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Abstract

The string corrections of tree-level open-string amplitudes can be described by
Selberg integrals satisfying a Knizhnik-Zamolodchikov (KZ) equation. This al-
lows for a recursion of the α′-expansion of tree-level string corrections in the
number of external states using the Drinfeld associator.
While the feasibility of this recursion is well-known, we provide a mathemat-
ical description in terms of twisted de Rham theory and intersection numbers
of twisted forms. In particular, this leads to purely combinatorial expressions
for the matrix representation of the Lie algebra generators appearing in the KZ
equation in terms of directed graphs. This, in turn, admits efficient algorithms
for symbolic and numerical computations using adjacency matrices of directed
graphs and is a crucial step towards analogous recursions and algorithms at
higher genera.
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1 Introduction

Tree-level amplitudes of superstrings furnish a prime example of the richness of the mathematical
structures underlying scattering amplitudes. Recent developments [1–3] revealed the particular
importance of twisted de Rham theory, which seems to be a language suitable to express various
results for scattering amplitudes in quantum field and string theory in a rigorous mathematical
framework. Such fundamental descriptions may reveal new insights, connect known results and
promote the understanding of physical phenomena in the context of amplitude calculations.

The calculation of open tree-level superstring amplitudes is an important problem since it
might shed some light on the calculation of more complicated scattering amplitudes in physical
(quantum field) theories. In particular, recursive methods which generate solutions using linear
algebra exclusively instead of direct evaluations of the integrals are of special interest, since
matrix multiplications can be readily implemented in computer algebra systems and efficiently
evaluated numerically. Examples of such techniques can be found in refs. [4,5], where tree-level
amplitude recursions for the α′-expansion of superstring amplitudes are proposed.

The recursion described in ref. [4] is based on the mathematical structure of Selberg inte-
grals [6–8] occurring in tree-level open-superstring amplitudes. However, the relevant matrices
necessary for the recursion are not provided and it has not yet been formulated in terms of
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twisted de Rham theory. In these notes, we state this recursion relation in terms of intersection
numbers and add some observations crucial for the understanding of the recursive mechanism.
We show in particular that the required matrices are braid matrices and describe a graphical
algorithm to calculate them explicitly. Since the relevant properties of the Selberg integrals
can be recovered in a certain class of genus-one integrals relevant for loop-level amplitudes, this
investigation helps paving the way for amplitude recursions at higher genera. In particular, this
work is accompanied by the article [9], in which such a genus-one recursion is proposed and an
explicit derivation of how to relate the one-loop string corrections to the genus-zero integrals
discussed in the present article is given.

This article is structured as follows: in section 2, we introduce the mathematical and physi-
cal preliminaries by providing a brief introduction to twisted de Rham theory and an overview
of tree-level open-superstring amplitudes. Furthermore, we review the Knizhnik-Zamolodchikov
(KZ) equation and the Drinfeld associator, which are the fundamental ingredients of the re-
cursion. In section 3, we present and reformulate the recursion of ref. [4] in the language of
twisted de Rham theory and thereby provide a general formalism delivering the missing matrix
representation of the Lie algebra generators which form the alphabet used in the construction
of the Drinfeld associator.

2 Background: string amplitudes in twisted de Rham theory

The purpose of this section is to introduce the mathematical and physical preliminaries. How-
ever, this introduction remains on the level of a brief overview and we recommend consulting
the literature stated below for a more complete and rigorous treatment of the relevant topics.

2.1 Twisted de Rham theory

We would like to get started with a brief introduction to twisted de Rham theory, whose main
content is the investigation of differential forms with multi-valued coefficients. Such structures
are omnipresent in string amplitude calculations, where certain branch choices of the multi-
valued coefficients lead to the physical amplitudes. We follow the lines of refs. [2, 3, 10] for the
statements about twisted de Rham theory and their connection to superstring amplitudes. The
fundamental definitions and their properties are primarily based on ref. [11], where the whole
theory is constructed rigorously.

The central objects in twisted de Rham theory are integrals of the form∫
∆
uϕ , (2.1)

where

u(z) =
k∏
i

fi(z)αi , αi ∈ C \ Z , (2.2)

is a multi-valued product of polynomials fi(z) = fi(z1, z2, . . . , zn) defined on the n-dimensional
affine variety

M = Cn \D , D =
k⋃
i=1

Di , Di = {fi(z) = 0} .

The n-dimensional region of integration ∆ is an n-simplex with boundaries on the divisor D
and, thus, constitutes a topological cycle. The factor ϕ is a smooth n-form on M .
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Since the function u is multi-valued, instead of working on the covering space of M , a certain
branch u∆ of u on ∆ can be specified to render the integral (2.1) well-defined. This specification
accounts for the ”twist” in twisted de Rham theory and is noted by specifying the integration
region via ∫

∆⊗u∆

ϕ =
∫

∆
[fixed branch u∆ of u on ∆] ϕ . (2.3)

In the above definition, the integration region ∆ is said to be loaded with u∆. Considering a
smooth (n− 1)-form ϕ and defining the single-valued one-form

ω = d log u

as well as the integrable connection ∇ω by the equation

∇ωϕ = dϕ+ ω ∧ ϕ , (2.4)

Stoke’s theorem implies ∫
∂∆

u∆ ϕ =
∫

∆
d (u∆ ϕ) =

∫
∆⊗u∆

∇ωϕ . (2.5)

Note that eq. (2.4) indeed defines an integrable connection, since it implies that

∇ω ◦ ∇ω = 0 .

Relation (2.5) can be entirely expressed in terms of loaded integration domains if the boundary
operator ∂ω for the n-simplex ∆ = 〈01 · · ·n〉 is defined as follows

∂ω
(
〈01 · · ·n〉 ⊗ u〈01···n〉

)
=

n∑
i=0

(−1)i〈01 · · · î · · ·n〉 ⊗ u〈01···̂i···n〉 ,

where u〈01···̂i···n〉 is the restriction of the branch u〈01···n〉 of u to the i-th face of 〈01 · · ·n〉 and î

denotes that we omit the i-th coordinate: 〈01 · · · î · · ·n〉 = 〈01 · · · i−1 i+1 · · ·n〉. This definition
implies in particular that

∂ω ◦ ∂ω = 0 .

Using the above definitions, the twisted version of Stoke’s theorem can be expressed as∫
∆⊗u∆

∇ωϕ =
∫
∂ω(∆⊗u∆)

ϕ .

Since u vanishes on the boundary ∂∆ of the n-simplex, adding ∇ωξ to ϕ, where ξ is an
(n− 1)-form on M , does not change the result of the integral (2.3). Therefore, it is convenient
to define the quotient vector space

Hn(M,∇ω) = ker(∇ω)/ im(∇ω) ,

called the n-th twisted cohomology. Its elements are referred to as twisted forms or twisted cocy-
cles, which we denote according to the notation of refs. [3,10] by 〈ϕ| ∈ Hn(M,∇ω). Moreover, a
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dual1 vector space Hn(M,∇∨ω) can be defined by replacing the connection ∇ω with ∇∨ω = ∇−ω
and its elements are denoted by |ϕ〉 ∈ Hn(M,∇∨ω) .

Having introduced a twisted version of de Rham cohomology, a twisted analogue of homology
can be defined via a brief detour to homology with coefficients. This formalism allows to keep
track of the local branches of u in the integration regions ∆ ⊗ u∆ and can be introduced as
follows: the differential equation

∇∨ωξ = 0 (2.6)

admits the formal solution
ξ = cu , c ∈ C .

Therefore, the space of local solutions has the complex dimension one. For a locally finite open
cover X =

⋃
i Ui, two local solutions ξi, ξj on Ui and Uj , respectively, with Uij = Ui ∩ Uj 6= ∅,

satisfy
ξi = ζijξj

for some ζij ∈ C. On the other hand, any local solution ξ on Uij can be expressed as

ξ = ζiξi = ζjξj

for some ζi, ζj ∈ C such that ζi = ζ−1
ij ζj . Therefore, the local solutions of eq. (2.6) define upon

gluing together the fibres {ζi} by the transition functions {ζ−1
ij } a flat line bundle Lω. Hence,

the boundary operator ∂ω defines a map between chain groups with coefficients in Lω. This
leads to the definition of the n-th twisted homology group

Hn(M,Lω) = ker(∂ω)/ im(∂ω) ,

where the elements are called twisted cycles and are denoted by |σ] ∈ Hn(M,Lω). A dual vector
space Hn(M,L∨ω) with elements [σ| ∈ Hn(M,L∨ω) is analogously defined by the dual line bundle
L∨ω of Lω which, in turn, is defined by the local solutions of the differential equation

∇ωξ = 0

with generic solutions of the form cu−1 for c ∈ C and hence, with the associated transition
functions {ζij}.

In order to define convergent integrals with twisted cycles and twisted forms for a possibly
non-compact manifold M , it is convenient to introduce the n-th locally finite twisted homology
group H lf

n(M,Lω), which is constructed in analogy to Hn(M,Lω) with the simplices required
to be locally finite. Similarly, the n-th compactly supported twisted cohomology Hn

c (M,∇ω) is
defined to be the twisted cohomology of differential forms with compact support.

The vector spaces defined above are related by various dualities leading to non-degenerate
pairings. Important examples include the following non-degenerate bilinear forms [11]:

• the pairing of a twisted form and a locally finite cycle

Hn(M,∇ω)×H lf
n(M,Lω) → C

(〈ϕ|, |σ]) 7→ 〈ϕ|σ] =
∫
σ uϕ ,

(2.7)

1Below, the notion of ”duality” among Hn(M,∇ω), Hn(M,∇∨ω) and Hn(M,Lω) as well as Hn(M,L∨ω) is
discussed by introducing the associated non-degenerate pairings.
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• the pairing of a twisted form with compact support and a twisted form

Hn(M,∇ω)×Hn
c (M,∇∨ω) → C

(〈ϕ|, |ψ〉) 7→ 〈ϕ|ψ〉 =
∫
M ϕ ∧ ψ ,

(2.8)

called intersection number of twisted forms,

• and the pairing of a twisted cycle with a locally finite twisted cycle

Hn(M,L∨ω)×H lf
n(M,Lω) → C

([σ|, |τ ]) 7→ [σ|τ ] ,
(2.9)

which is defined to be the intersection number [12] of the two cycles.

The non-degeneracy of the last two examples is a consequence of the duality of the vector spaces
Hn(M,∇ω) and Hn(M,∇∨ω) as well as Hn(M,Lω) and Hn(M,L∨ω), which was mentioned above.
Note that as a consequence of a theorem in twisted de Rham theory, the dimensions of the
twisted homology and cohomology coincide dim (Hn(M,∇ω)) = dim (Hn(M,Lω)) [11]. The
same holds for the dual vector spaces, as well as the locally finite homology and the compactly
supported twisted de Rham cohomology.

Since twisted cycles and twisted forms are vectors, they are, in particular, independent of
the choice of a basis in the corresponding vector spaces and their representation with respect to
a given basis has to change accordingly under a change of basis. Such a basis transformation can
be described as follows in twisted de Rham cohomology (and similarly for the twisted homology):
let {〈ϕi|} and {|ψi〉} be bases of Hn(M,∇ω) and Hn(M,∇∨ω), respectively. The basis elements
〈ϕi| can be expressed in terms of another basis {〈ξi|} of Hn(M,∇ω) by the master decomposition
formula [13]

〈ϕi| =
d∑
j=1

bij〈ξj | , bij =
d∑

k=1
〈ϕi|ψk〉(C−1)kj , (2.10)

where d = dim (Hn(M,∇ω)) and C is the matrix of intersection numbers of the twisted forms

(C)ij = 〈ξi|ψj〉 . (2.11)

In order to distinguish between differential forms, integrals and twisted forms, we adopt the
following conventions: differential forms are generally denoted by small letters f and an integral
of a differential form over a previously specified integration domain ∆ by the corresponding
capital letter F =

∫
∆ f , i.e. the differential form in F is f . The twisted cohomology class of f is

denoted by the twisted form 〈f |, such that 〈f |∆〉 =
∫

∆⊗u∆
f . Moreover, a vector of differential

forms, integrals and twisted forms is denoted by the corresponding bold letter f , F or 〈f |,
respectively.

