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The string corrections ofitree-level opensstring amplitudes can be described by
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Selberg integrals satisfying a*Knizhnik-Zamolodchikov (KZ) equation. This al-
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lows for a recursion of the o/-expansion of tree-level string corrections in the
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number of external states using the Drinfeld associator.
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While the feasibility of this recursion is well-known, we provide a mathemat-
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ical description in terms of twisted de Rham theory and intersection numbers
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of twisted forms. In particular, this leads to purely combinatorial expressions
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for the matrix representation of the Lie algebra generators appearing in the KZ
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equation in‘terms of directed graphs. This, in turn, admits efficient algorithms

N
N

for symbélic,and numerical computations using adjacency matrices of directed
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graphsdand is aperucial step towards analogous recursions and algorithms at

w
o

higher genera.
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1 Introduction

Tree-level amplitudes of superstringsfurnish a prime example of the richness of the mathematical
structures underlying scatteringfamplitudes. Recent developments [1-4] revealed the particular
importance of twistedsdesRham theory, which seems to be a language suitable to express various
results for scattering amplitudes in quantum field and string theory in a rigorous mathematical
framework. Such fundamental.descriptions may reveal new insights, connect known results and
promote the understanding of physical phenomena in the context of amplitude calculations.

The calculatien of open tree-level superstring amplitudes is an important problem since it
might shed sgme light on the calculation of more complicated scattering amplitudes in physical
(quantum field) theories. In particular, recursive methods which generate solutions using linear
algebra exclusivelyrinstead of direct evaluations of the integrals are of special interest, since
matrix multiplications can be readily implemented in computer algebra systems and efficiently
evaluated numerically. Examples of such techniques can be found in refs. [5,6], where tree-level
amplitude récursions for the o/-expansion of superstring amplitudes are proposed.

The recursion described in ref. [5] is based on the mathematical structure of Selberg inte-
grals [7-9] occurring in tree-level open-superstring amplitudes. However, the relevant matrices
necessary for the recursion are not provided and it has not yet been formulated in terms of
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twisted de Rham theory. In these notes, we state this recursion relation in terms of intersection
numbers and add some observations crucial for the understanding of the recursive mechanism.
We show in particular that the required matrices are braid matrices and describe a graphical
algorithm to calculate them explicitly. Since the relevant properties of the Selberg integrals
can be recovered in a certain class of genus-one integrals relevant for loop-level amplitudes, this
investigation helps paving the way for amplitude recursions at higher genera. In particular, this
work is accompanied by the article [10], in which such a genus-one recursion is propesed and
an explicit derivation of how to relate the one-loop string corrections to the genus-zero integrals
discussed in the present article is given.

This article is structured as follows: in section 2, we introduce the mathematical and physi-
cal preliminaries by providing a brief introduction to twisted de Rham theory andvan overview
of tree-level open-superstring amplitudes. Furthermore, we review the Knizhnik-Zamolodchikov
(KZ) equation and the Drinfeld associator, which are the fundamental ingredients of the re-
cursion. In section 3, we present and reformulate the recursion of ref. |5]\1n the language of
twisted de Rham theory and thereby provide a general formalismhdelivering/the missing matrix
representation of the Lie algebra generators which form the alphabethused in the construction
of the Drinfeld associator.

2 Background: string amplitudes initwisted'de Rham theory

The purpose of this section is to introduce the mathematical and physical preliminaries. How-
ever, this introduction remains on the level of a brief/foverview and we recommend consulting
the literature stated below for a more completérand rigorous treatment of the relevant topics.

2.1 Twisted de Rham theory

We would like to get started with a briefiintroduction to twisted de Rham theory, whose main
content is the investigation of differential forms,with multi-valued coefficients. Such structures
are omnipresent in string amplitudescalculations, where certain branch choices of the multi-
valued coefficients lead to the physical amplitudes. We follow the lines of refs. [3,4,11] for the
statements about twisted de Rham theory and their connection to superstring amplitudes. The
fundamental definitions and their\properties are primarily based on ref. [12], where the whole
theory is constructed rigorously.
The central objectsiin twisted.de Rham theory are integrals of the form

/AW’ (2.1)

where i
u(z) = Hf,(z)al , a; € C\Z, (2.2)
is a multi-valueddproduct of polynomials f;(z) = fi(z1, 22, ..., 2,) defined on the n-dimensional
affine variety
k
M=C"\D, D=Di, Di={fiz)=0}.
i=1

The n-dimensional region of integration A is an n-simplex with boundaries on the divisor D
and, thus, constitutes a topological cycle. The factor ¢ is a smooth n-form on M.
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Since the function v is multi-valued, instead of working on the covering space of M, a certain
branch ua of u on A can be specified to render the integral (2.1) well-defined. This specification
accounts for the "twist” in twisted de Rham theory and is noted by specifying the integration
region via

/ w= / [fixed branch ua of uw on A] ¢. (2.3)
A®UA A

In the above definition, the integration region A is said to be loaded with ua & Considering a
smooth (n — 1)-form ¢ and defining the single-valued one-form

w=dlogu
as well as the integrable connection V,, by the equation
Vep=dp+wAp, (2.4)

Stokes’ theorem implies

/szfAd<w>=/A®uAvww- (2.5)

Note that eq. (2.4) indeed defines an integrable conneétion, since it implies that
L
Vw 9] Vw = O ‘

Relation (2.5) can be entirely expressed in terms of\loaded integration domains if the boundary
operator J,, for the n-simplex A = (01 ---n) is defined as follows

n

=0

i) 18 the restriction of the branch ...,y of u to the i-th face of (01---n) and 7

denotes that we omit the i-th coordinate: (01---7---n) = (01---i—1i+1---n). This definition
implies in particular that

0,00, =0.

Using the above definitions, the twisted version of Stokes’ theorem can be expressed as

IR
A®’U,A {L,(A@uA)

Since u vanishes on the boundary 0A of the n-simplex, adding V& to ¢, where £ is an
(n — 1)-form on M does not change the result of the integral (2.3). Therefore, it is convenient
to define the quotient vector space

H"(M,V,) =ker(V,)/im(V,),

called them-th twisted cohomology. Its elements are referred to as twisted forms or twisted cocy-
élesywhich we denote according to the notation of refs. [4,11] by (p| € H"(M, V,,). Moreover, a
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dual! vector space H"(M, V) can be defined by replacing the connection V,, with VY = V_,
and its elements are denoted by |¢) € H"(M, V) .

Having introduced a twisted version of de Rham cohomology, a twisted analogue of homology
can be defined via a brief detour to homology with coefficients. This formalism allows to keep
track of the local branches of u in the integration regions A ® ua and can be introduced as
follows: the differential equation

VIiE=0 (2.6)

admits the formal solution
& =cu, ceC.

Therefore, the space of local solutions has the complex dimension one. For a locally finite open
cover X = |J; U;, two local solutions &;, {; on U; and Uj, respectively, With\Uij =U;,NU; # 9,
satisfy

& = Gij&;

for some (;; € C. On the other hand, any local solution { ondU;; can beexpressed as
§ = G& = (&

for some (;,(; € C such that ¢; = Q;lgj. Therefore, the.local solutions of eq. (2.6) define upon
gluing together the fibres {(;} by the transition functions {C;‘} a flat line bundle £,. Hence,
the boundary operator J,, defines a map between chain groups with coefficients in £,. This

leads to the definition of the n-th twisted homology group
H,(M, L) = ker(d,,)/im(d,),

where the elements are called twisted cyclessand are denoted by |o] € H,, (M, L,,). A dual vector
space H, (M, L) with elements{[g| € H, (M, £Y) is analogously defined by the dual line bundle
L) of L, which, in turn, is defined by.the local solutions of the differential equation

Vo€ =0

with generic solutions of the form éu~' for ¢ € C and hence, with the associated transition
functions {C;;}.

In order to define convergent integrals with twisted cycles and twisted forms for a possibly
non-compact manifold My, it isiconvenient to introduce the n-th locally finite twisted homology
group H¥(M, £,,), which is constructed in analogy to H, (M, L,) with the simplices required
to be locally finites Similarly, the n-th compactly supported twisted cohomology HZ(M,V,,) is
defined to be/the twisted eehomology of differential forms with compact support.

The vector spaces [defined above are related by various dualities leading to non-degenerate
pairings /Important’examples include the following non-degenerate bilinear forms [12]:

o _the pairing of a twisted form and a locally finite cycle

H™(M,V,) x Hf(M,L,) — C
(el o]) = (plo] = J,up,

'Below, the notion of “duality” among H™(M, V), H"(M,VY) and H,(M,L,) as well as H, (M, L)) is
diseussed by introducing the associated non-degenerate pairings.

(2.7)
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e the pairing of a twisted form with compact support and a twisted form

H"(M,V,) x HY(M,VY) — C (2.8)
(], 1)) = (eld) = [y A, '
called intersection number of twisted forms,
e and the pairing of a twisted cycle with a locally finite twisted cycle
H, (M, L)) x HY(M, L,
(M, LY) x HE(M, L) — C (29)

(ol 171) = [ol],
which is defined to be the intersection number [13] of the two cyclés.

The non-degeneracy of the last two examples is a consequence of the dualityof the vector spaces
H"(M,V,) and H"(M,V})) as well as H, (M, L) and H, (M, L), which was mentioned above.
Note that as a consequence of a theorem in twisted de Rhamdtheory, the' dimensions of the
twisted homology and cohomology coincide dim (H"(M,V,,)) = dim(H, (M, L,)) [12]. The
same holds for the dual vector spaces, as well as the locally finite homology and the compactly
supported twisted de Rham cohomology.

Since twisted cycles and twisted forms are vectors,, they are, in particular, independent of
the choice of a basis in the corresponding vector spaces,andstheir representation with respect to
a given basis has to change accordingly under a change of basis4Such a basis transformation can
be described as follows in twisted de Rham cohomolegy/(and similarly for the twisted homology):
let {(pi|} and {]1;)} be bases of H"(M, V) and H"(M;V)), respectively. The basis elements
(pi] can be expressed in terms of another basis {(&|pof H™ (M, V,,) by the master decomposition
formula [14]

d d
(il = 2 big (&1 =2 {eiled(© D (2.10)
j=1 k=1
where d = dim (H"(M,V,,)) and C'is the matrix of intersection numbers of the twisted forms

(€5 = (&ilvy) - (2.11)
N

In order to distinguish betwgen differential forms, integrals and twisted forms, we adopt the
following conventionsy differential forms are generally denoted by small letters f and an integral
of a differential form ©ver a previously specified integration domain A by the corresponding
capital letter F' = [ f,ire. thedifferential form in F'is f. The twisted cohomology class of f is
denoted by the twisted form (f|, such that (f|A) = [rg,, f. Moreover, a vector of differential
forms, integrals.and twisted forms is denoted by the corresponding bold letter f, F or (f|,
respectively.

2.2 Open-superstring amplitudes at tree level

Having introduced the relevant mathematical setup for this article, in this subsection, we are
going to introduce the corresponding physical objects. We review different representations of
the final results of colour-ordered, tree-level open-superstring amplitudes involving N massless
states, caleulated in refs. [15, 16] using methods from pure spinor cohomology [17], and their
eonnection to twisted de Rham theory according to refs. [3,4,11]. Since we mostly consider tree-
level amplitudes in open-superstring theory, we generally refer to them as amplitudes without
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further specification and will be more specific in case amplitudes arising in other theories are
considered.

