicts the three lead-
ing EOF modes of natural variability of the computed
interannual wavelet energy. The pattern of the first EOF
mode implies that also the dominant variability of in-
terannual climate fluctuations in the Tropics is associ-
ated with the typical El Niño–like structure. The second
and third EOFs accounting for considerably less vari-
ance are characterized by smaller spatial structures,
which are also mainly concentrated in the east Pacific.
In this ten-dimensional EOF basis the estimated co-
variance matrix of ‘‘natural’’ model variability obtains
a simple diagonal form. It should be noted here that due
to the shortness of the observations the natural covari-
ance tensor is estimated from the CGCM control run;
hence, our results have to be interpreted in this model
world of natural variability. A successful detection of
human-caused climate patterns is based on the estima-
tion of a first guess of the expected climate change
signal. Here the guess pattern is estimated from the lead-
ing EOF mode of interannual wavelet energy as sim-
ulated by the greenhouse warming experiment. The op-
timal fingerprint is then obtained by rotating this guess
pattern into those directions that are less contaminated
by natural noise. A detection variable can then be cal-
culated by projecting the data onto the optimal finger-
print.

In order to determine the relative contribution of the
different EOF patterns to the rotation angles in the ten-
dimensional EOF space, we calculate the projection of
the signal guess pattern onto the different control run
EOFs, weighted by the inverse of the respective eigen-
values. These contributions can also be interpreted as
the individual EOF contributions to the squared signal
to noise ratio. Figure 6 shows the result for the 10 lead-
ing EOFs. One observes that the third EOF (shown in
Fig. 5, lower panel) contributes strongest to the signal
to noise ratio. The contribution of higher-order EOFs
(4–10) is quite small. A detection problem can only be
solved adequately if the relative role of higher-order
EOF patterns, which are characterized by small spatial
scales and which might get unphysical and arbitrary
with respect to prior data filtering and the choice of the
geographical region, decreases rapidly. This implies that
the projection of the signal onto the noise EOFs has to
shrink much faster than the associated EOF eigenvalues.
Obviously this is the case in our analysis. Figure 7 dis-
plays the estimated guess pattern and the optimal fin-
gerprint as computed from the signal to noise maxi-

4 The wavelet energy is calculated at each grid point by using the
Morlet wavelet. In order to avoid energy leakage the time series is
buffered on both ends by a fitted autoregressive process of the second
order, which yields rather stable wavelet spectra for the full time
range.
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FIG. 5. (upper) First EOF of the interannual SSTA wavelet energy as obtained from the control experiment accounting for 78% of the
variance; (middle) second EOF (8%); (lower) third EOF (5%).

FIG. 6. Contribution of the natural noise EOFs (Fig. 5) to the
squared signal to noise ratio.

mizing rotation in the ten-dimensional EOF space. The
guess pattern reveals that the ENSO response to green-
house warming is to first-order parallel to the dominant
variability pattern. This strongly justifies the application

of an optimized detection approach. The optimal fin-
gerprint of interannual wavelet energies is characterized
by smaller spatial structures, originating mainly from
the contributions of the second and third control run
EOFs (see Fig. 5).

In order to obtain the detection variable, being at the
core of the detection problem, we project the interannual
SSTA wavelet energies from the observations [Global
Sea-Ice and SST (GISST) dataset 2.2 from 1903 to 1994,
obtained from the Hadley Centre, United Kingdom], the
control and scenario experiments onto the optimal fin-
gerprint. The resulting detection variable of the control
simulation yields the confidence levels of natural var-
iability. Here we aim to explore whether the observed
ENSO evolution deviates substantially from the null hy-
pothesis of natural variability. Figure 8 shows the tem-
poral evolution of the detection variable for the inter-
annual wavelet energies of the greenhouse warming sce-
nario and the observations. In order to allow for a quan-
titative statistical comparison of the detection variables,
a 61 and 2 standard deviation confidence tube of natural
control run variability is also depicted. It should be not-
ed here that the wavelet energy represents somehow the
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FIG. 7. (upper) Guess pattern of the interannual SSTA wavelet energy as obtained from the first EOF of the scenario-A experiment; (lower)
optimal spectral fingerprint as obtained from the signal to noise maximizing rotation of the guess pattern in the ten-dimensional wavelet
energy EOF space of the control run.

