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One of the most interesting directions in theoretical high-energy physics is understanding dy-
namical properties of collective states of quantum field theories. The most elementary tool in this
quest are retarded equilibrium correlators governing the linear response theory. In the present letter
we examine tensor networks as a way of determining them in a fully ab initio way in a class of
(141)-dimensional quantum field theories arising as infra-red descriptions of quantum Ising chains.
We show that, complemented with signal analysis using the Prony method, tensor networks calcu-
lations for intermediate times provide a powerful way to explore the structure of singularities of the

correlator in the complex frequency plane.

Introduction and motivation.— Much of the progress in
quantum field theory (QFT) to date has been driven by
challenges posed by quantum chromodynamics (QCD) —
the theory of strong interactions. One such major chal-
lenge, which inspires this work, is the quest for an ab
initio description of ultrarelativistic heavy-ion collisions,
which probe collective states (non-zero energy density)
of strong interactions in a non-equilibrium setting. The
current phenomenological paradigm for these processes
is based on assuming a brief far from equilibrium phase
followed by a long hydrodynamic regime. Important
insights about the hydrodynamic phase (such as trans-
port coefficients) and what directly precedes it (equilibra-
tion/hydrodynamization time scales) have been gained
by studying small perturbations of equilibrium in soluble
models of QCD, such as the holographic (AdS/CFT) de-
scription of strongly-coupled QFTs and kinetic theory
approximation to weakly-interacting QFTs. See, e.g.,
ref. [I] for a birds eye view on some of these questions
and developments.

For an observable O, the response of an equilibrium
state to a perturbation triggered by the corresponding
source J is captured by the retarded thermal two-point
correlator of O

GR(t,z) = i0(t) tr {ps[O(t,2),0(0,0)]}, (1)

where pg is the thermal density matrix and 6(t) the Heav-
iside function. Such a correlator can be thought of as a
change in the expectation value of §(O(t,z)) due to a
Dirac delta source coupled to O and localized at time 0
and position 0. For more general sources J, it is conve-
nient to work in Fourier space (note that we distinguish
functions from their Fourier transforms only through ar-

guments) in which case one has

5(0(t,p)) = / do e GQw.p) T(~w,—p).  (2)

The non-analytic features of Gr summarize many im-
portant features of the response. For instance, for holo-
graphic QFTs described by 2-derivative gravity duals [2--
4], the function has simple poles which give rise to ex-
ponentially decaying terms. These terms can be used to
identify hydrodynamic transport coefficients as well as
the characteristic time needed to transition to a hydro-
dynamic regime.

In addition to single poles there may be branch cuts
as in free QFTs [5] and kinetic theory [6H8], which often
give rise to power-law behaviour in time. In the presence
of branch cuts there are additional subtleties that we
elaborate on later.

Beyond free and strongly-coupled QFTs and kinetic
theory approximations to weakly-coupled QFTs, very lit-
tle is known about time dependence of collective states in
QFT. In recent years, tensor networks (TN) have been re-
vealed as a powerful tool for studying QFT on the lattice
in a fully ab initio way, suitable for simulating time de-
pendent problems or non-zero fermion density, see, e.g.,
refs. [9HIT] for recent reviews of sample developments.

In this letter we explore the use of TN, in particular
matrix product operator (MPO) methods, to study ther-
mal retarded correlators in complexified frequency space
in a completely ab initio way. We focus on a class of
(1+1)-dimensional QFTs arising as the infra-red (IR) de-
scription of quantum Ising models (earlier studied with
TN in ref. [12]). This class includes non-integrable inter-
acting theories hosting a spectrum of non-perturbative
bound states. We cross-check our MPO numerics against



exact QFT predictions using the Ising model in a param-
eter region (vanishing longitudinal field and transverse
field close to criticality) in which the IR is described by
a free massive fermion QFT. We then study the quan-
tum Ising model in the presence of a longitudinal mag-
netic field. We cover both the case of interacting in-
tegrable QFT arising at vanishing transverse magnetic
field, and a generic non-integrable case with both the
transverse and longitudinal magnetic fields. We focus on
the dimension-1 fermion bilinear operator and on a ho-
mogeneous perturbation (i.e. vanishing spatial momen-
tum p) and use the so-called Prony method, see, e.g.,
ref. [I3], to extract the complex frequency plane struc-
ture of correlators from the numerically-obtained real-
time signal. To the best of our knowledge, our results for
interacting QFT's are ab initio predictions.

Ising model and IR QFTs.— The quantum Ising model is
given by the Hamiltonian

L—1 L L
H=-J Zagaﬁl—ﬁ-hZU%%—gZJg . (3)
j=1 j=1 j=1

where J sets an overall energy scale, L denotes the total

number of spins (sites), o _ are Pauli matrices at posi-
tion j and g / h stand for the longitudinal / transverse
(magnetic) field. It is well-known that one can define
complex fermionic operators b; via the Jordan-Wigner

transformation [I4], in terms of which

o) =1-2blb; and ol = (H(1—2b}bl)> (b +b5). (4)

1<j

When the longitudinal field vanishes (¢ = 0), eq.
reduces to a free fermion Hamiltonian.