The worldsheet of NV interacting closed strings at tree level can be mapped by conformal sym-
metry to a Riemann surface of genus zero ¥ = CP!. External closed-string states are mapped to
vertex operators leading to N punctures on the Riemann sphere CP!. However, this configuras
tion exhibits an SL(2, C) redundancy, which can be used to fix three insertion points, usually cho-
sen to be (21, z2y-1, 2n) = (0, 1,00), leaving a constant factor of (z1 —zn_1)(2ny—1 — 2N )(21 — 2N)
in the amplitude integral due to the Faddeev—Popov Jacobian. While closed-string amplitudes
are integrals over the full Riemann sphere CP!, open strings propagating in Spacetime can be
described by one hemisphere of CP': a disk topology. The corresponding‘@pen-string ampli-
tudes are integrals on the disk boundary with N punctures, where the beundary is.represented
as the real line (plus infinity) RP' € CP! of the Riemann sphere with the corresponding redun-
dancy from the conformal Killing group SL(2,R) of the disk topology.” Therefore, the relevant
geometry which includes closed- and open-string integrals at tree levelds the moduli space of
N-punctured Riemann spheres

Mo n = Confy(CPY)/SL(2,C)

={(22,23,...,2N_2) € ((CPl)N_3|zi # 21,25, Z2n—14enfor albi'# j € {2,3,...,N — 2}}
(2.12)

and the natural labelling of the insertion points is given by
O0=21 < zo< - < zy1=1. (213)

In order to formulate the amplitude recursion forropen tree-level amplitudes in section 3, an
auxiliary point zo at the position zy_9.< 20 < zpn—_1 has been introduced in ref. [5], leading to
N + 1 punctures on the boundary of the disk. Tfithis puncture zg is included, it turns out to be
more convenient to introduce another labelling convention than the one given in eq. (2.13). This
second labelling is adapted to the recursive differential equations satisfied by Selberg integrals
associated to the n = N + 1 times punctured boundary of the disk and is denoted by xz; with
the gauge fixing (z1, 2, x3) = (50,0, 1) and'the ordering < defined by

N
O0=xo <y LTty <---<w3=1, ==z <), (2.14)

as depicted in figure 1.
Since x4 = zp is-the auxiliary point parametrising the integration region of the iterated
integrals in the tree-level amplitude recursion, x4 will serve as the variable in the relevant

I < ” \

0:1'2 Ty Tp—1 Ty T4 (L’3:1

Figure 1: The non-standard labelling convention used for the n punctures on the Riemann sphere. The
variable position x4 is the auxiliary marked point in the amplitude recursion.
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differential equation. The two labellings are identified as follows:
O=z1=22<20=2p, <23=Tp_1<--<2N-2=05<z0=x4<zy-1=x3=1 (2.15)
and zy = x1 = oo. Thus the corresponding permutation is
Olabel(4,2,n,m —1,...,5,3,1) = (0,1,2,3,...,N —2,N — 1, N),

such that z; = oapelzi = 2 0)- Similarly, we denote the dimensionless Mandélstam variables

Ulabel(

corresponding to the labelling z; defined in eq. (2.13) by
Sivieim = Sitsizeim = @ (Kiy + Kiy + -+ + ki, )?

where k; denotes the external on-shell momentum corresponding to the insertion point z; and
where o is the universal Regge slope, proportional to the inverse stfing tefision. In terms of the
labelling x; or the ordering <, respectively, the Mandelstam variables are denoted by

tiris...im = OlabelSitiz...im - (2.16)

2.2.1 Colour-ordered amplitudes

Colour-ordered, tree-level superstring amplitudes of 4V, massless, open-string states are given
by [15,16] &

Agpen(ILa’) = Y~ Ff(o/YAu (1,0 (296, N —2) , N —1,N) , (2.17)

O'ESN 3

where the amplitudes Ayy constitutena, basis of, Yang-Mills amplitudes and Fjj denotes the
string corrections, which are given by a,generalised Euler integral, a linear combination of
Selberg integrals [7],

N-2 k-1
Fo = ( NSH/ dzZKNa<HZ ) (2.18)

k=2 m=1 ~mk

N
where z;; = z; j = 2z; — z; and thé Koba~Nielsen factor is denoted by
KN= [ [|z5/°. (2.19)
1<i<j<N-1

Note that the Kobha—Nielsen factor corresponds to the multi-valued factor u(z) in the string
amplitudes mentioned at the beginning of subsection 2.1, where the relevant branch for the
string corrections is chosen. to be the real-valued function defined in eq. (2.19). The permutation
o € Sy_3 in eq. (2.18) acts on all the indices 2 < i < N — 2 within the brackets to the right of
o. The integrationndomain D(II) is determined by II € Sy_3 according to 2r;) < zm(i41) for
2<i<IN-2.

Using integration by parts, the integrals F{] can be represented in N — 2 equivalent ways.
These repregentations are parametrised by 1 < v < N — 2 and given by the integrals [18]

v k—1

N-2 N—2 _
Fﬁ’l,:(—l)N:)’l—[Q/D( dz KNo [ ] D Sik 11 Z Sml) (2.20)

k=2 j=1 Zik = v+1l=m+1 Zml

Page 8 of 45
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such that the original integral corresponds to the representation labelled by v = N — 2
i=Fiy-2-

2.2.2 Parke—Taylor forms and Z-theory amplitudes

The integrals Fj can be expressed in terms of another basis of integrals. It consists.of integrals
of Parke-Taylor forms [19]

dpn

PT(o) =
Hﬁvzl Zo(i),0(i+1)

)

where o € Sy, with the notational simplification o(N + 1) = o(1). The/measuresis given by

d :—/\ﬁil dzi =z z z N/sz« -
UN vol (SL(Q,R)) 1,N—1ZN—-1,NZ1,N A i

where the three punctures (z1, zy—1, 2n5) = (0, 1, 00) have been fixed to get rid of the redundancy
from the conformal Killing group SL(2,R) of the disk topology. The integrals are given by

Zu(o) = / KN PE(o), (2.21)
D)

which are the amplitudes appearing in a certain Zttheory [6): y
The invertible transformation to the integrals Ff is

F=EDN2 > S, v) o2, a1, p2,...,N-2),N,N—1), (2.22)
pPESN_3

where the so-called momentum kernel [20,21] is given by [18]

N-3

j—1
S [,O (2’ s N = 2) ‘O- (27 o, NP 2)]1 = H (Sl,p(j) + Z e(p(j)vp(k))sp(j),p(k)> (2'23)
k=2

=2

and 6 equals one if the ordering 0?73(3') and p(k) is the same in the ordered sets p (2,..., N — 2)
and o (2,...,N —2), and zero if it is reversed. As in eq. (2.22) for the integrals F{j, any
representation Fj , may be expressed in terms of the disk integrals Zyj using the identity

Slpa(2,...,v)|c(2,...,v v kol Sm
Z [pa( )lo ( )]1:U(sz>7

PES, 1 pPo (Z1,2 .- 21/71,1/) 2 m—=1 “mk

such that

Fg=E0% > Slpo2,....v)|0(2,....v)]

pesufl
Y Slro(N=2,...,v+1)|o(N=2,....,v+ 1)y,
TGSN—2—1/
Zn(l,po(2,...,v),N,70 (N —=1,...,v+1),N —1), (2.24)
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where 7(1,...,m) = 7(m,...,1). Using relations such as [18§]

Zn(l,a,N —1,8)= (-1 3" zZy(1,0,N - 1),

aEamB

the string corrections to open-superstring amplitudes can be expressed as some linear/combina-
tions

Fi =Y _nfi(p) Zu(p)
v
over a set of (N — 3)! permutations ~.

2.2.3 Amplitudes in twisted de Rham theory

Rephrasing amplitudes in terms of Parke—Taylor forms admits a convenient formulation in terms
of twisted de Rham theory. While the differential forms are defined on the moduli space My v,
the function u defining the integrable connection V,, in eq. (2.4) with & = dlogu is given by
the multi-valued function

u(z) = H z;;fj (2.25)

1<i<j<N-1

with real branch the Koba—Nielsen factor, i.e. eq. (2.19)." The twisted cycles corresponding to

the integration domain D(II) are denoted by [3] IS
C(I) = Ay 3 @uag .  An-4(L) = {0 Sznfe) < znE) < -+ < znw-2) <1},
(2.26)
where
STI(i s 1
uag_,an(z) SN ="~ znng)
1<i<j<N-1

is the real branch of u(z) on A%, _g(I)s,Moreover, the Mandelstam variables s;; are assumed to
meet the conditions in ref. [22], i.e. that they are sufficiently generic, see also ref. [23], such that
the only non-vanishing cohomologyis F(Mon, V) with k = dim(Mq y) = N — 3. In order
to simplify notation, the abbreviations

HY = H ¥ Mo n Vo), HYP = HY (Mo, V),
Hyeg= Hll\ff—3(M0,N’ Ly), &33 = Hll\ff—3(M0,Nv£<\u/)

are used. The difnensions of HY =% and H%,_, coincide [12] and are given by [8]
dim (H) =) = dim (H_3) = (N = 3)!. (2.27)

We defire the intersection number of two twisted forms (p| € HY =% and [¢) € HY 3 according
to the intersection number (2.8) by

N-3 N-3
HY 72 x HZ

({eel: [9))

C

%
(o) = g at YA )

10
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where ¢, : HY ™3 — HN73(My y, V) is the map constructed in ref. [4] such that i,(¢) has
compact support and defines the same twisted cohomology class as .
Using the above definitions, the Z-theory amplitudes (2.21) can be expressed as the pairing

Zn(o) = (PT(0)|C(ID)] (2-28)

and eq. (2.27) ensures that for a fixed permutation II, there are (N — 3)! linearly dndependent
amplitudes Zpj(o) which correspond to a basis of twisted forms (PT(c)| € “H) 3 labelledsby
(N — 3)! distinct permutations o. Practically, this means that for any additienal permutation
p, the amplitude Zpj(p) is a linear combination of the amplitudes Zp(o) ebtained byypartial
fractioning and integration by parts.

2.2.4 Fibration bases

It turns out that for the discussion in the next section yet another basis of HY=3 than the
one spanned by the Parke-Taylor forms is useful. This is the so<called fibration basis [4] which
belongs to a more general class of bases, all of which we simply call fibration bases and which
define for each p in 3 < p < n a basis of the twisted cohomology of the configuration space of
n — p points on CP!\ {z1,2,...,7,} with the p fixed coordinates {@1, r2, ..., 7, }:

Fop ={(@ps1,Tpt2,...,2n) € ((CPI)”_”NZ' FJ @y F T1,T2, ..., Tp, T} (2.29)

The fibration in p is defined by an inclusion map 4,.: F, , <> F, p—1 which forgets the fixation
of points enlarging the configuration spaces,p decreases:/beginning with all the n punctures
on the Riemann sphere being fixed, the configuration space F,,,, is a single point. Forgetting
the fixing of z,, yields the larger configuration space w, ,—1 and repeating the application of
this forgetful map n — 3 times leads to Fygypwhere the definition (2.12) of the moduli space of
n-punctured Riemann spheres can be recovered: F, 3 = My . As shown in the next section,
the fibration bases for p = 3 andwp = 4 are well=suited for the study of the amplitude recursion
established in ref. [5]. The fibratiomybases can be introduced using the coordinates z; of the
n = N 41 punctures and by arranging the representative differential forms of the twisted forms
which constitute the basis of the twisted de Rham cohomology of F,, , in a single vector, which
is recursively defined as follows: ae récursion starts with f% = (f»%) = (1) and iterates for
p and ¢ such that 3 < ¢ < p <4 by defining the g-th subvector of fP7~%% in terms of the vector
2+ as

d
(fp_1’+)q — fg—l,-i- — ﬁ A fpv-‘r . (230)
Tp,q

Therefore, the enfries of the vector fP~1F can be labelled as follows

4 1 dx dr,41 dx
(P2 i i = Fo = A AN (2.31)
prlp+ly-sin 1pslp+1se-yin . 3 R
Lpip Lp+1,ips1 Tnin

where 3(< i, < k.
The veetor (f# | contains the fibration basis of the twisted cohomology of F,, , and satisfies
for/3 < p < the differential equation

d(fPT] = @y A (T (2.32)

11
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where

and Q;j are called braid matrices, which satisfy for distinct ¢, j, k, [ the infinitesimal pure braid
relations [24, 25]
gl =0, ©f o 0f) =0 29)

These matrices contain the information about the braiding of different fibres ofithe meduli space
of punctured Riemann spheres and are recursively defined as follows [4]: the recursion starts
with Q% = s;; and iterates according to

Qy if g =r,q# 4],
Qb+ QU ifq=r=1i,j#1,20 "
QY+ QU+ QP9 if g =1 =iy=1,2,

. Q;',p—i—ﬂfl',q if g =r.=j,

(Q;]_l)qr - —ng if q = i,’l” = j, (234)

—Qp if ¢ = 7,2,
Qi if je=1,r=1,q%#1,
QL if g =2, ¢=1,7 # i,
0 otherwise .