2.2 Open-superstring amplitudes at tree level

Having introduced the relevant mathematical setup for this article, in this subsection, we are
going to introduce the corresponding physical objects. We review different representations of
the final results of colour-ordered, tree-level open-superstring amplitudes involving N massless
states, calculated in refs. [14, 15] using methods from pure spinor cohomology [16], and their
connection to twisted de Rham theory according to refs. [2,3,10]. Since we do not consider other
amplitudes, we generally refer to the tree-level amplitudes in open-superstring theory simply as
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amplitudes without the further specification.
The worldsheet of N interacting strings at tree level can be mapped by conformal symmetry

to a Riemann surface of genus zero Σ ∼= CP 1. External string states are mapped to vertex
operators leading to N punctures on the Riemann sphere CP 1. However, this configuration
inherits an SL(2,C) redundancy from the string worldsheet correlators, which can be used to
fix three insertion points, usually chosen to be (z1, zN−1, zN ) = (0, 1,∞), leaving a constant
factor of (z1 − zN−1)(zN−1 − zN )(z1 − zN ) in the amplitude integral due to the Faddeev–Popov
Jacobian. For open strings, this amounts to a disk topology with N punctures on the boundary,
represented as the real line (plus infinity), of the genus-zero Riemann surface (the Riemann
sphere). Therefore, the relevant geometry is the moduli space of N -punctured Riemann spheres

M0,N = ConfN (CP 1)/SL(2,C)
= {(z2, z3, . . . , zN−2) ∈ (CP 1)N−3|zi 6= z1, zj , zN−1, zN for all i 6= j ∈ {2, 3, . . . , N − 2}}

(2.12)

and the natural labelling of the insertion points is given by

0 = z1 < z2 < · · · < zN−1 = 1 . (2.13)

In order to formulate the amplitude recursion for open tree-level amplitudes in section 3, an
auxiliary point z0 at the position zN−2 < z0 < zN−1 has been introduced in ref. [4], leading to
N + 1 punctures on the boundary of the disk. If this puncture z0 is included, it turns out to be
more convenient to introduce another labelling convention than the one given in eq. (2.13). This
second labelling is adapted to the recursive differential equations satisfied by Selberg integrals
associated to the n = N + 1 times punctured boundary of the disk and is denoted by xi with
the gauge fixing (x1, x2, x3) = (∞, 0, 1) and the ordering ≺ defined by

0 = x2 < xn < xn−1 < · · · < x3 = 1 , i ≺ j ⇒ xi < xj , (2.14)

as depicted in figure 1.
Since x4 = z0 is the auxiliary point parametrising the integration region of the iterated

integrals in the tree-level amplitude recursion, x4 will serve as the variable in the relevant
differential equation. The two labellings are identified as follows:

0 = z1 = x2 < z2 = xn < z3 = xn−1 < · · · < zN−2 = x5 < z0 = x4 < zN−1 = x3 = 1 (2.15)

and zN = x1 =∞. Thus the corresponding permutation is

σlabel(4, 2, n, n− 1, . . . , 5, 3, 1) = (0, 1, 2, 3, . . . , N − 2, N − 1, N) ,

0 = x2 xn xn−1 x5 x4 x3 = 1

x1 =∞

Figure 1: The non-standard labelling convention used for the n punctures on the Riemann sphere. The
variable position x4 is the auxiliary marked point in the amplitude recursion.
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such that xi = σlabelzi = zσlabeli. Similarly, we denote the dimensionless Mandelstam variables
corresponding to the labelling zi defined in eq. (2.13) by

si1i2...im = si1,i2,...,im = α′(ki1 + ki2 + · · ·+ kim)2

where ki denotes the external on-shell momentum corresponding to the insertion point zi and
where α′ is the universal Regge slope, proportional to the inverse string tension. In terms of the
labelling xi or the ordering ≺, respectively, the Mandelstam variables are denoted by

ti1i2...im = σlabelsi1i2...im . (2.16)

2.2.1 Colour-ordered amplitudes

Colour-ordered, tree-level superstring amplitudes of N massless, open-string states are given
by [14,15]

Aopen(Π, α′) =
∑

σ∈SN−3

F σΠ(α′)AYM (1, σ (2, . . . , N − 2) , N − 1, N) , (2.17)

where the amplitudes AYM constitute a basis of Yang–Mills amplitudes and F σΠ denotes the
string corrections, which are given by a generalised Euler integral, a linear combination of
Selberg integrals [6],

F σΠ = (−1)N−3
N−2∏
i=2

∫
D(Π)

dzi KN σ

(
N−2∏
k=2

k−1∑
m=1

smk
zmk

)
, (2.18)

where zij = zi,j = zi − zj and the Koba–Nielsen factor is denoted by

KN =
∏

1≤i<j≤N−1
|zij |sij . (2.19)

Note that the Koba–Nielsen factor corresponds to the multi-valued factor u(z) in the string
amplitudes mentioned at the beginning of subsection 2.1, where the relevant branch for the
string corrections is chosen to be the real-valued function defined in eq. (2.19). The permutation
σ ∈ SN−3 in eq. (2.18) acts on all the indices 2 ≤ i ≤ N − 2 within the brackets to the right of
σ. The integration domain D(Π) is determined by Π ∈ SN−3 according to zΠ(i) < zΠ(i+1) for
2 ≤ i ≤ N − 2.

Using integration by parts, the integrals F σΠ can be represented in N − 2 equivalent ways.
These representations are parametrised by 1 ≤ ν ≤ N − 2 and given by the integrals [17]

F σΠ,ν = (−1)N−3
N−2∏
i=2

∫
D(Π)

dzi KN σ

 ν∏
k=2

k−1∑
j=1

sjk
zjk

N−2∏
m=ν+1

N−1∑
l=m+1

sml
zml

 , (2.20)

such that the original integral corresponds to the representation labelled by ν = N − 2

F σΠ = F σΠ,N−2 .
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2.2.2 Parke–Taylor forms and Z-theory amplitudes

The integrals F σΠ can be expressed in terms of another basis of integrals. It consists of integrals
of Parke–Taylor forms [18]

PT(σ) = dµN∏N
i=1 zσi,σ(i+1)

,

where σ ∈ SN , with the notational simplification σ(N + 1) = σ1. The measure dµN is the
SL(2,C)-invariant measure

dµN =
∧N
i=1 dzi

vol (SL(2,C)) = z1,N−1zN−1,Nz1,N

N−2∧
i=2

dzi

with the constant factor from the Faddeev–Popov Jacobian appearing in the numerator, which
was mentioned above. The integrals are given by

ZΠ(σ) =
∫
D(Π)

KN PT(σ) , (2.21)

which are the amplitudes appearing in a certain Z-theory [5].
The invertible transformation to the integrals F σΠ is

F σΠ = (−1)N−3 ∑
ρ∈SN−3

S [ρ (2σ, . . . , νσ) |2σ, . . . , νσ]1 ZΠ(1, ρ(2, . . . , N − 2), N,N − 1) , (2.22)

where the so-called momentum kernel [19,20] is given by [17]

S [ρ (2σ, . . . , νσ) |2σ, . . . , νσ]1 =
N−3∏
j=2

s1,jρ +
j−1∑
k=2

θ(jρ, kρ)

 (2.23)

and θ equals one if the ordering of jρ and kρ is the same in the ordered sets ρ (2, . . . , N − 2)
and σ (2, . . . , N − 2), and zero if it is reversed. As in eq. (2.22) for the integrals F σΠ, any
representation F σΠ,ν may be expressed in terms of the disk integrals ZΠ using the identity

∑
ρ∈Sν−1

S [ρ (2σ, . . . , νσ) |2σ, . . . , νσ]1
ρ
(
z12σ . . . z(ν−1)σνσ

) = σ

(
ν∏
k=2

k−1∑
m=1

smk
zmk

)
,

such that

F σΠ,ν = (−1)N−3 ∑
ρ∈Sν−1

S [ρ (2σ, . . . , νσ) |2σ, . . . , νσ]1∑
τ∈SN−2−ν

S [τ ((N − 2)σ, . . . , (ν + 1)σ) |(N − 2)σ, . . . , (ν + 1)σ]N−1

ZΠ(1, ρ(2σ, . . . , νσ), N, τ̃((N − 1)σ, . . . , (ν + 1)σ), N − 1) , (2.24)

where τ̃(1, . . . ,m) = τ(m, . . . , 1). Using relations such as [17]

ZΠ(1, α,N − 1, β) = (−1)|β|
∑

σ∈α β̃

ZΠ(1, σ,N − 1) ,
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the string corrections to open-superstring amplitudes can be expressed as some linear combina-
tions

F σΠ =
∑
γ

nσΠ(ρ)ZΠ(ρ)

over a set of (N − 3)! permutations γ.

2.2.3 Amplitudes in twisted de Rham theory

Rephrasing amplitudes in terms of Parke–Taylor forms admits a convenient formulation in terms
of twisted de Rham theory. While the differential forms are defined on the moduli spaceM0,N ,
the function u defining the integrable connection ∇ω in eq. (2.4) with ω = d log u is given by
the multi-valued function

u(z) =
∏

1≤i<j≤N−1
z
sij
ji (2.25)

with real branch the Koba–Nielsen factor, i.e. eq. (2.19). The twisted cycles corresponding to
the integration domain D(Π) are denoted by [2]

C(Π) = ∆o
N−3(Π)⊗ u∆o

N−3(Π) , ∆N−3(Π) = {0 < zΠ2 < zΠ3 < . . . zΠ(N−2) < 1} , (2.26)

where

u∆o
N−3(Π)(z) = KN =

∏
1≤i<j≤N−1

z
sΠi,Πj
Πj,Πi

is the real branch of u(z) on ∆o
N−3(Π). Moreover, the Mandelstam variables sij are assumed to

meet the conditions in ref. [21], i.e. that they are sufficiently generic, see also ref. [1], such that
the only non-vanishing cohomology is Hk(M0,N ,∇ω) with k = dim(M0,N ) = N − 3. In order
to simplify notation, the abbreviations

HN−3
ω = HN−3(M0,N ,∇ω) , HN−3

−ω = HN−3(M0,N ,∇∨ω) ,
Hω
N−3 = H lf

N−3(M0,N ,Lω) , H−ωN−3 = H lf
N−3(M0,N ,L∨ω)

are used. The dimensions of HN−3
ω and Hω

N−3 coincide [11] and are given by [7]

dim
(
HN−3
ω

)
= dim

(
Hω
N−3

)
= (N − 3)! . (2.27)

We define the intersection number of two twisted forms 〈ϕ| ∈ HN−3
ω and |ψ〉 ∈ HN−3

−ω according
to the intersection number (2.8) by

HN−3
ω ×HN−3

−ω → C
(〈ϕ|, |ψ〉) 7→ 〈ϕ|ψ〉 = 1

(−2πi)N−3
∫
M0,N

ψ ∧ ιω(ϕ) ,

where ιω : HN−3
ω → HN−3

c (M0,N ,∇ω) is the map constructed in ref. [3] such that iω(ϕ) has
compact support and defines the same twisted cohomology class as ϕ.

Using the above definitions, the Z-theory amplitudes (2.21) can be expressed as the pairing

ZΠ(σ) = 〈PT(σ)|C(Π)] (2.28)
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and eq. (2.27) ensures that for a fixed permutation Π, there are (N − 3)! linearly independent
amplitudes ZΠ(σ) which correspond to a basis of twisted forms 〈PT(σ)| ∈ HN−3

ω labelled by
(N − 3)! distinct permutations σ. Practically, this means that for any additional permutation
ρ, the amplitude ZΠ(ρ) is a linear combination of the amplitudes ZΠ(σ) obtained by partial
fractioning and integration by parts.

2.2.4 Fibration bases

It turns out that for the discussion in the next section yet another basis of HN−3
ω than the

one spanned by the Parke–Taylor forms is useful. This is the so-called fibration basis [3] which
belongs to a more general class of bases, all of which we simply call fibration bases and which
define for each p in 3 ≤ p ≤ n a basis of the twisted cohomology of the configuration space of
n− p points on CP 1 \ {x1, x2, . . . , xp} with the p fixed coordinates {x1, x2, . . . , xp}:

Fn,p = {(xp+1, xp+2, . . . , xn) ∈ (CP 1)n−p|∀i 6= j : xi 6= x1, x2, . . . , xp, xj} . (2.29)

The fibration in p is defined by an inclusion map ιp : Fn,p ↪→ Fn,p−1 which forgets the fixation
of points enlarging the configuration space as p decreases: beginning with all the n punctures
on the Riemann sphere being fixed, the configuration space Fn,n is a single point. Forgetting
the fixing of xn yields the larger configuration space Fn,n−1 and repeating the application of
this forgetful map n− 3 times leads to Fn,3, where the definition (2.12) of the moduli space of
n-punctured Riemann spheres can be recovered: Fn,3 = M0,n. As shown in the next section,
the fibration bases for p = 3 and p = 4 are well-suited for the study of the amplitude recursion
established in ref. [4]. The fibration bases can be introduced using the coordinates xi of the
n = N + 1 punctures and by arranging the representative differential forms of the twisted forms
which constitute the basis of the twisted de Rham cohomology of Fn,p in a single vector, which
is recursively defined as follows: the recursion starts with fn,+ = (fn,+) = (1) and iterates for
p and q such that 3 ≤ q < p ≤ n by defining the q-th subvector of fp−1,+ in terms of the vector
fp,+ as

(fp−1,+)q = fp−1,+
q = dxp

xp,q
∧ fp,+ . (2.30)

Therefore, the entries of the vector fp−1,+ can be labelled as follows

(fp−1,+)ip,ip+1,...,in = fp−1,+
ip,ip+1,...,in

= dxp
xp,ip

∧ dxp+1
xp+1,ip+1

∧ · · · ∧ dxn
xn,in

, (2.31)

where 3 ≤ ik < k.
The vector 〈fp,+| contains the fibration basis of the twisted cohomology of Fn,p and satisfies

for 3 ≤ p ≤ n the differential equation

d〈fp,+| = ω̃+
p ∧ 〈fp,+| , (2.32)

where

ω̃+
p =

∑
2≤i<j≤p

Ωij
p d log(xij)

and Ωij
p are called braid matrices, which satisfy for distinct i, j, k, l the infinitesimal pure braid
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relations [22,23]
[Ωij

p ,Ωkl
p ] = 0 , [Ωij

p + Ωjk
p ,Ωik

p ] = 0 . (2.33)

These matrices contain the information about the braiding of different fibres of the moduli space
of punctured Riemann spheres and are recursively defined as follows [3]: the recursion starts
with Ωij

n = sij and iterates according to

(Ωij
p−1)qr =



Ωij
p if q = r, q 6= i, j,

Ωpj
p + Ωqj

p if q = r = i, j 6= 1, 2,
Ωpj
p + Ωqj

p + Ωpq
p if q = r = i, j = 1, 2,

Ωip
p + Ωiq

p if q = r = j,

−Ωpj
p if q = i, r = j,

−Ωip
p if q = j, r = i,

Ωip
p if j = 1, r = i, q 6= i,

Ωpr
p if j = 2, q = i, r 6= i,

0 otherwise .