We can now define two independent Majorana fermion
fields as ¢¥(z = ja) = \/ﬂ/a(b; +b;), and P (x = ja) =
—i\/ﬂ/a(b} — b;), where we have introduced a lattice
spacing a that we take to be a = 2/J. With this pre-
scription, in the continuum limit @ — 0 the fields anti-
commute with each other and, on top of this, satisfy
{t(2), ()} = {¢(x), ¥(y)} = 27 6(z —y). The latter
conditions ensure that their two-point correlation func-
tions in the vacuum in the CFT regime (see below) decay
precisely as x% at long distances.

When L — oo, then there exists a scaling limit such
that the IR (with respect to the lattice spacing a = %)
description of the Hamiltonian is given by the follow-
ing Majorana fermions QFT:

0o . 1 _ _ _
n= [ [2 (60,16 — F0.T) — My
+CM;5/8 a(x)}, (5)

where C ~ 0.062. The parameters M, and M, in the
QFT Hamiltonian have both dimension of mass (inverse
of length) and are related to the ones in the spin chain

Hamiltonian (3)) via Mj, = 2J|1—h| and M, = DJ |g|*/1®
with D = 5.416. The scaling limit, in which the QFT
description appears, then corresponds to taking My, /J —
0 while keeping the ratio M;, /M, fixed, see ref. [I5] for
a nice discussion of the QFT limit. In addition, when
temperature 87! is included, we require 8 J > 1 in order
to only excite the IR degrees of freedom.

If My, = My = 0, then the Hamiltonian describes a
free Majorana fermion (Ising) CFT with central charge
equal to % Operators i) and o are scalar primary
Hermitian operators in this CFT of dimensions A = 1
and A = % respectively. On the lattice, as is apparent
from the relation between Hamiltonians and , these
operators are proportional to ¢ (with proportionality
constant equal simply to —a/7) and o respectively. For
a class of QFTs defined as relevant deformations of the
Ising CFT, i.e. by the Hamiltonian , there are two
kinds of deformations which give rise to integrable QFT:

o My # 0, My = 0: A massive free fermion QFT,
with the fermion mass being M. In this theory,
one can find analytic expressions for the correlators.
Note that in this case the same continuum theory
can be represented by the spin chain in both the
ferro- (h < 1) and para-magnetic (h > 1) phase.

o My, =0, My # 0: This is the interacting integrable
Eg QFT [16], which has a spectrum of 8 massive
and stable particles — fermionic bound states. The
mass of the lightest, M;, is given precisely by M,
and the masses of the heavier particles are shown
in table[ll

The general form of eq. with both i) and ¢ turned
on gives rise to an interacting non-integrable QFT which
contains stable and unstable bound states [16]. In this
letter we study this regime at non-zero temperature
numerically using MPO methods in combination with
Prony analysis (see the text around eq. @D for a dis-
cussion of this data analysis method).

Retarded thermal correlators in solvable cases.— For the
transverse field Ising model, i.e. g = 0 in eq. , and
in the limit of an infinite chain L — oo one can use the
free fermion formulation to find a simple formula for the
retarded thermal correlator for the transverse magneti-
zation o7. At vanishing spatial momentum, which is the
regime of interest in this letter, and upon normalizing o7
to give 711 in the continuum limit, the correlator reads

G};goz (t,p=0)= 2J/ dk (2nx—1) sin® ¢y, sin (2t ex), (6)

where the phases ¢ satisfy tang¢, = hfigolzk, e =

2J/(1+h% —2hcosk) and ny = (1 + €’*)~1 is the
Fermi-Dirac distribution. There is an intuitive under-
standing of the above formula in terms of two-particle
(fermion) exchanges: the integral in this correlator ex-
presses the fact that acting with o excites a continuum
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Figure 1. The analytic structure of the retarded correlator of
o, in the absence of longitudinal field, see eq. @ derived us-
ing the free fermion mapping. The function contains branch
cuts which makes the structure ambiguous. One choice of
branch cut is shown in blue and another one in red. The lat-
ter representation decouples the UV and the IR which makes
it more natural for field theory and in this representation sin-
gle poles related to Matsubara frequencies arise. The Prony
method prefers vertical branch cuts as one can see in fig.[2}

of states, which are distinguished by the relative momen-
tum of the two fermions from which it is built, see eq. ().

The analytic structure of this function in the complex
frequency space is ambiguous, as noted in a similar con-
text in ref. [7]. The natural representation coming from
eq. @ is a branch cut stretching from the IR scale, set
by twice the fermion mass M}, to the ultra-violet (UV)
scale, set by the lattice spacing a. This is shown in blue in
fig. [1l However, one can deform this branch cut to arrive
at a representation which is more natural from a QFT
perspective. In this representation, the UV and the IR
are separated, and there are extra poles coming from the
Fermi-Dirac distribution function. These are nothing but
the fermionic Matsubara frequencies w, = —i%(2n + 1)
for integer n and they are shown in red in fig.[I] Their
contribution is that of a transient, exponentially sup-
pressed effect.