Simple examples are for n = 5 the following results

t 0 t t —t
Qig _ [ ta2 : [ 43 + 54 54 (2.35)
ts3 542 —153 t43 + t53

and for n = 6 the matrices

tyo 0 0 0 0 0
tea . l6a2 tes 0 0 0
932 _ O 0 t42 0 0 0
53 +1tg5s O —tgs  tsaz O 0
0 t53 0 te3 tesaz O
“t63 0 tsz+tes tes 0 tesaz
as well as
Qi _
48—
ta3+tsa+tea —t64 0 —t54 0 0
—te3 tas+ts4+te3+ies —te5 0 —t54 — o5 tes
0 —tga t43+1t54+16a 0 lo4 —t54 — loa
—t53 = les 0 tes taz+tss+tea+tes —t64 —tgs5
0 —t53 0 —tg3 taz+ts3+te3 0
te3 0 —t53 — t63 —tg3 0 taz+ts53+163

The differential equation with respect to x4 satisfied by the vector ( f4’+\ is of particular im-
portanee for our investigation below (recall that x4 = zp is the auxiliary insertion point in the

12
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context of the N-point amplitude recursion in ref. [5])

42 43
S24 524

0
afm<f47+(w4)! = ( + _1> (F45 ()] (2.36)

Xq Xq

A differential equation of this form is called Knizhnik-Zamolodchikov (KZ) equation 26/

2.3 KZ equation

The KZ equation is not only the backbone of the amplitude recursion of ref/[5| butyhas some
remarkable mathematical properties and, in particular, a beautiful connection to,polylogarithms.
In this section, some of its properties are reviewed following the lines of xéf."[27]. These will be
the last mathematical preliminaries required to state the amplitude recursion i '‘the following
section.

Let eg and e; be representations of two Lie algebra generators and F a function of z €
C\ {0,1} with values F(z) in the vector space the representations ey, e; act on, such that F
satisfies the KZ equation

dF(z) (e()+ el

z z—1

) F(2). (2.37)

Due to the singularities in the KZ equation at z = 0, 1;;thesboundary values of F' as z — 0 and
z — 1 need to be regularised /S

Cy= llg% 2% F(z), C, = ll_)H%(l —2) ' F(z). (2.38)

As reviewed in the remaining part of this subsection, these two regularised boundary values are
related by the so-called Drinfeld associator@®(eg, 1) [28,29] according to the associator equation

Cl = @(60,61)00. (239)

The Drinfeld associator may be expressed in terms of a series involving commutators of ey and
e; with the coefficients being multiple zeta values, which was originally shown in ref. [30] and
which is reviewed in this paragraphyfollowing the lines of ref. [27]. Multiple zeta values
are multiple polylogarithms evaluatéd at z = 1, if they converge. Multiple polylogarithms? in
one variable G, in turnyare a subgelass of the Goncharov polylogarithms [31] and multi-valued
functions on C\ {0, 14, indexed by words w € {ep,e1}* generated by the letters ey and ey,
which satisfy for ¢ =0, 1 the differential equations

dz dz

dGe'w = iGw 5 = = 2.40
o) =wiGu(s),  wo=T,  w= (2.40)
The boundary wvalues at z =0 are determined by
: log"(z)
ll_I}I(l) Guw(z) =0, Gep(2) = T (2.41)

ZNote thaththis convention differs from the usual definition in terms of sums on |z| < 1 by a sign: for

e1, n; > 1, they are related according to Gw(z) = (—1)" Zl<k1<-~<k kL =

R

1 r
(=1)" Liny,iin,. (2). Due to this close relation, we call the subclass G (z) of the Goncharov polylogarithms
simply multiple polylogarithms, while multiple zeta values are the values Lin, ... n, (1).

ne—1

- ny—1
w = €

61...60

13
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where w is a word not beginning with ey, and by the shuffle product
Gw/(Z)G,w//(Z) = Gw/ww//(z) s

where w’, w” € {eg, e1}*, which can be used to relate the remaining cases to the two boundary
values in eq. (2.41).
Using the above definitions, multiple zeta values are labelled by words of the fotm

-1 ny—1
w=e;" e ...e' ‘e (2:42)

with n, > 2, i.e. not beginning with e;, which lead to convergent values, defined by

r 1
Cw = (_1) Gw(l) = Z W = Cnl,...,nT . (2-43)
O0<ky<--<ky 1 r
~

This definition can be generalised to any word w € {eg, e; }* using the following regularisation,
which is the tangential base point regularisation [32] pointing in thepositive direction at z = 0
and pointing in the opposite direction at z = 1, respectivelys27]. The regularisation as z — 0
corresponds to the choices of the boundary values (2.41), awhile the regularisation as z — 1 is
required to tame the pole of the differential form dz/(Z — 1)in,the outermost integration at
z = 1. This effectively results® for any words w, w’ and ;. > 2 in the definitions [27]

CE():C61:07 y

- nyp—1 —
Cegr 161--~601 Cnl,...,nTa

C’wa’ R C’wmw’ . (2‘44)

The above definitions can be related to theKZ equation by considering the following gener-
ating function of the multiple polylogarithms

L(z) = Z w Gy(2).

we{ep,eq }*

By the differential equations (2.40), this function satisfies the KZ equation (2.37). Furthermore,
the boundary conditions (2.41) €losetto z = 0 imply the asymptotic behaviour

L(z) ~ 2% as z — 0, (2.45)

i.e. that there exists some function h(z) with h(0) = 1 and which is holomorphic close to 2z,
such that in a neighbourhood of the origin L(z) = h(z)z¢. By the symmetry z — 1 — z of the
KZ equation, there is another solution L; which satisfies

Li(z) ~(1—2)% as z — 1. (2.46)

Since for two solutions Fy and F; of the KZ equation (2.37), the product (F1)~! Fy is inde-

3Using the shuffle algebra to extract the divergent contributions for z = 1 appearing in the form of Ge, (z) =

log(1.— 2) in ‘G4 (z), any multiple polylogarithm G.,(z) can be written on z € (0,1) such that it takes the form
Guw(2) = ‘:;lo cr(2) log(1 — 2)*, where c(z) are holomorphic functions of z in a neighbourhood of z = 1. Thus,
for any word w € {eo, e1}”™, the multiple zeta value (. can be defined by the regularised value of G, (2) (up to a
sign).at 1, which, in turn, is the coefficient co(z), i.e. ¢w = (—1)"Reg,_; (Gw(z)) = (—1)"co(1). This leads to the

resultsin eq. (2.44).

14
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pendent of z and by the definitions (2.38) as well as the asymptotics (2.45), (2.46) of L(z) and
Ly (z), respectively, the calculation

oNOYTULT D WN =

(L1(2)) ™" L(2)Co = lim (L1 (2)) " F(2) = lim (L1 (2)) ™ F(2) = C

0 z—1

9 shows that the Drinfeld associator defined in terms of the solutions L(z) and L;(z)
3 ® (e, e1) = (L1(2)) 7 L(2) (247)

14 indeed relates the regularised boundary values (2.38) according to eq. (2.39). Using the z=independence
15 of (L1(2))~! L(z) and evaluating eq. (2.47) for z — 1 finally leads to an expression.of the Drinfeld
16 associator in terms of the multiple zeta values [30]

18 BT _\—e1
‘1’(60761)—2%(1 z) ¢ L(z)

20 — Z w Co

we{eo,e1}*

23 =1+ Gale1, eo] + (3 ([eo + €1, [€x, eo]]) +-2 (2.48)

25 showing that the Drinfeld associator is the generating series ofithe multiple zeta values. The

limit z — 1 is chosen to correspond to applying the tangential base point regularisation, such

that the prefactor (1—2z)7¢! leads to the regularisation (2:44) of the divergent terms in L(z) [33].
L

30 2.4 Examples of simple open-string,amplitudes

32 In this section, the simplest examples of tree-level'amplitudes of open-string states are reviewed
33 in terms of the different descriptions introduced\in the previous subsections. For the sake of
simplicity, the ordering of the domain of integration D(II) is chosen to be the natural one, i.e.
IT = id.

38 2.4.1 Four-point amplitude
40 The lowest non-trivial amplitude,at genus zero is found at N = 4. It is given according to
41 eq. (2.17) by [16] N

A0pen(idv 0/) = Eic(ii(a/)AYM (1,2,3,4) ,

46 Where
F(l =+ Slg)F(l + 823)
(1 + s12 + s23)
50 = = C2812823 + C3812823(812 + 823) + O((O/)4) (2.49)

. 1 5
48 B = _/ dzg | 212]%12 | 223]°2 22 =
0 212

has the form of the Veneziano amplitude [34]. Its representation in terms of Z-amplitudes reads
55 Fif = —51574(34) = —s12(PT(34)[C(id)] ,

57 which, is in /agreement with the definitions (2.22,2.28), because S[2|2]; = sij2. Therefore, the
58 colour-ordered four-point amplitude is determined by the Parke-Taylor form PT(34), which in

15
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turn is the following linear combination of elements of the fibration basis f** for n = 5:

dz  d
PT(34) = Z”’j - xizs = i, (2.50)

2.4.2 Five-point amplitude
The five-point amplitude is given by [16]

Aopenid, o) = Fif (/) Avar (1,2.3,4) + B (o) Avar (1,3,2,4)
where

id __ zpid
Fid = Fags

..812 [ 813 523
= dzodzs H ’zz'jfs”f ( + — ~
0<z2<z3<1 i<j 212 \7Z13 223
.. 812 S34
= dZQng H ’Zij’s” —_—

_ pid
= Fidz

=1+ (2(512534 — 534545 — S12551)

2 2 2 2 2 4
— (3(572834 + 2512523534 + S12554 — 554545 = 33484215 — S79551 — S125%51) + O((O/) )

. 4
and
(23) _ 1(23)
Fy = Fags
" . 513 512 532
= / dz2dzs H |25 "8— ( + >
0<z2<z3<1 >~ 213 \ %12 Z32
513 S24
= dzodzs H IZijls” i
0<z2<z3<1 i<j 213 224
_ n(23)
= g2

= (2512524:— QS13824(S12 + 523 + 834 + 845 + 851) + O((a/)h).

These amplitudes can be expressed in terms of the Z-amplitudes

1

Zid(p) =/ dzadzs B
' 0522 <23<1 19119 “ Z1,p(2)%p(2),p(3)

for o € {id, (23)} asthe linear combination

By y [ s12(s13 + s23) 512513 Ziq(id)
Fi(%) 512513 s13(s12 + 523) ) \Zia(23))
The matrix above is in agreement with the definition (2.23) of S[p(2,3)|0(2,3)];.

3 ““Amplitude recursion

Having introduced the necessary preliminaries in the previous section, we can finally state and
investigate the amplitude recursion described in ref. [5], which is based upon the results of

16
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refs. [8,9]. The origin of the recursion is the differential equation (2.32) satisfied by the fibration
basis which in turn is determined by the braid matrices (2.34). This relation of the differential
structure of Selberg integrals to the geometric structure of the moduli space (encoded in the
braid matrices) has been described before and the corresponding differential equation, called
Gauss—Manin connection, has explicitly been given in ref. [8] in terms of so-called admissible
forms. A more recent investigation of Selberg integrals, their differential structure and; in
particular, their connection to the Drinfeld associator can be found in ref. [9].

Even though we use a similar notion of admissible forms as introduced intthe latter two
references and they are the main reference for the recursion in ref. [5], the primary reference for
our reformulation of the amplitude recursion is ref. [4]. The reason for this choice is that this
reference formulates the central objects describing the integrals occurring in thesrecursion in
terms of twisted de Rham theory and the fibration basis introduced therein is compatible with
a convenient gauge choice for the SL(2, C) redundancy of the modulisSpacenMo in eq. (2.12).