FIG. 8. Detection variable of the interannual SSTA wavelet energy (2–5 yr) as obtained from the projection of the
wavelet energy onto the optimal spectral fingerprint (see Fig. 7, lower panel). The detection variables are depicted for
the GISST dataset and the scenario-A integration of ECHAM4/OPYC3. Two confidence limits are shown that char-
acterize the natural variability of the wavelet energies as simulated by the control run.

weighted sum of squares of approximately Gaussian-
distributed random variables. The corresponding distri-
bution of this sum is a x2 distribution. However, esti-
mating the corresponding number of degrees of freedom
is somehow ambiguous in our situation. Figure 8 reveals
that the observed time evolution of ENSO variability is

consistent with the null hypothesis of natural variability.
The greenhouse warming experiment shows a very
strong ENSO sensitivity and the detection variable
leaves the confidence limit around the model year 2000.
However, a reliable estimation of the time when the
scenario run leaves the confidence limit has to take into
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account the fact that the sensitivity of different global
warming trajectories has a statistical spread.

5. Climate predictability and anthropogenic
greenhouse warming

Apart from just understanding the long-term behavior
and sensitivity of interannual climate variability it is
also interesting to study climate, and in particular
ENSO, predictability under changed climate conditions.
For this purpose we introduce a general information
theoretical functional (Gelfand and Yaglom 1957;
Leung and North 1990; Palus 1993). The basic idea is
to define a kind of moving nonlinear autocorrelation for
a time series quantifying the local amount of informa-
tion that is contained in the variable x at time t about
the variable x at time t 1 t . Some further illustration
about this method is given below. Let X be a random
variable with a set of values x and a probability density
p(x), x ∈ x. The entropy H(X) of a random variable X
is defined as

H(X ) 5 2 p(x) lnp(x). (8)O
x∈x

For a pair of random variables X, Y with a joint probability
density p(x, y) the joint entropy H(X, Y) is given by

H(X, Y ) 5 2 p(x, y) lnp(x, y). (9)O O
x∈x y∈c

The average amount of information contained in the
common dynamics of the variables X and Y is quantified
by the mutual information I(X, Y), which is defined as

I(X, Y) 5 H(X) 1 H(Y) 2 H(X, Y). (10)

The idea that links this general nonlinear concept to
predictability is to quantify the amount of information
contained in the variable X(t) about the variable X(t 1
t), also sometimes referred to as the redundancy of X(t)
and X(t 1 t). In this sense the mutual information can
be regarded as a kind of nonlinear correlation for the
prediction horizon t . In this study we compute the re-
dundancy from the data under consideration and a set
of surrogate data, which shall be seen as a representation
of a null hypothesis model. We analyze the statistical
quantity that is computed from the absolute value of the
difference between the redundancy value obtained from
the data and a mean value of a set of surrogates in
standard deviations of the latter. The predictability I(x(t),
x(t 1 t)) and the related statistics are evaluated in slid-
ing overlapping windows with a length of Nw samples
and a window step of Ns samples. Our working hy-
pothesis is stepwise stationarity and ergodicity for the
time series under study. The resulting relative redun-
dancy is expressed in standard deviations of the sur-
rogate redundancy and as a function of model time. This
technique is applied to the Niño 3 SSTA time series of
the ECHAM4/OPYC3 control and scenario-A integra-
tion (upper panel of Fig. 9; the quadratic trend of the

scenario-A time series is not removed). The time series
of the nonlinear relative redundancies are tested against
white noise surrogates. We use a window length of Nw

5 256 samples (months), a window step of Ns 5 3
samples, and a prediction horizon of t 5 6 months. The
predictability measures are shown in Fig. 9 (lower pan-
el). Apparently, there is no clear statistical deviation of
the predictability measure in the greenhouse warming
scenario as compared to the control run. But an inter-
esting feature is the interdecadal modulation of El Niño
predictability. Whether this is an expression of the sto-
chastic nature of ENSO or whether it is related to well-
determined oscillatory physical processes has to be clar-
ified further. Apart from this univariate example, inter-
esting information can be obtained also from the dom-
inant patterns of multivariate information theoretical
functionals.