Let us stress here that so far we did not take the QFT
limit (8J — oo with S M), fixed) and, therefore, the
presence of exponentially decaying terms in time evolu-
tion is just a feature of the spin chain in question. The
transients do survive in the QFT limit and give rise to
exponentially suppressed contributions known from QFT
studies using CF'T techniques and holography and moti-
vating to a large degree present work, see, e.g., refs. [2H4].

To make this point apparent, let us note that in (1+1)-
dimensional CFT the retarded two-point function on a
line at finite § is fixed by the conformal symmetry, see
ref. [I7] for a recent overview. For an operator of scaling
dimension A and at p = 0, the retarded correlator has
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Figure 2. Prony reconstruction of the analytic structure for
eq. @ in the case My = 0. The Prony analysis is done for
many different time windows, characterized by the color leg-
end. The results for each window is concatenated into a single
plot. Thus, the fuzziness of a given pole gives a measure of
robustness of our results. Branch cuts are represented by
time-dependent poles, which results in rainbows. Prony cor-
rectly identifies both the transients as well as the UV branch
cuts of fig.[T]

single poles at

w=—i2rT(A+2n) for n=0,1,... (7)
which for A = 1 coincide with single poles present in
eq. @ and that originate from Matsubara frequencies.
Indeed, for a canonically normalized operator of dimen-
sion A = 1 the retarded CFT correlator up to contact
terms reads

_4ry

27 -1
GgA=1(t>O,p:O):—F6_7t (1—6 p ) (8)

and has a sequence of poles at positions with residues
—47  One can check that eq. @ predicts the same
residues for M} = 0 and in the limit 8 J — oo. There-
fore, for transient effects at g = 0 it is the value of residue
rather than its position (which is always the same) that
indicates being in the QFT regime. The residues indicate
that the CFT regime is reached already for J 3 between
5 and 10.

Tensor networks setup and signal analysis.— In order to
analyze the structure of singularities beyond exactly solv-
able cases, we evaluate numerically on the lattice the
time and space dependent 2-point correlators of the form
~ itr(pg o} (t),of]) for t > 0, where pg is the ther-
mal equilibrium state at inverse temperature S. This is
achieved using standard tensor network techniques (see



e.g. [I8H20]). We use finite systems with open bound-
ary conditions. We construct a matrix product opera-
tor (MPO) [211, 22] approximation to the thermal state
using the time evolved block decimation (TEBD) algo-
rithm [23] to simulate imaginary time evolution. In this
method, the evolution operator (in real or imaginary
time) is written as a sequence of discrete time steps of
width &t (Trotter step), and each of them is approxi-
mated by a sequence of two-body operations, which are
sequentially applied on the MPO ansatz. The application
of these gates would generally increase the bond dimen-
sion of the MPO, thus an approximation or truncation
is performed to keep it bounded. The same method is
later used to evolve the MPO in real time after having
perturbed it with a local operator, in order to produce
the thermal response functions [24H26]. Thermal states
of local Hamiltonians can be efficiently approximated by
MPO [27, 28], and the numerical error in this procedure
is dominated by the truncation error induced by the real
time evolution. Its magnitude can be estimated by com-
paring the numerical results obtained for different values
of the maximal allowed bond dimension x. In our cal-
culations, x is chosen large enough to make this error
negligible compared to the remaining sources of numeri-
cal uncertainty and in captions of figures presenting our
results we provide values of key parameters used in our
simulations.

To reconstruct the analytic structure of the retarded
correlator from real time data, we use Prony methods,
see, e.g., ref. [I3] for a review, to represent the function
as a sum of complex exponentials

N .
G(t) = cheﬂ“”“t, (9)
k=1

where ¢, and wj, are complex numbers and N is either
chosen by hand or automatically by the particular imple-
mentation used. Such functions satisfy a linear differen-
tial equation and Prony methods exploit that linearity in
order to determine the frequencies wy independently of
the amplitudes cg. There are many such methods, going
under different names such as ESPRIT, MUSIC, Padé,
linear prediction (used in the context of TN in ref. [24])
etc. In this work we use the ESPRIT algorithm.

One apparent drawback of the Prony method @[) is
that by construction it only allows for poles in frequency
space, not branch cuts. Nevertheless, branch cuts can
still be discovered as they will be represented by a se-
quence of poles. We will apply the Prony method not to
the full time range representing time-dependence of our
correlation functions, but rather to a sequence of time
windows. Complex frequencies which are stable across
different time windows represent then poles and streaks
represent branch cuts. To make it more apparent in our
plots we use different colors to denote different time win-
dows. The fuzziness of a given structure is a measure

of its uncertainty. (Detailed descriptions for a quantita-
tive estimation of this uncertainty and further details are
provided in the supplemental material.) Results of the
data analysis contain also very fuzzy features that we in-
terpret as unphysical and arising as artifacts of various
truncation errors, as well as limitations of the method
itself. To test the promise of the method, we apply it to
a case we understand well through other methods.