We start in subsection 3.1 by reviewing the recursive construction of ref. [5] and rephrase
it in terms of twisted de Rham theory in subsection 3.2 and subsection 3.3./Furthermore, from
here on unless specified otherwise, we use the ordering defined in equ(2.14) and in particular
the notation (n,x;,t;;) rather than (IV, z;, s;;) for the number of insertion points, their positions
and the Mandelstam variables, respectively.

3.1 Review of the amplitude recursion

The amplitude recursion proposed in ref. [5] is based ou the ¢ohstruction of a solution F' of the

KZ equation, such that the regularised boundary values Cy and C; encode the (n — 2)-point

and the (n — 1)-point string corrections*

g __ ag
F =E5.

Using the sum expansion (2.48) of the Drinfeld associator, the a/-expansion of the (n — 1)-point
amplitude in C can be calculatediby ®(eg, e1)Cy at all orders in /.

Concretely, the solution F issimilar to the equivalent representations F53 , of F'7 defined
in eq. (2.20), however, an additional puneture x4 (recall that x4 = zp) at x5 < x4 < 3 = 1 is
introduced. The solution is explicitly given by the vector

F(ay) = (Fo 3, F,_y,... F) (3.1)

of length (n — 3)!, where the subvectors F', are of length (n — 4)! and defined® by the elements
R n i1 n k—1 fos n—v+1 /m—1 " ¢
Fg — (_1)” H/ dz; ﬁ(l’) o H Z Ykj H (Z ml + mg) , (3_2)
i=5 10 k=n—v+2j=3 Yki m=5 \|=5 Tml  Tm3
labelled by.the permutations o € S,,_4 acting on the indices {5,6,...,n}, where

y noorwioa T4 x5 n—1
(x)i= H :r;?, H/o dx; :/0 dx5/0 dw6-~-/0 dxz,, .
i=5

2<i<j<n

4From here on unless specified otherwise, we use the ordering II = id for the integration domain in eq. (2.26)
and usuallysomit the corresponding subscript id.

®The exact conversion from the original definition in ref. |5] using the labelling (N, z;,s:;) is presented in
appendix A.1

17
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A comparison with the definition of the integrals F7 , defined in eq. (2.20) shows that in the

limit 24 — 1 and for t4; — 0, the vector ﬁ’(m) encodes these representations

Jim, Jim, £l = Fli 29

where t43 = 0 is required since, otherwise, the factor limg, 1=z, G(x) = 0 would render the
integral zero. In ref. [5] it is stated that F'(z4) satisfies the KZ equation

dﬁ’($4) (60 e ) N
==+ F 4
dxy T4 x4 —1 (w4) (3.4)

for some matrices eg and e; with the non-vanishing entries being homogeneous polynomials of
degree one in t;; and integer coefficients. In particular, the first (n — 3) rows of ey are given by®
~

ta3 LIin—ayix(n—ay  O(n—a)ix(n—a)(n—a)l

el = (3.5)

Therefore, the theory of the KZ equation reviewed in section 2.3.can be applied to ﬁ’(:r4). The
connection of the regularised boundary values of ﬁ’(az4) for x4— 0,1 by means of the Drinfeld
associator as given in eq. (2.39) yields the tree-level amplitude reeursion, since the first (n — 4)!
entries of the regularised boundary value

- 4
Ci = lim (1 — z4) % F(ay)

xr4—>1

are related to the (n — 1)-point string corrections F\|,—1 = (F'?)ses, , according to
due to equation” (3.3). The lower regularised beundary value

1 —eo
Co_xljglox‘l F(zy4)

is slightly more delicate. As/alculatedsin appendix A.3, it turns out that
Co = (F|n—2+ O(t4), 0n—a)(n—ay) »

where F'|,_2 is the veetor of the'(n — 2)-point string corrections. Using the above properties of
ﬁ‘(m), the recursion propesed in subsection 2.4 is the following algorithm:

1. The vectoF dF (zg)/dx, is expressed in the form of the KZ equation (2.37) using integration
by parts and partial fractioning.

2. The matricesi€p and e; are read off from the resulting equation, such that the o/-expansion
of'the Drinfeld associator ®(ep, e1) can be calculated using eq. (2.48).

3. The (n—1)-point string corrections F'|,_; are determined by the (n — 2)-point string

5See appendix A.2 for the derivation.
"Note that the requirement t43 = 0 is implemented in the regularisation by eq. (3.5): the prefactor (1 —x4) ¢!

t . A —ta3 ~ . .
removes the factor 2% in 4(z) and hence, prevents the factor x5 **4(z) from vanishing as z4 — 3.

18
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corrections F'|,_o using the limit t4; — 0 of C'; = ®(eg, e1) Cy, i.e.
F ’nfl _
: = (I+ C2ler, e + C3 ([eo + €1, [er, eo]] + ... ) =0 £.4(3.6)

In ref. [5], the recursion is explicitly shown to hold for the examples from subsection 2.4 and
the examples up to the nine-point amplitudes are given on the webpage [35].4The first example
is the four-point amplitude for n = 5, where the derivative of the vector of integrals

A FQid t ¢ ¢ Lo
F = fid / dws |z95]2° |xsa| ™ |z53]™* | 322 (3.7)
1

253

satisfies the KZ equation

~
d F(.ﬂ;) (eo €l ) A t25 —t25 0 0
d.T4 T4 + Ty — 1 (x4) ’ o 0 0 ’ 81 —t53 t53 ( )

for t4; = 0. The regularised boundary values are

orl) o0

where F'¢ is the Veneziano amplitude given in eq. (2:49). Note that the three- point string
correction is just one. Calculating the rightzhand sidelof eq. (3.6) yields

(]I+C2[61760] + (3 ([60 +e, [61,60“) +. ) <(1)>

1 tosts3 thstss + tost?
=] ¢ +G (2 S
0 tosts3 t55t53 + toslss
such that the first entry indeed réproduces the o/-expansion of the four-point string correction
in eq. (2.49).

N
3.2 Reformulation in twisted de Rham theory

The amplitude recursion of refin[5] presented in the previous subsection can be understood
and optimised in terms of twisted de Rham theory. In particular, we will provide recursive
expressions for the/matrices, eg and e; at any level n using techniques from intersection theory.

The integrals inyF'(z4) defined in eq. (3.2) are determined by the n-th twisted de Rham
cohomology of'the configuration space F,, 4 with the local coefficient of the twisted cycles given
by

(x) = H :L'j;] (3.9)

2<i<j<n

Denoting the differential forms in the integrals F= (ﬁ‘g)aesn747yzl,_..7n_3 defined in eq. (3.2) by

n tk n—v—+1 ¢ ; t 3
H Z L (Z n m) drs Ndxg A -+ A dxy,,

hen—v+2 =3 ki mZ=s5 \|=p Tml  Tm3
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the corresponding (n — 3)! twisted forms (f7| form a basis® of the twisted de Rham cohomology
of the configuration space of four fixed coordinates H" *(F, 4, V), where & = dlog(@). The
original integrals F'(z4) can be recovered by

A

F = (Ff)aesn_47u=1,...7n—3 = <<fg‘C])UESH_4,V:1,...,TL—3 5 (310)
where
C={rm<zpn<zp1<--<24}®0U (3:11)

is the cycle corresponding to the natural ordering on the disk, where # is real-valued. Using
the basis transformation (2.10), the entries Flﬁ’ = ( f,j’ IC] of F can be expressed in'terms of the
fibration basis f**

A 47+ ~
(fol= > bYsis icoensin \Sicdgoin| > (3.12)
3<iy<k
where ( f;; ’J{G il € H"™4(F,4,Vy) is the twisted cohomology. class of the entry
A+ 4+ drs  fdxg dx,
(-f )i57i6»~~~7in = 15,06 e yln = /\ /\ e /\
R L5,i5 40%6,i6 Tnin

of the vector f* which constitutes the fibration/basis for g = 4 defined in eq. (2.30). In
the following subsection, we show how to combinatorially calculate the intersection numbers
Veisig....in Of the twisted forms. Then, the basis transformation (3.12) can be written in matrix
form

(FEr=B{f!" (24|, (3.13)

where B € GL(,_3)(Z[t;;]), with the non-vamishing entries by, ; ; being polynomials of
degree one in the Mandelstam variables t;; with integer coefficients, and ( fl = ((fg |)o, is the
vector of the twisted forms in B, Therefore, the KZ equation (3.4) satisfied by F (x4) can be
related to the KZ equation (2.36) {atisﬁed by the fibration basis £ (x4) on the level of twisted

forms according to

il = Bt o) = B (T ) B (fay) (3.14)
d£C4 2 d$4 1= T4 T4 — 1 4/ '
such that

ec=BQP’B', e =BQPB'. (3.15)

This actually; proyes that % F(24) in (3.4) can indeed be cast in the form of the KZ equation.
To summarise the content of the next subsections, calculating the basis transformation B leads
in combination with the recursive construction of Q3% and Q4% to explicit expressions for the
matrices ey and e;. Note that as shown in subsection 3.3, alternatively, the braid matrices 932
and 933 can ¢onveniently be calculated using a graphical procedure in terms of directed trees.

The coefficients b7 - can be calculated using eq. (2.10), which simplifies by a cer-

Vil5,165--+yin

8 According to eq. (3.3), in the limit 4 — x3 and t4; — 0, for each v the (n — 4)! twisted forms (f,f| form a
basis of H"~! parametrised by o, since the relation (2.24) is invertible and the twisted Parke-Taylor forms are
such a basis. The non-vanishing Mandelstam variables t4; and the distinction x4 # x3 ensure that the twisted
forms (f,ﬂ’| are also linearly independent for different v, forming a basis of H"™*(F, 4, V).
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tain choice of the basis of the dual space H" *(F,4,V_g). As shown in ref. [4], a dual ba-
sis {|fi;6zn>} C H"*(Fn4,V_g) orthonormal to {(fif61n|} C H""4(Fn4,Vy), where
3 < i < k, is given by the twisted forms represented by the elements of the recursively, con-
structed vector

dr, dzxp

- ) () A

Tpg  Lp2

(fp_l’_)q = <
where 3 < g <p<mand f» = (f™")=(1). The orthonormality condition [4]

(P =1 (3.16)

implies that according to eq. (2.11) the coefficients in the basis transformation((3.12) are the

intersection numbers
~

N
O sis ignin = (S0 1 Fis igsin) - (3.17)

Furthermore, using the transformation (2.24) the coefficientsican be expressed in terms of the
intersection numbers <PT(p,,)|f;‘5’;67._7in>, where p, € Sy is.a permutation of the form

pv: (1,2, v, v+ 1,00, N) = (1, p0(2), ..., po ()N (v + 1), ... pp (N —1),N — 1).

V385,86 5--50n,?

numbers (f|f5~ ) or (PT(p,)|f27 ), respectively.  Two methods are described in the

15,865+ in, 15,86,-++y0rd

following subsections. The first is purely combinatorial and the second originates in the recently

There are several ways to recursively compute the coefficients b i.e. the intersection

proposed recursion for intersection numbers in ref. {4}, and will be shown to be equivalent to the
former.

3.2.1 Partial-fractioning algorithm using directed tree graphs

In contrast to usual calculations of intersection numbers of twisted forms, it is possible to avoid
consideration of any pole structures of the twisted forms involved to calculate the coefficients
Deis ig.....in Of the basis transformat\ion (3.12) and instead employ an algorithm defined by partial
fractioning.
Recall that fl‘,’ is the form 4n the integrand of 13';’ given in eq. (3.2), and thus it is a linear

combination

n

. k—1 tkj n—v+1 /m—1 tml £
fo=0 H Z— H (Z—l—) dxs Ndxg A\ - N dxy,

k=n—v+2j=3 7Y R— =5 Tmil Tm3

n
T (Htk,ig) P iy in (3.18)

(i5,i6,...,in)61y k=5
of the differential forms

o drs Ndxg N\ -+ Ndx
Pisigyeemsin — =, (3.19)

T5,ig T6,ig " Tn,ig

where

I, = {(is,i6,...,in) EN" 4|3 <ip <kforall kand i, #4for 5<k<n—-v+1} (3.20)
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and
g

it = 0(ig-1(x)) ; (3.21)

which in general does not satisfy 3 <if < k.
Let us call an index i labelled by k satisfying

3<ip<k (3.22)

admissible, and non-admissible otherwise. A variable x;, with admissible index 7 is“called
admissible as well, which upon comparing with figure 1 simply means that @, < 7;»< 1, and
x;j, is called non-admissible if i) is non-admissible. Similarly, we call a seqtience (is, i, . . , in)
admissible if all the indices i; are admissible, and non-admissible otherwise. Furthermore, if
(15,796, . - . ,in) is admissible, the sequence (iZ,1g,...,:7) is called o-permuted admissible.