6. Conclusions

Recently, some intense debate started on the question
whether ENSO statistics has already changed signifi-
cantly during the last few decades (Enfield and Cid
1991; Trenberth and Hoar 1996, 1997; Rajagopolan et
al. 1997). ‘‘Unusual’’ behavior, such as the long warm-
ing period in the tropical Pacific during the early 1990s
or an intensification of ENSO variability since the 1970s
(Gu and Philander 1995) has to be tested against sta-
tistical null hypothesis models for ENSO variability,
which are formulated mostly in terms of linear station-
ary stochastic processes. Detecting nonstationarity of
ENSO, which can either be due to internal variability
or due to external forcing factors, can be facilitated by
taking into account ENSO statistics, which is simulated
by realistic CGCMs. This avoids the somewhat arbitrary
adoption of explicit stochastic null hypothesis models.

Our study aimed to exploit such CGCM information
in order to detect changes in the ENSO variance. It was
documented by a control and greenhouse warming sim-
ulation conducted with a realistic CGCM that higher-
order statistical moments of climate variables carry im-
portant information on the greenhouse warming signal
and may thus improve recent estimates of climate
change detection. An optimal spectral fingerprint was
developed that allows for the detection of changes of
climate variability. Applying this technique to the in-
terannual SST variability in the tropical Pacific provides
a rough estimate of the timescale over which human-
caused changes in the ENSO statistics can be expected
to exceed the level of natural variability. Our results
reveal in particular that recent observed changes of
ENSO variability are consistent with the null hypothesis
of natural climate variability.

Furthermore, the issue was raised as to whether the
general predictability characteristics of ENSO are sub-
ject to global warming. Using an information theoretical
approach no significant change of ENSO predictability
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FIG. 9. (upper) Niño 3 SSTA time series for the ECHAM4/OPYC control and the transient greenhouse warming experiment; (lower)
Relative redundancies for the Niño 3 SST anomalies for a prediction horizon of 6 months. The corresponding surrogate data simulate a
white noise process.

could be detected, which might have been due to non-
linearities and changes of the ENSO irregularity.

Acknowledgments. This work was partly supported
by the German government under Grant 07VKV01/1
and the EU project ENV4-CT98-0714 (SINTEX). I
gratefully acknowledge the helpful comments and sug-
gestions of Profs. K. Hasselmann and G. North. Thanks
also to Drs. P. Heimbach, M. Latif, D. Müller, G. Hegerl,
M. Allen, and G. Lohmann for fruitful discussions. The
CGCM data were kindly provided by Drs. A. Bacher,
J. M. Oberhuber, E. Roeckner, and M. Esch.

REFERENCES

Bacher, A., J. M. Oberhuber, and E. Roeckner, 1997: ENSO dynamics
and seasonal cycle in the tropical Pacific as simulated by the
ECHAM4/OPYC3 coupled general circulation model. Climate
Dyn., 14, 431–450.

Barnett, T. P., 1986: Detection of changes in global tropospheric tem-
perature field induced by greenhouse gases. J. Geophys. Res.,
91, 6659–6667.

Bell, T. L., 1982: Optimal weighting of data to detect climatic change:

Application to the carbon dioxide problem. J. Geophys. Res.,
87, 11 161–11 170.
, 1986: Theory of optimal weighting of data to detect climatic
change. J. Atmos. Sci., 43, 1694–1710.