Fig.]2| shows an application of the Prony method to
eq. (6) for Mj, =0, i.e. the Ising CFT on a lattice. Com-
paring with exact predictions encapsulated by fig.[I] one
sees that the Prony analysis identifies both branch cuts
and multiple decaying poles lying further away in the
complex plane. This can be contrasted with the stan-
dard Fourier transform, used in a related context in, e.g.,
ref. [29], which specializes in identifying poles that are
close to the real axis.

As we have remarked before, the alignment of branch
cuts and resulting pole structure is ambiguous, so Prony
must implicitly make some choice here. In our experi-
ence, the method prefers to align branch cuts vertically,
along the axis corresponding to the decay rate. Intu-
itively, such a choice is very efficient at late times be-
cause most contributions will be heavily suppressed. In-
deed, this is very similar to the reasoning we outlined
earlier when justifying efficiency of signal representation
in terms of a sum of exponentially suppressed terms when
all singularities are single poles.

In the next two sections we will use TN + Prony to
predict the structure of singularities of correlators in in-
teracting QFTs defined by Hamiltonian .

Singularities of the retarded thermal correlator: masses.—
For a free fermion CFT, the branch cut along the real axis
at p = 0 arises from the exchange of pairs of fermions of
zero net momentum. As we already indicated, turning
on a non-zero longitudinal field leads to a confinement of
fermions and non-perturbative formation of bound states
(mesons). Meson masses are known exactly in the inte-
grable Eg QFT and otherwise were / can be determined
numerically using truncated conformal space approach /
DMRG [19, 30, B1].

The purpose of this section is to use TN+Prony to
show how mesons enter the retarded correlator of i 1)1 at
non-zero temperature 3! and vanishing spatial momen-
tum. The main feature we see for the range of temper-
ature we probe is that mesons appear in the correlator
primarily as single poles corresponding to meson masses
(and decay rate if unstable), see. figs. [3| and

Regarding the accuracy of our prediction, in table [[]
we benchmark the results of a low temperature (basically
vacuum) simulation extracted using TN+Prony with the
analytic results for 7 out of 8 mesons existing in the Eg
QFT and note a rather remarkable agreement. In par-
ticular, in all the cases but the most massive meson we
detect, our predictions match analytics within 1.5% and
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Figure 3. Prony reconstruction of the retarded correlator of
1 close to the vacuum in a non-integrable ferromagnetic
case. The vertical lines indicating masses are taken from
ref. [32]. The dashed lines indicate continuum threshold of
2M; and a boundary state whose value is calculated with
DMRG. The inset zooms in on the 4" and the 5" meson to
show their imaginary parts. All values are consistent with
QFT. Simulation parameters: L = 200,x = 170,Jdt =
0.02, J tmax = 50, 274 order Trotter decomposition.

in three cases within a fraction of percent.

We then consider interacting non-integrable case start-
ing with a low temperature (with respect to the mass of
the lightest meson M;j). The result from TN-+Prony is
shown in fig. [3} As in the Eg case, the frequencies agree
with masses previously calculated in [32] 33]. However,
some poles also develop an imaginary part, a signal that
they are unstable. In particular, the ratio between the
imaginary parts of the fourth and fifth mesons (see inset
in fig. from TN+Prony is 0.22 £+ 0.04, which should
be compared with the value obtained in ref. [34], 0.233.
This feature comes from the absence of integrability and a
presence of continuum of states starting from the thresh-
old of twice the mass of the lightest meson M7, which
includes states of energy in the neighbourhood of unsta-
ble mesons masses.

Apart from the mesons, there is a fuzzy structure
appearing at a frequency slightly below M; as well as
another pole with frequency slightly above than Ms.
This lower frequency arises due to open boundary condi-

My/M;  Ms/My My/My Ms/My Mg/M, M/M,;
TN 1.6147(7) 1.962(1) 2.413(2) 2.936(3) 3.165(6) 3.52(3)
Es 16180 1.9890 2.4049 2.9563 3.2183 3.891

Table 1. Ratios of masses of mesons extracted from
TN+Prony compared to the analytical expectations for the
integrable Eg theory, e.g. Mz/Mi = 2cos ¥ [16]. Note that
in the article we use M,, with n = 1,... to label masses of
mesons for various values of My/M}, not only the Eg QFT
case.
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Figure 4. Prony reconstruction of the retarded correlator of

1) at the highest temperatures we reliably achieve in a non-
integrable ferromagnetic case. The vertical lines indicating
masses is data from ref. [32]. The dashed lines indicate differ-
ences in masses. As these were not seen in the vacuum result,
this is a result of heating the system. In addition, there is
a pole close to the origin, which has a positive imaginary
part. The physical origin of this pole is unknown and we be-
lieve it is an artifact of our numerics. Simulation parameters:
L =200,y = 170, J6t = 0.02, Jtmax = 50, 2°¢ order Trotter
decomposition.

tions we use, which support excitations living close the
edges of the chain. The boundary state energy is found
by a DMRG calculation. The higher frequency lies at
2M; (dashed line in fig. [3), which is the aforementioned
threshold of the two particle continuum indexed by the
relative momenta of the two particles. This should be
associated with a branch cut, i.e. a time dependent pole,
and we believe the latter is a source of the fuzziness. We
should note that the results discussed so far in this sec-
tion are very close to the vacuum.