In order to conveniently formulate the algorithm below, let us introduce the following graph-
ical notation” for products of fractions in terms of directed graphs. For a;ngle factor w%z we
write

1

L -0—0-0—0x
where the arrow points in the direction of the first index of z;;. By definition, reversing an arrow
introduces a minus sign:

1 o1

vy~ OTO=QLOI RO

A graph @—»@ is called admissible if the arrow points from a smaller number ¢ to a larger
number j and non-admissible otherwise. More generally, a fraction of a product of [[;_s xy,
can be represented by a directed graph

! aioNo) (3.23)
k=5

T5,i5L6,i6." * * Ln,in

where the product of two edges with a coinciding vertex is defined by concatenation
N

L P-00—®-0—0—0.

&ji Tij

For example, for n = 8 andthe admissible sequence (i5,i¢,i7,13) = (3,5,4,5), we can write the

1 P9
9= T53L65L74L85 B e @
© ®

Using this example, more notation may be introduced following the established convention for

following product g as

9The-graphical notation is introduced for three purposes: first, the calculations involving iterative applications
of partial fractioning can be displayed intuitively. Second, this notation is adapted to the analogous genus-one
string integrals in a forthcoming project |36, where only an additional weight for each edge has to be introduced
to fully, describe the corresponding integrands. There, the graphs and manipulations thereon will be essential
to capture the complexity of the derivations of various identities, which include the genus-one extensions to
this_article. Third, this representation facilitates efficient computer implementations (in various programming
languages; not necessarily computer algebra systems needed for symbolic manipulations) of the algorithm below
and calculations using adjacency matrices only.
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directed (tree) graphs. The graph g consists of the two subgraphs

o 0
g @/@\, d g ®,

which are the two independent factors in the fraction g = g1g2. The first subgraph,g; has/a
branch point at the vertex 5 and some subgraphs with no branch point, i.e. branches, for example

% %
by = /@ and bzz@\

©

with root vertex 3. The graph g has two roots: 3 and 4. Moreover, twoe vertices ¢ and j are

the two branches

called branch-connected if there exists a branch which contains i andwj.
Thus, upon identifying the coefficient of the differential forms fé fﬁln
such a directed tree graph, the fibration basis corresponds tosthe admissible sequences

ffgjwin — (H ) drs Adxg A - Adzy, (i5, 465 . - ,in) admissible  (3.24)
k=5

- .
and OF iiin with

and the differential forms in ﬁ’l‘,’ to the o-permuted admissible sequences

n
PF i = <H @) dxs A dxg Ao~ Indzy, (15,16, - - - , i) admissible. (3.25)
k=5
Such graphs []}_5 @—»@ and []7_5 , where (i5,ig, . ..,%,) is admissible, are called

admissible and o-permuted admissible, respectively. Going the other way around, a graph is
admissible if and only if for all ‘vertices 5 < v <'n, there is exactly one vertex pointing from a
lower vertex to v and the verticesaw'= 2, 3, 4 have no incoming arrows. If the vertices v = 2,3,4
have no outgoing arrow either, they are often omitted and not shown, which can be justified by
defining a vertex without arrewssto equal unity, i.e. (») = 1. Correspondingly, the differential
forms in eq. (3.25) are called gépermuted admissible forms. Note that since if = o(iz-1(1)),
upon comparing eqs. (3.24) and (3.25), we see that for o = id the o-permuted admissible forms
are exactly the elements of the fibration basis
“Pii(;,ig,...,in = ;i—z:zn : (3.26)
Below, we will showsthat the o-permuted forms can combinatorially be expressed as a linear
combination of theé fibration,basis only using the partial-fractioning identity

1 1 11 11 1 1 1
S N R :<_>, (3.27)

Lkl Tkm LTkl Llm Tkm Tim LTkl Tkm ) Tim

where m < .< k. This identity can be expressed in terms of an operation on the directed trees

@@/@ - @5/@ - @\5@ = (O—O-O—®)®—0, (3.28)
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where, as for the multiplication, the distributivity and additivity of the graphs follows directly
from their definition (3.23) as fractions. Note that since m < [ < k the graph on the left-
hand side and the graphs on the right-hand side are admissible. Therefore, the application
of the partial-fractioning identity in the form (3.27) for the ordering m < [ < k preserves
admissibility and defines a structure-preserving operation on the space of admissiblesgraphs
and forms, respectively. Or, turning the reasoning around, the representation of the partial
fractioning identity in egs. (3.27) and (3.28) is the unique choice preserving the admissibility for
m < [ < k. First, this allows to reconnect the vertices in a given branch keeping the admissibility.
Second, this reconnecting of a branch will allow us to rewrite non-admissible branches, as linear
combinations of admissible ones. Consecutive applications of the partial-fractioning identity can
conveniently be described using double arrows for m <[ < k

@gﬁ - @5? . @g@, % 529

where the sign on the right-hand side is determined by the single arrowpon the left-hand side:
the diagram where the two single arrows begin on the same,vertex picks up a negative sign.
Using this notation, the partial-fractioning identity (3.27) is.expressed/in terms of the following
identity of graphs:

RP-KF o LRI LI o

o~
Tkl Lkm Lkl Tlm LTkom Tlm

Recursively, we denote for n < m < [ < k the successive application of the Fay identity, which
always starts at the highest vertex, as follows

TR TN A TL-TA o

Thus, writing out the double arréws in terms of sums and beginning at the smallest vertex, the
graph on the right-hand side is defined to be the linear combination

( 0, @

= — = M — — + s

where the sign of the single graphs on the right-hand side is determined by the direction of the
double arrows ondthe left-hand side, as for the original definition (3.29). Thus, the identity

is the partial-fragtioning identity

1 1 << 1 1 ) ( 1 1 >)
TinLrm Lkl Lmn, Tkl Lkm Tim Lin
1 1 1 + 1

TmnTimLkl TmnTimTkm TmnTinTkl TmnTinTkm
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Using these definitions, the algorithm!" explained on an example in appendix B to express

a o-permuted admissible form o7, ;. in terms of the fibration basis and hence, to determine

U . .
V3i5,e0sin

1. Express the form ¢f ;. in terms of its graph [[;_s @ using eq. (3.25).

10 2. If existing, consider the highest vertex h € {5,6,...,n — 1} of HZ:5 with a
11
12 non-admissible subgraph @, i.e.

14 h =max{k € {5,6,...,n—1} |k <i7}. (3.32)

the entries b of the basis transformation B can be summarised as follows:

oNOYTULT D WN =

16 If no such h exists, the graph [];_s @ is admissible, hence, the o-permuted admis-

17 _ g4

sible form o7, ;. ;= fid o ;o is admissible and an element of the fibration basis, and
bl AR 576 "n

19 we are done. Otherwise, there exists'! a positive integer | and vertices~
21 W <h<h™ <n=2< ... <nt<ug
23 .

such that the graph

2 b = (@D (22l ~D(D~O

! ﬁ ! o (3.33)

i1 Th pkHl

hl
1
29 Lh,ig Lig p

is a subgraph/factor of the branch containing the vertex h, i.e. a subbranch. Using the
33 partial-fractioning identity (3.29) iteratively, asin the example (3.31), this subbranch can
34 be written as a linear combination ‘ef;admissible graphs only

37 by, =

48 1 1 1 \= (1 1 1 1
49 - ( — ) 11 - - , o (3.34)
50 xh,hl xiz’hl mig’h 1 xhk,hk+1 xhk,h xhl—17h xhl_l,hl

52 wheré the rightchand side is indeed a linear combination of admissible graphs only, since
53 all the arrows point from a lower number to a higher number, no vertex has two incoming
54 single.arrows and the vertex h! from which a single arrow points to h is also smaller than h,
i.e. eagh term has an admissible subgraph @—»@, unlike the original graph in eq. (3.34)

57 with @ and ¢7 > h. Thus, replacing the subbranch by, in the graph []}_s @

59 10A related algorithm to convert non-admissible to sums of admissible sequences is used in a similar context in
60 ref. [8].

1 See appendix C for an explicit proof.
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by the right-hand side of eq. (3.34) yields a linear combination of graphs, where for each
graph, the highest vertex j with non-admissible subgraph @ is smaller than h.

3. Repeat step 2 for each graph in the linear combination obtained above.

This algorithm ends after finitely many repetitions of the second step and yields the linear

in terms of the fibration basis given by the entries f;‘S J{6zn of f4t.
Therefore, this algorithm defines a vector-valued map adm = (adm; s )39’2 <k acting on a

57
!

o-permuted admissible (twisted) form and mapping it to Z("~3)', with entries admiéyiér._,i% given

combination of 7 ;.
b L)

by the coefficients of this unique linear combination:

o _ o 4,+ _ T o 4,+
Prigin = D admy g (‘szzn) filir.. . =adm (Sois,z‘s,...,in) £,
where the sum runs over all the admissible sequences (if, i, ..., d,), Lee 3 < 7, < k for all

. . 4, — .
— a J— g )
k = 5,6,...,n. The intersection numbers b7, ;. . = (fJ|f;2; ") can then be obtained

using eq. (3.18): the twisted form ( fl‘,’ | can be calculated as follows

n
(= > (H tk,ig> (2
k=5

(45,865 in) €Ly

n
= 2 ( 11 tk,ic,;) adsn’ (so;;,ie’,“.,in) (£,
k=5

(i577;67---7in)61

where the set [, is defined in eq. (3.20), su¢h that the intersection numbers are the coefficients
in the above linear combination

n

o — . o

bVﬂévilﬁv'”?i{n - Z (H tkﬂ’g) admigai%»"'zi% ((pi57i67~~7in) . (335)
k=5

(i5,i6,...,in)61y

They are in particular homogeneous,polynomials of degree n — 4 in the Mandelstam variables.
id

Note that if o = id, the algorithi'is trivial since ¢ ;  ; is already admissible, such that

n

N id
admy (9055,1‘6,...,1'”) = [0,
k=5
and eq. (3.35) simplifies to
id HZ:E)tk,ik if (i57i67-~'ain) el,,
Viis iy rin . (3.36)
0 otherwise .

Since the interse¢tion numbers are the coefficients of the basis transformation (3.12), the rows
of the tramsformation'matrix in eq. (3.13), i.e.

(f(za)| = B (), (3.37)

are given by

n
By = ) <H tk,ig) adm” (07 ;. ) - (3.38)
k=5

(45,86, in) €Ly

26

Page 26 of 45



Page 27 of 45

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-113274.R1

The above algorithm only uses partial fractioning, which is an identity on the level of the
differential forms and not only an identity of their twisted cohomology class (unlike integration
by parts). This implies that egs. (3.37) and (3.38) also hold on the level of the differential forms,
ie.

F(xs) = B f4(24).