(2.34)

Simple examples are for n = 5 the following results

Ω42
4 =

(
t42 0
t53 t542

)
, Ω43

4 =
(
t43 + t54 −t54
−t53 t43 + t53

)
(2.35)

and for n = 6 the matrices

Ω42
4 =



t42 0 0 0 0 0
t63 t642 t65 0 0 0
0 0 t42 0 0 0

t53 + t65 0 −t65 t542 0 0
0 t53 0 t63 t6542 0
−t63 0 t53 + t63 t63 0 t6542


as well as

Ω43
4 =

t43+t54+t64 −t64 0 −t54 0 0
−t63 t43+t54+t63+t65 −t65 0 −t54 − t65 t65

0 −t64 t43+t54+t64 0 t64 −t54 − t64
−t53 − t65 0 t65 t43+t53+t64+t65 −t64 −t65

0 −t53 0 −t63 t43+t53+t63 0
t63 0 −t53 − t63 −t63 0 t43+t53+t63


.

The differential equation with respect to x4 satisfied by the vector 〈f4,+| is of particular im-
portance for our investigation below (recall that x4 = z0 is the auxiliary insertion point in the
context of the N -point amplitude recursion in ref. [4])

∂

∂x4
〈f4,+(x4)| =

(
Ω42

4
x4

+ Ω43
4

x4 − 1

)
〈f4,+(x4)| . (2.36)

A differential equation of this form is called Knizhnik-Zamolodchikov (KZ) equation [24].
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2.3 KZ equation

The KZ equation is not only the backbone of the amplitude recursion of ref. [4] but has some
remarkable mathematical properties and, in particular, a beautiful connection to polylogarithms.
In this section, some of its properties are reviewed following the lines of ref. [25]. These will be
the last mathematical preliminaries required to state the amplitude recursion in the following
section.

Let e0 and e1 be representations of two Lie algebra generators and F a function of z ∈
C \ {0, 1} with values F (z) in the vector space the representations e0, e1 act on, such that F
satisfies the KZ equation

dF (z)
dz

=
(
e0
z

+ e1
z − 1

)
F (z) . (2.37)

Due to the singularities in the KZ equation at z = 0, 1, the boundary values of F as z → 0 and
z → 1 need to be regularised

C0 = lim
z→0

z−e0 F (z), C1 = lim
z→1

(1− z)−e1 F (z) . (2.38)

As reviewed in the remaining part of this subsection, these two regularised boundary values are
related by the so-called Drinfeld associator Φ(e0, e1) [26,27] according to the associator equation

C1 = Φ(e0, e1)C0 . (2.39)

The Drinfeld associator may be expressed in terms of a series involving commutators of e0 and
e1 with the coefficients being multiple zeta values, which was originally shown in ref. [28] and
which is reviewed in this paragraph following the lines of ref. [25]. Multiple zeta values ζw
are multiple polylogarithms evaluated at z = 1, if they converge. Multiple polylogarithms2 in
one variable Gw, in turn, are a subclass of the Goncharov polylogarithms [29] and multi-valued
functions on C \ {0, 1}, indexed by words w ∈ {e0, e1}× generated by the letters e0 and e1,
which satisfy for i = 0, 1 the differential equations

dGeiw(z) = ωiGw(z) , ω0 = dz

z
, ω1 = dz

z − 1 . (2.40)

The boundary values at z = 0 are determined by

lim
z→0

Gw(z) = 0 , Gen0 (z) = logn(z)
n! , (2.41)

where w is a word not beginning with e0, and by the shuffle product

Gw′(z)Gw′′(z) = Gw′ w′′(z) ,

where w′,w′′ ∈ {e0, e1}×, which can be used to relate the remaining cases to the two boundary
values in eq. (2.41).

2Note that this convention differs from the usual definition in terms of sums on |z| < 1 by a sign: for
w = enr−1

0 e1 . . . e
n1−1
0 e1, ni ≥ 1, they are related according to Gw(z) = (−1)r

∑
1≤k1<···<kr

zkr

k
n1
1 ...k

nr
r

=
(−1)r Lin1,...,nr (z). Due to this close relation, we call the subclass Gw(z) of the Goncharov polylogarithms
simply multiple polylogarithms, while multiple zeta values are the values Lin1,...,nr (1).
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Using the above definitions, multiple zeta values are labelled by words of the form

w = enr−1
0 e1 . . . e

n1−1
0 e1 (2.42)

with nr ≥ 2, i.e. not beginning with e1, which lead to convergent values, defined by

ζw = (−1)rGw(1) =
∑

0<k1<···<kr

1
kn1

1 · · · k
nr
r

= ζn1,...,nr . (2.43)

This definition can be generalised to any word w ∈ {e0, e1}× using the following regularisation,
which is the tangential base point regularisation [30] pointing in the positive direction at z = 0
and pointing in the opposite direction at z = 1, respectively [25]. The regularisation as z → 0
corresponds to the choices of the boundary values (2.41), while the regularisation as z → 1 is
required to tame the pole of the differential form dz/(z − 1) in the outermost integration at
z = 1. This effectively results3 for any words w,w′ and nr ≥ 2 in the definitions [25]

ζe0 = ζe1 = 0 ,
ζ
enr−1

0 e1...e
n1−1
0

= ζn1,...,nr ,

ζwζw′ = ζw w′ . (2.44)

The above definitions can be related to the KZ equation by considering the following gener-
ating function of the multiple polylogarithms

L(z) =
∑

w∈{e0,e1}×
wGw(z) .

By the differential equations (2.40), this function satisfies the KZ equation (2.37). Furthermore,
the boundary conditions (2.41) close to z = 0 imply the asymptotic behaviour

L(z) ∼ ze0 as z → 0 , (2.45)

i.e. that there exists some function h(z) with h(0) = 1 and which is holomorphic close to z0,
such that in a neighbourhood of the origin L(z) = h(z)ze0 . By the symmetry z 7→ 1− z of the
KZ equation, there is another solution L1 which satisfies

L1(z) ∼ (1− z)e1 as z → 1 . (2.46)

Since for two solutions F 0 and F 1 of the KZ equation (2.37), the product (F 1)−1 F 0 is inde-
pendent of z and by the definitions (2.38) as well as the asymptotics (2.45), (2.46) of L(z) and
L1(z), respectively, the calculation

(L1(z))−1L(z)C0 = lim
z→0

(L1(z))−1 F (z) = lim
z→1

(L1(z))−1 F (z) = C1

3Using the shuffle algebra to extract the divergent contributions for z = 1 appearing in the form of Ge1 (z) =
log(1 − z) in Gw(z), any multiple polylogarithm Gw(z) can be written on z ∈ (0, 1) such that it takes the form
Gw(z) =

∑|w|
k=0 ck(z) log(1− z)k, where ck(z) are holomorphic functions of z in a neighbourhood of z = 1. Thus,

for any word w ∈ {e0, e1}×, the multiple zeta value ζw can be defined by the regularised value of Gw(z) (up to a
sign) at 1, which, in turn, is the coefficient c0(z), i.e. ζw = (−1)rRegz=1 (Gw(z)) = (−1)rc0(1). This leads to the
results in eq. (2.44).
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shows that the Drinfeld associator defined in terms of the solutions L(z) and L1(z)

Φ(e0, e1) = (L1(z))−1L(z) (2.47)

indeed relates the regularised boundary values (2.38) according to eq. (2.39). Using the z-independence
of (L1(z))−1L(z) and evaluating eq. (2.47) for z → 1 finally leads to an expression of the Drinfeld
associator in terms of the multiple zeta values [28]

Φ(e0, e1) = lim
z→1

(1− z)−e1 L(z)

=
∑

w∈{e0,e1}∗
w ζw

= 1 + ζ2[e1, e0] + ζ3 ([e0 + e1, [e1, e0]]) + . . . , (2.48)

showing that the Drinfeld associator is the generating series of the multiple zeta values. The
limit z → 1 is chosen to correspond to applying the tangential base point regularisation, such
that the prefactor (1−z)−e1 leads to the regularisation (2.44) of the divergent terms in L(z) [31].

2.4 Examples of simple open-string amplitudes

In this section, the simplest examples of tree-level amplitudes of open-string states are reviewed
in terms of the different descriptions introduced in the previous subsections. For the sake of
simplicity, the ordering of the domain of integration D(Π) is chosen to be the natural one, i.e.
Π = id.

2.4.1 Four-point amplitude

The lowest non-trivial amplitude at genus zero is found at N = 4. It is given according to
eq. (2.17) by [15]

Aopen(id, α′) = F id
id (α′)AYM (1, 2, 3, 4) ,

where

F id
id = −

∫ 1

0
dz2 |z12|s12 |z23|s23 s12

z12
= Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
= 1− ζ2s12s23 + ζ3s12s23(s12 + s23) +O((α′)4) (2.49)

has the form of the Veneziano amplitude [32]. Its representation in terms of Z-amplitudes reads

F id
id = −s12Zid(34) = −s12〈PT(34)|C(id)] ,

which is in agreement with the definitions (2.22,2.28), because S[2|2]1 = s12. Therefore, the
colour-ordered four-point amplitude is determined by the Parke–Taylor form PT(34), which in
turn is the following linear combination of elements of the fibration basis f4,+ for n = 5:

PT(34) = dz2
z12

= dx5
x25

= −f4,+
2 . (2.50)
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2.4.2 Five-point amplitude

The five-point amplitude is given by [15]

Aopen(id, α′) = F id
id (α′)AYM (1, 2, 3, 4) + F

(23)
id (α′)AYM (1, 3, 2, 4) ,

where

F id
id = F id

id,3

=
∫

0<z2<z3<1
dz2dz3

∏
i<j

|zij |sij
s12
z12

(
s13
z13

+ s23
z23

)

=
∫

0<z2<z3<1
dz2dz3

∏
i<j

|zij |sij
s12
z12

s34
z34

= F id
id,2

= 1 + ζ2(s12s34 − s34s45 − s12s51)
− ζ3(s2

12s34 + 2s12s23s34 + s12s
2
34 − s2

34s45 − s34s
2
45 − s2

12s51 − s12s
2
51) +O((α′)4)

and

F
(23)
id = F

(23)
id,3

=
∫

0<z2<z3<1
dz2dz3

∏
i<j

|zij |sij
s13
z13

(
s12
z12

+ s32
z32

)

=
∫

0<z2<z3<1
dz2dz3

∏
i<j

|zij |sij
s13
z13

s24
z24

= F
(23)
id,2

= ζ2s12s24 − ζ3s13s24(s12 + s23 + s34 + s45 + s51) +O((α′)4) .

These amplitudes can be expressed in terms of the Z-amplitudes

Zid(ρ) =
∫

0<z2<z3<1
dz2dz3

∏
1≤i<j≤4

|zij |sij
1

z1,ρ2zρ2,ρ3

for σ ∈ {id, (2 3)} as the linear combination(
F id

id
F

(23)
id

)
=
(
s12(s13 + s23) s12s13

s12s13 s13(s12 + s23)

)(
Zid(id)
Zid(23)

)
.

The matrix above is in agreement with the definition (2.23) of S[ρ(2, 3)|σ(2, 3)]1.

3 Amplitude recursion

Having introduced the necessary preliminaries in the previous section, we can finally state and
investigate the amplitude recursion described in ref. [4], which is based upon the results of
refs. [7,8]. The origin of the recursion is the differential equation (2.32) satisfied by the fibration
basis which in turn is determined by the braid matrices (2.34). This relation of the differential
structure of Selberg integrals to the geometric structure of the moduli space (encoded in the
braid matrices) has been described before and the corresponding differential equation, called
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Gauss–Manin connection, has explicitly been given in ref. [7] in terms of so-called admissible
forms. A more recent investigation of Selberg integrals, their differential structure and, in
particular, their connection to the Drinfeld associator can be found in ref. [8].

Even though we use a similar notion of admissible forms as introduced in the latter two
references and they are the main reference for the recursion in ref. [4], the primary reference for
our reformulation of the amplitude recursion is ref. [3]. The reason for this choice is that this
reference formulates the central objects describing the integrals occurring in the recursion in
terms of twisted de Rham theory and the fibration basis introduced therein is compatible with
a convenient gauge choice for the SL(2,C) redundancy of the moduli space M0,N in eq. (2.12).

We start in subsection 3.1 by reviewing the recursive construction of ref. [4] and rephrase
it in terms of twisted de Rham theory in subsection 3.2 and subsection 3.3. Furthermore, from
here on unless specified otherwise, we use the ordering defined in eq. (2.14) and in particular
the notation (n, xi, tij) rather than (N, zi, sij) for the number of insertion points, their positions
and the Mandelstam variables, respectively.

3.1 Review of the amplitude recursion

The amplitude recursion proposed in ref. [4] is based on the construction of a solution F̂ of the
KZ equation, such that the regularised boundary values C0 and C1 encode the (n − 2)-point
and the (n− 1)-point string corrections4

F σ = F σid .

Using the sum expansion (2.48) of the Drinfeld associator, the α′-expansion of the (n− 1)-point
amplitude in C1 can be calculated by Φ(e0, e1)C0 at all orders in α′.

Concretely, the solution F̂ is similar to the equivalent representations F σid,ν of F σ defined
in eq. (2.20), however, an additional puncture x4 (recall that x4 = z0) at x5 < x4 < x3 = 1 is
introduced. The solution is explicitly given by the vector

F̂ (x4) = (F̂ n−3, F̂ n−4, . . . , F̂ 1) (3.1)

of length (n− 3)!, where the subvectors F̂ ν are of length (n− 4)! and defined5 by the elements

F̂ σν = (−1)n
n∏
i=5

∫ xi−1

0
dxi û(x)σ

 n∏
k=n−ν+2

k−1∑
j=3

tkj
xkj

n−ν+1∏
m=5

(
m−1∑
l=5

tml
xml

+ tm3
xm3

) , (3.2)

labelled by the permutations σ ∈ Sn−4 acting on the indices {5, 6, . . . , n}, where

û(x) =
∏

2≤i≺j≤n
x
tij
ji ,

n∏
i=5

∫ xi−1

0
dxi =

∫ x4

0
dx5

∫ x5

0
dx6· · ·

∫ n−1

0
dxn .