Calculations are harder when the temperature is raised
and we are forced to stop when we approach the regime
where SM; ~ 1. The clearest signature of thermal effects
(understood as features of the correlator not present at
very low temperatures) is the appearance of poles at lo-
cations corresponding to differences in masses, see fig.[d
Only M5 = M; — M is obvious, but there are signs
of more. Up to our accuracy, we are not able to as-
sess whether the mass or decay rates of mesons change
with increasing temperature, but we can say that residues
associated with these single poles in the correlators de-
crease. In practice, what we mean by this is that the
corresponding coefficients ¢ in eq. @D decay with tem-
perature at fixed values of M} /M, and My/J. It is to be
expected that at sufficiently high temperatures the natu-
ral degrees of freedom become fermions (in rough analogy
to deconfinement in QCD) and we leave this fascinating,
yet numerically challenging problem for future work.

Singularities of the retarded thermal correlator: the lead-
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Figure 5. Extraction of the least damped transient pole for
the non-integrable case using TN+Prony. The continuum
limit is approached from the ferromagnetic phase for fixed
BM;, = 0.5 and for different values of S M.

ing transient.— Beyond meson signatures, an intrinsically
thermal feature of the linear response theory are single
poles in the complex frequency plane that lead to fea-
tures of the correlator decaying exponentially in time
(transients). In fig. |1| one sees indications that a CFT
prediction for the two least damped contributions to the
retarded correlator of i1 is captured by the Prony
method applied to the exact formula @ Similar finding
turns out to also hold when one applies TN to the same
setup.

The question that we want to address now is what hap-
pens to singularities of the retarded correlator residing in
free QFTs at locations specified by eq. @ when we turn
on interactions, i.e. for non-zero g (My). To shed light on
this issue, we fix the transverse perturbation SM} = 0.5
and investigate the behaviour as the longitudinal per-
turbation is increased as SM, ~ {0.27,0.54,1.08,1.62}.
The continuum limit is approached by increasing 5J =
6, 8, and 10. TN simulations of the correlator are then
performed for a spin chain of size L = 100 in a time
interval up to Jt,q: = 10.

What we observe is that the single pole singularity gov-
erning the leading exponential decay not only survives in
the presence of interactions, but, quite surprisingly, for
the value of parameters we consider we do not observe
significant systematic deviations from the free fermion
QFT result i Im(Bw) = —1, see fig. [5| We refer to the
supplemental material for details on the uncertainty esti-
mation based on the Prony analyses and further remarks
on MPO simulations in the (integrable) continuum limit.
When increasing the interaction scale M, with respect to
both 8 and Mj,, and also when increasing 5 J, the un-
certainty in determining the value of the corresponding
complex frequency grows up to 13 % in the ferromagnetic
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Figure 6. Prony reconstruction of the retarded correlator

of 91p in the non-integrable ferromagnetic case for the con-
tinuum limit. The circles represent vacuum meson masses
(from ref. [32]) and the leading transient for the free fermion
QFT case, respectively. The numerical results are in rea-
sonable agreement with these data. Dashed lines indicate
mass differences. Poles on the positive imaginary axis are
attributed to numerical artefacts. Simulation parameters:
L =200, x = 250, J 6t = 0.005, J tmax = 50, 2°¢ order Trotter
decomposition.

phase.

Finally, we want to address the question, whether we
can identify the leading transient and meson states si-
multaneously through our Prony analyses. Such an ex-
ample is shown in fig. [6] for the largest value of the lon-
gitudinal perturbation. The decaying pole is naturally
most visible at early time windows in the Prony analy-
ses, while the first two meson states are most stable at
late times. This demonstrates that the correlator sig-
nal contains proper information of the QFT regime and
thermal effects, which both can be resolved by the Prony
method.

Summary and outlook.— The present letter should be
viewed as a contribution to the study of non-equilibrium
QFT using tensor networks (TN) in an innovative way.
On the one hand, we perform simulations of real-time
thermal correlators in spin chains in the regime of pa-
rameters where a QFT description is possible. On the
other hand, although real time simulations with TN are
usually reliable only for a finite time window, we show
that combining them with a Prony analysis allows us to
extract the analytic structure of the retarded two-point
function in the complex frequency plane (as opposed to
more standard Fourier transform, which probes only the
vicinity of the real frequency axis). Such analytic struc-



ture is known to be a quick and insightful way of sum-
marizing the response of a system to perturbations.