3.2.2 Examples: the four- and five-point string integrals

The above algorithm is applied to some examples in appendix B, in particular to derive the
transformation matrix B for n = 5 and n = 6, i.e. for the four- and five-point string integrals.
In the four-point case, the transformation matrix in

(fl = B{f**|

B— —tl53 —t54 .
—t53 0

Thus, the matrices eg and e; appearing in the KZ equation of ( f | ean immediately be obtained

is given by

using the braid matrices for n = 5 given in eq. (2.35)@nd the transformation in eq. (3.15). They
L

co=BaRBl= (2 T o lpobpi_ (™ ¥
0 ta —l53 t543

read

and degenerate in the limit ¢4; — 0 to the matrices found in ref. [5] and given in eq. (3.8).
The calculation of the five-point stringrintegrals, which corresponds to n = 6, requires non-
trivial applications of the algorithm. The resulting transformation matrix for

(fl = B(f"*|
turns out to be
tgstss tealss  testss  testsg tealsg tgsts4
teslss + tesles Tealss —testes Teslsa teatsa + leates —tlesles
B_ 163¢53 teatss  tests3 0 0 0
testss, 1 teslos 0 —te5t63  testsa 0 0
te3ts3 0 tests3 0 0 0
teatss + testes 0 —tg5t63 0 0 0

Therefore, the matrices egrand e; are given by

tesaz 0 —tls52 — 165 —t62 —tg2  te2
0 tes42 —t52 —te2 —tes ts2  —ls2
ey = B932 B_l _ 0 0 t642 0 —t62 0
0 0 0 542 0 —ls52
0 0 0 0 tao 0
0 0 0 0 0 [20)
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and
tas 0 0 0 0 0
0 tas 0 0 0 0
el _ BQZ{B B_l _ —t53 0 t543 0 O 0
0 —t63 0 t643 0 0
—ts3  ts3  —te3 — les —153 tesaz 0
le3 —te3 —t63 —t53 —tes 0 tg543

Indeed, in the limit t4; — 0 the matrices of ref. [5] are recovered. The same behaviour has been
checked explicitly for the examples up to n = 9.

3.2.3 Recursive algorithm for intersection numbers of twisted/forms

Another approach to recursively calculate the intersection numbers (3«17).is the'application of
the recently proposed recursive formula to calculate intersection numbers of twisted forms in
ref. [4]. It is based on expressing the differential forms in terms of the fibration basis f* and
its dual P, using their orthonormality (3.16) valid for any p € {3,4y. . .4m} and the behaviour
of the fibration bases close to the punctures. In our case, we meed to caleulate the row vector of
intersection numbers BZ = (f7|(£%7)T). In order to do seglet s define BS™ = (f2) and for
4<qg<n
By? = (7|7 5,

such that (B9Y)T = BY is the row (3.38) of the fransformation matrix B. The recursion in
ref. [4] applied to BJP is given by

p—1

(BYP™1), =) Resy,— (M, BJP) | (3.39)
q=2

where the matrix

pq’r 9 Z Mpqr )

is defined at the zeroth orderdby =,

-1
ST (@)T)  ifg=2,

0 otherwise

and at higher orders according to the recursion

utr ¥ 0 1 M L
M’;qr _ (_1)k—1 ( q# - — 61352) Qpr Z Z _Tpgr (Qpr) ((Qgr)T . kH) )
(Zq - Z”') Zq Jj#q,7=11=0 7 T *q

Therefore, using/eq. (3.18), we find

n—1

(B s, = 3~ Rese,—a, (Magi, BI")
q=2
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n—1
(o
= 3" Resy,—, (ani,n fl,>
q=2

n—l t
5,49t6,9 * T o
= Resz, 2, | Mygi 5 6 " dxs ANdxg A - Adzy
n q qiy TE ;oL@ 0+ T o
q=2 (15,86,.+-in ) ELy 5,15 ~6.18 tn

But since i # 2 and the differential forms have only simple poles, i.e. are logarithmic, we haye

by the definition of ngr

tsigteic * tng
(Bg’n_l)i;l = Z Resz, =z, < 50 ™ dxs Adxg A - - A dap
(95,86y---yin ) ELy " x571gx6’1g T .’L'n’z%

t57‘0t6"‘7 B —1,°
= Y bigituig ( . d:c5/\dx6/\~-~/\dxn_1> . (3.40)

ni'n
.. . XT5i9L6.49 " LTyp—1.4°
(157267~'~71n)elu 577’5 6’16 n—I,_1 -

The residuum extracts the appropriate Mandelstam variable ¢,g. In order to proceed with
the recursion (3.39) and to take the residuum at z,_; = xy_, theform has to be expressed
in the coordinate Tn—14 by potentially applying partial‘fractioning to uncover the entire
dependences on Tp-14 and eliminate redundant variables.. However, this leads to exactly
the same procedure as described in the previous subsection and, hence, the two recursions are
equivalent.

3.3 Braid matrices: a graphical derivation

The graphical notation introduced in subsection,3.2.1 can also be used to calculate the braid
matrices 232 and Q4%. Even though their recursive construction (2.34) is known, such a graphical
derivation may in particular be beneficial once similar amplitude recursions for higher genera
are considered. Therefore, we show in thigisubsection how the derivative of the basis elements of
the fibration basis with respect to x4 can be calculated and put into the form of a KZ equation
using directed tree graphs.

From eq. (3.24), we know howto deseribe the differential forms in the fibration basis in terms
of directed graphs. In order to simplify the notation, we denote the corresponding twisted form
by the graph defining a representativerofits twisted cohomology class. Hence, the fibration basis
is given by the elements

n
<H ‘ = <fz4:sz’ )
k=5

for all the admissible:sequenees (is, ig, . . ., in). Before the graphical calculation of 8%4( f;; ”ZLGMI
is given, this derivative acting on the integrand of the fibration basis element is rewritten using
integration by parts, such that it only acts on the local coefficient 4(x) of the twisted cycle C

from eq. (3.11) inithe integral

47+ — -~ 47+
<fis,i6,...,in|c> = /0<xn<“_<x4 u(x)fis),iﬁ,-..,in
n

= a(z) H

0<zn<-<wm4 ks Ty

dxs Ndxe N -+ Ndxy, . (3.41)
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This can conveniently be described using the following definitions: for a graph g, we define
Vr(9) = {v € N|Jv = r or v is branch-connected to r}.

Using integration by parts and
0 1 0 1
= - = (3.42)
6:@» .rij al‘j .rij

to move any derivative acting on the product [Tx=s 5 —L_ to the factor a(z) in the integrand
kyip

of eq. (3.41), this results for g = [[}_5 —— 33k = [Tz 5@—»@ and C the itérated integration

domain over the punctures xs, zg, ..., Tpn loaded with 4(z) in the expression

0 0 . L |
50 Siste,ialC) = / ( u(x)) I ——dws pdag p - Nz
T4 0<zn<-<wmy jeVa g) k=5 Lhig

~

noo
= ( )H dzs Adeeg A -+ A dxy,

0<zn< < k=5 k‘Zk

n< leVa(g) meVa(g) i€Va(g),i#j J

drs Ndzeg/ - N\ dxy,
k 5 Tk 4

:/o<xn<-~-<z4ﬁ(x ( Z (Z o Z ) )

J€Va(g)n\l€Va(g) meVa(g)

dxs Ndzg A -+ Adxy,, (3.43)
j=5 Lhiii

where we have used the antisymmetry of fc” in the last step. Equation (3.43) can be expressed
gt
in terms of twisted forms as

81@@@—2 > u{(ilo-0)

§eVi(g)leVa(g)UVa(g)

(3.44)

where the graph

O DO
10D (IO—0) 0—0- o— Do 2y

is the graph obtained by connecting the vertex [ to the vertex j in the graph g = []}_5 @—»@,
whichiwe denote by g;;, and x is 2 or 3 if I € Va(g) or I € V3(g), respectively. Since in gj;, the
branch witlisthe root 4 is connected to the branch with the root x = 2,3, while the branch
with the root 5 — x = 3,2 remains disconnected, iterative applications of the Fay identity can
be used to lower this connection, such that a linear combination of admissible graphs with a
factor are left. These factors can be pulled out of the integral in eq. (3.43) and yield
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the fractions i and ﬁ in the KZ equation eq. (2.36) for x = 2 and = = 3, respectively. The
corresponding coefficients obtained from this factorisation on the right-hand side of eq. (3.44)
are the linear combinations of the Mandelstam variables which constitute the coefficients in the
braid matrices 24,. At each step, the Fay identity has to be applied in the form of eq. (3.27)
such that the admissibility is preserved.

As an example, let us graphically derive the braid matrices Q3, and Q%5 in eq. (2.85). While
the full calculation can be found in appendix B.4, we only show the crucial steps here.\The two

twisted forms which constitute the fibration basis are

= {52 = @@, and (7= (2

T53 T54

= ((O—=@

Beginning with the former, we find that for g3 = (3)—(5)

Va(gs) = {2}, Vs(gs) ={3,5}, Va(gs) =4} "
According to eq. (3.44), the derivative of ( f; | with respect to x4 igtherefore given by
0

53] = 5o (O—C)
=tz (O—DE—)| + taz (D] + i (O)—)—()|

= taz (O—DE—O)| + taz (DA 2N§ 115 <\@ - ®g/®‘
_ (<t42 0) N (t43 + t45 —t45)) (pi (3.45)

T4 xg — 1

where the row vectors (t42 0) and (t43 + 45 —t45) are indeed the first rows of QZLQ and 9337
respectively, as given in eq. (2.35). The second equality in eq. (3.45) follows from eq. (3.44) and
the third equality is the applicatiomof the Fay identity to recover admissible graphs as described
below eq. (3.44). Similarly, we find forlgy = (4 )—()

‘/2(94) = {%7 ‘/3(94) = {3}7 ‘/21(94) = {45 5}7
such that eq. (3.44) implies

O pat= 2
R N

= {4 (@)—)—)| +, tag (B)—(D)—()| + t52 <\i|f

v
=ti (D —(D—G)| +,ta3 (O—(O—)| + ts3 <®g/® - ®\Z@<9’
P (¥ P +0-0 (Bo—0+ 20—0)

ts

_ ((t53 t542) N (—t53 43 +t53)> T

Ty Ty —1
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where we used that

ts2 (C—()] + tsz (O—)| + tsa (D—()| = 0,

since the left-hand side is a total derivative, to express ((2)—(5)| in terms of the two (fibration)
basis vectors ((3)—()| and ((4)—()| of the twisted cohomology. And indeed, the réw vectors
(t53 t542) and (—t53 tys + t53) obtained are the second rows of the braid matrices Qﬁz and
Q45, respectively, as eq. (2.35) approves.

While for the above examples this graphical approach seems rather superficialy it gives a
convenient tool to calculate the derivatives of the fibration basis for highetsn. It can be im-
plemented in any computer algebra system as a manipulation of the adjacency matrices of the
directed graphs defining the fibration basis using matrix operations only. This procedure to eval-
uate the derivatives and obtain the matrices appearing in the differential equation of the given
basis turns out to be a convenient tool for similar amplitude recursions imvolving vector-valued
differential equations with matrix-valued connections at higher genera such/as for example the
elliptic KZB equation in the one-loop recursion of ref. [10], where réeursive definitions such as
the construction of the braid matrices for genus zero in eq. (2:34) are not available.

4 Conclusions

In this article, we have reviewed the tree-level amplitude xeeursion of open-superstring states
introduced in ref. [5] and pointed out its relation to twisted de Rham theory. This investigation
led to the following results:

e The vector of string integrals with an auxiliary,point introduced in ref. [5], which inter-
polates between the N- and the/{(¥.— 1)-point string corrections and which satisfies a KZ
equation, has been related to the fibration basis constructed in ref. [4]. The transformation
matrix can recursively be,determined wusing eq. (3.38). In eq. (3.40), this recursion was
shown to be equivalent to the recursion of intersection numbers of twisted forms stated in
ref. [4].

e The transformation matrixisigiven by the intersection numbers of the twisted forms ap-
pearing in the string integrals with an auxiliary point and the dual fibration basis. Thus,
the recursion (3.38) givés a purely combinatorial derivation of these intersection num-
bers in terms of directed tree graphs, which is based on the partial-fractioning algorithm
described in subsectionn3.2.1. This allows for a convenient implementation in computer
algebra systems using(weighted) adjacency matrices and matrix operations thereon.

e While the'vector ofstring integrals with an auxiliary point is the relevant solution of the
KZ equation'in the amplitude recursion of ref. [5], the representations of the Lie algebra
generators in the KZ equation (2.36) satisfied by the fibration basis are braid matrices
with a well-known recursive definition. Therefore, the above basis transformation leads to
a recursive eonstruction of the matrix representations appearing in the KZ equation (3.14)
of the wector of string integrals with an auxiliary point, which constitute the letters for
the Drinfeld associator used in the amplitude recursion. This shows in particular, that the
matrices occurring in the amplitude recursion are braid matrices as well.

e ln,eq. (3.44), the derivatives of the twisted forms which constitute the fibration basis has
been expressed graphically in terms of directed tree graphs. Starting from this expression
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using the graphical algorithm described in subsection 3.3, the braid matrices can be de-
rived in an alternative way to the recursion of ref. [4]. On the one hand, this completes
the graphical derivation of the matrix representations in the KZ equation of the string in-
tegrals with an auxiliary point. On the other hand, this procedure may be used in similar
constructions at higher genera, where no alternative derivation of the relevant.matrices
are available.

e As discussed below, this analysis reveals the essential features of the amplitude regursion.
This may lead to similar recursions for loop amplitudes or higher-genera Riemann surfaces,
respectively. A first result in this direction is described by the one-loop recursion inref. [10].

e Moreover, formulating the recursion of ref. [5] in terms of twisted de Rham theory proves
various statements about the feasibility of the recursion. For example the fact that the
differential equation of the vector of string integrals with an auxiliary. Qoint can indeed be
written in the form of a KZ equation.