A comparison with the definition of the integrals F σid,ν defined in eq. (2.20) shows that in the
limit x4 → 1 and for t4i → 0, the vector F̂ (x4) encodes these representations

lim
t4i→0

lim
x4→1

F̂ σν (x4)|t43=0 = F σid,ν , (3.3)

4From here on unless specified otherwise, we use the ordering Π = id for the integration domain in eq. (2.26)
and usually omit the corresponding subscript id.

5The exact conversion from the original definition in ref. [4] using the labelling (N, zi, sij) is presented in
appendix A.1
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where t43 = 0 is required since, otherwise, the factor limx4→1=x3 û(x) = 0 would render the
integral zero. In ref. [4] it is stated that F̂ (x4) satisfies the KZ equation

d F̂ (x4)
dx4

=
(
e0
x4

+ e1
x4 − 1

)
F̂ (x4) (3.4)

for some matrices e0 and e1 with the non-vanishing entries being homogeneous polynomials of
degree one in tij and integer coefficients. In particular, the first (n− 3) rows of e1 are given by6

e1 =

t43 I(n−4)!×(n−4)! 0(n−4)!×(n−4)(n−4)!
...

...

 . (3.5)

Therefore, the theory of the KZ equation reviewed in section 2.3 can be applied to F̂ (x4). The
connection of the regularised boundary values of F̂ (x4) for x4 → 0, 1 by means of the Drinfeld
associator as given in eq. (2.39) yields the tree-level amplitude recursion, since the first (n− 4)!
entries of the regularised boundary value

C1 = lim
x4→1

(1− x4)−e1 F̂ (x4)

are related to the (n− 1)-point string corrections F |n−1 = (F σ)σ∈Sn−4 according to

C1 = (F |n−1 +O(t4i), . . . )

due to equation7 (3.3). The lower regularised boundary value

C0 = lim
x4→0

x−e0
4 F̂ (x4)

is slightly more delicate. As calculated in appendix A.3, it turns out that

C0 = (F |n−2 +O(t4i), 0(n−4)(n−4)!) ,

where F |n−2 is the vector of the (n− 2)-point string corrections. Using the above properties of
F̂ (x4), the recursion proposed in subsection 2.4 is the following algorithm:

1. The vector d F̂ (x4)/dx4 is expressed in the form of the KZ equation (2.37) using integration
by parts and partial fractioning.

2. The matrices e0 and e1 are read off from the resulting equation, such that the α′-expansion
of the Drinfeld associator Φ(e0, e1) can be calculated using eq. (2.48).

3. The (n − 1)-point string corrections F |n−1 are determined by the (n − 2)-point string
corrections F |n−2 using the limit t4i → 0 of C1 = Φ(e0, e1)C0, i.e.F |n−1

...

 = (I + ζ2[e1, e0] + ζ3 ([e0 + e1, [e1, e0]] + . . . )) |t4i=0

(
F |n−2

0(n−4)(n−4)!

)
. (3.6)

In ref. [4], the recursion is explicitly shown to hold for the examples from subsection 2.4 and
the examples up to the nine-point amplitudes are given on the webpage [33]. The first example

6See appendix A.2 for the derivation.
7Note that the requirement t43 = 0 is implemented in the regularisation by eq. (3.5): the prefactor (1−x4)−e1

removes the factor xt43
43 in û(x) and hence, prevents the factor x−t43

43 û(x) from vanishing as x4 → x3.
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is the four-point amplitude for n = 5, where the derivative of the vector of integrals

F̂ =
(
F̂ id

2
F̂ id

1

)
= −

∫ x4

0
dx5 |x25|t25 |x54|t54 |x53|t53

(
t25
z25
t53
z53

)
(3.7)

satisfies the KZ equation

d F̂ (x4)
dx4

=
(
e0
x4

+ e1
x4 − 1

)
F̂ (x4) , e0 =

(
t25 −t25
0 0

)
, e1 =

(
0 0
−t53 t53

)
(3.8)

for t4i = 0. The regularised boundary values are

C0 =
(

1
0

)
, C1 =

(
F id

. . .

)
,

where F id is the Veneziano amplitude given in eq. (2.49). Note that the three-point string
correction is just one. Calculating the right-hand side of eq. (3.6) yields

(I + ζ2[e1, e0] + ζ3 ([e0 + e1, [e1, e0]]) + . . . )
(

1
0

)

=
(

1
0

)
− ζ2

(
t25t53
t25t53

)
+ ζ3

(
t225t53 + t25t

2
53

t225t53 + t25t
2
53

)
+ . . . ,

such that the first entry indeed reproduces the α′-expansion of the four-point string correction
in eq. (2.49).

3.2 Reformulation in twisted de Rham theory

The amplitude recursion of ref. [4] presented in the previous subsection can be understood
and optimised in terms of twisted de Rham theory. In particular, we will provide recursive
expressions for the matrices e0 and e1 at any level n using techniques from intersection theory.

The integrals in F̂ (x4) defined in eq. (3.2) are determined by the n-th twisted de Rham
cohomology of the configuration space Fn,4 with the local coefficient of the twisted cycles given
by

û(x) =
∏

2≤i≺j≤n
x
sij
ji . (3.9)

Denoting the differential forms in the integrals F̂ = (F̂ σν )σ∈Sn−4,ν=1,...,n−3 defined in eq. (3.2) by

f̂σν = σ

 n∏
k=n−ν+2

k−1∑
j=3

tkj
xkj

n−ν+1∏
m=5

(
m−1∑
l=5

tml
xml

+ tm3
xm3

) dx5 ∧ dx6 ∧ · · · ∧ dxn ,

the corresponding (n− 3)! twisted forms 〈f̂σν | form a basis8 of the twisted de Rham cohomology
of the configuration space of four fixed coordinates Hn−4(Fn,4,∇ω̂), where ω̂ = d log(û). The

8According to eq. (3.3), in the limit x4 → x3 and t4i → 0, for each ν the (n − 4)! twisted forms 〈f̂σν | form a
basis of Hn−1

ω parametrised by σ, since the relation (2.24) is invertible and the twisted Parke–Taylor forms are
such a basis. The non-vanishing Mandelstam variables t4i and the distinction x4 6= x3 ensure that the twisted
forms 〈f̂σν | are also linearly independent for different ν, forming a basis of Hn−4(Fn,4,∇ω̂).
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original integrals F̂ (x4) can be recovered by

F̂ = (F̂ σν )σ∈Sn−4,ν=1,...,n−3 = (〈f̂σν |C])σ∈Sn−4,ν=1,...,n−3 , (3.10)

where

C = {x2 < xn < xn−1 < · · · < x4} ⊗ û (3.11)

is the cycle corresponding to the natural ordering on the disk, where û is real-valued. Using
the basis transformation (2.10), the entries F̂ σν = 〈f̂σν |C] of F̂ can be expressed in terms of the
fibration basis f4,+

〈f̂σν | =
∑

3≤ik<k
bσν;i5,i6,...,in〈f

4,+
i5,i6,...,in

| , (3.12)

where 〈f4,+
i5,i6,...,in

| ∈ Hn−4(Fn,4,∇ω̂) is the twisted cohomology class of the entry

(f4,+)i5,i6,...,in = f4,+
i5,i6,...,in

= dx5
x5,i5

∧ dx6
x6,i6

∧ · · · ∧ dxn
xn,in

of the vector f4,+ which constitutes the fibration basis for p = 4 defined in eq. (2.30). In
the following subsection, we show how to combinatorially calculate the intersection numbers
bσν;i5,i6,...,in of the twisted forms. Then, the basis transformation (3.12) can be written in matrix
form

〈f̂(x4)| = B〈f4,+(x4)| , (3.13)

where B ∈ GL(n−3)!(Z[tij ]), with the non-vanishing entries bσν;i5,i6,...,in being polynomials of
degree one in the Mandelstam variables tij with integer coefficients, and 〈f̂ | = (〈f̂σν |)σ,ν is the
vector of the twisted forms in F̂ . Therefore, the KZ equation (3.4) satisfied by F̂ (x4) can be
related to the KZ equation (2.36) satisfied by the fibration basis f4,+(x4) on the level of twisted
forms according to

d

dx4
〈f̂(x4)| = B

d

dx4
〈f4,+(x4)| = B

(
Ω42

4
x4

+ Ω43
4

x4 − 1

)
B−1〈f̂(x4)| , (3.14)

such that
e0 = BΩ42

4 B
−1 , e1 = BΩ43

4 B
−1 . (3.15)

This actually proves that d
dx4
F̂ (x4) in (3.4) can indeed be cast in the form of the KZ equation.

To summarise the content of the next subsections, calculating the basis transformation B leads
in combination with the recursive construction of Ω42

4 and Ω43
4 to explicit expressions for the

matrices e0 and e1. Note that as shown in subsection 3.3, alternatively, the braid matrices Ω42
4

and Ω43
4 can conveniently be calculated using a graphical procedure in terms of directed trees.

The coefficients bσν;i5,i6,...,in can be calculated using eq. (2.10), which simplifies by a cer-
tain choice of the basis of the dual space Hn−4(Fn,4,∇−ω̂). As shown in ref. [3], a dual ba-
sis {|f4,−

i5,i6,...,in
〉} ⊂ Hn−4(Fn,4,∇−ω̂) orthonormal to {〈f4,+

i5,i6,...,in
|} ⊂ Hn−4(Fn,4,∇ω̂), where

3 ≤ ik < k, is given by the twisted forms represented by the elements of the recursively con-
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structed vector

(fp−1,−)q =
(
dxp
xp,q
− dxp
xp,2

)
(Ωpq

p )T ∧ fp,− ,

where 3 ≤ q < p ≤ n and fn,− = (fn,−) = (1). The orthonormality condition [3]

〈f4,+|(f4,−)T 〉 = I (3.16)

implies that according to eq. (2.11) the coefficients in the basis transformation (3.12) are the
intersection numbers

bσν;i5,i6,...,in = 〈f̂σν |f
4,−
i5,i6,...,in

〉 . (3.17)

Furthermore, using the transformation (2.24) the coefficients can be expressed in terms of the
intersection numbers 〈PT(ρν)|f4,−

i5,i6,...,in
〉, where ρν ∈ SN is the permutation

ρν : (1, 2, . . . , ν, ν + 1, . . . , N) 7→ (1, ρν2, . . . , ρνν,N, ρν(ν + 1), . . . , ρν(N − 1), N − 1) .

There are several ways to recursively compute the coefficients bσν;i5,i6,...,in , i.e. the intersection
numbers 〈f̂σν |f

4,−
i5,i6,...,in

〉 or 〈PT(ρν)|f4,−
i5,i6,...,in

〉, respectively. Two methods are described in the
following subsections. The first is purely combinatorial and the second originates in the recently
proposed recursion for intersection numbers in ref. [3] and will be shown to be equivalent to the
former.

3.2.1 Partial-fractioning algorithm using directed tree graphs

In contrast to usual calculations of intersection numbers of twisted forms, it is possible to avoid
consideration of any pole structures of the twisted forms involved to calculate the coefficients
bσν;i5,i6,...,in of the basis transformation (3.12) and instead employ an algorithm defined by partial
fractioning.

Recall that f̂σν is the form in the integrand of F̂ σν given in eq. (3.2), and thus it is a linear
combination

f̂σν = σ

 n∏
k=n−ν+2

k−1∑
j=3

tkj
xkj

n−ν+1∏
m=5

(
m−1∑
l=5

tml
xml

+ tm3
xm3

) dx5 ∧ dx6 ∧ · · · ∧ dxn

=
∑

(i5,i6,...,in)∈Iν

(
n∏
k=5

tk,iσ
k

)
ϕσi5,i6,...,in (3.18)

of the differential forms

ϕσi5,i6,...,in = dx5 ∧ dx6 ∧ · · · ∧ dxn
x5,iσ5x6,iσ6 · · ·xn,iσn

, (3.19)

where

Iν = {(i5, i6, . . . , in) ∈ Nn−4 | 3 ≤ ik < k for all k and ik 6= 4 for 5 ≤ k ≤ n− ν + 1} (3.20)

and
iσk = σiσ−1k , (3.21)
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which in general does not satisfy 3 ≤ iσk < k.
Let us call an index ik labelled by k satisfying

3 ≤ ik < k (3.22)

admissible, and non-admissible otherwise. A variable xik with admissible index ik is called
admissible as well, which upon comparing with figure 1 simply means that xk < xik ≤ 1, and
xik is called non-admissible if ik is non-admissible. Similarly, we call a sequence (i5, i6, . . . , in)
admissible if all the indices ik are admissible, and non-admissible otherwise. Furthermore, if
(i5, i6, . . . , in) is admissible, the sequence (iσ5 , iσ6 , . . . , iσn) is called σ-permuted admissible.

In order to conveniently formulate the algorithm below, let us introduce the following graph-
ical notation for products of fractions in terms of directed graphs. For a single factor 1

xji
we

write

1
xji

= j i = i j ,

where the arrow points in the direction of the first index of xji. By definition, reversing an arrow
introduces a minus sign:

1
xij

= i j = j i = − j i = − 1
xji

.

A graph i j is called admissible if the arrow points from a smaller number i to a larger
number j and non-admissible otherwise. More generally, a fraction of a product of

∏n
k=5 xk,ik

can be represented by a directed graph

1
x5,i5x6,i6 · · ·xn,in

=
n∏
k=5

ik k , (3.23)

where the product of two edges with a coinciding vertex is defined by concatenation

1
xji

1
xkj

= i j j k = i j k .

For example, for n = 8 and the admissible sequence (i5, i6, i7, i8) = (3, 5, 4, 5), we can write the
following product g as

g = 1
x53x65x74x85

=

3

5

6 8

4

7 .