The main results of our paper concern making predic-
tions, in a fully ab initio way, about the response of ther-
mal states to perturbatins, for a class of non-integrable
interacting QFTs. In order to make our findings as ro-
bust as possible, we first developed an intuition about
the QFT regime as probed by Prony in the case when
our spin chain is equivalent to free fermions via Jordan-
Wigner mapping, see figs. [I] and We subsequently
tested the accuracy of our numerics for a highly non-
trivial case of the interacting integrable Eg QFT, identi-
fying in the response function, with very good accuracy,
7 out of 8 bound states (mesons) present in this setup,
see table[ll

In the most interesting case of non-integrable QFTs,
we reproduced both the real and imaginary parts of sev-
eral mesons states, see fig. [3] which were earlier found
in refs. [16, B2H34). The temperature dependence of the
structures in the complex frequency plane can be stud-
ied up to 7! ~ M;. We found that with increasing
temperatures, poles start appearing at frequencies corre-
sponding to differences in masses[4 and that the temper-
ature starts affecting the residues of meson poles. Our
results are stable with respect to variations in the sys-
tem size, bond dimension and other numerical parame-
ters, and they show quantitative agreement with known
results for the spectrum.

Another effect triggered by the temperature are de-
caying (transient) contributions to the correlator , which
in the free fermion case can be related to Matsubara
frequencies [7] and which for holographic CFTs corre-
spond to quasinormal modes of black holes in anti-de
Sitter spacetimes [3, [4]. We have also extracted these
numerically (see figs. . Within our numerical pre-
cision, we find that, for the parameters we considered,
these transients are not affected by interactions or inte-
grability breaking.

Our results suggest a number of interesting problems
that could be studied in future work. First of all, we have
focused on the i1t correlator at zero momentum. But
the numerical methods are equally suited to study the ef-
fect of non-vanishing momentum. It is entirely plausible
that transients’ momentum dependence is going to be sig-
nificantly altered by interactions. Furthermore, it would
be very interesting to push our calculations to larger tem-
peratures and try to see qualitative change in the feature
of the response (meson melting). In our problem, the
IR limit is a massive phase, but in cases where the QFT
interpolates between two CFTs in the UV and IR lim-
its, it is to be expected that the position of transients
changes, even at vanishing momentum [35], and it would
be interesting to confirm it by applying our methods to a
richer spin chain setup. The algorithms employed in this
study do not exhaust the possibilities of TN, and it is an
open question to further explore the applications of other

TN methods (tensor network renormalization [36-38] and
MERA [39, [40], iMPS [41], tangent space methods [42])
in the context of time-dependence of (collective states of)
(141)-dimensional QFTs. Finally, it would be very inter-
esting to try to see if any of the features of our construc-
tion survive in the appropriately defined limit in which
only a few (possibly coarse-grained) degrees of freedom
survive — a setup amenable to quantum simulation.
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From spin chains to real-time thermal field theory using tensor networks:
Supplementary Material (Appendix)

In this supplementary material we discuss some further details of our numerics for the MPO simulations. In
appendix A we make some general remarks about our MPO simulations of the correlator. In appendix B we then
elaborate on the continuum limit for the integrable and non-integrable case and provide details on the extraction of
singularities and their uncertainties.

A. GENERALITIES ABOUT THE MPO SIMULATIONS

0.2F
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Figure 7. Left: Comparison of the transverse (solid curves) and longitudinal (dash-dotted curves) response function obtained
with MPO simulations (for BMj;, = 0.2, SMy = 0 in the ferromagnetic phase) and two values of the lattice spacing. Note that
the longitudinal response is oscillating on a much longer time scale.

Right: Comparison between the MPO simulations (solid lines) and the exact results from free fermions (black dotted lines) for
the transverse response function at the critical point (8My, = BMyz = 0). We observe an excellent agreement for all the lattice
spacing values 8J.

Numerical parameters: L = 100, x = 200, J6t = 0.005, Jtmax = 10, 2°9 order Trotter. Both plots are scaled w.r.t. the minimum
of the correlation function for visual purposes.

The central quantity in our studies is the retarded 2-point function at finite temperature. This linear response
function can be calculated w.r.t. the longitudinal or transverse magnetization. As discussed in the main text, the
scaling dimensions of the corresponding relevant CFT operators differ by a factor of 8. This means that the decay and
oscillation rate for the longitudinal response is too slow to observe within a time scale which our simulations are able
to cover. This applies also to the UV frequencies as visible in Fig. (left panel), in which the longitudinal response
oscillates with a much longer time period.

In the absence of longitudinal perturbations, we can exploit the mapping to free fermions in order to compare the
MPO simulations to the analytical results. The right panel in Fig. shows the (scaled) transverse response function
at criticality for a large range of temperatures. The MPO simulations (colored solid curves) are superimposed with
the integrable solution (dash-dotted curves), demonstrating very good agreement over the whole time range. Near the
ground state for SJ = 8, the signal shows some qualitative variation compared to higher temperatures. This is also
the regime which is relevant for taking the continuum limit 8J — oo, which is described in detail in the next section.