These results do not only allow for an efficient implementation of the'tree-level amplitude
recursion and a description in terms of twisted de Rham theory; but offer insights in the essential
features allowing for such a recursion. The differential one-forms day /@) ;, in the string correc-
tions span the logarithmic derivatives of the genus-zero Koba—Nielsen factor. Defining iterated
integrals over the punctures with integration kernels the admissible one-forms dxy/zy ;. , i.e.
3 < iy < k, and the empty integral being the Koba-ANielsen. factor leads to a recursive construc-
tion of the representations of the Lie algebra generatorsin the corresponding KZ equation. This
is exactly how the fibration basis is defined/@and how the braid matrices come up.

It may be expected that a similar construction for higher genera is possible. The relevant
differential one-forms are determined by the logarithmic derivatives of the higher-genus Koba—
Nielsen factor. These one-forms define the higher-genus class of iterated integrals with the
empty integral being the corresponding Keba—Nielsen factor and the integration kernels of these
iterated integrals naturally satisfy.an admissibility condition. Therefore, the differential equation
with respect to the insertion point defining the outermost integration boundary satisfied by this
iterated integral can be cast into/a sum over all admissible differential one-forms with coeflicients
some linear combination of the admissible iterated integrals. In order to recover admissible
iterated integrals at this point, }similar mechanism to manipulate the labels of a product
of differential one-forms as partial fractioning is required, for example a Fay identity. These
linear combinations comnsStitute thesmatrices, which serve as letters in a Drinfeld-like associator
construction, which itselfiis, determined by the singularities occurring in the differential one-
forms and relates some limits of the iterated integrals. These limits, in turn, should contain
the amplitudes at'the current genus and (possibly) amplitudes at lower genera. In ref. [10], this
construction has been carried out for the one-loop open-string corrections defined on genus-one
Riemann surfaces{ The generalisation to higher genera and possibly other theories remains an
open task,
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Appendix

A Notes on the solution of the KZ equation for string correc-
tions

In this section, we investigate some properties of the solution Fy" (x) of the KZ equation'given in
eq. (3.2), which is the backbone of the amplitude recursion for the string corre¢tions proposed
in ref. [5].

A.1 Translation between different labellings ~

In this subsection, the integral (3.2) as originally'? defined in réfs.[5] in texms of the labelling
(N, zi, sij) and the auxiliary puncture zy_o < 29 < zy—1, i.e.

v k—1

2 N-3 .z
P = (0N [P JT [ dsi Hrzolmo U™ 1y ),
=2

k=2 =1 “% m=y 11 1=m41 “mi
(A.1)
- 4
is expressed in terms of the labelling (n,x;, t;;) without the appearance of z; = x5 = 0 in the

expression on which the permutation o actsiyThe result'is the integral F7(z) as defined in
eq. (3.2). This can be achieved by an iterative.application of integration by parts with respect
to the variable with the highest label in the first product until the product is empty

- N-2 .4 N— v k=l N-2 N-1
1)N—3/ den s H/ . H 201l HZ Sjk H Z Sml
0 =2 70 i—1 k=2 j=1 “3k m=p 1 1=my1 “ml
o N-2 .0 N
1)N_3/0 dzn_o H /0 \dzz H 20 |SOZ
=2 =

v—1k—1 A Nl s N—2 -
o [TE =t > =+ )| 11 Z

k= 2; 120k ) \s=pr1vs A0 ) \ =i i1 i=myr “mid
N_3 20 . Zit+1 N-1 )
=(-1)"" / dzn—_o H / dz; u(z) H B
0 =240 i=1

vrf’lesjk H (f_vzl Srs Sy0> th i Smi

k=2 j=1 “Ik r=y_1 0 ) =i 41 i=mp1 2l

)N Zit1 N’l R -y Srs | Su0 = = Sml
QD e )
'L

1 r=2 \s=r+1 ZTS 00 ) = v+11l=m+1 Zml

2Phe original definition is actually defined with so1 = so,n—1 = 0, however, this does not change the subvector
of C1 comtaining the string corrections: this simply leads to the exponential contribution in eq. (A.3), which

cancels the additional factor ZOONN ~!in C; from 24 (2). Similarly, it does not change Cp.
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n

T T e TS TS e )

2<z—<j<n k=n—v+2 j=3 Tki m=s Lmi Tm3

where in the second last line, the labelling has been changed from (N, z;,s;;) todm, xit;;)
according to egs. (2.14)-(2.16). A comparison with the original definition (A.1) and eq. (2.20)
shows that the latter integrals are recovered for spny—1 = 0 in the limit 25 = z4 =,1 and
)~ 0 of the former, thus

80 t4 O’l;éel ¢

lim lim F9(24)|t_ = i (A.2)

tyi—0xg4—1

A.2 The first rows of e;

~
The condition t43 = 0 in eq. (A.2) is incorporated for ¥ = n — 3 in the fir§t (n - 4)! entries of e;:
for v = n — 3 there is neither a zy_1 nor a zy appearing in the factor the permutation o acts on
in eq. (A.1). Thus, in the derivative

o N N2 NﬁlSOi N—-2k— 15k
8ZOFN o(20) = 3/ dzn—2 H/ ng (Z > H Z =

=1 ~0i k=2 j=1 “ik

the quotient % with 1 < ¢ < N — 1 can be traded using,partial fractioning with the other

quotients in o (H E;“ 11 zj’“ ) which does.not contain any variable zx_1, for E = % which
1

contribute to the matrix eg. Thus, the only quetient of theform - comes from differentiating
the factor u(z) and can simply be pulled out of theintegral together with the corresponding
coefficient sg y_1. This is the only gomtribution to e; in the KZ equation of F(zo) (see e.g.

eq. (B.5)), such that

S —]Inf.nf. O(n—4)1x (n—4)(n—4)!
ey = [ OV Bn-aix (-t (A.3)

which proves eq. (3.5). N

A.3 Regularisedysboundary value C|

In this section, the regularised boundary value

Co= xl:glo 2% F(x4)
is calculated and shown to ¢entain the (n —2)-point tree-level string corrections. This derivation
is closely related to the proofs in ref. [9]. The calculation is shown in terms of the labelling
(N, zi, sdj), sincesin terms of this labelling, the components of F(z4) given by the integrals
F9 (%) defined in eq. (A.1) only depend in the factor u(z) on zg = z4. Using the substitution
zi # Zow; for0°< ¢ < N — 2 with wg = 1 and the definition spax = S12.. N—2 + Z;V:_QQ 505, We
find for v =N —2 and 0 € Sy_3

S
210131020 s i3 N—2(20)
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(—1)N3 1 ’ /zod Aﬁg M )AﬁQ ok ]\i_ka:l Sjk
= (=177 lim _z5=me ZN-2 / ziu(z 250k
e 0 i=2 70 1 i o\ 2 j=1 ik
w+1
:( N 3211210/ dwN 9 H / o |w7,j|sz]
’ 1<Z<j<N 2
N2 L
1-— Sk,N—1 1— SOk J
1T (@ = zow) H( wy,) ko szk
k=1 k=2 k=2 j=10 d
N3 [! NZS - pwin N2 N2,
=(-1)"" / dwy_2 H/ dw; H |w;j|%9 H(liwk)s()ko- ik
0 i=2 70 1<i<j<N-2 k=2 =2 j=1 Wik

- FU‘Si,N—lzs()i )

which indeed corresponds to the N-point string corrections with s; y£41 = sgjdf® < N —2, there
would appear N — 2 — v less factors of zp in the denominator than in<he integration measure
after the change of variables z; = zgw;, leading to vanishing intégrals. Thus, only the integrals
Aii‘iﬂj with v = N — 2 do not vanish in the regularised limit lim,,_,o 25 ™ Ai‘é’y(zo) giving the
above result. However, this limit does not yet yield (N —1)-pointistring /corrections. As observed
for the limit zp — 1, the Mandelstam variables sq; had(to beyset to zero before the N-point
amplitudes could be recovered. Applying this limit sg — 0 for the present boundary value,
where zy — 0, effectively removes one external state leaving (& — 1)-point integrals. Concretely,
assuming that o(N —2) = N — 2, using integration by parts with respect to wy_o and the Dirac
delta function in the form

lim /1 dr (1 —)*ShE (z) = F(1)

a—0

for a function F' which is integrable on |pyl], the'additional limit so; — 0 yields

lim lim z; *™>F2 20, 8
s0;—0 z0—0 0 id,N— 2( 0) OZ)

s le N—2 N=2k=1
— .| Sij _ S0k L
< g, [ TR T o 0w (TS 22
1<z<j<N—2 k=2 k=2 j=1 J
0N i [ H K gl [ 30 222 ) TL 1 = o
= 1m WN —2 Wiz |" ’ — Wg
50 =0 1<z<j<N 2 =1 WiN=2 ] ;2
—3k-1
o H Z
k=2 j= 1
N_3 . 1 N—3 wi+1 8 B N—2
= (—1) lim dwnze H / dw; —a H |wij|s” H (1 — wk)SOk
$0;20J0 i=2 /0 WN-2 1<j<j<N-2 k=2
N3kl o
J
ol II > =
k=2 j=1 Ik
1
=(— l)N A lim dwN 250,N—2(1 —wn— 2)501\“2_1
s0i—0
- , N—3k-1
Wi41
H / i duw; H |wij‘5” H(l_wk’)SOkg H Z Sjk
i=2 70 1<i<j<N—2 k=2 =2 j—1 Wik
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N N=3 i o N-3k—1 -
= <_1) H / dw; H ‘wij’ Yo H Z wi wN—2=1
i=2 70 1<i<j<N—2 k=2 j=1 Ik

where F?|n_1 is the string correction for N — 1 external states with (w1, wy_2WN—1) =
(0,1, 00).

B Partial-fractioning algorithm: applications

In this section, the algorithm from subsection 3.2.1 is applied to some_examples. First, we
consider a o-permuted admissible form for n = 8 and use the above algorithm to rewrite it
in terms of the fibration basis. The second and third examples are-the. four-point and five-
point amplitudes ﬁ‘(m) for n = 5 and n = 6, respectively, for which wesealculate the basis
transformation B, cf. eq. (3.13), to the fibration basis (£ (x4)| following subsection 3.2.1.

B.1 From o-permuted admissible to admissible

In order to exemplify the partial-fractioning algorithm, let us'consider the admissible sequence
(i5,146,17,18) = (4,5,5,7) and the transposition 7 = (5.7). The eorresponding 7-permuted ad-
missible sequence is (i3, i§,i7,4%) = (7,7,4,5), where ifo=T(i- (1)), and, according to egs. (3.19)
and (3.25), the 7-permuted admissible form is given by IS

dxrs N dxg Ndxz N dxg
T57L67LT4L-S

O—O—®

= dxs A drg A dxr N dxg (B.1)

which is not admissible since even though no vertex larger than four has two incoming arrows,

T —
4,557 =

some arrows point from a highernumber to a lower number. Following the algorithm from
subsection 3.2.1, the graph appearing in the form ¢ 5 5 7 can be written in terms of admissible

graphs as follows: first, we considér the highest vertex h with a non-admissible factor @,
which is h = 6 with i} = 7, and apply the partial-fractioning identity (3.29) to the corresponding
branch as given in eqs (3:33). Heres this branch is bg = @—»@—»@, such that according to

eq. (3.34)
°\¢/°° - @_M.