Using this example, more notation may be introduced following the established convention for
directed (tree) graphs. The graph g consists of the two subgraphs

g1 =

3

5

6 8

, and g2 =
4

7

,

which are the two independent factors in the fraction g = g1g2. The first subgraph g1 has a
branch point at the vertex 5 and some subgraphs with no branch point, i.e. branches, for example
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the two branches

b1 =

3

5

6

, and b2 =

3

5

8

with root vertex 3. The graph g has two roots: 3 and 4. Moreover, two vertices i and j are
called branch-connected if there exists a branch which contains i and j.

Thus, upon identifying the coefficient of the differential forms f4,+
i5,i6,...,in

and ϕσi5,i6,...,in with
such a directed tree graph, the fibration basis corresponds to the admissible sequences

f4,+
i5,i6,...,in

=
(

n∏
k=5

ik k

)
dx5 ∧ dx6 ∧ · · · ∧ dxn , (i5, i6, . . . , in) admissible (3.24)

and the differential forms in F̂ σν to the σ-permuted admissible sequences

ϕσi5,i6,...,in =
(

n∏
k=5

iσ
k k

)
dx5 ∧ dx6 ∧ · · · ∧ dxn , (i5, i6, . . . , in) admissible. (3.25)

Such graphs
∏n
k=5 ik k and

∏n
k=5 iσ

k k , where (i5, i6, . . . , in) is admissible, are called
admissible and σ-permuted admissible, respectively. Going the other way around, a graph is
admissible if and only if for all vertices 5 ≤ v ≤ n, there is exactly one vertex pointing from a
lower vertex to v and the vertices v = 2, 3, 4 have no incoming arrows. If the vertices v = 2, 3, 4
have no outgoing arrow either, they are often omitted and not shown, which can be justified by
defining a vertex without arrows to equal unity, i.e. v = 1. Correspondingly, the differential
forms in eq. (3.25) are called σ-permuted admissible forms. Note that since iσk = σiσ−1k, upon
comparing eqs. (3.24) and (3.25), we see that for σ = id the σ-permuted admissible forms are
exactly the elements of the fibration basis

ϕid
i5,i6,...,in = f4,+

i5,i6,...,in
. (3.26)

Below, we will show that the σ-permuted forms can combinatorially be expressed as a linear
combination of the fibration basis only using the partial-fractioning identity

1
xk,l

1
xk,m

= 1
xk,l

1
xl,m

− 1
xk,m

1
xl,m

=
(

1
xk,l
− 1
xk,m

)
1
xl,m

, (3.27)

where m < l < k. This identity can be expressed in terms of an operation on the directed trees

m l

k

=
m l

k

−
m l

k

=
(

l k − m k

)
m l , (3.28)

where, as for the multiplication, the distributivity and additivity of the graphs follows directly
from their definition (3.23) as fractions. Note that since m < l < k the graph on the left-
hand side and the graphs on the right-hand side are admissible. Therefore, the application
of the partial-fractioning identity in the form (3.27) for the ordering m < l < k preserves
admissibility and defines a structure-preserving operation on the space of admissible graphs
and forms, respectively. First, this allows to reconnect the vertices in a given branch keeping
the admissibility. Second, this reconnecting of a branch will allow us to rewrite non-admissible
branches as linear combinations of admissible ones. Consecutive applications of the partial-
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fractioning identity can conveniently be described using double arrows for m < l < k

m l

k

=
m l

k

−
m l

k

, (3.29)

where the sign on the right-hand side is determined by the single arrow on the left-hand side:
the diagram where the two single arrows begin on the same vertex picks up a negative sign.
Using this notation, the partial-fractioning identity (3.27) is expressed in terms of the following
identity of graphs:

m l

k

=
m l

k

⇔ 1
xk,l

1
xk,m

= 1
xk,l

1
xl,m

− 1
xk,m

1
xl,m

. (3.30)

Recursively, we denote for n < m < l < k the successive application of the Fay identity, which
always starts at the highest vertex, as follows

m k

ln

=
m k

ln

−
m k

ln

=
m k

ln

=
m k

ln

−
m k

ln

=
m k

ln

. (3.31)

Thus, writing out the double arrows in terms of sums and beginning at the smallest vertex, the
graph on the right-hand side is defined to be the linear combination

m k

ln

=
m k

ln

−
m k

ln

=
m k

ln

−
m k

ln

−
m k

ln

+
m k

ln

,

where the sign of the single graphs on the right-hand side is determined by the direction of the
double arrows on the left-hand side, as for the original definition (3.29). Thus, the identity

m k

ln

=
m k

ln

is the partial-fractioning identity

1
xlnxkmxkl

= 1
xmnxlmxkl

− 1
xmnxlmxkm

− 1
xmnxlnxkl

+ 1
xmnxlnxkm

= 1
xmn

( 1
xlmxkl

− 1
xlmxkm

− 1
xlnxkl

+ 1
xlnxkm

)
.

Using these definitions, the algorithm9 derived and explained on an example in appendix B
to express a σ-permuted admissible form ϕσi5,i6,...,in in terms of the fibration basis and hence, to
determine the entries bσν;i5,...,in of the basis transformation B can be summarised as follows:

1. Express the form ϕσi5,i6,...,in in terms of its graph
∏n
k=5 iσ

k k using eq. (3.25).

2. If existing, consider the highest vertex h ∈ {5, 6, . . . , n − 1} of
∏n
k=5 iσ

k k with a

9A related algorithm to convert non-admissible to sums of admissible sequences is used in a similar context in
ref. [7].
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non-admissible subgraph iσ
h h , i.e.

h = max{k ∈ {5, 6, . . . , n− 1} | k < iσk} . (3.32)

If no such h exists, the graph
∏n
k=5 iσ

k k is admissible, hence, the σ-permuted admis-
sible form ϕσi5,i6,...,in = f4,+

iσ5 ,i
σ
6 ,...,i

σ
n

is admissible and an element of the fibration basis, and
we are done. Otherwise, there exists10 a positive integer l and vertices

hl < h < hl−1 < hl−2 < · · · < h1 < iσh

such that the graph

bh = hl hl−1 hl−2 . . . h1 iσ
h h (3.33)

is a subgraph of the branch containing the vertex h, i.e. a subbranch. Using the partial-
fractioning identity (3.29) iteratively, as in the example (3.31), this subbranch can be
written as a linear combination of admissible graphs only

bh = − hl hl−1 hl−2 . . . h1 iσ
h

h

= − hl hl−1 hl−2 . . . h1 iσ
h

h

= − hl hl−1 hl−2 . . . h1 iσ
h

h

, (3.34)

where the right-hand side is indeed a linear combination of admissible graphs only, since
all the arrows point from a lower number to a higher number, no vertex has two incoming
single arrows and the vertex hl from which a single arrow points to h is also smaller than h,
i.e. each term has an admissible subgraph hl h , unlike the original graph in eq. (3.34)
with iσ

h h and iσh > h. Thus, replacing the subbranch bh in the graph
∏n
k=5 iσ

k k

by the right-hand side of eq. (3.34) yields a linear combination of graphs, where for each
graph, the highest vertex j with non-admissible subgraph iσj j is smaller than h.

3. Repeat step 2 for each graph in the linear combination obtained above.

This algorithm ends after finitely many repetitions of the second step and yields the linear
combination of ϕσi5,i6,...,in in terms of the fibration basis given by the entries f4,+

i5,i6,...,in
of f4,+.

Therefore, this algorithm defines a vector-valued map adm = (admi′5,i
′
6,...,i

′
n
)3≤i′

k
<k acting on a

σ-permuted admissible (twisted) form and mapping it to Z(n−3)!, with entries admi′5,i
′
6,...,i

′
n

given
by the coefficients of this unique linear combination:

ϕσi5,i6,...,in =
∑

(i′5,i′6,...,i′n)
admi′5,i

′
6,...,i

′
n

(
ϕσi5,i6,...,in

)
f4,+
i′5,i
′
6,...,i

′
n

= admT
(
ϕσi5,i6,...,in

)
f4,+ ,

where the sum runs over all the admissible sequences (i′5, i′6, . . . , i′n), i.e. 3 ≤ i′k < k for all
10See appendix C for an explicit proof.
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k = 5, 6, . . . , n. The intersection numbers bσν;i5,i6,...,in = 〈fσν |f
4,−
i5,i6,...,in

〉 can then be obtained
using eq. (3.18): the twisted form 〈f̂σν | can be calculated as follows

〈f̂σν | =
∑

(i5,i6,...,in)∈Iν

(
n∏
k=5

tk,iσ
k

)
〈ϕσi5,i6,...,in |

=
∑

(i5,i6,...,in)∈Iν

(
n∏
k=5

tk,iσ
k

)
admT

(
ϕσi5,i6,...,in

)
〈f4,+| ,

where the set Iν is defined in eq. (3.20), such that the intersection numbers are the coefficients
in the above linear combination

bσν;i′5,i′6,...,i′n
=

∑
(i5,i6,...,in)∈Iν

(
n∏
k=5

tk,iσ
k

)
admi′5,i

′
6,...,i

′
n

(
ϕσi5,i6,...,in

)
. (3.35)

They are in particular homogeneous polynomials of degree n − 4 in the Mandelstam variables.
Note that if σ = id, the algorithm is trivial since ϕid

i5,i6,...,in is already admissible, such that

admi′5,i
′
6,...,i

′
n

(
ϕid
i5,i6,...,in

)
=

n∏
k=5

δik,i′k

and eq. (3.35) simplifies to

bidν;i5,i6,...,in =


∏n
k=5 tk,ik if (i5, i6, . . . , in) ∈ Iν ,

0 otherwise .
(3.36)

Since the intersection numbers are the coefficients of the basis transformation (3.12), the rows
of the transformation matrix in eq. (3.13), i.e.

〈f̂(x4)| = B〈f4,+(x4)| , (3.37)

are given by

Bσ
ν =

∑
(i5,i6,...,in)∈Iν

(
n∏
k=5

tk,iσ
k

)
admT

(
ϕσi5,i6,...,in

)
. (3.38)

The above algorithm only uses partial fractioning, which is an identity on the level of the
differential forms and not only an identity of their twisted cohomology class (unlike integration
by parts). This implies that eqs. (3.37) and (3.38) also hold on the level of the differential forms,
i.e.

f̂(x4) = Bf4,+(x4) .

3.2.2 Examples: the four- and five-point string integrals

The above algorithm is applied to some examples in appendix B, in particular to derive the
transformation matrix B for n = 5 and n = 6, i.e. for the four- and five-point string integrals.

In the four-point case, the transformation matrix in

〈f̂ | = B〈f4,+|
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is given by

B =
(
−t53 −t54
−t53 0

)
.

Thus, the matrices e0 and e1 appearing in the KZ equation of 〈f̂ | can immediately be obtained
using the braid matrices for n = 5 given in eq. (2.35) and the transformation in eq. (3.15). They
read

e0 = BΩ42
4 B

−1 =
(
t542 −t52
0 t42

)
, e1 = BΩ43

4 B
−1 =

(
t43 0
−t53 t543

)
and degenerate in the limit t4i → 0 to the matrices found in ref. [4] and given in eq. (3.8).

The calculation of the five-point string integrals, which corresponds to n = 6, requires non-
trivial applications of the algorithm. The resulting transformation matrix for

〈f̂ | = B〈f4,+|

turns out to be

B =



t63t53 t64t53 t65t53 t63t54 t64t54 t65t54
t63t53 + t65t63 t64t53 −t65t63 t63t54 t64t54 + t64t65 −t65t64

t63t53 t64t53 t65t53 0 0 0
t63t53 + t65t63 0 −t65t63 t63t54 0 0

t63t53 0 t65t53 0 0 0
t63t53 + t65t63 0 −t65t63 0 0 0


.

Therefore, the matrices e0 and e1 are given by

e0 = BΩ4
42B

−1 =



t6542 0 −t52 − t65 −t62 −t62 t62
0 t6542 −t52 −t62 − t65 t52 −t52
0 0 t642 0 −t62 0
0 0 0 t542 0 −t52
0 0 0 0 t42 0
0 0 0 0 0 t42


and

e1 = BΩ4
43B

−1 =



t43 0 0 0 0 0
0 t43 0 0 0 0
−t53 0 t543 0 0 0

0 −t63 0 t643 0 0
−t53 t53 −t63 − t65 −t53 t6543 0
t63 −t63 −t63 −t53 − t65 0 t6543


.

Indeed, in the limit t4i → 0 the matrices of ref. [4] are recovered. The same behaviour has been
checked explicitly for the examples up to n = 9.

3.2.3 Recursive algorithm for intersection numbers of twisted forms

Another approach to recursively calculate the intersection numbers (3.17) is the application of
the recently proposed recursive formula to calculate intersection numbers of twisted forms in
ref. [3]. It is based on expressing the differential forms in terms of the fibration basis fp,+ and
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its dual fp,−, using their orthonormality (3.16) valid for any p ∈ {3, 4, . . . , n} and the behaviour
of the fibration bases close to the punctures. In our case, we need to calculate the row vector of
intersection numbers Bσ

ν = 〈f̂σν |(f4,−)T 〉. In order to do so, let us define Bσ,n
ν = (f̂σν ) and for

4 ≤ q < n

Bσ,p
ν = 〈f̂σν |fp,−〉 ,

such that (Bσ,4
ν )T = Bσ

ν is the row (3.38) of the transformation matrix B. The recursion in
ref. [3] applied to Bσ,p

ν is given by

(Bσ,p−1
ν )r =

p−1∑
q=2

Resxp=xq (MpqrB
σ,p
ν ) , (3.39)

where the matrix

Mpqr =
∞∑
k=0

Mk
pqr(xp − xq)k

is defined at the zeroth order by

M0
pqr =


−(Ωpr

q )T
(
(Ωpr

q )T
)−1

if q = 2 ,
I if q = r ,

0 otherwise

and at higher orders according to the recursion

Mk
pqr =

(−1)k−1
(

δq 6=r
(zq − zr)k

− δq 6=2
zkq

)
(Ωpr

p )T +
p−1∑

j 6=q,j=1

k−1∑
i=0

Mi
pqr

zj − zq
(Ωpr

p )T
((Ωpr

p )T − kI
)−1

.