Enfield, D. B., and L. S. Cid, 1991: Low-frequency changes in El
Niño–Southern Oscillation. J. Climate, 4, 1137–1146.

Gelfand, I. M., and A. M. Yaglom, 1957: Computing information
about a random function that is contained in another one (in
Russian). Sov. Phys.-Uspekhi, 12 (1), 3–52.

Gu, D., and S. G. H. Philander, 1995: Secular changes of annual and
interannual variability in the Tropics during the past century. J.
Climate, 8, 864–876.

Hasselmann, K., 1993: Optimal fingerprints for the detection of time
dependent climate change. J. Climate, 6, 1957–1971.

Hegerl, G. C., and G. R. North, 1997: Comparison of statistically
optimal approaches to detecting anthropogenic climate change.
J. Climate, 10, 1125–1133.
, H. von Storch, K. Hasselmann, B. D. Santer, U. Cubasch, and
P. D. Jones, 1996: Detecting greenhouse gas induced climate
change with an optimal fingerprint method. J. Climate, 9, 2281–
2306.

IPCC, 1992: Climate Change 1992: The Supplementary Report to the
IPCC Scientific Assessment. J. T. Houghton et al., Eds., Cam-
bridge University Press, 200 pp.
, 1996: Climate Change 1996: The IPCC Second Scientific As-
sessment. J. T. Houghton and M. Filho, Eds., Cambridge Uni-
versity Press, 572 pp.



15 JULY 1999 2325T I M M E R M A N N

Kumar, P., and E. Foufoula-Georgiou, 1994: Wavelet analysis in geo-
physics: An introduction. Wavelets in Geophysics, E. Foufoula-
Georgiou and P. Kumar, Eds., Academic Press, 1–43.

Leung, L.-Y., and G. R. North, 1990: Information theory and climate
prediction. J. Climate, 3, 5–14.

Nakamura, H., and J. M. Wallace, 1991: Skewness of low-frequency
fluctuations in the tropospheric circulations during Northen
Hemisphere winter. J. Atmos. Sci., 48, 1441–1448.

North, G. R., and K. Y. Kim, 1995a: Detection of forced climate
signals. Part I: Filter theory. J. Climate, 8, 401–408.
, and , 1995b: Detection of forced climate signals. Part II:
Simulation results. J. Climate, 8, 409–417.

Palmer, T. N., 1997: A nonlinear dynamical perspective on climate
prediction. J. Climate, 12, 575–591.

Palus, M., 1993: Identifying and quantifying chaos by using infor-
mation-theoretic functionals. Time Series Prediction: Forecast-
ing the Future and Understanding the Past, A. D. Weigend and
N. A. Gershenfeld, Eds., Santa Fe Institute Studies in the Sci-
ences of Complexity, Vol. XV, Addison-Wesley, 387–413.

Rajagopolan, B., U. Lall, and M. Cane, 1997: Anomalous ENSO
occurences: An alternate view. J. Climate, 10, 2351–2357.

Roeckner, E., J. M. Oberhuber, A. Bacher, M. Christoph, and I. Kirch-
ner, 1996: ENSO variability and atmospheric response in a global
coupled atmosphere–ocean GCM. Climate Dyn., 12, 737–754.

Santer, B. D., T. M. L. Wigley, and P. D. Jones, 1993: Correlation
methods in fingerprint studies. Climate Dyn., 8, 265–276.

Timmermann, A., J. M. Oberhuber, A. Bacher, M. Esch, M. Latif,
and E. Roeckner, 1999: ENSO response to greenhouse warming.
Nature, in press.

Trenberth, K., and T. Hoar, 1996: The 1990–1995 El Niño–Southern
Oscillation event: Longest on record. Geophys. Res. Lett., 23,
57–60.
, and , 1997: El Niño and climate change. Geophys. Res.
Lett., 24, 3057–3060.

White, G. H., 1980: Skewness, kurtosis and extreme values of North-
ern Hemisphere geopotential heights. Mon. Wea. Rev., 108,
1446–1455.