The highest non-admissibleyvertex in the resulting linear combination of graphs

O O——@ O——0
O§o—-0__ T O ®
-0 -0 -0 OO
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is h = 5 with ¢, = 7 and non-admissible factor @—»@ This linear combination can be
rewritten as before using eq. (3.34) such that the final linear combination is given by

%i i
where each of the six terms are admissible. Writing them fully out, they are given by
%@ %‘@ -
) i
= — (B.2)
O—®
@<@=»® @\@=»®
i ®\I . @\@ 3
N, o
@ @
— + , (B.3)
©—® F—®
such that the equation

" 74 N
@v @T
NN
NS

as well as
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®
Q) ©O—0O
RAyR
®\®<®H D

with the right-hand side a linear combination of admissible graphs, is according to eqs. (B:2)
and (B.3) the partial-fractioning identity

1 1 1
TETTETLT4LE5  TH4T64TT4T85  T54T64TT5L85
1 1 1 1
T54T65L7685  T54T65L75L85  T54T64TTELRS ALEATEATTSLRS
1 1 1 1

T54L64L74L85 T54L65L76L85 T54T65L 75485 L54L64L 76185

and admissibility means that each term on the right-hand sidelis of the form []¢_s o L where

3 < i < k. Therefore, using eqs. (B.2,B.3,B.4) and the definitions (3.24,3.25), the dlfferentlal
form ¢} 5 5 7 in eq. (B.1) can be expressed in terms of the fibrationbasis as follows

T _ 4,4+ 4,4+
Pi557 = 4 . 45 T f4 58507 Jab55m $1465 -

B.2 Basis transformation for four-point string integrals

The four-point example corresponds to n = 5'and is'based on the vector of integrals given in
eq. (3.7) expressed in terms of the labellingy(n, zi,t;;)

R Fid T 24 153 + 154
F(z) = (F?d§x§> = —/0 dus |5 | 253 |45 (‘m b )

53

The differential forms in both entries are alteady linear combinations of the fibration basis, since
N

4,4+ das

f4,+ _ 3 _ | x53
- f4,+ - dﬁ )

4 T54

which is expected according, to eq. (3.26). Thus, we can immediately read off the coefficients

bi,d%, which are in agreement with (3.36), and express the twisted forms ( f;d| in terms of the

fibration basis

i i i 47 47 Fi 47
(il = A3 (@ s 50 (| = —tss(f3 T = tsa(f ™|, (fl9] = —tss(fy ],

hence, the basis transformation B is given by

s [—ts3 —tsa 4+
(f\—<t53 0><f .
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The matrices ey and e; can immediately be obtained using the braid matrices for n = 5 given
in eq. (2.35) and the transformation in eq. (3.15)

eo = BQZLQ Bl— tsa2  —t52 7 el — 3933 Bl_ t43 0 .
0 ta2 —153 1543

In the limit ¢4; — 0, these matrices indeed degenerate to the matrices found in ref. [5} and given
in eq. (3.8).
B.3 Basis transformation for five-point string integrals

Having calculated the basis transformation for n = 5 in the previous subsection, wexconsider the
example n = 6 which corresponds to five-point amplitudes, where the vector F' (%4) 1s given by

. tes y tea 4 fe3 | (fsay Is3
Féd E:EGS + 64 + 63 T'54 53
~(56 tse 4 tsa g 1537 ( lea Ly te3
Fgf ) w36 | wss Tmss ) \zed " wes
) tes tea 1637\ 153
“ Fld T4 x5 165 | 164 "GERLOS ) 153
2 A
F(xy) = ~56) | = dzs dxg () Tes, | Tea @63 /) T3
F. 0 0 I56 gintsa | (153 ) les
2. 4 Ts6. | @4, L 753 ) T3
I fgs | f6s) ta3
~(56) x65 63 ) T53
i tse | fsa) tes
56 53 63
. 4

First, note that according to the definition (3.20) of I,,
Is ={(3,3),(3,4),(8,5)5(4,3),(4,4), (4,5)}

and
I2 = {(37 3)? (374)a (375)}7 Il = {(37 3)? (375)}'

Furthermore, the differential ferms appearingin the sums Fli,d are admissible, such that we
immediately obtain the corresponding,rows Bid for i =1,2,3 of B from eq. (3.36)

te3tsgn tealss) testss  testsa tealssa Teslsa
.« .. \
te3tss  tealss testss 0 0 0

te3ts3 0 te5ts53 0 0 0

Using partial fractioning, the non-admissible forms which in general correspond to o # id, can
be rewritten in terms of admissible ones. Applying the algorithm from subsection 3.2.1, the
basis transformation can readily be determined using eq. (3.38). Starting with the last row,

e. Fl(%), we haverto determine ame(go:(,f?)G)) and ame(goz())%G)) since I1 = {(3,3),(3,5)},
which are the coefficients of the permutation (56) applied to —-— = (5)«—(3)—(s) and

T53T63

L @—»@—»@, expressed as the linear combination of admissible products. The former

T53%65

is unchanged by (56) and hence, stays admissible, such that

adm” (") = (1 0 0 0 0 0).

40

Page 40 of 45



Page 41 of 45 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-113274.R1

The latter becomes —% @—», which is non-admissible, since an arrow points from

T56L63 =
a higher vertex to a lower vertex. Following the algorithm in subsection 3.2.1 and according to

eq. (3.34), it can be expressed as the following linear combination of admissible sequences

9 @H@H@:_%’:%_Q

such that

oNOYTULT D WN =

13
1 adm” (o) = (1 0 =1 0 0 0).

Therefore, the row B 55 0 i given by

(56) _ T/, (56)
19 By = Z t5,¢g5 6) tﬁ,z‘fj’ oadm’ (p; ;) ~
20 (i5,i6)€I1

56 56
21 = t5,3t6,3ame(¢:(>,,3 )+ t5,6t6,3ame(‘Pg,5 )

23 = (t63t53 + testes 0 —tgstes 000 0) )
25 Similar calculations for the remaining two rows of B lead to theitransformation matrix

te3ts3 tealss  teslss  le3tsd tealsa testsa
29 testss + testes teatss —testes lestsa teatsd + teates —testes
30 B te3ts3 teatss  teslss 0 0 0

31 testss + testes 0 —te5t63n, te3tsa 0 0

32 testss 0 te5t53 0 0 0

34 testss + testes 0 gmm—testes . O 0 0

such that for n =6
38 (fl =B
40 Therefore, the matrices ey and ep are given by
N

tesges 0 —i50 — 165 —t62 —te2  te2

O

6542 —t52 —tg2 —tes  ls2  —ls2
0 t642 0 —t62 0
0 0 t542 0 —t52
0 0 0 tao 0
0 0 0 0 42

45 eo = B Qg B h=

o O O O

and
ta3 0 0 0

53 0 t43 0 0
—tsz3 0 t543 0
0 —t63 0 t643 0
—ts3  ts3  —te3 —tes —t53 tesas 0
58 tes  —t63 —t63 —ts3 —tes 0 fe543

o O O
o O O O

er=BQ, B! = (B.5)

Indeed;,in the limit t;4 — 0 the matrices of ref. [5] are recovered, the same behaviour has been
checked explicitly for the examples up to n = 9.
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B.4 Graphical derivation of braid matrices for n = 5

As an example of a graphical derivation of the braid matrices in terms of directed graphs
presented in subsection 3.3, let us derive the braid matrices 4, and Q45 for n = 5 in equ(2:35).
The two twisted forms which constitute the fibration basis are

d d
1= (22 = @O—@1 . md (1= (22 = (O~
Beginning with the former, we find that for g3 = @—»@
Valgs) = {2}, Vs(gs) ={3,5}, Va(gs) ={4}. (B.6)

According to eq. (3.44), the derivative of ( f; ’+| with respect to x4 is therefore given by
0

(] = o (D—C

=tz (O—OE—O)| + tas (O—O EO—C)| Fitas (@O —C)|
=(—ta <@—'@| + O— Dtz (4@ + tas{CO—C)—)

1 Q O,
= —ta(f3’ w5{fy ] —t45 ‘
T4 4 —
1 1
= at42<f§l’+\ + t43<f3 T —ths < i‘;? 0‘

~

:%t42<f§’+|+ 1_1 3(fs ®’
4 T4
1 1
= ;4t42<f§’+| + 1t43< )3’ + 1t45 (<f4’+ 3| ) |)

T4 T4 — 1

_ ((Mz 0) N (t43+t45 —t45>> (P

where the row vectors (t42 0) and (t43 + t45 —t45) are indeed the first rows of 932 and Qﬁ3,
respectively, as given in eq. (2.35>Similarly, we find for g4 =

Va(g9a) =428, Va(ga) = {3}, Va(ga) = {4,5}, (B.7)

such that eq. (3.44)dmplies

PRI~ ONte,
— @Dtz (—0C)| + O —Dtas (D—C)| + tsa <<2>\ + 53 <<?D\@;D‘

1 1 (:g—jg:) v (1)
— i (fT] + tas (] + tso +is3( ¥
2 ri— o o

4,
1t43<f4 +|

I an

42

1t<
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1

1
*7542(

-
e .)’ 00 (2o—0+ 20—0)

- 9014 <t53<f | + t542¢( 4’+|) T (_t53<f3’ |+ (a3 +t53)<ff’+|)

4
_ ((t53 t542) N <—t53 43 +t53)) =

(<tss (3 + (tas + ts3) (£47)

T4 Ty — 1

where we used that

ts2 (C—(| + tsz (O—C)| + tsa (D—()| = 0

since the left-hand side is a total derivative, to express ((2)—(5)| in'terms'of the two (fibration)
basis vectors <@—>@] and <®—>®] of the twisted cohomology. And indeed, the row vectors

(t53 t542) and (—t53 t43 + t53) obtained are the second rows of the braid matrices 932 and

Q1;, respectively, as eq. (2.35) approves.

C Validity of the partial-fractioningtalgorithm

In this section, we prove the validity of the algorithm/presented in subsection 3.2.1. This is
done by showing that for an admissible sequence (75,4, . . .\ i), a permutation o € S,, and h

the highest vertex with a non-admissible factor ﬁ = @, ie.5<h <1 in

H%@

k 5 Vhiif,
there exists a positive integer [ and,vertices
eh<hEhan 2 <. .. <hl<ig

such that the graph

B (Nl () ~D~(D—~® (1)

is a subgraph of the branch,containing the vertex h. The argument is based on the fact that the
sequence (@5, 1, .44y iy) is admissible.
Since 7 >Hh >'5, there exists a vertex h' < i7, such that

OROn0

is a subgraph of [} _- @—»@ The condition h! < 17 follows from the fact that h is the highest
vertex with nen-admissible factor. If h! < h, we are done and [ = 1. Otherwise, h' > h > 5 and
there exists another vertex h? < h' < h, such that

OaOnOn0
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is a subgraph of [];_s @ Again, if h?2 < h, we are done and [ = 2. Otherwise, we can

iterate this process a finite number of times, say [ times, until A' < h. Thus we are done, since
the case where h! = h can not occur because of the admissibility of the sequence (is, ig . -

if h! = h was true, and we denote ‘ ‘—*@ “ ‘—'@ for

1 < j <, such that by the admissibility of (is, ig, . -
m > iy, mj>im]-.

Furthermore, by construction we have A/t = ip; < h7 | which implies

mitt = Ly -
This means that h = h! would imply e
m = m!
and, hence, the inequality
m=m' = lpi-1 < m!! = lpl—2 <ml A< <t <y <m
would hold. This contradiction shows that h! < h. IS
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