Therefore, using eq. (3.18), we find

(Bσ,n−1
ν )i′n =

n−1∑
q=2

Resxn=xq
(
Mnqi′nB

σ,n
ν

)
=

n−1∑
q=2

Resxn=xq

(
Mnqi′n f̂

σ
ν

)

=
n−1∑
q=2

Resxn=xq

Mnqi′n

∑
(i5,i6,...,in)∈Iν

t5,iσ5 t6,iσ6 · · · tn,iσn
x5,iσ5x6,iσ6 · · ·xn,iσn

dx5 ∧ dx6 ∧ · · · ∧ dxn

 .

But since iσk 6= 2 and the differential forms have only simple poles, i.e. are logarithmic, we have
by the definition of M0

pqr

(Bσ,n−1
ν )i′n =

∑
(i5,i6,...,in)∈Iν

Resxn=xi′n

(
t5,iσ5 t6,iσ6 · · · tn,iσn
x5,iσ5x6,iσ6 · · ·xn,iσn

dx5 ∧ dx6 ∧ · · · ∧ dxn

)

=
∑

(i5,i6,...,in)∈Iν

δiσn,i′ntn,iσn

(
t5,iσ5 t6,iσ6 · · · tn−1,iσn−1

x5,iσ5x6,iσ6 · · ·xn−1,iσn−1

dx5 ∧ dx6 ∧ · · · ∧ dxn−1

)
. (3.40)

The residuum extracts the appropriate Mandelstam variable tn,iσn . In order to proceed with
the recursion (3.39) and to take the residuum at xn−1 = xi′n−1

, the form has to be expressed
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in the coordinate xn−1,i′n−1
by potentially applying partial fractioning to uncover the entire

dependences on xn−1,i′n−1
and eliminate redundant variables. However, this leads to exactly

the same procedure as described in the previous subsection and, hence, the two recursions are
equivalent.

3.3 Braid matrices: a graphical derivation

The graphical notation introduced in subsection 3.2.1 can also be used to calculate the braid
matrices Ω42

4 and Ω43
4 . Even though their recursive construction (2.34) is known, such a graphical

derivation may in particular be beneficial once similar amplitude recursions for higher genera
are considered. Therefore, we show in this subsection how the derivative of the basis elements of
the fibration basis with respect to x4 can be calculated and put into the form of a KZ equation
using directed tree graphs.

From eq. (3.24), we know how to describe the differential forms in the fibration basis in terms
of directed graphs. In order to simplify the notation, we denote the corresponding twisted form
by the graph defining a representative of its twisted cohomology class. Hence, the fibration basis
is given by the elements 〈

n∏
k=5

ik k

∣∣∣∣∣ = 〈f4,+
i5,i6,...,in

| ,

for all the admissible sequences (i5, i6, . . . , in). Before the graphical calculation of ∂
∂x4
〈f4,+
i5,i6,...,in

|
is given, this derivative acting on the integrand of the fibration basis element is rewritten using
integration by parts, such that it only acts on the local coefficient û(x) of the twisted cycle C
from eq. (3.11) in the integral

〈f4,+
i5,i6,...,in

|C〉 =
∫

0<xn<···<x4
û(x)f4,+

i5,i6,...,in

=
∫

0<xn<···<x4
û(x)

n∏
k=5

1
xk,ik

dx5 ∧ dx6 ∧ · · · ∧ dxn . (3.41)

This can conveniently be described using the following definitions: for a graph g, we define

Vr(g) = {v ∈ N|v = r or v is branch-connected to r} .

Using integration by parts and
∂

∂xi

1
xij

= − ∂

∂xj

1
xij

(3.42)

to move any derivative acting on the product
∏n
k=5

1
xk,ik

to the factor û(x) in the integrand

of eq. (3.41), this results for g =
∏n
k=5

1
xk,ik

=
∏n
k=5 ik k and C the iterated integration

domain over the punctures x5, x6, . . . , xn loaded with û(x) in the expression

∂

∂x4
〈f4,+
i5,i6,...,in

|C〉 =
∫

0<xn<···<x4

 ∑
j∈V4(g)

∂

∂xj
û(x)

 n∏
k=5

1
xk,ik

dx5 ∧ dx6 ∧ · · · ∧ dxn

=
∫

0<xn<···<x4
û(x)

 ∑
j∈V4(g)

∑
i 6=j

tji
xji

 n∏
k=5

1
xk,ik

dx5 ∧ dx6 ∧ · · · ∧ dxn
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=
∫

0<xn<···<x4
û(x)

 ∑
j∈V4(g)

 ∑
l∈V2(g)

+
∑

m∈V3(g)
+

∑
i∈V4(g),i 6=j

 tji
xji


·
n∏
k=5

1
xk,ik

dx5 ∧ dx6 ∧ · · · ∧ dxn

=
∫

0<xn<···<x4
û(x)

 ∑
j∈V4(g)

 ∑
l∈V2(g)

+
∑

m∈V3(g)

 tji
xji


·
n∏
k=5

1
xk,ik

dx5 ∧ dx6 ∧ · · · ∧ dxn , (3.43)

where we have used the antisymmetry of tji
xji

in the last step. Equation (3.43) can be expressed
in terms of twisted forms as

∂

∂x4

〈
n∏
k=5

ik k

∣∣∣∣∣ =
∑

j∈V4(g)

∑
l∈V2(g)∪V3(g)

tjl

〈(
n∏
k=5

ik k

)
l j

∣∣∣∣∣ , (3.44)

where the graph

g l j =
(

n∏
k=5

ik k

)
l j =

4 . . . ij j . . .

x . . . il l . . .

5− x . . .

= gjl

is the graph obtained by connecting the vertex l to the vertex j in the graph g =
∏n
k=5 ik k ,

which we denote by gjl, and x is 2 or 3 if l ∈ V2(g) or l ∈ V3(g), respectively. Since in gjl, the
branch with the root 4 is connected to the branch with the root x = 2, 3, while the branch
with the root 5 − x = 3, 2 remains disconnected, iterative applications of the Fay identity can
be used to lower this connection, such that a linear combination of admissible graphs with a
factor x 4 are left. These factors can be pulled out of the integral in eq. (3.43) and yield
the fractions 1

x4
and 1

x4−1 in the KZ equation eq. (2.36) for x = 2 and x = 3, respectively. The
corresponding coefficients obtained from this factorisation on the right-hand side of eq. (3.44)
are the linear combinations of the Mandelstam variables which constitute the coefficients in the
braid matrices Ω4

4x. At each step, the Fay identity has to be applied in the form of eq. (3.27)
such that the admissibility is preserved.

As an example, let us graphically derive the braid matrices Ω4
42 and Ω4

43 in eq. (2.35). While
the full calculation can be found in appendix B.4, we only show the crucial steps here. The two
twisted forms which constitute the fibration basis are

〈f4,+
3 | =

〈
dx5
x53

∣∣∣∣ =
〈

3 5
∣∣ , and 〈f4,+

4 | =
〈
dx5
x54

∣∣∣∣ =
〈

4 5
∣∣ .

Beginning with the former, we find that for g3 = 3 5

V2(g3) = {2} , V3(g3) = {3, 5} , V4(g3) = {4} .
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According to eq. (3.44), the derivative of 〈f4,+
3 | with respect to x4 is therefore given by

∂

∂x4
〈f4,+

3 | = ∂

∂x4

〈
3 5

∣∣
= t42

〈
2 4 3 5

∣∣+ t43
〈

4 3 5
∣∣+ t45

〈
3 5 4

∣∣
= t42

〈
2 4 3 5

∣∣+ t43
〈

4 3 5
∣∣+ t45

〈
3 4

5
−

3 4

5

∣∣∣∣∣
=


(
t42 0

)
x4

+

(
t43 + t45 −t45

)
x4 − 1

 〈f4,+| , (3.45)

where the row vectors
(
t42 0

)
and

(
t43 + t45 −t45

)
are indeed the first rows of Ω4

42 and Ω4
43,

respectively, as given in eq. (2.35). The second equality in eq. (3.45) follows from eq. (3.44) and
the third equality is the application of the Fay identity to recover admissible graphs as described
below eq. (3.44). Similarly, we find for g4 = 4 5

V2(g4) = {2} , V3(g4) = {3} , V4(g4) = {4, 5} ,

such that eq. (3.44) implies

∂

∂x4
〈f4,+

4 | = ∂

∂x4

〈
4 5

∣∣
= t42

〈
2 4 5

∣∣+, t43
〈

3 4 5
∣∣+ t52

〈
2 4

5

∣∣∣∣∣+ t53

〈
3 4

5

∣∣∣∣∣
= t42

〈
2 4 5

∣∣+, t43
〈

3 4 5
∣∣+ t53

〈
3 4

5
−

3 4

5

∣∣∣∣∣
+ t52

〈
2 4

5
+ 2 4

(
t53
t52

3 5 + t54
t52

4 5

)∣∣∣∣∣
=


(
t53 t542

)
x4

+

(
−t53 t43 + t53

)
x4 − 1

 〈f4,+| ,

where we used that

t52
〈

2 5
∣∣+ t53

〈
3 5

∣∣+ t54
〈

4 5
∣∣ = 0 ,

since the left-hand side is a total derivative, to express
〈

2 5
∣∣ in terms of the two (fibration)

basis vectors
〈

3 5
∣∣ and

〈
4 5

∣∣ of the twisted cohomology. And indeed, the row vectors(
t53 t542

)
and

(
−t53 t43 + t53

)
obtained are the second rows of the braid matrices Ω4

42 and
Ω4

43, respectively, as eq. (2.35) approves.
While for the above examples this graphical approach seems rather superficial, it gives a

convenient tool to calculate the derivatives of the fibration basis for higher n. It can be im-
plemented in any computer algebra system as a manipulation of the adjacency matrices of the
directed graphs defining the fibration basis using matrix operations only. This procedure to eval-
uate the derivatives and obtain the matrices appearing in the differential equation of the given
basis turns out to be a convenient tool for similar amplitude recursions involving vector-valued
differential equations with matrix-valued connections at higher genera such as for example the
elliptic KZB equation in the one-loop recursion of ref. [9], where recursive definitions such as
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the construction of the braid matrices for genus zero in eq. (2.34) are not available.

4 Conclusions

In this article, we have reviewed the tree-level amplitude recursion of open-superstring states
introduced in ref. [4] and pointed out its relation to twisted de Rham theory. This investigation
led to the following results:

• The vector of string integrals with an auxiliary point introduced in ref. [4], which inter-
polates between the N - and the (N − 1)-point string corrections and which satisfies a KZ
equation, has been related to the fibration basis constructed in ref. [3]. The transformation
matrix can recursively be determined using eq. (3.38). In eq. (3.40), this recursion was
shown to be equivalent to the recursion of intersection numbers of twisted forms stated in
ref. [3].

• The transformation matrix is given by the intersection numbers of the twisted forms ap-
pearing in the string integrals with an auxiliary point and the dual fibration basis. Thus,
the recursion (3.38) gives a purely combinatorial derivation of these intersection num-
bers in terms of directed tree graphs, which is based on the partial-fractioning algorithm
described in subsection 3.2.1. This allows for a convenient implementation in computer
algebra systems using (weighted) adjacency matrices and matrix operations thereon.

• While the vector of string integrals with an auxiliary point is the relevant solution of the
KZ equation in the amplitude recursion of ref. [4], the representations of the Lie algebra
generators in the KZ equation (2.36) satisfied by the fibration basis are braid matrices
with a well-known recursive definition. Therefore, the above basis transformation leads to
a recursive construction of the matrix representations appearing in the KZ equation (3.14)
of the vector of string integrals with an auxiliary point, which constitute the letters for
the Drinfeld associator used in the amplitude recursion. This shows in particular, that the
matrices occurring in the amplitude recursion are braid matrices as well.

• In eq. (3.44), the derivatives of the twisted forms which constitute the fibration basis has
been expressed graphically in terms of directed tree graphs. Starting from this expression
using the graphical algorithm described in subsection 3.3, the braid matrices can be de-
rived in an alternative way to the recursion of ref. [3]. On the one hand, this completes
the graphical derivation of the matrix representations in the KZ equation of the string in-
tegrals with an auxiliary point. On the other hand, this procedure may be used in similar
constructions at higher genera, where no alternative derivation of the relevant matrices
are available.

• As discussed below, this analysis reveals the essential features of the amplitude recursion.
This may lead to similar recursions for loop amplitudes or higher-genera Riemann surfaces,
respectively. A first result in this direction is described by the one-loop recursion in ref. [9].

• Moreover, formulating the recursion of ref. [4] in terms of twisted de Rham theory proves
various statements about the feasibility of the recursion. For example the fact that the
differential equation of the vector of string integrals with an auxiliary point can indeed be
written in the form of a KZ equation.

32



These results do not only allow for an efficient implementation of the tree-level amplitude
recursion and a description in terms of twisted de Rham theory, but offer insights in the essential
features allowing for such a recursion. The differential one-forms dxk/xk,ik in the string correc-
tions span the logarithmic derivatives of the genus-zero Koba–Nielsen factor. Defining iterated
integrals over the punctures with integration kernels the admissible dxk/xk,ik , i.e. 3 ≤ ik < k,
and the empty integral being the Koba–Nielsen factor leads to a recursive construction of the
representations of the Lie algebra generators in the corresponding KZ equation. This is exactly
how the fibration basis is defined and the braid matrices come up.