B. THE QUANTUM FIELD THEORY LIMIT

The integrable free fermion case

When M), # 0 and M, = 0, the Hamiltonian can be exactly solved by mapping to free fermions as sketched in the
main text. We can thus apply the Prony analysis to the exact results and compare to the TN numerics.
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We set M), = 0.2 and approach the continuum limit by increasing 5.J, using the values 8J = {2,4, 8,12, 16, 32}.
Going to the continuum limit means that the IR length scale gets larger and we must make sure that it does not
exceed the spin chain size. For a chain of L = 100 sites, the length scale of the mass compared to the chain is
J/(LMy,), which may be too large for 8J > 12. This sequence corresponds to a series of increasing values of the
transverse field h = {0.95,0.975,0.9875,0.991667,0.99375,0.996875}, i.e. approaching the critical point at A = 1 from
the ferromagnetic phase.
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Figure 8. Frequency analysis from Prony for the continuum limit in the integrable case. The figures show the complex values
w/J found by the Prony analyses in a particular time window as indicated by the color bar. The left column is based on the
analytical result for the response function and the right column is obtained with MPO simulations. The imaginary axis is
scaled by 8/(2), such that the first two thermodynamic poles are located at —1 and —3.

Numerical parameters: L = 100, x = 200, J6t = 0.005, Jtmax = 10, 2°4 order Trotter.

In Fig.[§] the result of the Prony analysis is shown for two selected values of 3.J. The left column in Fig.[§|is based
on the analytical result for the infinite system while the right column is based on MPO simulations for a L = 100 spin
chain. From the analytical structure of the correlator, we know that there is a branch cuts stretching between the
two points £2M},/J (near the real axis) and another pair of cuts starting at 8 — 2Mj, stretching out to infinity. These
figures demonstrate how the latter branch cut are approximated by Prony analysis through a nearly vertical line of
poles in the lower imaginary plane. Furthermore, there are purely decaying thermodynamic poles on the imaginary
axis, located at —/%(Zn +1) forneIN [2]. In Fig. these thermodynamic poles would be located at —1,—3,... on
the rescaled imaginary axis. The first thermodynamic pole is for both values of 5J clearly visible in the analytical
result as well as in the MPO simulation. For SJ = 8 also the second pole is visible in both results, while at 5J = 32
only in the analytical case. Overall, the analytic and tensor network picture agree very well. Since the values of
the masses are small compared to the time windows, the branch cut between £2M) cannot be clearly resolved. At
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BJ = 32, one would expect strong finite size effects for a L = 100 chain and indeed, the Prony result contains many

spurious and erratic poles.
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Figure 9. Extraction of the purely decaying thermodynamic poles for the integrable case, based on Prony applied to analytical
result (left) and MPO simulation (right). Error bars denote the calculated location including an uncertainty measure. The
grey lines represent the correct result. As 8J increases, one is approaching the continuum limit and there are two explanations
for why the results start to deviate. Either the chain is too small or the time window is too short. Since also the free fermion
calculation suffers (which uses an infinite chain), it must be the time window.
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Figure 10. Example of the Prony analysis for the MPS simulation of the retarded correlator at 5J = 8. The left plot shows the
position of the first transient on the imaginary axis for every time window (with time increment step ¢ = 0.005). The right
panel plots the corresponding coefficient, multiplied with the inverse time dependence exp[27t/S]. For time windows later than
the vertical red line indicates, the average value shown by the horizontal red line was calculated.

Figure[d] shows how the position of the thermodynamic poles converges to the expectation as we approach the
continuum limit by increasing 5J. The error bars represent the lowest order with analytical result —i Re(fw) =1
and the second pole at — 5= Re(w) = 3 based on the free fermion calculation (blue, left panel) and MPO simulation
(green, right panel). For this analysis, we have applied the Prony method on 75% of all discrete points in the time
evolution and then successively shifted the analysis window towards later times. Based on the statistics obtained in
this way, we calculated the mean value and standard deviation of all poles around the analytical positions. A selected
example of such an analyses is show in Fig. (left panel) for the first transient. Therein, the location of the first
decaying pole on the imaginary axis is plotted for every time window. At early times, the identification is rather
unstable, which is presumably related to the fact that higher order transients are not yet decayed and overlapping the
signal. We thus choose a late enough time window to calculate the mean value and deviation of the pole (indicated
by the red lines). The resulting uncertainty of this analyses is plotted in Fig.@ The first thermodynamic pole can
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be identified in the whole temperature or mass range. For §J < 8 the pole can be resolved with an accuracy below
1%. For SJ = 32 the uncertainty increases to 5% (free fermions) or 18% (MPO). The values based on the analytical
result and MPO simulation differ otherwise only marginally.