It may be expected that a similar construction for higher genera is possible. The relevant
differential one-forms are determined by the logarithmic derivatives of the higher-genus Koba–
Nielsen factor. A basis of the corresponding integrals, or, more precisely, of the twisted de
Rham cohomology, ought to be defined in terms of iterated integrals with integration kernels
the admissible differential one-forms and the empty integral should be given by the higher-genus
Koba–Nielsen factor. The differential equation with respect to the insertion point defining the
outermost integration boundary satisfied by this iterated integral can be cast into a sum over
all admissible differential one-forms with coefficients some linear combination of the admissible
iterated integrals. In order to recover admissible iterated integrals at this point, a similar mech-
anism to manipulate the labels of a product of differential one-forms as partial fractioning is
required, for example a Fay identity. These linear combinations constitute the matrices, which
serve as letters in a Drinfeld-like associator construction, which itself is determined by the sin-
gularities occurring in the differential one-forms and relates some limits of the iterated integrals.
These limits, in turn, should contain the amplitudes at the current genus and amplitudes at
(possibly) lower genera. In ref. [9], this construction has been carried out for the one-loop open-
string corrections defined on genus-one Riemann surfaces. The generalisation to higher genera
and possibly other theories remains an open task.
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Appendix

A Notes on the solution of the KZ equation for string correc-
tions

In this section, we investigate some properties of the solution F̂ σν (x) of the KZ equation given in
eq. (3.2), which is the backbone of the amplitude recursion for the string corrections proposed
in ref. [4].

A.1 Translation between different labellings

In this subsection, the integral (3.2) as originally11 defined in ref. [4] in terms of the labelling
(N, zi, sij) and the auxiliary puncture zN−2 < z0 < zN−1, i.e.

F̂ σν (z) = (−1)N−3
∫ z0

0
dzN−2

N−3∏
i=2

∫ zi+1

0
dzi u(z)

N−1∏
i=1
|z0i|s0iσ

 ν∏
k=2

k−1∑
j=1

sjk
zjk

N−2∏
m=ν+1

N−1∑
l=m+1

sml
zml

 ,

(A.1)

is expressed in terms of the labelling (n, xi, tij) without the appearance of z1 = x2 = 0 in the
expression on which the permutation σ acts. The result is the integral F̂ σν (x) as defined in
eq. (3.2). This can be achieved by an iterative application of integration by parts with respect
to the variable with the highest label in the first product until the product is empty

F̂ σν (z)

= (−1)N−3
∫ z0

0
dzN−2

N−2∏
i=2

∫ zi+1

0
dzi u(z)

N−1∏
i=1
|z0i|s0iσ

 ν∏
k=2

k−1∑
j=1

sjk
zjk

N−2∏
m=ν+1

N−1∑
l=m+1

sml
zml


= (−1)N−3

∫ z0

0
dzN−2

N−2∏
i=2

∫ zi+1

0
dzi u(z)

N−1∏
i=1
|z0i|s0i

σ

ν−1∏
k=2

k−1∑
j=1

sjk
zjk

( N−1∑
s=ν+1

sνs
zνs

+ sν0
zν0

) N−2∏
m=ν+1

N−1∑
l=m+1

sml
zml


= (−1)N−3

∫ z0

0
dzN−2

N−2∏
i=2

∫ zi+1

0
dzi u(z)

N−1∏
i=1
|z0i|s0i

σ

ν−2∏
k=2

k−1∑
j=1

sjk
zjk

ν∏
r=ν−1

(
N−1∑
s=r+1

srs
zrs

+ sν0
zν0

)
N−2∏

m=ν+1

N−1∑
l=m+1

sml
zml


= (−1)N−3

∫ z0

0
dzN−2

N−2∏
i=2

∫ zi+1

0
dziu(z)

N−1∏
i=1
|z0i|s0iσ

 ν∏
r=2

(
N−1∑
s=r+1

srs
zrs

+ sν0
zν0

)
N−2∏

m=ν+1

N−1∑
l=m+1

sml
zml


= (−1)n

n∏
i=5

∫ xi−1

0
dxi

∏
2≤i≺j≤n

|xij |tijσ

 n∏
k=n−ν+2

k−1∑
j=3

tkj
xkj

n−ν+1∏
m=5

(
m−1∑
l=5

tml
xml

+ tm3
xm3

)
= F̂ σν (x) ,
11The original definition is actually defined with s01 = s0,N−1 = 0, however, this does not change the subvector

of C1 containing the string corrections: this simply leads to the exponential contribution in eq. (A.3), which
cancels the additional factor zs0,N−1

0,N−1 in C1 from F̂σν (z). Similarly, it does not change C0.
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where in the second last line, the labelling has been changed from (N, zi, sij) to (n, xi, tij)
according to eqs. (2.14)-(2.16). A comparison with the original definition (A.1) and eq. (2.20)
shows that the latter integrals are recovered for s0,N−1 = 0 in the limit z0 = x4 → 1 and
s0i = t4,σoi → 0 of the former, thus

lim
t4i→0

lim
x4→1

F̂ σν (x4)|t43=0 = F σid,ν . (A.2)

A.2 The first rows of e1

The condition t43 = 0 in eq. (A.2) is incorporated for ν = n− 3 in the first (n− 4)! entries of e1:
for ν = n− 3 there is neither a zN−1 nor a z0 appearing in the factor the permutation σ acts on
in eq. (A.1). Thus, in the derivative

∂

∂z0
F̂ σN−2(z0) = (−1)N−3

∫ z0

0
dzN−2

N−2∏
i=2

∫ zi+1

0
dzi u(z)

N−2∏
i=2

zs0i0i

(
N−1∑
i=1

s0i
z0i

)
σ

N−2∏
k=2

k−1∑
j=1

sjk
zjk

 ,

the quotient 1
z0i

with 1 ≤ i < N − 1 can be traded using partial fractioning with the other
quotients in σ

(∏N−2
k=2

∑k−1
j=1

sjk
zjk

)
, which does not contain any variable zN−1, for 1

z01
= 1

z0
which

contribute to the matrix e0. Thus, the only quotient of the form 1
z0,N−1

comes from differentiating
the factor u(z) and can simply be pulled out of the integral together with the corresponding
coefficient s0,N−1. This is the only contribution to e1 in the KZ equation of F̂ (z0) (see e.g.
eq. (B.5)), such that

e1 =

s0,N−1I(n−4)!×(n−4)! 0(n−4)!×(n−4)(n−4)!
...

...

 , (A.3)

which proves eq. (3.5).

A.3 Regularised boundary value C0

In this section, the regularised boundary value

C0 = lim
x4→0

x−e0
4 F̂ (x4)

is calculated and shown to contain the (n−2)-point tree-level string corrections. This derivation
is closely related to the proofs in ref. [8]. The calculation is shown in terms of the labelling
(N, zi, sij), since in terms of this labelling, the components of F̂ (x4) given by the integrals
F̂ σν (z0) defined in eq. (A.1) only depend in the factor u(z) on z0 = x4. Using the substitution
zi = z0wi for 0 ≤ i ≤ N − 2 with w0 = 1 and the definition smax = s12...,N−2 +

∑N−2
j=2 s0j , we

find for ν = N − 2 and σ ∈ SN−3

lim
z0→0

z−smax
0 F̂ σid,N−2(z0)

= (−1)N−3 lim
z0→0

z−smax
0

∫ z0

0
dzN−2

N−3∏
i=2

∫ zi+1

0
dzi u(z)

N−2∏
k=2

zs0k0k σ

N−2∏
k=2

k−1∑
j=1

sjk
zjk


= (−1)N−3 lim

z0→0

∫ 1

0
dwN−2

N−3∏
i=2

∫ wi+1

0
dwi

∏
1≤i<j≤N−2

|wij |sij
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N−2∏
k=1

(1− z0wk)sk,N−1
N−2∏
k=2

(1− wk)s0kσ

N−2∏
k=2

k−1∑
j=1

sjk
wjk


= (−1)N−3

∫ 1

0
dwN−2

N−3∏
i=2

∫ wi+1

0
dwi

∏
1≤i<j≤N−2

|wij |sij
N−2∏
k=2

(1− wk)s0kσ

N−2∏
k=2

k−1∑
j=1

sjk
wjk


= F σ|si,N−1=s0i ,

which indeed corresponds to the N -point string corrections with si,N−1 = s0i. If ν < N−2, there
would appear N − 2 − ν less factors of z0 in the denominator than in the integration measure
after the change of variables zi = z0wi, leading to vanishing integrals. Thus, only the integrals
F̂ σid,ν with ν = N − 2 do not vanish in the regularised limit limz0→0 z

−smax
0 F̂ σid,ν(z0) giving the

above result. However, this limit does not yet yield (N−1)-point string corrections. As observed
for the limit z0 → 1, the Mandelstam variables s0,i had to be set to zero before the N -point
amplitudes could be recovered. Applying this limit s0i → 0 for the present boundary value,
where z0 → 0, effectively removes one external state leaving (N −1)-point integrals. Concretely,
assuming that σ(N −2) = N −2, using integration by parts with respect to wN−2 and the Dirac
delta function in the form

lim
α→0

∫ 1

p
dxα(1− x)α−1F (x) = F (1)

for a function F which is integrable on ]p, 1], the additional limit s0i → 0 yields

lim
s0i→0

lim
z0→0

z−smax
0 F σid,N−2(z0, s0i)

= (−1)N−3 lim
s0i→0

∫ 1

0
dwN−2

N−3∏
i=2

∫ wi+1

0
dwi

∏
1≤i<j≤N−2

|wij |sij
N−2∏
k=2

(1− wk)s0kσ

N−2∏
k=2

k−1∑
j=1

sjk
wjk


= (−1)N−3 lim

s0i→0

∫ 1

0
dwN−2

N−3∏
i=2

∫ wi+1

0
dwi

∏
1≤i<j≤N−2

|wij |sij
N−3∑
j=1

sj,N−2
wj,N−2

N−2∏
k=2

(1− wk)s0k

σ

N−3∏
k=2

k−1∑
j=1

sjk
wjk


= (−1)N−3 lim

s0i→0

∫ 1

0
dwN−2

N−3∏
i=2

∫ wi+1

0
dwi

− ∂

∂wN−2

∏
1≤i<j≤N−2

|wij |sij
N−2∏

k=2
(1− wk)s0k

σ

N−3∏
k=2

k−1∑
j=1

sjk
wjk


= (−1)N−4 lim

s0i→0

∫ 1

0
dwN−2 s0,N−2(1− wN−2)s0,N−2−1

N−3∏
i=2

∫ wi+1

0
dwi

∏
1≤i<j≤N−2

|wij |sij
N−3∏
k=2

(1− wk)s0kσ

N−3∏
k=2

k−1∑
j=1

sjk
wjk


= (−1)N−4

N−3∏
i=2

∫ wi+1

0
dwi

∏
1≤i<j≤N−2

|wij |sijσ

N−3∏
k=2

k−1∑
j=1

sjk
wjk

 |wN−2=1

= F σ|N−1 ,
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where F σ|N−1 is the string correction for N − 1 external states with (w1, wN−2, wN−1) =
(0, 1,∞).

B Partial-fractioning algorithm: applications

In this section, the algorithm from subsection 3.2.1 is applied to some examples. First, we
consider a σ-permuted admissible form for n = 8 and use the above algorithm to rewrite it
in terms of the fibration basis. The second and third examples are the four-point and five-
point amplitudes F̂ (x4) for n = 5 and n = 6, respectively, for which we calculate the basis
transformation B, cf. eq. (3.13), to the fibration basis 〈f4,+(x4)| following subsection 3.2.1.

B.1 From σ-permuted admissible to admissible

In order to exemplify the partial-fractioning algorithm, let us consider the admissible sequence
(i5, i6, i7, i8) = (4, 5, 5, 7) and the transposition τ = (5 7). The corresponding τ -permuted ad-
missible sequence is (iτ5 , iτ6 , iτ7 , iτ8) = (7, 7, 4, 5), where iτk = τiτk, and, according to eqs. (3.19)
and (3.25), the τ -permuted admissible form is given by

ϕτ4,5,5,7 = dx5 ∧ dx6 ∧ dx7 ∧ dx8
x57x67x74x85

=

 4 7 6

5 8

 dx5 ∧ dx6 ∧ dx7 ∧ dx8 , (B.1)

which is not admissible since even though no vertex larger than four has two incoming arrows,
some arrows point from a higher number to a lower number. Following the algorithm from
subsection 3.2.1, the graph appearing in the form ϕτ4,5,5,7 can be written in terms of admissible
graphs as follows: first, we consider the highest vertex h with a non-admissible factor iτ

h h ,
which is h = 6 with iτh = 7, and apply the partial-fractioning identity (3.29) to the corresponding
branch as given in eq. (3.33). Here, this branch is b6 = 4 7 6 , such that according to
eq. (3.34)

4 7 6 = −
4

7

6
=

4

7

6
−

4

7

6
.