The second pole can be only identified in the temperature range 8J = 8...32 (analytical case) or J = §...16
(MPO simulations) with large uncertainty. The reason for this behavior is the fact that at low SJ the branch cut
stretching from the UV obscures the poles on the imaginary axis. On the other hand, at large 5J, the correlation
length increases such that finite size and finite time effects become important in MPO simulations. Since the analytic
results agrees with the MPO results, it is finite time rather than finite size that is responsible for the deviations.
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Figure 11. Extraction of the residue of the first transient in the continuum limit based on the free fermion integral (blue error
bars) and MPO simulation (green error bars). The left panel is at the critical point and the right panel is calculated for finite
transverse mass in the ferromagnetic phase. Grey lines represent the analytical result.

In addition, Fig.[I1] shows the corresponding residues of the first transient in the continuum limit. The left panel
is based on the Prony analyses for the critical Ising chain, while the right one is for the ferromagnetic phase with the
same parameters as before in this section. The values of the residues and their uncertainties are calculated identically
to the procedure for the pole location. An example of this method is shown in the right panel of Fig.[I0] where the
coefficients of the complex exponentials in Prony are multiplied with the inverse time dependence (because of their
decay in time). The residue is then calculated as the mean value of sufficient late time windows. From Fig. it
is visible that the residues to approach the analytical value of the continuum limit (calculated from eq. (@) with
increasing values of SJ. Although the numerical resolution is not optimal, there seems to be a clear shift in the data
between the critical case (8M}, = 0) and the ferromagnetic phase (8M), = 0.2). This suggests that the Prony analyses
is sensitive enough to capture the effect of the finite transverse mass, and importantly, shows that for large enough
BJ the result is indeed a signal in the QFT regime. In more detail, the data in Fig.[IT]also shows that the residue for
very large values of 8J is not correctly captured in the MPO simulation, most likely because of finite size effects and
short time windows.

The non-integrable case

In Fig.[T2] examples of the Prony analysis of the retarded transverse correlation function are shown for two values
of fM,. In the left column, the critical point is approached from the ferromagnetic phase (h < 1) and in the right
column from the paramagnetic phase (h > 1). Similarly to the graph in the integrable case in Fig. the UV branch
cut is approximated by Prony through the nearly vertical line of poles at 8/(27) Re(w) = 13. In all examples, the
first decaying thermodynamic pole on the imaginary axis is visible at %Im(ﬁw) ~ —1. For the largest value of
the integrability breaking SM, ~ 1.62, the corresponding uncertainty is larger in the ferromagnetic phase (lower left
panel), which is visible as a a more blurred set of poles in the Prony picture. The second decaying pole is only partially
visible, we therefore focus on the first pole and neglect meson frequencies for this particular study, since these would
require much larger time intervals.
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Figure 12. Frequency analysis from Prony for the continuum limit in the non-integrable case. The left column is in the
ferromagnetic phase and the right column in the paramagnetic phase. The imaginary axis is scaled with 8J/(27). The two
rows correspond to two values of the integrability breaking SM, at SJ = 10.

Numerical parameters: L = 100, x = 200, J§t = 0.005, Jtmax = 10, 2°4 order Trotter.

The position of the extracted transient poles shown in Fig.[f] in the main text is generated with several parameters
in the Prony method. In particular, we have chosen a cutoff value ¢ in the range 107% < ¢ < 10~* (capturing how
significant modes must be to be included) and the time interval, on which the Prony analysis is applied, is within the
range 75 — 85% of the total time. As for the integrable case described above, the Prony analysis for the shifted time
windows yields an average pole position and standard deviation. The overall uncertainty is estimated by taking the
mean value of several combinations of these parameters, which then is plotted in Fig.[5]

For the same Prony parameters and with the methodology described in the free fermion case above, we calculate
the corresponding residue r; of the first decaying pole. Fig. shows the resulting uncertainties of |r1| in dependence
of the inverse temperature for the ferromagnetic (left panel) and paramagnetic phase (right panel). For a comparison,
the analyses was also applied to the integrable case by setting M, = 0 (black errorbars). Its corresponding analytical
value in the continuum limit is shown as grey dashed line. Similarly to the pole locations, the uncertainty is increasing
for larger values of 5J and M. For larger longitudinal perturbations, the residues seem to exhibit the tendency to
decrease in the ferromagnetic and increase in the paramagnetic phase for larger values of 8J. The orange errorbars
correspond to the situation when the transverse (8M};, = 0.5) and longitudinal perturbation (8M, ~ 0.54) are nearly
at the same order. The corresponding data seem to be consistent with the integrable result, i.e. the longitudinal
perturbation does not seem to influence the residue.
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Figure 13. Extracted residues from Pronys method for the non-integrable regime in the ferromagentic (left) and paramagnetic
phase (right) in the continuum limit. The data are shown in dependence on BJ for several values of the integrability breaking
BM,. Black errorbars denote the analytical value for the integrable case (M, = 0). The curves are shown slightly displaced

for graphical purposes.
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