The highest non-admissible vertex in the resulting linear combination of graphs

4 7 6

5 8

= −

4

7

6

5 8

=

4

7

6

5 8

−

4

7

6

5 8

is h = 5 with ih = 7 and non-admissible factor 7 5 . This linear combination can be
rewritten as before using eq. (3.34) such that the final linear combination is given by

4 7 6

5 8

=

4

7

6

5 8

−
4 76

5 8
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=

4

7

6

5 8

+
4 76

5 8

,

where each of the six terms are admissible. Writing them fully out, they are given by

4

7

6

5 8

=

4

7

6

5 8

−

4

7

6

5 8

(B.2)

as well as

4 76

5 8

=
4 76

5 8

−
4 76

5 8

=
4 76

5 8

−
4 76

5 8

−
4 76

5 8

+
4 76

5 8

, (B.3)

such that the equation

4 7 6

5 8

=

4

7

6

5 8

+
4 76

5 8

=

4

7

6

5 8

−

4

7

6

5 8

+
4 76

5 8

−
4 76

5 8

−
4 76

5 8

+
4 76

5 8

=

4

7

6

5 8

+
4 76

5 8

−
4 76

5 8

−
4 76

5 8

, (B.4)
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with the right-hand side a linear combination of admissible graphs, is according to eqs. (B.2)
and (B.3) the partial-fractioning identity

1
x57x67x74x85

= 1
x54x64x74x85

− 1
x54x64x75x85

+ 1
x54x65x76x85

− 1
x54x65x75x85

− 1
x54x64x76x85

+ 1
x54x64x75x85

= 1
x54x64x74x85

+ 1
x54x65x76x85

− 1
x54x65x75x85

− 1
x54x64x76x85

and admissibility means that each term on the right-hand side is of the form
∏8
k=5

1
xk,ik

, where
3 ≤ ik < k. Therefore, using eqs. (B.2,B.3,B.4) and the definitions (3.24,3.25), the differential
form ϕτ4,5,5,7 in eq. (B.1) can be expressed in terms of the fibration basis as follows

ϕτ4,5,5,7 = f4,+
4,4,4,5 + f4,+

4,5,8,5 − f
4,+
4,5,5,5 − f

4,+
4,4,6,5 .

B.2 Basis transformation for four-point string integrals

The four-point example corresponds to n = 5 and is based on the vector of integrals given in
eq. (3.7) expressed in terms of the labelling (n, xi, tij)

F̂ (x) =
(
F̂ id

2 (x)
F̂ id

1 (x)

)
= −

∫ z4

0
dx5 |x25|t25 |x53|t53 |x45|t45

(
t53
x53

+ t54
x54

t53
x53

)
.

The differential forms in both entries are already linear combinations of the fibration basis, since

f4,+ =
(
f4,+

3
f4,+

4

)
=
(
dx5
x53
dx5
x54

)
,

which is expected according to eq. (3.26). Thus, we can immediately read off the coefficients
bidν;i5 , which are in agreement with (3.36), and express the twisted forms 〈f̂ id

ν | in terms of the
fibration basis

〈f̂ id
2 | = −t53〈ϕid

3 | − t54〈ϕid
4 | = −t53〈f4,+

3 | − t54〈f4,+
4 | , 〈f̂ id

1 | = −t53〈f4,+
3 | ,

hence, the basis transformation B is given by

〈f̂ | =
(
−t53 −t54
−t53 0

)
〈f4,+| .

The matrices e0 and e1 can immediately be obtained using the braid matrices for n = 5 given
in eq. (2.35) and the transformation in eq. (3.15)

e0 = BΩ42
4 B

−1 =
(
t542 −t52
0 t42

)
, e1 = BΩ43

4 B
−1 =

(
t43 0
−t53 t543

)
.

In the limit t4i → 0, these matrices indeed degenerate to the matrices found in ref. [4] and given
in eq. (3.8).
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B.3 Basis transformation for five-point string integrals

Having calculated the basis transformation for n = 5 in the previous subsection, we consider the
example n = 6 which corresponds to five-point amplitudes, where the vector F̂ (x4) is given by

F̂ (x4) =



F̂ id
3

F̂
(5 6)
3
F̂ id

2
F̂

(5 6)
2
F̂ id

1
F̂

(5 6)
1


=
∫ x4

0
dx5

∫ x5

0
dx6 û(x)



(
t65
x65

+ t64
x64

+ t63
x63

) (
t54
x54

+ t53
x53

)(
t56
x56

+ t54
x54

+ t53
x53

) (
t64
x64

+ t63
x63

)(
t65
x65

+ t64
x64

+ t63
x63

)
t53
x53(

t56
x56

+ t54
x54

+ t53
x53

)
t63
x63(

t65
x65

+ t63
x63

)
t53
x53(

t56
x56

+ t53
x53

)
t63
x63


.

First, note that according to the definition (3.20) of Iν

I3 = {(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5)}

and
I2 = {(3, 3), (3, 4), (3, 5)} , I1 = {(3, 3), (3, 5)} .

Furthermore, the differential forms appearing in the sums F̂ id
ν are admissible, such that we

immediately obtain the corresponding rows Bid
i for i = 1, 2, 3 of B from eq. (3.36)

B =



t63t53 t64t53 t65t53 t63t54 t64t54 t65t54
. . .

t63t53 t64t53 t65t53 0 0 0
. . .

t63t53 0 t65t53 0 0 0
. . .


.

Using partial fractioning, the non-admissible forms which in general correspond to σ 6= id, can
be rewritten in terms of admissible ones. Applying the algorithm from subsection 3.2.1, the
basis transformation can readily be determined using eq. (3.38). Starting with the last row,
i.e. F̂ (5 6)

1 , we have to determine admT (ϕ(5 6)
3,3 ) and admT (ϕ(5 6)

3,5 ) since I1 = {(3, 3), (3, 5)},
which are the coefficients of the permutation (5 6) applied to 1

x53x63
= 5 3 6 and

1
x53x65

= 3 5 6 , expressed as the linear combination of admissible products. The former
is unchanged by (5 6) and hence, stays admissible, such that

admT (ϕ(5 6)
3,3 ) =

(
1 0 0 0 0 0

)
.

The latter becomes 1
x56x63

= 3 6 5 , which is non-admissible, since an arrow points from
a higher vertex to a lower vertex. Following the algorithm in subsection 3.2.1 and according to
eq. (3.34), it can be expressed as the following linear combination of admissible sequences

3 6 5 = −
3 6

5
=

3 6

5
−

3 6

5

such that

admT (ϕ(5 6)
3,5 ) =

(
1 0 −1 0 0 0

)
.
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Therefore, the row B
(5 6)
1 is given by

B
(5 6)
1 =

∑
(i5,i6)∈I1

t5,i(5 6)
5

t6,i(5 6)
6

admT (ϕ(5 6)
i5,i6

)

= t5,3t6,3admT (ϕ(5 6)
3,3 ) + t5,6t6,3admT (ϕ(5 6)

3,5 )

=
(
t63t53 + t65t63 0 −t65t63 0 0 0

)
.

Similar calculations for the remaining two rows of B lead to the transformation matrix

B =



t63t53 t64t53 t65t53 t63t54 t64t54 t65t54
t63t53 + t65t63 t64t53 −t65t63 t63t54 t64t54 + t64t65 −t65t64

t63t53 t64t53 t65t53 0 0 0
t63t53 + t65t63 0 −t65t63 t63t54 0 0

t63t53 0 t65t53 0 0 0
t63t53 + t65t63 0 −t65t63 0 0 0


,

such that for n = 6

〈f̂ | = B〈f4,+| .

Therefore, the matrices e0 and e1 are given by

e0 = BΩ4
42B

−1 =



t6542 0 −t52 − t65 −t62 −t62 t62
0 t6542 −t52 −t62 − t65 t52 −t52
0 0 t642 0 −t62 0
0 0 0 t542 0 −t52
0 0 0 0 t42 0
0 0 0 0 0 t42


and

e1 = BΩ4
43B

−1 =



t43 0 0 0 0 0
0 t43 0 0 0 0
−t53 0 t543 0 0 0

0 −t63 0 t643 0 0
−t53 t53 −t63 − t65 −t53 t6543 0
t63 −t63 −t63 −t53 − t65 0 t6543


. (B.5)

Indeed, in the limit ti4 → 0 the matrices of ref. [4] are recovered, the same behaviour has been
checked explicitly for the examples up to n = 9.

B.4 Graphical derivation of braid matrices for n = 5

As an example of a graphical derivation of the braid matrices in terms of directed graphs
presented in subsection 3.3, let us derive the braid matrices Ω4

42 and Ω4
43 for n = 5 in eq. (2.35).

The two twisted forms which constitute the fibration basis are

〈f4,+
3 | =

〈
dx5
x53

∣∣∣∣ =
〈

3 5
∣∣ , and 〈f4,+

4 | =
〈
dx5
x54

∣∣∣∣ =
〈

4 5
∣∣ .
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Beginning with the former, we find that for g3 = 3 5

V2(g3) = {2} , V3(g3) = {3, 5} , V4(g3) = {4} . (B.6)

According to eq. (3.44), the derivative of 〈f4,+
3 | with respect to x4 is therefore given by

∂

∂x4
〈f4,+

3 | = ∂

∂x4

〈
3 5

∣∣
= t42

〈
2 4 3 5

∣∣+ t43
〈

3 4 3 5
∣∣+ t45

〈
5 4 3 5

∣∣
= 2 4 t42

〈
3 5

∣∣+ 3 4 t43
〈

3 5
∣∣+ t45

〈
3 5 4

∣∣
= 1
x4
t42〈f4,+

3 |+ 1
x4 − 1 t43〈f4,+

3 | − t45

〈
3 4

5

∣∣∣∣∣
= 1
x4
t42〈f4,+

3 |+ 1
x4 − 1 t43〈f4,+

3 | − t45

〈
3 4

5

∣∣∣∣∣
= 1
x4
t42〈f4,+

3 |+ 1
x4 − 1 t43〈f4,+

3 | − t45

〈
3 4

5
−

3 4

5

∣∣∣∣∣
= 1
x4
t42〈f4,+

3 |+ 1
x4 − 1 t43〈f4,+

4 )3|+
1

x4 − 1 t45
(
〈f4,+

4 )3| − 〈f4,+
4 )4|

)
=


(
t42 0

)
x4

+

(
t43 + t45 −t45

)
x4 − 1

 〈f4,+| ,

where the row vectors
(
t42 0

)
and

(
t43 + t45 −t45

)
are indeed the first rows of Ω4

42 and Ω4
43,

respectively, as given in eq. (2.35). Similarly, we find for g4 = 4 5

V2(g4) = {2} , V3(g4) = {3} , V4(g4) = {4, 5} , (B.7)

such that eq. (3.44) implies

∂

∂x4
〈f4,+

4 | = ∂

∂x4

〈
4 5

∣∣
= 2 4 t42

〈
4 5

∣∣+ 3 4 t43
〈

4 5
∣∣+ t52

〈
2 4

5

∣∣∣∣∣+ t53

〈
3 4

5

∣∣∣∣∣
= 1
x4
t42〈f4,+

4 |+ 1
x4 − 1 t43〈f4,+

4 |+ t52

〈
2 4

5

∣∣∣∣∣+ t53

〈
3 4

5

∣∣∣∣∣
= 1
x4
t42〈f4,+

4 |+ 1
x4 − 1 t43〈f4,+

4 |

+ t52

〈
2 4

5
−

2 4

5

∣∣∣∣∣+ t53

〈
3 4

5
−

3 4

5

∣∣∣∣∣
= 1
x4
t42〈f4,+

4 |+ 1
x4 − 1

(
−t53〈f4,+

3 |+ (t43 + t53)〈f4,+
4 |

)
+ t52

〈
2 4

5
+ 2 4

(
t53
t52

3 5 + t54
t52

4 5

)∣∣∣∣∣
= 1
x4

(
t53〈f4,+

3 |+ t542〈f4,+
4 |

)
+ 1
x4 − 1

(
−t53〈f4,+

3 |+ (t43 + t53)〈f4,+
4 |

)
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=


(
t53 t542

)
x4

+

(
−t53 t43 + t53

)
x4 − 1

 〈f4,+| ,

where we used that

t52
〈

2 5
∣∣+ t53

〈
3 5

∣∣+ t54
〈

4 5
∣∣ = 0 ,

since the left-hand side is a total derivative, to express
〈

2 5
∣∣ in terms of the two (fibration)

basis vectors
〈

3 5
∣∣ and

〈
4 5

∣∣ of the twisted cohomology. And indeed, the row vectors(
t53 t542

)
and

(
−t53 t43 + t53

)
obtained are the second rows of the braid matrices Ω4

42 and
Ω4

43, respectively, as eq. (2.35) approves.

C Validity of the partial-fractioning algorithm

In this section, we prove the validity of the algorithm presented in subsection 3.2.1. This is
done by showing that for an admissible sequence (i5, i6, . . . , in), a permutation σ ∈ Sn and h

the highest vertex with a non-admissible factor 1
xh,iσ

h

= iσ
h h , i.e. 5 ≤ h < iσh in

n∏
k=5

1
xk,iσ

k

=
n∏
k=5

iσ
k k ,

there exists a positive integer l and vertices

hl < h < hl−1 < hl−2 < · · · < h1 < iσh

such that the graph

bh = hl hl−1 hl−2 . . . h1 iσ
h h (C.1)

is a subgraph of the branch containing the vertex h. The argument is based on the fact that the
sequence (i5, i6, . . . , in) is admissible.

Since iσh > h ≥ 5, there exists a vertex h1 < iσh, such that

h1 iσ
h h

is a subgraph of
∏n
k=5 iσ

k k . The condition h1 < iσh follows from the fact that h is the highest
vertex with non-admissible factor. If h1 < h, we are done and l = 1. Otherwise, h1 ≥ h ≥ 5 and
there exists another vertex h2 < h1 < h, such that

h2 h1 iσ
h h

is a subgraph of
∏n
k=5 iσ

k k . Again, if h2 < h, we are done and l = 2. Otherwise, we can
iterate this process a finite number of times, say l times, until hl ≤ h. Thus we are done, since
the case where hl = h can not occur because of the admissibility of the sequence (i5, i6, . . . , in):

if hl = h was true, and we denote σim σm = iσ
h h as well as σi

mj σmj = iσ
hj hj
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for 1 ≤ j ≤ l, such that by the admissibility of (i5, i6, . . . , in)

m > im , mj > imj .

Furthermore, by construction we have hj+1 = iσhj < hj , which implies

mj+1 = imj .

This means that h = hl would imply

m = ml

and, hence, the inequality

m = ml = iml−1 < ml−1 = iml−2 < ml−2 < · · · < m1 < im < m

would hold. This contradiction shows that hl < h.
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